WO2022059416A1 - 量子カスケードレーザモジュール - Google Patents

量子カスケードレーザモジュール Download PDF

Info

Publication number
WO2022059416A1
WO2022059416A1 PCT/JP2021/030436 JP2021030436W WO2022059416A1 WO 2022059416 A1 WO2022059416 A1 WO 2022059416A1 JP 2021030436 W JP2021030436 W JP 2021030436W WO 2022059416 A1 WO2022059416 A1 WO 2022059416A1
Authority
WO
WIPO (PCT)
Prior art keywords
base
holding member
lens holding
lens
package
Prior art date
Application number
PCT/JP2021/030436
Other languages
English (en)
French (fr)
Inventor
直大 秋草
龍男 道垣内
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to US18/025,723 priority Critical patent/US20230369823A1/en
Priority to CN202180062846.6A priority patent/CN116113791A/zh
Priority to DE112021004841.4T priority patent/DE112021004841T5/de
Publication of WO2022059416A1 publication Critical patent/WO2022059416A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • F21V19/003Fastening of light source holders, e.g. of circuit boards or substrates holding light sources
    • F21V19/0035Fastening of light source holders, e.g. of circuit boards or substrates holding light sources the fastening means being capable of simultaneously attaching of an other part, e.g. a housing portion or an optical component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • F21V19/003Fastening of light source holders, e.g. of circuit boards or substrates holding light sources
    • F21V19/0055Fastening of light source holders, e.g. of circuit boards or substrates holding light sources by screwing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/60Cooling arrangements characterised by the use of a forced flow of gas, e.g. air
    • F21V29/67Cooling arrangements characterised by the use of a forced flow of gas, e.g. air characterised by the arrangement of fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/80Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with pins or wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02257Out-coupling of light using windows, e.g. specially adapted for back-reflecting light to a detector inside the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3401Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers
    • H01S5/3402Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers intersubband lasers, e.g. transitions within the conduction or valence bands
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02438Characterized by cooling of elements other than the laser chip, e.g. an optical element being part of an external cavity or a collimating lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3401Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers

Definitions

  • This disclosure relates to a quantum cascade laser module.
  • Patent Document 1 discloses a configuration including an LED unit (LED substrate and LED package), an illumination unit (lens group), and a cooling fan.
  • LED unit LED substrate and LED package
  • illumination unit illumination unit
  • Patent Document 2 discloses a configuration in which a light source module, a lens holder, and a cooling fan are fixed to the light source holder.
  • the light source module and the lens holder are separately fixed to the light source holder.
  • a quantum cascade laser (hereinafter referred to as "QCL") may be used as the light source of the module as described above.
  • a module equipped with a QCL is used, for example, for measuring the concentration of a gas.
  • a gas cell in which the gas to be measured is sealed is placed between the module and the photodetector, the laser light emitted from the module is passed through the gas cell, and the laser light after passing through the gas cell is transmitted.
  • the concentration of gas in the gas cell (absorbance of laser light) can be measured.
  • the QCL has excellent monochromaticity (that is, excellent wavelength resolution), it can be suitably used for gas concentration measurement as described above.
  • optical noise is generated in principle due to the excellent monochromaticity as described above. More specifically, fringe noise (interference noise) is generated by an interference component between the emission end surface of the QCL and the interface of the lens provided in the module.
  • the optical noise can be treated as an invariant, so that the optical noise can be calculated in the background. Can be removed by.
  • the module includes a cooling fan as described above, there is a possibility that a deviation may occur between the vibration of the QCL and the vibration of the lens due to the vibration of the cooling fan.
  • the light source and the lens are separately fixed to the base member (that is, the base in Patent Document 1 and the light source holder in Patent Document 2) as in the configuration described in Patent Documents 1 and 2, QCL.
  • the vibration of the lens and the vibration of the lens do not have the same phase, and the positional relationship between the QCL and the lens (that is, the optical path length) tends to fluctuate with time.
  • the optical noise cannot be treated as an invariant. That is, the optical noise cannot be removed by the background calculation. Therefore, the sensitivity (detection limit) in the measurement as described above is limited.
  • one aspect of the present disclosure is to provide a quantum cascade laser module capable of reducing optical noise due to temporal fluctuations in optical conditions in a configuration provided with a cooling fan.
  • the quantum cascade laser module includes a package provided with a window material that accommodates the quantum cascade laser element and takes out the laser light emitted from the quantum cascade laser element to the outside, and is emitted from the window material.
  • a lens holding member that holds the lens to which the laser beam is incident, a cooling fan that cools the package, and a base that holds the package, the lens holding member, and the cooling fan are provided, and the package and the lens holding member have a common axis. It is fastened together with the base by the member.
  • the quantum cascade laser module is equipped with a cooling fan to cool the package. According to such a configuration, it is possible to reduce the size and simplification of the module as compared with the case where a cooling mechanism of another method (for example, a water cooling method) is provided. Further, in the quantum cascade laser module, the package which is a light source and the lens holding member are co-tightened to the base by a common shaft member. That is, the package and the lens holding member are integrally fixed by a common shaft member. As a result, the vibration pattern caused by the vibration of the cooling fan is shared between the package and the lens held by the lens holding member.
  • a cooling mechanism of another method for example, a water cooling method
  • the package may be arranged between the base and the lens holding member so that the window material faces the lens, and the package and the lens holding member are formed by fastening the lens holding member to the base. It may be tightened together with the lens.
  • the lens holding member and the package can be integrally fixed to the base by sandwiching the package between the lens holding member and the base.
  • a spacer may be further provided between the lens holding member and the base, and the package may have a flange that abuts on the base and extends along the base, where the spacer is the base of the lens holding member.
  • the flange may have a first flange and a second flange formed on both sides of the window material, and the spacer may have a surface on the base side of the lens holding member and a surface on the lens holding member side of the first flange. It may have a first spacer arranged between the two spacers and a second spacer arranged between the base side surface of the lens holding member and the lens holding member side surface of the second flange.
  • Each of the lens holding member, the spacer, the flange, and the base may be formed with an insertion hole through which the shaft member is inserted, and is inserted into each of the insertion holes of the lens holding member, the spacer, the flange, and the base.
  • the lens holding member, the spacer, and the flange may be fastened together to the base.
  • the lens holding member, the spacer, and the flange are integrally and firmly fixed to the base by passing the shaft member through the lens holding member, the spacer, and the flange and inserting the shaft member into the insertion hole of the base. be able to. This makes it possible to effectively suppress fluctuations in the relative positional relationship between the package and the lens holding member.
  • Each of the lens holding member and the base may be formed with an insertion hole through which the shaft member is inserted, and the lens holding member and the base may have a spacer and a flange arranged between the lens holding member and the base.
  • the lens holding member, the spacer, and the flange may be co-tightened to the base by fastening the lens holding member to the base by the shaft member inserted into each of the insertion holes.
  • the shaft member is passed through the lens holding member and inserted into the insertion hole of the base, and the spacer and the flange arranged between the lens holding member and the base are sandwiched between the lens holding member, the spacer, and the lens holding member.
  • the flange can be integrally and firmly fixed to the base. This makes it possible to effectively suppress fluctuations in the relative positional relationship between the package and the lens holding member.
  • the spacer may be made of a material having a lower thermal conductivity than the base. As a result, the heat generated in the package can be efficiently dissipated to the base side instead of the spacer side.
  • a quantum cascade laser module capable of reducing optical noise due to temporal fluctuations in optical conditions in a configuration including a cooling fan.
  • the quantum cascade laser module 1 (hereinafter referred to as “QCL module 1”) has, as main components, a package 2 which is a light source and a laser beam emitted from the package 2. It has a lens holding member 4 for holding the lens 3 to which the light source is incident, a cooling fan 5 for cooling the package 2, and a base 6 for holding the package 2, the lens holding member 4, and the cooling fan 5.
  • the optical axis direction of the laser beam emitted from the package 2 is referred to as the Z-axis direction
  • the two directions orthogonal to the Z-axis direction and orthogonal to each other are referred to as the X-axis direction and the Y-axis direction.
  • Package 2 is a high heat load (HHL: High Heat Load) package type quantum cascade laser (QCL: Quantum Cascade Laser).
  • Package 2 contains, for example, a quantum cascade laser device (hereinafter referred to as “QCL device”) that generates light in a mid-infrared wavelength region (for example, a wavelength of 5 to 30 ⁇ m).
  • the package 2 is formed in a substantially rectangular parallelepiped shape.
  • Package 2 has a first surface 21 on one side in the Z-axis direction and a second surface 22 on the opposite side of the first surface 21.
  • the first surface 21 is a surface facing the lens holding member 4.
  • a window material 23 for taking out the laser beam emitted from the QCL element to the outside is provided in the substantially central portion of the first surface 21.
  • the material of the window material 23 is, for example, zinc selenium (ZnSe), germanium (Ge), or the like.
  • the second surface 22 is a surface facing the base 6 and is in contact with the base 6. The second surface 22 is made larger than the first surface 21 by the amount of the flanges 24A and 24B described later.
  • the package 2 is arranged between the base 6 and the lens holding member 4 so that the window material 23 faces the lens 3.
  • a pair of flanges 24 are provided on the edge of the package 2 on the second surface 22 side.
  • the flange 24A (first flange) and the flange 24B (second flange) are provided at both ends of the package 2 in the X-axis direction. More specifically, the flange 24A and the flange 24B are located on opposite sides of each other in the X-axis direction. That is, the flange 24A and the flange 24B are formed on both sides of the window material 23 in the X-axis direction.
  • the flange 24A and the flange 24B are formed in a rectangular plate shape extending along the Y-axis direction, and project in the X-axis direction from the side surface 25 of the package 2 intersecting the X-axis direction.
  • the second surface 22 of the flange 24A and the flange 24B is continuous with the second surface 22 of the portion other than the flanges 24A and 24B, and is in contact with the base 6 (specifically, the bottom wall 61 described later) and is attached to the base 6. It extends along.
  • a plurality of (nine in this embodiment) lead pins 27 for supplying electric power to components such as QCL elements housed in the package 2 from the outside are provided. It has been inserted.
  • the lens holding member 4 is arranged at a position facing the first surface 21 of the package 2.
  • the lens holding member 4 may be composed of a plurality of parts.
  • the lens holding member 4 mainly has a sub-base 41, a lens holder 42, a lens cylinder 43, a lens holding ring 44, and a lens protection ring 45.
  • the lens holder 42 is a cross-moving holder that is movable in each of the X-axis direction and the Y-axis direction.
  • An opening 42a penetrating in the Z-axis direction is provided at the center of the lens holder 42.
  • the lens cylinder 43 is inserted into the opening 42a.
  • the lens cylinder 43 is a cylindrical member that houses the lens 3.
  • a male screw is formed on the outer peripheral surface of the lens cylinder 43.
  • a female screw corresponding to the male screw is formed on the inner surface of the opening 42a of the lens holder 42. This makes it possible to insert the lens holder 42 into the opening 42a while rotating the lens cylinder 43. Further, by adjusting the rotation amount of the lens cylinder 43 with respect to the lens holder 42, it is possible to adjust the position (that is, the insertion amount) of the lens cylinder 43 with respect to the lens holder 42 in the Z-axis direction.
  • An O-ring may be arranged at the fitting portion of the lens cylinder 43 so that resistance is applied when the lens cylinder 43 is slid with respect to the lens holder 42 (that is, so as not to loosen).
  • the lens 3, the lens holding ring 44, and the lens protection ring 45 are stored in the lens cylinder 43 in this order.
  • the lens holding ring 44 is a member for fixing the lens 3 to the inner side in the lens cylinder 43 via the lens protection ring 45.
  • the lens protection ring 45 is a member arranged between the lens 3 and the lens holding ring 44 in order to prevent damage to the surface of the lens 3 due to contact of the lens holding ring 44 with the surface of the lens 3. be.
  • the lens protection ring 45 is made of, for example, a resin material such as Teflon (registered trademark).
  • the sub-base 41 is a plate-shaped member arranged between the lens holder 42 and the package 2.
  • the sub-base 41 has a first surface 411 facing the lens holder 42, and a second surface 412 facing the package 2 and facing the surface opposite to the first surface 411.
  • the material of the sub-base 41 is, for example, aluminum or the like.
  • the lens holder 42 described above is attached to the first surface 411 of the sub-base 41. More specifically, at the four corners of the lens holder 42 viewed from the Z-axis direction, insertion holes 42b through which a support rod 46 for fixing the lens holder 42 to the sub-base 41 is inserted are provided. Each insertion hole 42b extends in the Z-axis direction. A hole that communicates with the insertion hole 42b is formed in a part of the wall portion that forms each insertion hole 42b, and a retaining screw 47 for fixing the support rod 46 to the lens holder 42 is formed in the hole portion. It is inserted in. The tip end portion (end portion on the sub-base 41 side) of the support rod 46 is fixed to the first surface 411 of the sub-base 41.
  • a screw groove is formed at the tip of each support rod 46, and four screw holes 411a are formed at each position corresponding to each support rod 46 on the first surface 411 of the sub-base 41.
  • the lens holder 42 is fixed to the sub-base 41 via the support rod 46 by screwing the tip end portion of the support rod 46 into the screw hole 411a.
  • the lens holding member 4 is configured by integrally coupling the sub-base 41 and the lens holder 42 in this way.
  • a circular through hole 413 penetrating from the first surface 411 to the second surface 412 is formed in the central portion of the sub-base 41 seen from the Z-axis direction.
  • the tip of the lens cylinder 43 is inserted into the through hole 413 and protrudes toward the package 2 from the second surface 412 (see FIG. 3).
  • the base 6 is a plate-shaped member formed in an L shape.
  • the base 6 has a bottom wall 61 facing the second surface 22 of the package 2 and a side wall 62 erected along the Z-axis direction from one end of the bottom wall 61 in the Y-axis direction.
  • the material of the base 6 is, for example, aluminum, copper and the like.
  • the bottom wall 61 is a rectangular plate-shaped portion extending parallel to the XY plane.
  • the bottom wall 61 has a first surface 611 facing the package 2 and a second surface 612 opposite to the first surface 611 and facing the cooling fan 5. That is, the package 2 and the lens holding member 4 are arranged on the first surface 611 side of the bottom wall 61, and the cooling fan 5 is arranged on the second surface 612 side of the bottom wall 61.
  • the side wall 62 is a rectangular plate-shaped portion extending parallel to the XZ plane.
  • the side wall 62 extends to the side opposite to the side on which the package 2 is arranged with respect to the bottom wall 61, and covers the side of the heat sink 7, which will be described later.
  • the side wall 62 has an insertion hole 621 (a fixing portion for fixing the QCL module to an object to be fixed) through which a rod member for fixing the QCL module 1 to a laboratory table or the like is inserted.
  • a counterbore hole 622 communicating with the insertion hole 621 is formed.
  • the cooling fan 5 is a mechanism for forcibly air-cooling the heat generated in the package 2 (mainly the heat generated from the QCL element in the package 2).
  • the cooling fan 5 is fixed to the second surface 612 of the bottom wall 61 via the heat sink 7.
  • the heat sink 7 has a flat plate portion 71 that abuts on the second surface 612, and a plurality of heat radiation fins 72 formed on the surface of the flat plate portion 71 opposite to the bottom wall 61 (in this embodiment, they are arranged in a grid pattern). It has a plurality of rod-shaped members).
  • a finger guard 8 is arranged on the opposite side of the cooling fan 5 from the heat sink 7 for safety (that is, to prevent human fingers or the like from entering the cooling fan 5). That is, the heat sink 7, the cooling fan 5, and the finger guard 8 are arranged in this order from the side of the bottom wall 61 close to the second surface 612.
  • the heat sink 7, the cooling fan 5, and the finger guard 8 are jointly fastened to the bottom wall 61 by a plurality of (four in this embodiment) screws 9. More specifically, the insertion holes 71a, 5a, and 8a for inserting the screws 9 are inserted into the four corners of the heat sink 7 (flat plate portion 71), the cooling fan 5, and the finger guard 8 when viewed from the Z-axis direction. Is provided, and a screw hole 612a (see FIGS. 3 and 4) is formed in the second surface 612 of the bottom wall 61.
  • Each screw 9 is inserted into the insertion hole 71a of the heat sink 7, the insertion hole 5a of the cooling fan 5, and the insertion hole 8a of the finger guard 8, and is screwed into the screw hole 612a of the bottom wall 61.
  • the cooling fan 5 and the finger guard 8 are integrally fixed to the bottom wall 61.
  • thermal paste may be applied between the second surface 22 of the package 2 and the first surface 611 of the bottom wall 61. ..
  • thermal paste may be applied between the second surface 612 of the bottom wall 61 and the flat plate portion 71 of the heat sink 7.
  • the spacer 10 is arranged between the sub-base 41 and the base 6.
  • the spacer 10 is arranged between the second surface 412 (the surface on the base 6 side) of the sub base 41 and the upper surface 24a (the surface on the sub base 41 side) of the flange 24.
  • the spacer 10 has a spacer 10A (first spacer) corresponding to the flange 24A and a spacer 10B (second spacer) corresponding to the flange 24B.
  • the spacer 10A is arranged between the second surface 412 of the sub base 41 and the upper surface 24a of the flange 24A, and the spacer 10B is located between the second surface 412 of the sub base 41 and the upper surface 24a of the flange 24B. Is located in. That is, the spacers 10A and 10B are arranged on both sides of the window material 23 in the X-axis direction. Each of the spacers 10A and 10B is formed in the shape of a rectangular plate.
  • the spacers 10A and 10B extend in the Y-axis direction (that is, in the direction in which the spacers 10A and 10B face each other (X-axis direction) and in the direction intersecting the Z-axis direction with the window material 23 interposed therebetween). It is a long member (that is, a member having a constant width along the Y-axis direction). Since the spacers 10A and 10B are formed in a long shape in this way, the lens holding member 4 and the package 2 can be more stably co-tightened to the base 6 via the spacers 10A and 10B. can.
  • the spacer 10 is made of a material having a lower thermal conductivity than the base 6.
  • the material of the spacer 10 is, for example, stainless steel, nickel, or the like. As a result, the heat generated in the package 2 can be efficiently released to the bottom wall 61 side instead of the spacer 10 side.
  • the height of the spacer 10 (length in the Z-axis direction) is made larger than the difference between the height of the package 2 (length in the Z-axis direction) and the height of the flange 24 (length in the Z-axis direction). There is. That is, in a state where the spacer 10 is in contact with the upper surface 24a of the flange 24, the end portion 10a of the spacer 10 on the sub-base 41 side protrudes toward the sub-base 41 side from the first surface 21 of the package 2. By setting the height of the spacer 10 in this way, a gap S (see FIG. 3) is formed between the sub-base 41 and the first surface 21 of the package 2 and the window material 23.
  • the window material 23 it is possible to prevent the window material 23 from being distorted (deformed) due to the contact between the lens holding member 4 and the window material 23 (that is, the lens holding member 4 being pressed against the window material 23). As a result, deterioration of the laser beam (laser light emitted from the window material 23) due to the distortion can be suppressed. Further, even when the tip portion of the lens cylinder 43 penetrates the through hole 413 (see FIG. 2) and slightly protrudes toward the package 2 as in the present embodiment, the height of the spacer 10 is adjusted. By adjusting the size of the gap S, it is possible to prevent the tip end portion of the lens cylinder 43 from coming into contact with the window material 23.
  • the sub-base 41, the spacer 10, and the flange 24 are co-tightened to the bottom wall 61 by a plurality of (four in this embodiment) screw members 11 (shaft members).
  • the screw member 11 is, for example, a hexagon bolt or the like. More specifically, insertion holes 41a, 10b, 24b, 61a through which the screw member 11 is inserted are provided at the four corners of the sub-base 41, the spacer 10, the flange 24, and the bottom wall 61 when viewed from the Z-axis direction. It is formed. Two insertion holes 10b are provided at both side edges of the spacers 10A and 10B in the Y-axis direction.
  • the insertion hole 61a of the bottom wall 61 is a screw hole that is open to the first surface 611 and has a screw groove formed therein. Further, the first surface 411 of the sub-base 41 is provided with a counterbore groove 41b for accommodating the head portion 11a of the screw member 11 so as to communicate with the insertion hole 41a. Then, each screw member 11 is inserted from the first surface 411 side of the sub base 41 into the insertion hole 41a of the sub base 41, the insertion hole 10b of the spacer 10, and the insertion hole 24b of the flange 24, and the bottom wall 61 is inserted. It is screwed into the hole 61a. As a result, the lens holding member 4 (sub-base 41) is fastened to the base 6 (bottom wall 61) via the spacer 10 and the flange 24.
  • the QCL module 1 described above includes a cooling fan 5 for cooling the package 2. According to such a configuration, it is possible to reduce the size and simplification of the module as compared with the case where a cooling mechanism of another method (for example, a water cooling method) is provided. Further, in the QCL module 1, the package 2 which is a light source and the lens holding member 4 (sub-base 41) are connected to a base 6 (bottom wall) by a common screw member 11 (in this embodiment, four screw members 11). It is tightened together with respect to 61). That is, the package 2 and the lens holding member 4 are integrally fixed by the common screw member 11.
  • a common screw member 11 in this embodiment, four screw members 11
  • the vibration pattern caused by the vibration of the cooling fan 5 is shared between the package 2 and the lens 3 held by the lens holding member 4.
  • fluctuations in the relative positional relationship between the package 2 and the lens 3 are suppressed, and temporal fluctuations in the optical conditions (for example, the length of the fabric pero resonator) between the package 2 and the lens 3 are suppressed. This makes it possible to reduce optical noise caused by temporal fluctuations in optical conditions.
  • the gas concentration is measured using the QCL module 1.
  • a QCL module 1 and a photodetector such as a photodetector are prepared, and a gas cell in which the gas to be measured is sealed is arranged between the QCL module 1 and the photodetector. ..
  • the laser beam emitted from the QCL module 1 that is, the laser beam emitted from the window material 23 of the package 2 and passed through the lens 3 passes through the gas cell, and the laser beam after passing through the gas cell is the light. Detected by the detector. This makes it possible to measure the concentration of gas in the gas cell (absorbance of laser light).
  • the QCL Since the QCL has excellent monochromaticity (that is, excellent wavelength resolution), it is suitably used for the above-mentioned gas concentration measurement and the like. However, since the QCL has excellent monochromaticity, fringe noise due to the etalon effect is generated in principle. This fringe noise is caused by the fact that the optical elements such as the lens 3 and the window material 23 arranged between the QCL element and the photodetector in the package 2 have a finite reflectance, that is, optical elements in the optical path of the laser beam. Due to the existence of a reflective interface. A fabric pero resonator is formed by such a reflection interface and the emission end surface of the QCL element, and fringe noise is generated by the interference of light.
  • this fringe noise (that is, the fabric pero interference condition) is constant if the fabric pero resonator length does not change, the fringe noise can be treated as an invariant. That is, the fringe noise can be removed by a background operation (difference operation).
  • the fabricello resonator length fluctuates with time
  • the fabricello interference condition also fluctuates with time, so that the fringe noise cannot be treated as an invariant.
  • the fringe noise cannot be removed by the background calculation described above.
  • TDLAS wavelength variable semiconductor laser absorption spectroscopy
  • the lens holding member is not fastened together with the package to the base and is fixed to the base separately from the package.
  • a configuration is conceivable in which a plate-shaped portion extending toward the lens holding member is provided on the bottom wall of the base, and the lens holding member is fixed to the plate-shaped portion independently of the package.
  • the way of transmitting the vibration from the cooling fan is different between the package and the lens holding member. More specifically, in the above comparative example, the package is fixed to the bottom wall of the base to which the cooling fan is fixed, whereas the lens holding member is fixed to a plate-shaped portion different from the bottom wall. Will be done.
  • the vibration frequency of the lens held by the lens holding member is not in phase with the vibration of the QCL (that is, the package) because it is affected by the mechanical vibration resonance of the plate-shaped portion.
  • the distance (optical path length) between the QCL and the lens fluctuates with time
  • the fabric pero resonance condition (that is, the fabric pero resonator length) between the QCL and the lens fluctuates with time. become.
  • the fringe noise cannot be treated as an invariant, so that the fringe noise is detected by the photodetector as a complicated optical noise structure.
  • the vibration of the QCL and the vibration of the lens do not have the same phase and the positional relationship (optical path length) between the QCL and the lens fluctuates with time
  • the XY plane (optical axis) of the laser beam after passing through the lens is amplified. Therefore, in the photodetector (light receiving unit), the spot position where the laser beam is irradiated fluctuates with time. Therefore, in the above comparative example, the fluctuation component of the output value of the photodetector due to the fluctuation of the spot position may also be generated as optical noise.
  • the lens holding member 4 is integrally fixed (co-tightened) to the base 6 (bottom wall 61) integrally with the package 2. Therefore, since the vibration of the QCL (package 2) and the vibration of the lens 3 held by the lens holding member 4 have the same phase, the above-mentioned fabric pero resonance condition does not change with time. As a result, the fringe noise can be treated as an invariant and removed by background calculation or the like, so that optical noise can be reduced.
  • the positional relationship (optical path length) between the QCL (package 2) and the lens 3 does not fluctuate (becomes constant) with time, the amount of deflection of the laser beam after passing through the lens 3 in the XY plane is not amplified. Thereby, it is possible to suppress the generation of optical noise due to the fluctuation of the spot position of the photodetector that may occur in the above comparative example.
  • the package 2 is arranged between the base 6 (bottom wall 61) and the lens holding member 4 (sub-base 41) so that the window material 23 faces the lens 3.
  • the package 2 and the lens holding member 4 are fastened together with the base 6 by fastening the lens holding member 4 to the base 6.
  • the lens holding member 4 and the package 2 can be integrally fixed to the base 6 by sandwiching the package 2 between the lens holding member 4 and the base 6.
  • the QCL module 1 includes a spacer 10 arranged between the lens holding member 4 and the base 6.
  • the package 2 has a flange 24 that abuts on the base 6 and extends along the base 6.
  • the spacer 10 is arranged between the surface of the lens holding member 4 on the base 6 side (in this embodiment, the second surface 412 of the sub base 41) and the upper surface 24a of the flange 24 on the lens holding member 4 side.
  • a gap S is formed between the lens holding member 4 and the window material 23.
  • deterioration of the laser beam due to the distortion can be suppressed.
  • the flange 24 has a flange 24A and a flange 24B formed on both sides of the window material 23.
  • the spacer 10 is arranged between the spacer 10A arranged between the second surface 412 of the sub base 41 and the upper surface 24a of the flange 24A, and between the second surface 412 of the sub base 41 and the upper surface 24a of the flange 24B. It has a spacer 10B and.
  • a plurality of (two in the present embodiment) screw members 11 are inserted through one spacer 10 (spacer 10A or spacer 10B). By inserting the plurality of screw members 11 into the common spacer 10 in this way, the lens holding member 4 and the package 2 can be more stably co-tightened to the base 6 via the spacer 10. can.
  • an insertion hole through which a screw member 11 is inserted is inserted into each of the lens holding member 4 (sub-base 41 in this embodiment), spacer 10, flange 24, and base 6 (bottom wall 61 in this embodiment).
  • 41a, 10b, 24b, 61a are formed.
  • the lens holding member 4 is fastened to the base 6 by the screw members 11 inserted into the insertion holes 41a, 10b, 24b, 61a of the lens holding member 4, the spacer 10, the flange 24, and the base 6.
  • the lens holding member 4, the spacer 10, and the flange 24 are co-tightened to the base 6.
  • the common screw member 11 is passed through the lens holding member 4, the spacer 10, and the flange 24 to be inserted into the insertion hole 61a of the base 6, so that the lens holding member 4, the spacer 10, and the flange 24 are made to be the base. It can be integrally and firmly fixed to 6. This makes it possible to effectively suppress fluctuations in the relative positional relationship between the package 2 and the lens holding member 4.
  • the bottom wall 61 is provided with a through hole penetrating from the first surface 611 to the second surface 612, the screw member 11 (bolt) is inserted through the through hole, and the nut arranged on the second surface 612 side is the screw member.
  • the package 2 and the lens holding member 4 may be fastened together with the base 6 by engaging with the tip portion of 11. This also applies to the screw 9 that fixes the cooling fan 5 to the bottom wall 61.
  • the lens holding member 4 is formed by combining the sub-base 41 and the lens holder 42, but the sub-base 41 may be omitted.
  • the lens holder 42 itself may be provided with an insertion hole through which the screw member 11 is inserted, and the lens holder 42, the spacer 10, and the flange 24 may be fastened together with the base 6.
  • the base 6 does not have to have the side wall 62.
  • a fixing portion for fixing the QCL module to the object to be fixed (for example, an insertion hole through which the rod member described above is inserted) may be provided in the bottom wall 61.
  • the base 6 in order to secure an area for providing the fixing portion, is made wider than the bottom wall 61 shown in the above embodiment (for example, wider than the above-mentioned bottom wall 61). It may be provided with a bottom wall).
  • the QCL module 1A has a package 2A instead of the package 2, a lens holding member 4A instead of the lens holding member 4, a base 6A instead of the base 6, and a spacer 110 instead of the spacer 10. It differs from the QCL module 1 in that it has.
  • the cooling fan 5 and the heat sink 7 are briefly shown, and elements other than the sub-base 141 (element corresponding to the sub-base 41) of the lens holding member 4A (that is, the lens holder 42, the lens cylinder 43, etc.) are shown. Is omitted.
  • Package 2A differs from package 2 in that it has flanges 124 (flange 124A, 124B) instead of flanges 24 (flange 24A, 24B).
  • the flange 124 differs from the flange 24 in that it does not have an insertion hole 24b.
  • the lens holding member 4A is different from the lens holding member 4 in that it has a sub base 141 instead of the sub base 41.
  • the sub-base 141 has an insertion hole 141a and a counterbore groove 141b for inserting the screw member 11.
  • the sub-base 141 is different from the sub-base 41 in that the width in the X-axis direction is slightly larger than that of the sub-base 41. Further, the positions of the insertion hole 141a and the counterbore groove 141b in the X-axis direction are outside the positions of the insertion hole 41a and the counterbore groove 41b in the sub-base 41 in the X-axis direction.
  • Base 6A differs from base 6 in that it has a bottom wall 161 instead of a bottom wall 61.
  • the bottom wall 161 has a first surface 161a, a second surface 161b, and an insertion hole 161c, similarly to the bottom wall 61.
  • the bottom wall 161 is different from the bottom wall 61 in that the width in the X-axis direction is slightly larger than that of the bottom wall 61.
  • the position of the insertion hole 161c in the X-axis direction is outside the position of the insertion hole 61a in the bottom wall 61 in the X-axis direction.
  • the insertion hole 161c is located outside the spacer 110 and the flange 124 in the X-axis direction.
  • the spacer 110 (spacer 110A, 110B) is different from the spacer 10 (spacer 10A, 10B) in that it does not have an insertion hole 10b.
  • insertion holes 141a and 161c through which the screw member 11 is inserted are formed in each of the sub-base 141 (lens holding member 4A) and the bottom wall 161 (base 6A). Then, in a state where the spacer 110 and the flange 124 are arranged between the sub base 141 and the bottom wall 161 and the sub base is inserted by the screw member 11 inserted into the insertion holes 141a and 161c of the sub base 141 and the bottom wall 161 respectively. By fastening 141 to the bottom wall 161 the lens holding member 4A, the spacer 110, and the flange 124 are co-tightened to the base 6A.
  • the screw member 11 is passed through the lens holding member 4A and inserted into the insertion hole 161c of the base 6A, and the spacer 110 and the flange 124 arranged between the lens holding member 4A and the base 6A are sandwiched between them.
  • the lens holding member 4A, the spacer 110, and the flange 124 are integrally and firmly attached to the base 6A. Can be fixed to. This makes it possible to effectively suppress fluctuations in the relative positional relationship between the package 2A and the lens holding member 4A.
  • the QCL module 1A it is not necessary to provide an insertion hole in the spacer 110 and the flange 124.
  • the position of the screw member 11 in the X-axis direction is outside the QCL module 1, so from the viewpoint of reducing the width dimension of the module in the X-axis direction, the QCL is larger than the QCL module 1A. Module 1 is more advantageous.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一実施形態のQCLモジュールは、QCL素子を収容し、QCL素子から出射されたレーザ光を外部に取り出す窓材が設けられたパッケージと、窓材から出射されるレーザ光が入射するレンズを保持するレンズ保持部材と、パッケージを冷却する冷却ファンと、パッケージ、レンズ保持部材、及び冷却ファンを保持するベースと、を備える。パッケージ及びレンズ保持部材は、共通のネジ部材によって、ベースに対して共締めされている。

Description

量子カスケードレーザモジュール
 本開示は、量子カスケードレーザモジュールに関する。
 従来、光源素子と、レンズホルダと、光源素子を冷却するための冷却ファンと、が一体化されたモジュールが知られている(例えば特許文献1,2参照)。特許文献1には、LEDユニット(LED基板及びLEDパッケージ)、照光部(レンズ群)、及び冷却ファンを備える構成が開示されている。特許文献1に記載の構成では、照光部が装着された据付部材とLED基板とが、基台に対して別々に固定されている。特許文献2には、光源モジュール、レンズホルダ、及び冷却ファンを光源ホルダに固定した構成が開示されている。特許文献2に記載の構成では、光源モジュールとレンズホルダとは、光源ホルダに対して別々に固定されている。
特開2017-188256号公報 特開2019-096637号公報
 上記のようなモジュールの光源として量子カスケードレーザ(以下「QCL」という。)が用いられる場合がある。QCLを備えたモジュールは、例えばガスの濃度計測等に用いられる。例えば、上記モジュールと光検出器との間に計測対象のガスが封入されたガスセルを配置し、上記モジュールから出射されたレーザ光をガスセル内を通過させ、ガスセル内を通過した後のレーザ光を光検出器で検出することで、ガスセル内のガスの濃度(レーザ光の吸光度)を計測することができる。QCLは、優れた単色性(すなわち、優れた波長分解能)を有するため、上記のようなガスの濃度計測に好適に用いることができる。一方で、上記のような優れた単色性を有することに起因して光学ノイズが原理的に発生する。より具体的には、QCLの放射端面とモジュールが備えるレンズの界面との間の干渉成分によってフリンジノイズ(干渉ノイズ)が発生する。
 仮に、QCLとレンズとの間の光学条件(例えば、ファブリペロ共振器長)が時間的に変動しなければ、上記光学ノイズを不変量として扱うことが可能になるため、上記光学ノイズをバックグラウンド演算によって除去することが可能である。しかし、上記のようにモジュールが冷却ファンを備える場合、冷却ファンの振動に起因するQCLの振動とレンズの振動との間にずれが生じるおそれがある。特に、上記特許文献1,2に記載の構成のように、光源とレンズとが別個にベース部材(すなわち、特許文献1における基台、及び特許文献2における光源ホルダ)に固定される場合、QCLの振動とレンズの振動とが同位相とならず、QCLとレンズとの位置関係(すなわち、光路長)が時間的に変動し易い。この場合、上記光学条件が時間的に変動するため、上記光学ノイズを不変量として扱うことができなくなる。すなわち、光学ノイズをバックグラウンド演算によって除去することができなくなる。このため、上述したような計測における感度(検出限界)が制限されてしまう。
 そこで、上記光学条件の時間的な変動の要因となる振動の発生を抑えるために、冷却ファンの代わりに振動を発生させない水冷ジャケット等を用いることも考えられる。しかし、この場合、冷却水を循環させるための装置が必要となるため、モジュール全体が大型化及び複雑化すると共に、保守点検コストも増大する。
 そこで、本開示の一側面は、冷却ファンを備えた構成において、光学条件の時間的な変動に起因する光学ノイズを低減することができる量子カスケードレーザモジュールを提供することを目的とする。
 本開示の一側面に係る量子カスケードレーザモジュールは、量子カスケードレーザ素子を収容し、量子カスケードレーザ素子から出射されたレーザ光を外部に取り出す窓材が設けられたパッケージと、窓材から出射されるレーザ光が入射するレンズを保持するレンズ保持部材と、パッケージを冷却する冷却ファンと、パッケージ、レンズ保持部材、及び冷却ファンを保持するベースと、を備え、パッケージ及びレンズ保持部材は、共通の軸部材によって、ベースに対して共締めされている。
 上記量子カスケードレーザモジュールは、パッケージを冷却するために冷却ファンを備えている。このような構成によれば、他の方式(例えば水冷方式)の冷却機構を設ける場合と比較して、モジュールの小型化及び簡素化を図ることができる。また、上記量子カスケードレーザモジュールでは、光源であるパッケージとレンズ保持部材とが、共通の軸部材によって、ベースに対して共締めされている。すなわち、パッケージ及びレンズ保持部材が、共通の軸部材によって、一体的に固定されている。これにより、冷却ファンの振動に起因する振動パターンが、パッケージとレンズ保持部材に保持されたレンズとの間で共通化される。その結果、パッケージとレンズとの相対的な位置関係の変動が抑制され、パッケージとレンズとの間の光学条件(例えば、ファブリペロ共振器長)の時間的な変動が抑制される。これにより、光学条件の時間的な変動に起因する光学ノイズを低減することができる。
 パッケージは、窓材がレンズに対向するように、ベースとレンズ保持部材との間に配置されてもよく、パッケージ及びレンズ保持部材は、レンズ保持部材がベースに対して締結されることにより、ベースに対して共締めされていてもよい。これにより、レンズ保持部材とベースとでパッケージを挟み込むようにして、レンズ保持部材及びパッケージをベースに対して一体的に固定することができる。
 レンズ保持部材とベースとの間に配置されるスペーサを更に備えてもよく、パッケージは、ベースに当接すると共にベースに沿って延在するフランジを有してもよく、スペーサがレンズ保持部材のベース側の面とフランジのレンズ保持部材側の面との間に配置されることにより、レンズ保持部材と窓材との間に隙間が形成されていてもよい。これにより、レンズ保持部材と窓材とが接触することで窓材に歪み(変形)が生じることを防止することができる。その結果、当該歪みに起因するレーザ光の劣化を抑制することができる。
 フランジは、窓材を挟んだ両側に形成された第1フランジ及び第2フランジを有してもよく、スペーサは、レンズ保持部材のベース側の面と第1フランジのレンズ保持部材側の面との間に配置された第1スペーサと、レンズ保持部材のベース側の面と第2フランジのレンズ保持部材側の面との間に配置された第2スペーサと、を有してもよい。このように、パッケージとレンズ保持部材との間に、一対のスペーサ(第1スペーサ及び第2スペーサ)をバランス良く配置することにより、パッケージ及びレンズ保持部材の物理的安定性を高めることができ、パッケージとレンズ保持部材との間の相対的な位置関係の変動を効果的に抑制することができる。
 レンズ保持部材、スペーサ、フランジ、及びベースの各々には、軸部材が挿通される挿通孔が形成されていてもよく、レンズ保持部材、スペーサ、フランジ、及びベースの各々の挿通孔に挿通された軸部材によってレンズ保持部材がベースに対して締結されることにより、レンズ保持部材、スペーサ、及びフランジが、ベースに対して共締めされていてもよい。この場合、軸部材をレンズ保持部材、スペーサ、及びフランジに貫通させてベースの挿通孔に挿通させることで、レンズ保持部材、スペーサ、及びフランジを、ベースに対して、一体的且つ強固に固定することができる。これにより、パッケージとレンズ保持部材との間の相対的な位置関係の変動を効果的に抑制することができる。
 レンズ保持部材及びベースの各々には、軸部材が挿通される挿通孔が形成されていてもよく、レンズ保持部材とベースとの間にスペーサ及びフランジが配置された状態で、レンズ保持部材及びベースの各々の挿通孔に挿通された軸部材によってレンズ保持部材がベースに対して締結されることにより、レンズ保持部材、スペーサ、及びフランジが、ベースに対して共締めされていてもよい。この場合、軸部材をレンズ保持部材に貫通させてベースの挿通孔に挿通させ、レンズ保持部材とベースとでこれらの間に配置されるスペーサ及びフランジを挟み込むことにより、レンズ保持部材、スペーサ、及びフランジを、ベースに対して、一体的且つ強固に固定することができる。これにより、パッケージとレンズ保持部材との間の相対的な位置関係の変動を効果的に抑制することができる。
 スペーサは、ベースよりも熱伝導率の低い材料によって形成されていてもよい。これにより、パッケージにおいて発生した熱をスペーサ側ではなくベース側に効率良く逃がすことができる。
 本開示の一側面によれば、冷却ファンを備えた構成において、光学条件の時間的な変動に起因する光学ノイズを低減することができる量子カスケードレーザモジュールを提供することができる。
一実施形態に係る量子カスケードレーザモジュールの斜視図である。 図1の量子カスケードレーザモジュールの分解斜視図である。 図1の量子カスケードレーザモジュールの上面図である。 図1の量子カスケードレーザモジュールの側面図である。 変形例に係る量子カスケードレーザモジュールの一部を示す図である。
 以下、本発明の一実施形態について、図面を参照しつつ詳細に説明する。なお、以下の説明において、同一又は相当要素には同一符号を用い、重複する説明を省略する。
[量子カスケードレーザモジュールの構成]
 図1~図4に示されるように、量子カスケードレーザモジュール1(以下、「QCLモジュール1」という。)は、主な構成要素として、光源であるパッケージ2と、パッケージ2から出射されるレーザ光が入射するレンズ3を保持するレンズ保持部材4と、パッケージ2を冷却する冷却ファン5と、パッケージ2、レンズ保持部材4、及び冷却ファン5を保持するベース6と、を有する。以降の説明において、パッケージ2から出射されるレーザ光の光軸方向をZ軸方向と表し、それぞれZ軸方向に直交し、互いに直交する2方向をX軸方向及びY軸方向と表す。
 パッケージ2は、高熱負荷(HHL:High Heat Load)パッケージ型の量子カスケードレーザ(QCL:Quantum Cascade Laser)である。パッケージ2は、例えば中赤外の波長領域(例えば5~30μmの波長)の光を発生させる量子カスケードレーザ素子(以下、「QCL素子」という。)を収容している。一例として、パッケージ2は、略直方体状に形成されている。パッケージ2は、Z軸方向における一方側の第1面21と、第1面21とは反対側の第2面22と、を有する。
 第1面21は、レンズ保持部材4に対向する面である。第1面21の略中央部には、QCL素子から出射されるレーザ光を外部に取り出すための窓材23が設けられている。窓材23の材料は、例えば、ジンクセレン(ZnSe)、ゲルマニウム(Ge)等である。第2面22は、ベース6に対向する面であり、ベース6に当接している。第2面22は、後述するフランジ24A,24Bの分だけ、第1面21よりも大きくされている。パッケージ2は、窓材23がレンズ3に対向するように、ベース6とレンズ保持部材4との間に配置されている。
 パッケージ2の第2面22側の縁部には、一対のフランジ24(フランジ24A,24B)が設けられている。フランジ24A(第1フランジ)及びフランジ24B(第2フランジ)は、パッケージ2のX軸方向における両端部に設けられている。より具体的には、X軸方向において、フランジ24A及びフランジ24Bは、互いに反対側に位置している。すなわち、フランジ24A及びフランジ24Bは、X軸方向において、窓材23を挟んだ両側に形成されている。フランジ24A及びフランジ24Bは、Y軸方向に沿って延在する矩形板状に形成されており、X軸方向に交差するパッケージ2の側面25からX軸方向に突出している。フランジ24A及びフランジ24Bの第2面22は、フランジ24A,24B以外の部分の第2面22と連続しており、ベース6(具体的には後述する底壁61)に当接すると共にベース6に沿って延在している。
 Y軸方向に交差するパッケージ2の一方の側面26には、パッケージ2内に収容されるQCL素子等の部品に外部から電力を供給するための複数(本実施形態では9本)のリードピン27が挿通されている。
 レンズ保持部材4は、パッケージ2の第1面21に対向する位置に配置されている。レンズ保持部材4は、複数の部品によって構成され得る。本実施形態では、レンズ保持部材4は、主に、サブベース41と、レンズホルダ42と、レンズシリンダ43と、レンズ押さえリング44と、レンズ保護リング45と、を有する。
 レンズホルダ42は、X軸方向及びY軸方向のそれぞれに可動な十字動ホルダである。レンズホルダ42の中央部には、Z軸方向に貫通する開口部42aが設けられている。当該開口部42aにレンズシリンダ43が挿入されている。
 レンズシリンダ43は、レンズ3を収容する円筒状部材である。レンズシリンダ43の外周面には雄ネジが形成されている。一方、レンズホルダ42の開口部42aの内面には、上記雄ネジに対応する(すなわち、上記雄ネジに螺合される)雌ネジが形成されている。これにより、レンズシリンダ43を回しながらレンズホルダ42の開口部42aに挿入することが可能となっている。また、レンズホルダ42に対するレンズシリンダ43の回転量を調整することにより、Z軸方向におけるレンズホルダ42に対するレンズシリンダ43の位置(すなわち、挿入量)を調節することが可能となっている。これにより、Z軸方向におけるレンズ3の位置調整(すなわち、レンズ3を透過した後のレーザ光(ビーム)のフォーカス調整)を行うことが可能となっている。なお、レンズシリンダ43をレンズホルダ42に対して摺動させる際に抵抗がかかるように(すなわち、緩まないように)、レンズシリンダ43の勘合部にはOリングが配置されてもよい。
 レンズ3、レンズ押さえリング44、及びレンズ保護リング45は、この順にレンズシリンダ43内に格納されている。レンズ押さえリング44は、レンズ保護リング45を介して、レンズ3をレンズシリンダ43内の奥側に固定するための部材である。レンズ保護リング45は、レンズ3の表面にレンズ押さえリング44が接触することに起因するレンズ3の表面の損傷を防止するために、レンズ3とレンズ押さえリング44との間に配置される部材である。レンズ保護リング45は、例えば、テフロン(登録商標)等の樹脂材料によって形成されている。
 サブベース41は、レンズホルダ42とパッケージ2との間に配置される板状部材である。サブベース41は、レンズホルダ42に対向する第1面411と、第1面411とは反対側の面であってパッケージ2に対向する第2面412と、を有する。サブベース41の材料は、例えばアルミニウム等である。
 サブベース41の第1面411には、上述したレンズホルダ42が取り付けられている。より具体的には、Z軸方向から見たレンズホルダ42の四隅には、レンズホルダ42をサブベース41に対して固定するための支持ロッド46が挿通される挿通孔42bが設けられている。各挿通孔42bは、Z軸方向に延在している。各挿通孔42bを形成する壁部の一部には、挿通孔42bと連通する孔部が形成されており、レンズホルダ42に対して支持ロッド46を固定するための留めネジ47が当該孔部に挿入されている。支持ロッド46の先端部(サブベース41側の端部)は、サブベース41の第1面411に固定されている。一例として、各支持ロッド46の先端部にはネジ溝が形成されており、サブベース41の第1面411には、各支持ロッド46に対応する各位置に4つのネジ孔411aが形成されている。支持ロッド46の先端部がネジ孔411aに螺合されることにより、レンズホルダ42は、支持ロッド46を介してサブベース41に固定されている。このようにサブベース41とレンズホルダ42とが一体的に結合されることによって、レンズ保持部材4が構成されている。
 Z軸方向から見たサブベース41の中央部には、第1面411から第2面412にかけて貫通する円状の貫通孔413が形成されている。レンズシリンダ43の先端部は、貫通孔413内に挿通されており、第2面412よりもパッケージ2側に突出している(図3参照)。
 ベース6は、L字状に形成された板状部材である。ベース6は、パッケージ2の第2面22に対向する底壁61と、底壁61のY軸方向における一方側の端部からZ軸方向に沿って立設された側壁62と、を有する。ベース6の材料は、例えば、アルミニウム、銅等である。
 底壁61は、XY平面に平行に延在する矩形板状の部分である。底壁61は、パッケージ2に対向する第1面611と、第1面611とは反対側の面であって冷却ファン5に対向する第2面612と、を有する。すなわち、パッケージ2及びレンズ保持部材4は、底壁61の第1面611側に配置されており、冷却ファン5は、底壁61の第2面612側に配置されている。
 側壁62は、XZ平面に平行に延在する矩形板状の部分である。側壁62は、底壁61に対してパッケージ2が配置される側とは反対側に延びており、後述するヒートシンク7の側方を覆っている。本実施形態では一例として、側壁62には、QCLモジュール1を実験台等に固定するためのロッド部材が挿通される挿通孔621(QCLモジュールを固定対象物に固定するための固定部)と、挿通孔621と連通するザグリ孔622と、が形成されている。
 冷却ファン5は、パッケージ2において発生した熱(主にパッケージ2内のQCL素子から発生した熱)を強制空冷する機構である。冷却ファン5は、ヒートシンク7を介して、底壁61の第2面612に固定されている。ヒートシンク7は、第2面612に当接する平板部71と、平板部71の底壁61とは反対側の面に形成された複数の放熱フィン72(本実施形態では、格子状に配列された複数の棒状の部材)と、を有する。冷却ファン5を挟んでヒートシンク7とは反対側には、安全のため(すなわち、冷却ファン5内に人の指等が侵入することを防ぐため)のフィンガーガード8が配置されている。すなわち、底壁61の第2面612に近い側から、ヒートシンク7、冷却ファン5、及びフィンガーガード8がこの順に配置されている。
 ヒートシンク7、冷却ファン5、及びフィンガーガード8は、複数(本実施形態では4本)のネジ9によって、底壁61に対して共締めされている。より具体的には、Z軸方向から見たヒートシンク7(平板部71)、冷却ファン5、及びフィンガーガード8の各々の四隅には、ネジ9を挿通させるための挿通孔71a,5a,及び8aが設けられており、底壁61の第2面612には、ネジ孔612a(図3及び図4参照)が形成されている。各ネジ9が、ヒートシンク7の挿通孔71a、冷却ファン5の挿通孔5a、及びフィンガーガード8の挿通孔8aに挿通され、底壁61のネジ孔612aに螺合されることにより、ヒートシンク7、冷却ファン5、及びフィンガーガード8が、底壁61に対して一体的に固定されている。なお、パッケージ2から底壁61へと伝わった熱を効率良く放熱するために、パッケージ2の第2面22と底壁61の第1面611との間に、放熱グリスが塗布されてもよい。同様に、底壁61の第2面612とヒートシンク7の平板部71との間に、放熱グリスが塗布されてもよい。
 パッケージ2及びサブベース41(レンズ保持部材4)は、ベース6に対して共締めされている。本実施形態では、サブベース41とベース6との間にスペーサ10が配置されている。スペーサ10は、サブベース41の第2面412(ベース6側の面)とフランジ24の上面24a(サブベース41側の面)との間に配置される。より具体的には、スペーサ10は、フランジ24Aに対応するスペーサ10A(第1スペーサ)と、フランジ24Bに対応するスペーサ10B(第2スペーサ)と、を有する。すなわち、スペーサ10Aは、サブベース41の第2面412とフランジ24Aの上面24aとの間に配置されており、スペーサ10Bは、サブベース41の第2面412とフランジ24Bの上面24aとの間に配置されている。つまり、スペーサ10A及びスペーサ10Bは、X軸方向において、窓材23を挟んだ両側に配置されている。スペーサ10A,10Bの各々は、矩形板状に形成されている。より具体的には、各スペーサ10A,10Bは、Y軸方向(すなわち、窓材23を挟んでスペーサ10A,10Bが対向する方向(X軸方向)及びZ軸方向と交差する方向)に延在する長尺状の部材(すなわち、Y軸方向に沿って一定の幅を有する部材)である。このようにスペーサ10A,10Bが長尺状に形成されていることにより、スペーサ10A,10Bを介して、レンズ保持部材4とパッケージ2とをベース6に対してより安定的に共締めすることができる。スペーサ10は、ベース6よりも熱伝導率の低い材料によって形成されている。スペーサ10の材料は、例えば、ステンレス、ニッケル等である。これにより、パッケージ2において発生した熱をスペーサ10側ではなく底壁61側に効率良く逃がすことができる。
 スペーサ10の高さ(Z軸方向における長さ)は、パッケージ2の高さ(Z軸方向における長さ)とフランジ24の高さ(Z軸方向における長さ)との差よりも大きくされている。すなわち、スペーサ10がフランジ24の上面24aに当接した状態において、スペーサ10のサブベース41側の端部10aは、パッケージ2の第1面21よりもサブベース41側に突出している。このようにスペーサ10の高さが設定されていることにより、サブベース41とパッケージ2の第1面21及び窓材23との間に隙間S(図3参照)が形成されている。これにより、レンズ保持部材4と窓材23とが接触すること(すなわち、レンズ保持部材4が窓材23に押し付けられること)によって窓材23に歪み(変形)が生じることを防止することができ、その結果、当該歪みに起因するレーザ光(窓材23から出射されるレーザ光)の劣化を抑制することができる。また、本実施形態のように、レンズシリンダ43の先端部が貫通孔413(図2参照)を貫通してパッケージ2側に多少突出する場合であっても、スペーサ10の高さを調整して隙間Sの大きさを調整することで、レンズシリンダ43の先端部が窓材23に接触することを防止することができる。
 サブベース41、スペーサ10、及びフランジ24は、複数(本実施形態では4本)のネジ部材11(軸部材)によって、底壁61に対して共締めされている。ネジ部材11は、例えば六角ボルト等である。より具体的には、Z軸方向から見たサブベース41、スペーサ10、フランジ24、及び底壁61の各々の四隅には、ネジ部材11が挿通される挿通孔41a,10b,24b,61aが形成されている。スペーサ10A,10Bの各々のY軸方向における両側縁部に、2つの挿通孔10bが設けられている。フランジ24A,24Bの各々のY軸方向における両側縁部に、2つの挿通孔24bが設けられている。底壁61の挿通孔61aは、第1面611に開口しており、ネジ溝が形成されたネジ孔である。また、サブベース41の第1面411には、ネジ部材11の頭部11aを収容するためのザグリ溝41bが、挿通孔41aと連通するように設けられている。そして、各ネジ部材11が、サブベース41の第1面411側から、サブベース41の挿通孔41a、スペーサ10の挿通孔10b、及びフランジ24の挿通孔24bに挿通され、底壁61の挿通孔61aに螺合されている。これにより、レンズ保持部材4(サブベース41)が、スペーサ10及びフランジ24を介して、ベース6(底壁61)に対して締結されている。
[作用及び効果]
 以上説明したQCLモジュール1は、パッケージ2を冷却するために冷却ファン5を備えている。このような構成によれば、他の方式(例えば水冷方式)の冷却機構を設ける場合と比較して、モジュールの小型化及び簡素化を図ることができる。また、QCLモジュール1では、光源であるパッケージ2とレンズ保持部材4(サブベース41)とが、共通のネジ部材11(本実施形態では、4本のネジ部材11)によって、ベース6(底壁61)に対して共締めされている。すなわち、パッケージ2及びレンズ保持部材4が、共通のネジ部材11によって、一体的に固定されている。これにより、冷却ファン5の振動に起因する振動パターンが、パッケージ2とレンズ保持部材4に保持されたレンズ3との間で共通化される。その結果、パッケージ2とレンズ3との相対的な位置関係の変動が抑制され、パッケージ2とレンズ3との間の光学条件(例えば、ファブリペロ共振器長)の時間的な変動が抑制される。これにより、光学条件の時間的な変動に起因する光学ノイズを低減することができる。
 上記効果について、QCLモジュール1を用いたガス濃度計測を行う場合を例に挙げて具体的に説明する。このようなガス濃度計測においては、例えば、QCLモジュール1とフォトディテクタ等の光検出器とが用意され、QCLモジュール1と光検出器との間に計測対象のガスが封入されたガスセルが配置される。そして、QCLモジュール1から出射されたレーザ光(すなわち、パッケージ2の窓材23から出射され、レンズ3を通過したレーザ光)がガスセル内を通過し、ガスセル内を通過した後のレーザ光が光検出器で検出される。これにより、ガスセル内のガスの濃度(レーザ光の吸光度)を計測することができる。QCLは、優れた単色性(すなわち、優れた波長分解能)を有するため、上述したガス濃度計測等に好適に用いられる。しかし、QCLが優れた単色性を有するが故に、エタロン効果によるフリンジノイズが原理的に発生する。このフリンジノイズは、パッケージ2内のQCL素子と光検出器との間に配置されるレンズ3及び窓材23等の光学素子が有限の反射率を持つこと、すなわちレーザ光の光路中に光学的な反射界面が存在することに起因する。このような反射界面とQCL素子の放射端面とによってファブリペロ共振器が形成され、光の干渉によってフリンジノイズが発生する。このフリンジノイズ(すなわち、ファブリペロ干渉条件)は、ファブリペロ共振器長が変化しなければ一定となるため、上記フリンジノイズを不変量として扱うことができる。すなわち、上記フリンジノイズは、バックグラウンド演算(差分演算)によって除去され得る。一方、ファブリペロ共振器長が時間的に変動すると、ファブリペロ干渉条件も時間的に変動してしまうため、上記フリンジノイズを不変量として扱うことができなくなる。その結果、上述したバックグラウンド演算によってフリンジノイズを除去することができなくなる。また、QCLモジュール1を用いたガス濃度計測においては、レーザの発振波長を時間的に変化させる波長可変半導体レーザ吸収分光法(TDLAS:Tunable diode laser absorption spectroscopy)が広く用いられている。このような計測手法を用いる場合には、レーザの発振波長の変化に起因するファブリペロ干渉条件の変動成分も上記フリンジノイズに重畳されてしまうため、極めて複雑な光学ノイズが発生してしまう。このような光学ノイズは、上述したようなガス濃度計測の検出限界を制限する要因となる。
 ここで、レンズ保持部材がパッケージと共にベースに共締めされておらず、パッケージとは別個にベースに固定される構成を有する比較例について考える。例えば、ベースの底壁にレンズ保持部材側に延びる板状部を設け、レンズ保持部材を当該板状部に対してパッケージとは独立して固定する構成が考えられる。このような構成を有する比較例では、冷却ファンからの振動の伝わり方が、パッケージとレンズ保持部材との間で異なってしまう。より具体的には、上記比較例では、パッケージが、冷却ファンが固定されたベースの底壁に対して固定されるのに対して、レンズ保持部材は、底壁とは異なる板状部に固定される。このため、レンズ保持部材に保持されたレンズの振動周波数は、板状部の機械的な振動共振の影響を受けるため、QCL(すなわち、パッケージ)の振動と同位相とならない。その結果、QCLとレンズとの間の距離(光路長)が時間的に変動することになり、QCLとレンズとの間のファブリペロ共振条件(すなわち、ファブリペロ共振器長)が時間的に変動することになる。その結果、上述したように、上記フリンジノイズを不変量として扱うことができなくなるため、上記フリンジノイズは、光検出器において、複雑な光学ノイズ構造として検出されることになる。
 また、QCLの振動とレンズの振動とが同位相にならず、QCLとレンズとの位置関係(光路長)が時間的に変動する場合、レンズを透過した後のレーザ光のXY平面(光軸方向であるZ軸方向に直交する平面)における偏向量が増幅されてしまう。このため、光検出器(受光部)において、レーザ光が照射されるスポット位置が時間的に変動することになる。このため、上記比較例においては、このようなスポット位置の変動に起因する光検出器の出力値の変動成分も光学ノイズとして発生し得る。
 一方、上記実施形態で説明したQCLモジュール1では、レンズ保持部材4は、パッケージ2と一体的に、ベース6(底壁61)に対して強固に固定(共締め)されている。このため、QCL(パッケージ2)の振動とレンズ保持部材4に保持されたレンズ3の振動とは同位相となるため、上述したファブリペロ共振条件は時間的に変動しない。その結果、上記フリンジノイズを不変量として扱い、バックグラウンド演算等によって除去することが可能となるため、光学ノイズを低減することが可能となる。また、QCL(パッケージ2)とレンズ3との位置関係(光路長)が時間的に変動しない(一定となる)ため、レンズ3を透過した後のレーザ光のXY平面における偏向量は増幅されない。これにより、上記比較例において発生し得る光検出器のスポット位置の変動に起因する光学ノイズの発生を抑制することもできる。
 また、パッケージ2は、窓材23がレンズ3に対向するように、ベース6(底壁61)とレンズ保持部材4(サブベース41)との間に配置されている。そして、パッケージ2及びレンズ保持部材4は、レンズ保持部材4がベース6に対して締結されることにより、ベース6に対して共締めされている。これにより、レンズ保持部材4とベース6とでパッケージ2を挟み込むようにして、レンズ保持部材4及びパッケージ2をベース6に対して一体的に固定することができる。
 また、QCLモジュール1は、レンズ保持部材4とベース6との間に配置されるスペーサ10を備えている。パッケージ2は、ベース6に当接すると共にベース6に沿って延在するフランジ24を有する。そして、スペーサ10がレンズ保持部材4のベース6側の面(本実施形態では、サブベース41の第2面412)とフランジ24のレンズ保持部材4側の上面24aとの間に配置されることにより、レンズ保持部材4と窓材23との間に隙間Sが形成されている。これにより、レンズ保持部材4と窓材23とが接触することで窓材23に歪み(変形)が生じることを防止することができる。その結果、当該歪みに起因するレーザ光の劣化を抑制することができる。
 また、フランジ24は、窓材23を挟んだ両側に形成されたフランジ24A及びフランジ24Bを有する。スペーサ10は、サブベース41の第2面412とフランジ24Aの上面24aとの間に配置されたスペーサ10Aと、サブベース41の第2面412とフランジ24Bの上面24aとの間に配置されたスペーサ10Bと、を有する。このように、パッケージ2とレンズ保持部材4との間に、一対のスペーサ10A,10Bをバランス良く配置することにより、パッケージ2及びレンズ保持部材4の物理的安定性を高めることができ、パッケージ2とレンズ保持部材4との間の相対的な位置関係(すなわち、QCLとレンズ3との位置関係)の変動を効果的に抑制することができる。また、本実施形態では、1つのスペーサ10(スペーサ10A又はスペーサ10B)に対して、複数(本実施形態では2本)のネジ部材11が挿通される。このように、複数のネジ部材11が共通のスペーサ10に挿通されることにより、レンズ保持部材4とパッケージ2とを、スペーサ10を介してベース6に対してより安定的に共締めすることができる。
 また、レンズ保持部材4(本実施形態では、サブベース41)、スペーサ10、フランジ24、及びベース6(本実施形態では、底壁61)の各々には、ネジ部材11が挿通される挿通孔41a,10b,24b,61aが形成されている。そして、レンズ保持部材4、スペーサ10、フランジ24、及びベース6の各々の挿通孔41a,10b,24b,61aに挿通されたネジ部材11によってレンズ保持部材4がベース6に対して締結されることにより、レンズ保持部材4、スペーサ10、及びフランジ24が、ベース6に対して共締めされている。この場合、共通のネジ部材11をレンズ保持部材4、スペーサ10、及びフランジ24に貫通させてベース6の挿通孔61aに挿通させることで、レンズ保持部材4、スペーサ10、及びフランジ24を、ベース6に対して、一体的且つ強固に固定することができる。これにより、パッケージ2とレンズ保持部材4との間の相対的な位置関係の変動を効果的に抑制することができる。
[変形例]
 以上、本開示の一実施形態について説明したが、本開示は、上記実施形態に限られない。各構成の材料及び形状には、上述した材料及び形状に限らず、様々な材料及び形状を採用することができる。例えば、上記実施形態では、共締めの形態として、ネジ部材11がベース6の底壁61に設けられた挿通孔61a(ネジ孔)にネジ留めされる形態を例示したが、ネジ部材11は、ナットと勘合されてもよい。例えば、底壁61に第1面611から第2面612にかけて貫通する貫通孔を設け、ネジ部材11(ボルト)を当該貫通孔に挿通させ、第2面612側に配置したナットを当該ネジ部材11の先端部と勘合させることで、パッケージ2及びレンズ保持部材4をベース6に対して共締めしてもよい。これは、冷却ファン5を底壁61に対して固定するネジ9についても同様である。
 また、上記実施形態では、レンズ保持部材4は、サブベース41とレンズホルダ42とを組み合わせることで形成されたが、サブベース41は省略されてもよい。例えば、レンズホルダ42自体にネジ部材11を挿通させる挿通孔を設け、レンズホルダ42、スペーサ10、及びフランジ24が、ベース6に対して共締めされてもよい。
 また、ベース6は、側壁62を有さなくてもよい。この場合、QCLモジュールを固定対象物に固定するための固定部(例えば、上述したロッド部材が挿通される挿通孔)は、底壁61に設けられてもよい。さらに、この場合、固定部を設けるための領域を確保するために、ベース6は、上記実施形態で示した底壁61よりも大きい底壁(例えば、上述した底壁61よりも幅広とされた底壁)を備えてもよい。
 また、図5に示される変形例に係るQCLモジュール1Aのように、共通のネジ部材11は、スペーサ及びフランジを貫通していなくてもよい。QCLモジュール1Aは、パッケージ2の代わりにパッケージ2Aを有し、レンズ保持部材4の代わりにレンズ保持部材4Aを有し、ベース6の代わりにベース6Aを有し、スペーサ10の代わりにスペーサ110を有する点において、QCLモジュール1と相違している。図5においては、冷却ファン5及びヒートシンク7を簡略的に示すと共に、レンズ保持部材4Aのサブベース141(サブベース41に対応する要素)以外の要素(すなわち、レンズホルダ42、レンズシリンダ43等)の図示を省略している。
 パッケージ2Aは、フランジ24(フランジ24A,24B)の代わりにフランジ124(フランジ124A,124B)を有する点において、パッケージ2と相違している。フランジ124は、挿通孔24bを有していない点において、フランジ24と相違している。
 レンズ保持部材4Aは、サブベース41の代わりにサブベース141を有する点において、レンズ保持部材4と相違している。サブベース141は、サブベース41と同様に、ネジ部材11を挿通させるための挿通孔141a及びザグリ溝141bを有している。一方、サブベース141は、X軸方向における幅がサブベース41よりも若干大きくされている点において、サブベース41と相違している。また、挿通孔141a及びザグリ溝141bのX軸方向における位置は、サブベース41における挿通孔41a及びザグリ溝41bのX軸方向における位置よりも外側にある。
 ベース6Aは、底壁61の代わりに底壁161を有する点において、ベース6と相違している。底壁161は、底壁61と同様に、第1面161a、第2面161b、及び挿通孔161cを有している。一方、底壁161は、X軸方向における幅が底壁61よりも若干大きくされている点において、底壁61と相違している。また、挿通孔161cのX軸方向における位置は、底壁61における挿通孔61aのX軸方向における位置よりも外側にある。具体的には、挿通孔161cは、X軸方向において、スペーサ110及びフランジ124よりも外側に位置している。
 スペーサ110(スペーサ110A,110B)は、挿通孔10bを有していない点において、スペーサ10(スペーサ10A,10B)と相違している。
 QCLモジュール1Aでは、サブベース141(レンズ保持部材4A)及び底壁161(ベース6A)の各々には、ネジ部材11が挿通される挿通孔141a,161cが形成されている。そして、サブベース141と底壁161との間にスペーサ110及びフランジ124が配置された状態で、サブベース141及び底壁161の各々の挿通孔141a,161cに挿通されたネジ部材11によってサブベース141が底壁161に対して締結されることにより、レンズ保持部材4A、スペーサ110、及びフランジ124が、ベース6Aに対して共締めされている。この場合、ネジ部材11をレンズ保持部材4Aに貫通させてベース6Aの挿通孔161cに挿通させ、レンズ保持部材4Aとベース6Aとでこれらの間に配置されるスペーサ110及びフランジ124を挟み込むことにより(言い換えれば、万力のようにスペーサ110及びフランジ124をZ軸方向における両側から押圧することにより)、レンズ保持部材4A、スペーサ110、及びフランジ124を、ベース6Aに対して、一体的且つ強固に固定することができる。これにより、パッケージ2Aとレンズ保持部材4Aとの間の相対的な位置関係の変動を効果的に抑制することができる。また、QCLモジュール1Aによれば、スペーサ110及びフランジ124に挿通孔を設ける必要がない。一方で、QCLモジュール1Aでは、ネジ部材11のX軸方向における位置がQCLモジュール1よりも外側となるため、モジュールのX軸方向における幅寸法を小型化する観点からは、QCLモジュール1AよりもQCLモジュール1の方が有利である。
 1,1A…量子カスケードレーザモジュール、2,2A…パッケージ、3…レンズ、4,4A…レンズ保持部材、5…冷却ファン、6,6A…ベース、10,110A…スペーサ、10A,110A…スペーサ(第1スペーサ)、10B,110B…スペーサ(第2スペーサ)、11…ネジ部材(軸部材)、23…窓材、24,124…フランジ、24A,124A…フランジ(第1フランジ)、24B,124B…フランジ(第2フランジ)、S…隙間。

Claims (7)

  1.  量子カスケードレーザ素子を収容し、前記量子カスケードレーザ素子から出射されたレーザ光を外部に取り出す窓材が設けられたパッケージと、
     前記窓材から出射される前記レーザ光が入射するレンズを保持するレンズ保持部材と、
     前記パッケージを冷却する冷却ファンと、
     前記パッケージ、前記レンズ保持部材、及び前記冷却ファンを保持するベースと、
    を備え、
     前記パッケージ及び前記レンズ保持部材は、共通の軸部材によって、前記ベースに対して共締めされている、量子カスケードレーザモジュール。
  2.  前記パッケージは、前記窓材が前記レンズに対向するように、前記ベースと前記レンズ保持部材との間に配置され、
     前記パッケージ及び前記レンズ保持部材は、前記レンズ保持部材が前記ベースに対して締結されることにより、前記ベースに対して共締めされている、請求項1に記載の量子カスケードレーザモジュール。
  3.  前記レンズ保持部材と前記ベースとの間に配置されるスペーサを更に備え、
     前記パッケージは、前記ベースに当接すると共に前記ベースに沿って延在するフランジを有し、
     前記スペーサが前記レンズ保持部材の前記ベース側の面と前記フランジの前記レンズ保持部材側の面との間に配置されることにより、前記レンズ保持部材と前記窓材との間に隙間が形成されている、請求項2に記載の量子カスケードレーザモジュール。
  4.  前記フランジは、前記窓材を挟んだ両側に形成された第1フランジ及び第2フランジを有し、
     前記スペーサは、前記レンズ保持部材の前記ベース側の面と前記第1フランジの前記レンズ保持部材側の面との間に配置された第1スペーサと、前記レンズ保持部材の前記ベース側の面と前記第2フランジの前記レンズ保持部材側の面との間に配置された第2スペーサと、を有する、請求項3に記載の量子カスケードレーザモジュール。
  5.  前記レンズ保持部材、前記スペーサ、前記フランジ、及び前記ベースの各々には、前記軸部材が挿通される挿通孔が形成されており、
     前記レンズ保持部材、前記スペーサ、前記フランジ、及び前記ベースの各々の前記挿通孔に挿通された前記軸部材によって前記レンズ保持部材が前記ベースに対して締結されることにより、前記レンズ保持部材、前記スペーサ、及び前記フランジが、前記ベースに対して共締めされている、請求項3又は4に記載の量子カスケードレーザモジュール。
  6.  前記レンズ保持部材及び前記ベースの各々には、前記軸部材が挿通される挿通孔が形成されており、
     前記レンズ保持部材と前記ベースとの間に前記スペーサ及び前記フランジが配置された状態で、前記レンズ保持部材及び前記ベースの各々の前記挿通孔に挿通された前記軸部材によって前記レンズ保持部材が前記ベースに対して締結されることにより、前記レンズ保持部材、前記スペーサ、及び前記フランジが、前記ベースに対して共締めされている、請求項3又は4に記載の量子カスケードレーザモジュール。
  7.  前記スペーサは、前記ベースよりも熱伝導率の低い材料によって形成されている、請求項3~6のいずれか一項に記載の量子カスケードレーザモジュール。
PCT/JP2021/030436 2020-09-15 2021-08-19 量子カスケードレーザモジュール WO2022059416A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/025,723 US20230369823A1 (en) 2020-09-15 2021-08-19 Quantum-cascade laser module
CN202180062846.6A CN116113791A (zh) 2020-09-15 2021-08-19 量子级联激光模块
DE112021004841.4T DE112021004841T5 (de) 2020-09-15 2021-08-19 Quantenkaskadenlasermodul

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-154510 2020-09-15
JP2020154510A JP7507046B2 (ja) 2020-09-15 2020-09-15 量子カスケードレーザモジュール

Publications (1)

Publication Number Publication Date
WO2022059416A1 true WO2022059416A1 (ja) 2022-03-24

Family

ID=80777305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030436 WO2022059416A1 (ja) 2020-09-15 2021-08-19 量子カスケードレーザモジュール

Country Status (5)

Country Link
US (1) US20230369823A1 (ja)
JP (1) JP7507046B2 (ja)
CN (1) CN116113791A (ja)
DE (1) DE112021004841T5 (ja)
WO (1) WO2022059416A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840882A (ja) * 1981-09-03 1983-03-09 Mitsubishi Electric Corp 半導体レ−ザ装置
JPH03119811U (ja) * 1990-03-20 1991-12-10
JP2004104094A (ja) * 2002-07-18 2004-04-02 Nichia Chem Ind Ltd 半導体発光素子の冷却装置
JP2006332447A (ja) * 2005-05-27 2006-12-07 Noritsu Koki Co Ltd レーザー光源装置
JP2011096790A (ja) * 2009-10-28 2011-05-12 Mitsubishi Electric Corp 光源装置
JP2014138046A (ja) * 2013-01-16 2014-07-28 Stanley Electric Co Ltd 半導体発光素子パッケージ固定構造
JP2018170454A (ja) * 2017-03-30 2018-11-01 住友電気工業株式会社 光半導体装置
JP2019053941A (ja) * 2017-09-19 2019-04-04 株式会社小糸製作所 灯具ユニット及び車両用灯具
US20200119520A1 (en) * 2018-10-10 2020-04-16 Thermo Electron Scientific Instruments Llc Vertical-Cavity Surface Emitting Laser Support Assembly

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6341949B2 (ja) 2016-04-04 2018-06-13 中村 正一 Led照明装置
JP2019096637A (ja) 2017-11-17 2019-06-20 株式会社小糸製作所 レーザー光源ユニット

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840882A (ja) * 1981-09-03 1983-03-09 Mitsubishi Electric Corp 半導体レ−ザ装置
JPH03119811U (ja) * 1990-03-20 1991-12-10
JP2004104094A (ja) * 2002-07-18 2004-04-02 Nichia Chem Ind Ltd 半導体発光素子の冷却装置
JP2006332447A (ja) * 2005-05-27 2006-12-07 Noritsu Koki Co Ltd レーザー光源装置
JP2011096790A (ja) * 2009-10-28 2011-05-12 Mitsubishi Electric Corp 光源装置
JP2014138046A (ja) * 2013-01-16 2014-07-28 Stanley Electric Co Ltd 半導体発光素子パッケージ固定構造
JP2018170454A (ja) * 2017-03-30 2018-11-01 住友電気工業株式会社 光半導体装置
JP2019053941A (ja) * 2017-09-19 2019-04-04 株式会社小糸製作所 灯具ユニット及び車両用灯具
US20200119520A1 (en) * 2018-10-10 2020-04-16 Thermo Electron Scientific Instruments Llc Vertical-Cavity Surface Emitting Laser Support Assembly

Also Published As

Publication number Publication date
CN116113791A (zh) 2023-05-12
DE112021004841T5 (de) 2023-07-13
JP7507046B2 (ja) 2024-06-27
US20230369823A1 (en) 2023-11-16
JP2022048609A (ja) 2022-03-28

Similar Documents

Publication Publication Date Title
JP5473534B2 (ja) 光源装置
JP5473535B2 (ja) 光源装置
JP5794135B2 (ja) 光モジュール
CN111786255B (zh) 一种稳频和稳光强双压电陶瓷调谐外腔半导体激光器
US5703683A (en) Extruded wobble plate optical alignment device
US10270218B2 (en) Light source configured for stabilization relative to external operating conditions
CN112751259A (zh) 一种基于柔性机械结构的类同步调谐外腔半导体激光器
WO2022059416A1 (ja) 量子カスケードレーザモジュール
CN114994938B (zh) 色散增强光学元件及光谱合束、锁定、测量结构
JP2007248581A (ja) レーザーモジュール
US20230246418A1 (en) External resonance type laser module
WO2021049509A1 (ja) 半導体レーザ装置
JP2020145291A (ja) 半導体レーザ装置の製造方法、及び、半導体レーザ装置
JP2014126518A (ja) 光学装置、マイケルソン干渉計、およびフーリエ変換分光分析装置
US20230369822A1 (en) Optical kit and optical device
JP2004241438A (ja) 光ビーム発生装置
Anheier Jr et al. Compact quantum cascade laser transmitter
WO2020066096A1 (ja) レーザ光源装置
WO2020079774A1 (ja) レーザ光源装置
JP2023112789A (ja) 光学装置および光源装置
JP2001343286A (ja) ミラーユニット及びこれを用いた光分析装置
JP2006108501A (ja) レーザーユニットとその光学的調整方法、光学装置及びその組み立て方法
JP2022042410A (ja) Ldモジュール、光学デバイス及び熱加工機
JP5991539B2 (ja) レーザ発振装置及びレーザ加工機
JPH08186322A (ja) レーザー装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21869103

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21869103

Country of ref document: EP

Kind code of ref document: A1