WO2020066096A1 - レーザ光源装置 - Google Patents

レーザ光源装置 Download PDF

Info

Publication number
WO2020066096A1
WO2020066096A1 PCT/JP2019/016663 JP2019016663W WO2020066096A1 WO 2020066096 A1 WO2020066096 A1 WO 2020066096A1 JP 2019016663 W JP2019016663 W JP 2019016663W WO 2020066096 A1 WO2020066096 A1 WO 2020066096A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
spacer
polarization rotation
rotation element
light source
Prior art date
Application number
PCT/JP2019/016663
Other languages
English (en)
French (fr)
Inventor
博 木田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/036888 priority Critical patent/WO2020066868A1/ja
Priority to JP2020549101A priority patent/JPWO2020066868A1/ja
Publication of WO2020066096A1 publication Critical patent/WO2020066096A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics

Definitions

  • the present invention relates to a laser light source device.
  • the semiconductor laser element has low power consumption and is excellent in monochromaticity and high directivity of the beam.
  • a semiconductor laser device having such features is expected as a replacement light source for a currently widespread lamp.
  • a semiconductor laser device has been receiving attention as a light source of a projection display device such as a projector.
  • the light emitting area of the semiconductor laser element is small, and therefore, in the optical design thereof, it is possible to reduce the size of the optical element required for spatially combining beams.
  • the miniaturization of optical elements enables the miniaturization of display devices such as digital mirror devices (DMDs) and liquid crystal displays (LCDs), resulting in lower system costs. I do.
  • DMDs digital mirror devices
  • LCDs liquid crystal displays
  • the light source of the projection display device is constituted by a plurality of semiconductor laser elements.
  • the beam emitted from the semiconductor laser device is composed of waves having the same phase. With this feature, monochromaticity and high directivity of the semiconductor laser are created. On the other hand, when a plurality of waves overlap, a stripe pattern or speckles are generated due to the coherence of the waves. Speckle is a granular pattern due to the coherence of random waves appearing by the beam illuminated on the screen. Such an interference pattern becomes a problem when using a laser as a light source of a projection display device.
  • means for mixing semiconductor laser lights of a plurality of wavelengths or means for disturbing the polarization of semiconductor laser light is effective.
  • Patent Literature 1 discloses a laser light source device in which the polarization of laser light emitted from one or a plurality of light emitting points of a laser light source is rotated by 90 ° by a polarization rotating unit disposed on the optical axis. Has been proposed.
  • the laser light source device of Patent Document 1 is an array-type laser light source in which a plurality of laser beams oscillate from one semiconductor laser chip. Therefore, the gain is reduced by heat generated from the adjacent laser. In particular, since the laser at the center receives heat from both sides, the gain is greatly reduced. As a result, sufficient output cannot be obtained.
  • the present invention has been made in order to solve the above-described problems, and has as its object to provide a laser light source device capable of reducing the occurrence of interference fringes and speckles, and reducing the temperature rise due to laser oscillation. I do.
  • the laser light source device has a base, a plurality of semiconductor laser elements each of which is individually held on the upper surface of the base and emits a plurality of beams whose polarization directions are aligned in one direction, and at least one of the plurality of beams.
  • a polarization conversion unit that disturbs the polarization directions of a plurality of beams so that the polarization directions of the plurality of beams are not aligned in one direction.
  • the present invention it is possible to provide a laser light source device that reduces the occurrence of interference fringes and speckles and reduces the temperature rise due to laser oscillation.
  • FIG. 2 is a perspective view showing a configuration of a laser light source device and a beam emitted from the laser light source device in the first embodiment.
  • FIG. 2 is an exploded perspective view illustrating a configuration of the laser light source device according to the first embodiment.
  • FIG. 3 is a diagram illustrating a configuration of a polarization rotation element according to the first embodiment.
  • FIG. 2 is a perspective view showing a detailed configuration of the semiconductor laser device according to the first embodiment.
  • FIG. 2 is a perspective view showing a configuration of a base and a semiconductor laser device according to the first embodiment.
  • FIG. 6 is a sectional view taken along line A-A ′ shown in FIG. 5.
  • FIG. 4 is a diagram illustrating an operation of the polarization rotation element according to the first embodiment.
  • FIG. 4 is a diagram illustrating an operation of the polarization rotation element according to the first embodiment.
  • FIG. 4 is a diagram illustrating an operation of the polarization rotation element according to the first embodiment.
  • FIG. 3 is a perspective view illustrating a configuration of a spacer and a lens according to the first embodiment.
  • FIG. 10 is a sectional view taken along line B-B ′ shown in FIG. 9.
  • FIG. 5 is a diagram illustrating a configuration of a spacer and a polarization rotation element according to a modification of the first embodiment.
  • FIG. 5 is a diagram illustrating a polarization element substrate including a polarization rotation element according to a modification of the first embodiment.
  • FIG. 9 is a perspective view illustrating a configuration of a laser light source device and a beam emitted from the laser light source device according to Embodiment 2.
  • FIG. 9 is a perspective view illustrating a configuration of a laser light source device and a beam emitted from the laser light source device according to Embodiment 2.
  • FIG. 9 is an exploded perspective view illustrating a configuration of a laser light source device according to a second embodiment.
  • FIG. 13 is a diagram illustrating an installation direction of each polarization rotation element and a polarization direction of each beam according to the second embodiment.
  • FIG. 14 is a diagram illustrating a configuration of a spacer and a polarization rotation element according to a modification of the second embodiment.
  • FIG. 14 is a diagram illustrating a polarization element substrate including a polarization rotation element according to a modification of the second embodiment.
  • FIG. 13 is a perspective view illustrating a configuration of a laser light source device and a beam emitted from the laser light source device according to Embodiment 3.
  • FIG. 13 is an exploded perspective view illustrating a configuration of a laser light source device according to a third embodiment.
  • FIG. 13 is a perspective view showing a configuration of a spacer and a lens according to a third embodiment.
  • FIG. 21 is a sectional view taken along line C-C ′ shown in FIG. 20.
  • FIG. 14 is a diagram illustrating a configuration of a spacer and a polarization rotation element according to a modification of the third embodiment.
  • FIG. 14 is a perspective view illustrating a configuration of a laser light source device and a beam emitted from the laser light source device according to Embodiment 4.
  • FIG. 14 is an exploded perspective view illustrating a configuration of a laser light source device according to a fourth embodiment.
  • FIG. 21 is a diagram illustrating a configuration of a spacer and a polarization rotation element according to a modification of the fourth embodiment.
  • FIG. 1 is a perspective view showing the configuration of the laser light source device 1 and the beams 71 to 74 emitted from the laser light source device 1 according to the first embodiment.
  • FIG. 2 is an exploded perspective view illustrating the configuration of the laser light source device 1.
  • the laser light source device 1 includes the base 30, the semiconductor laser elements 101 to 104, the lenses 41 to 44, the spacer 20, and the polarization rotating elements 52 and 54.
  • the base 30 supports the semiconductor laser devices 101 to 104 on the upper surface 30A.
  • base 30 has a flat surface on upper surface 30A, and semiconductor laser elements 101 to 104 are fixed to the flat surface.
  • the base 30 is, for example, a flat plate.
  • the base 30 is provided with long holes 31 to 34.
  • the slots 31 to 34 are through holes here.
  • the long holes 31 to 34 are holes into which the two lead pins 14 of each of the semiconductor laser elements 101 to 104 are inserted.
  • a current is supplied to each semiconductor laser element via a lead pin 14.
  • the x, y, and z axes described in each figure constitute an orthogonal coordinate system.
  • the x-axis and the y-axis are parallel to the upper surface 30A of the base 30, and the z-axis points above the base 30.
  • the semiconductor laser elements 101 to 104 are elements each having a semiconductor laser chip that oscillates one laser beam.
  • Each of the semiconductor laser elements 101 to 104 is held on the upper surface 30A of the base 30.
  • each semiconductor laser element is fixed to a plane formed on the upper surface 30A of the base 30.
  • the semiconductor laser chip may be configured by dividing the oscillation section into two or three in order to improve efficiency.
  • the semiconductor laser elements 101 to 104 emit beams 71 to 74 whose polarization directions are aligned in one direction.
  • the polarization of the beams 71 to 74 emitted from the semiconductor laser elements 101 to 104 is parallel to the y-axis direction (not shown).
  • the semiconductor laser elements 101 to 104 emit beams 71 to 74 having a wide cross-sectional shape in the x-axis direction in parallel with the z-axis direction.
  • the spacer 20 is provided so as to cover above the semiconductor laser elements 101 to 104.
  • the spacer 20 has a function of holding lenses 41 to 44, which will be described later, and keeping a constant distance between each lens and each semiconductor laser element.
  • the spacer 20 has spacer windows 21 to 24 on the upper surface.
  • the outer shapes of the spacer windows 21 to 24 have a square shape.
  • the spacer 20 has spacer step portions 25 to 28 provided on the outer periphery of the spacer windows 21 to 24, respectively.
  • a polarization rotation element can be installed at each spacer step. The beams 71 to 74 emitted from the semiconductor laser elements 101 to 104 pass through the spacer windows 21 to 24, respectively.
  • the spacer 20 may be fastened and fixed to the upper surface 30A of the base 30 with a screw or may be fixed with an adhesive. Alternatively, the spacer 20 may be fixed by both.
  • the spacer 20 is manufactured by die casting of zinc, aluminum, or the like, for example, in consideration of moldability. However, since no thermal effect is required for the spacer 20, the spacer 20 may be made of a resin material.
  • the polarization rotation elements 52 and 54 constitute a polarization conversion unit.
  • the polarization conversion unit rotates the polarization direction of at least a part of the beams 71 to 74 and disturbs the polarization directions of the beams 71 to 74 so that they are not aligned in one direction.
  • the polarization rotation elements 52 and 54 rotate the polarization directions of some of the beams 72 and 74 among the beams 71 to 74. That is, the polarization rotation elements 52 and 54 are selectively disposed corresponding to the semiconductor laser elements 102 and 104 that emit the beams 72 and 74.
  • FIG. 3 is a diagram showing a configuration of the polarization rotation elements 52 and 54.
  • the polarization rotators 52 and 54 have a fast axis (F axis) 50A in a direction with a low refractive index and a slow axis (S axis) 50B in a direction with a high refractive index.
  • the polarization rotation elements 52 and 54 are plate-like elements having a plane parallel to the FS plane where the fast axis (F axis) 50A and the slow axis (S axis) 50B are orthogonal to each other.
  • the polarization rotation elements 52 and 54 are ⁇ wavelength plates that delay the slow axis components of the beams 72 and 74 by 1 / wavelength with respect to the fast axis components.
  • the polarization rotation elements 52 and 54 are arranged such that the fast axis 50A and the slow axis 50B make an angle of 45 ° with the polarization directions of the beams 72 and 74 emitted from the semiconductor laser elements 102 and 104. Be placed.
  • the polarizations of the beams 72 and 74 emitted from the semiconductor laser elements 102 and 104 are linear polarizations parallel to the y-axis. Therefore, the fast axis 50A and the slow axis 50B make an angle of 45 ° with the y axis.
  • the outer shape of the polarization rotation elements 52 and 54 has a square similar to the outer shape of the spacer step portions 26 and 28.
  • the square consists of sides parallel to the x-axis or the y-axis.
  • the fast axis 50A and the slow axis 50B of the polarization rotation elements 52 and 54 coincide with the diagonal directions of the square.
  • the polarization rotation elements 52 and 54 are held by the spacer steps 26 and 28, respectively.
  • the polarization rotation element 52 is housed in the spacer step part 26 and the polarization rotation element 54 is housed in the spacer step part 28, so that the polarization rotation elements 52 and 54 are part of the semiconductor laser elements 101 to 104. It is selectively arranged corresponding to the semiconductor laser elements 102 and 104.
  • the polarization rotation elements 52 and 54 are disposed on the upper surface side of the spacer 20.
  • the polarization rotation elements 52 and 54 may be disposed on the lower surface side of the spacer 20.
  • the polarization rotating element is fixed to a spacer step provided on the back surface of the spacer 20 by an adhesive or a holding member, for example.
  • the shape of the polarization rotator may be a rectangle, a circle, an ellipse, or the like, as long as it covers the beams 72, 74 of the semiconductor laser elements 102, 104.
  • the lenses 41 to 44 focus the beams 71 to 74.
  • the beams 71 to 74 transmitted through the lenses 41 to 44 travel in directions parallel to the z-axis, respectively.
  • the lenses 41 to 44 are held by the spacer 20.
  • the lenses 41 to 44 are disposed so as to cover the spacer windows 21 to 24, respectively.
  • FIG. 4 is a perspective view showing a detailed configuration of the semiconductor laser device 101.
  • the semiconductor laser element 101 has a configuration in which a semiconductor laser chip is included in a TO-Can type package.
  • the TO-Can type semiconductor laser device 101 mainly includes a cap 11, a glass window 12, a stem 13, a lead pin 14, and a semiconductor laser chip (not shown).
  • the cap 11 is provided above the stem 13.
  • the glass window 12 is provided on the upper surface of the cap 11.
  • the lead pin 14 is provided below the stem 13.
  • the semiconductor laser chip is arranged inside the cap 11.
  • the semiconductor laser chip has a main optical axis in a direction perpendicular to the stem 13. That is, the semiconductor laser chip emits the beam 71 in the z-axis direction. Generally, when moisture or dust in the air adheres to the end face of the semiconductor laser chip, the semiconductor laser chip easily breaks. However, in the TO-Can type package, the semiconductor laser chip is sealed by the cap 11. Therefore, the airtightness inside the cap 11 is maintained, and the conditions required for the driving environment of the semiconductor laser chip are relaxed. Further, the TO-Can type package element is small. Therefore, it is easy to adjust the used number, that is, to scale the optical output according to the required specifications.
  • a high-power edge-emitting laser chip is used as the light source of the projection display device.
  • the main material of the semiconductor laser chip is a compound semiconductor such as GaAs or GaN.
  • the active layer of the semiconductor laser chip is formed by epitaxial growth.
  • the direction of epitaxial growth corresponds to the x-axis direction
  • the horizontal direction of the active layer corresponds to the y-axis direction.
  • the laser is emitted from a chip end face located in a direction (z-axis direction) orthogonal to the epitaxial growth direction (x-axis direction).
  • the beam 71 is emitted from a luminescent spot of about 1 ⁇ m in the vertical direction (x-axis direction) of the active layer and tens to hundreds of ⁇ m in the horizontal direction (y-axis direction) of the active layer at the chip end face. Since the exit of the active layer in the vertical direction (x-axis direction) is very small, the beam 71 spreads in the x-axis direction due to a diffraction effect. The spread of the beam 71 in the x-axis direction is about 60 ° in full angle. The spread of the beam in the vertical direction (x-axis direction) of the active layer is about 10 times larger than the spread of the beam 71 in the horizontal direction (y-axis direction) of the active layer. Therefore, the cross section of the beam 71, that is, the far-field image has an elliptical shape as shown in FIG.
  • the arrangement direction of the two lead pins 14 is the same as the horizontal direction (y-axis direction) of the active layer of the semiconductor laser chip. Therefore, the beam 71 has a small spread in the arrangement direction of the lead pins 14 and has a large spread in the x-axis direction orthogonal thereto.
  • the polarization of the beam 71 emitted from the semiconductor laser element 101 having the above configuration is parallel to the direction (y-axis direction) horizontal to the active layer. That is, the semiconductor laser element 101 emits linearly polarized light whose electric field oscillates in the horizontal direction (y-axis direction) of the active layer. However, depending on the atomic arrangement of the active layer, the beam may be polarized in the vertical direction (x-axis direction) of the active layer.
  • FIG. 5 is a perspective view showing the configuration of the base 30 and the semiconductor laser elements 101 to 104.
  • FIG. 6 is a sectional view taken along the line A-A 'shown in FIG.
  • base 30 is formed of a member having high thermal conductivity.
  • the base 30 includes, for example, a metal material such as Cu and Al.
  • the base 30 includes a ceramic having a high thermal conductivity, such as SiC or AlN.
  • a cooling member connected to a heat pipe filled with water or a coolant or a fin for improving the heat capacity and heat radiation area of the stem 13 may be added to the stem 13.
  • the semiconductor laser elements 101 to 104 are fixed in close contact with a plane formed on the upper surface 30A of the base 30 via grease or sheet-like heat dissipating material having high thermal conductivity.
  • each semiconductor laser element is soldered to the base 30 by a solder material.
  • the solder material contains, for example, SnAgCu, AuSn, or the like as a main component.
  • the base 30 is a flat plate, but is not limited thereto, and the base 30 may be a flat surface in contact with the stem 13.
  • the base 30 may be provided with a counterbore that matches the shape of the stem 13.
  • the base 30 When the base 30 is made of a conductive material, it is necessary to ensure reliable insulation between the lead pins 14 of the semiconductor laser elements 101 to 104 and the base 30.
  • the elongated holes 31 to 34 have a hole shape such that the lead pin 14 does not contact the base 30, and are arranged so that the lead pin 14 does not contact the base 30.
  • the base 30 may have a round hole capable of avoiding contact between the lead pin 14 and the base 30 instead of the elongated holes 31 to 34.
  • the base 30 has a groove structure capable of avoiding contact between the lead pin 14 and the base 30 and securing a wiring path for supplying a current to the semiconductor laser elements 101 to 104 instead of the slots 31 to 34. May be.
  • the polarization rotation elements 52 and 54 are made of, for example, an inorganic material or a resin material having birefringence.
  • the inorganic material having birefringence is, for example, quartz.
  • the resin material having birefringence is, for example, a resin containing polycarbonate or the like as a base material and is stretched in one direction.
  • FIGS. 7 and 8 are diagrams illustrating the operation of the polarization rotation elements 52 and 54.
  • FIG. The speed of light propagating in a medium having a higher refractive index than air is lower than the speed of light propagating in air. That is, a medium having a higher refractive index has a lower speed of light propagating through the medium.
  • the propagation speed of light whose electric field oscillates in the slow axis direction is lower than the propagation speed of light whose electric field oscillates in the fast axis direction.
  • the polarization rotation elements 52 and 54 are ⁇ wavelength plates.
  • the fast axis ( The propagation of the light ray in the slow axis (S axis) direction is delayed with respect to the propagation of the light ray in the F axis direction.
  • the propagation delay in the slow axis direction with respect to the fast axis direction is designed to be ⁇ wavelength. Therefore, as shown in FIG. 8, the polarization of the beam transmitted through the polarization rotation element is converted into linearly polarized light 80B rotated by 90 ° with respect to the linearly polarized light 80A before transmission.
  • FIG. 9 is a perspective view showing the configuration of the spacer 20 and the lenses 41 to 44.
  • FIG. 10 is a sectional view taken along the line B-B 'shown in FIG.
  • the beams 71 to 74 emitted from the laser light source device 1 are focused on an aperture of an optical system of a projection display device (not shown). Since the distance from the laser light source device 1 to the optical system opening of the projection display device is not limited, the beams 71 to 74 emitted from the laser light source device 1 are preferably parallel light.
  • each of the lenses 41 to 44 has a flat surface on the incident surface (surface in the ⁇ z direction) and a convex surface of an axially symmetric spherical or aspheric surface on the exit surface (surface in the + z direction). That is, the lenses 41 to 44 are convex lenses.
  • the lenses 41 to 44 do not necessarily have to have a flat incident surface.
  • Each lens may have a concave surface or a convex surface on the entrance surface or the exit surface as long as it has a function as a convex lens.
  • the surface that may come into contact with the upper surface of the spacer 20 is preferably a flat surface.
  • each lens need not be curved surfaces that are axisymmetric.
  • each lens may be a cylindrical lens that converts parallel light only in a vertical direction (x-axis direction) of an active layer having a large divergence angle of a beam emitted from a semiconductor laser element on an emission surface or an incidence surface.
  • the central axes 141 and 144 of the lenses 41 and 44 are arranged so as to coincide with the central axes of the light beams of the semiconductor laser elements 101 and 104, respectively.
  • the lenses 41 and 44 are preferably fixed to the upper surface of the spacer 20 by an adhesive. If the lenses 41 and 44 can be fixed on the upper surface of the spacer 20, the lenses 41 and 44 may be fixed by a member that holds down each lens from above. Although not shown in FIG. 10, the lenses 42 and 43 are also fixed to the upper surface of the spacer 20 similarly to the lenses 41 and 44.
  • the outer shape of the spacer step portion 28 has a similar relationship to the outer shape of the polarization rotation element 54.
  • the outer shape of the spacer step 28 is larger than the outer shape of the polarization rotation element 54.
  • the height of the spacer step 28 is larger than the thickness of the polarization rotation element 54. Therefore, the polarization rotation element 54 is arranged so as not to protrude upward from the upper surface of the spacer 20 and to be accommodated in a space formed by the spacer step 28 and the bottom surface of the lens 44.
  • the outer shapes of the spacer steps 25 to 27 are the same as the outer shapes of the spacer steps 28.
  • a transparent substrate having no function of rotating polarized light may be provided in the spacer step portions 25 and 27 where the polarization rotating element is not arranged.
  • the transparent substrate is, for example, a glass plate or a transparent resin plate.
  • the distance from the emission end faces of the semiconductor laser elements 101 and 103 to the lenses 41 and 43 is the same as the polarization rotation element 52 from the emission end faces of the semiconductor laser elements 102 and 104 to the lenses 42 and 44. 54 is longer than the apparent distance inserted.
  • the apparent distance from the semiconductor laser devices 101 and 103 to the lenses 41 and 43 is reduced. Therefore, the distance from the laser emission end faces of the semiconductor laser elements 101 to 104 to the lenses 41 to 44 is corrected to be equal.
  • the four beams 71 to 74 emitted from the laser light source device 1 travel in the z-axis direction with substantially the same degree of parallelism. I do.
  • the operation of the laser light source device 1 will be described.
  • Heat generated by driving the semiconductor laser elements 101 to 104 is radiated to the base 30. Since each semiconductor laser element is separated, heat generated in each semiconductor laser element is not easily transmitted to the adjacent semiconductor laser element. Thus, the laser light source device 1 suppresses a temperature rise of the semiconductor laser element.
  • the linearly polarized light in the y-axis direction emitted from the semiconductor laser elements 102 and 104 is converted by the polarization rotating elements 52 and 54 into linearly polarized light 82 and 84 that vibrate in the x-axis direction.
  • the beams 71 and 73 emitted from the semiconductor laser elements 101 and 103 maintain the linearly polarized light 81 and 83 in the y-axis direction.
  • the laser light source device 1 emits beams 72 and 74 of linearly polarized light 82 and 84 in the x-axis direction and beams 71 and 73 of linearly polarized light 81 and 83 in the y-axis direction.
  • the beams 71 to 74 have the same cross-sectional shape (beam profile), the polarization directions are not aligned in one direction.
  • the laser light source device 1 rotates the polarization directions of some of the beams 72, 74 among the plurality of beams 71 to 74 by the polarization rotation elements 52, 54, whereby two types of beams having different polarization directions are provided.
  • the beams 71 to 74 are emitted.
  • Such beams 71 to 74 reduce the occurrence of interference fringes and speckle.
  • the laser light source device 1 emits the base 30 and the plurality of beams 71 to 74, each of which is individually held on the upper surface 30A of the base 30 and whose polarization direction is aligned in one direction.
  • the polarization directions of the plurality of semiconductor laser elements 101 to 104 and at least some of the beams 72 and 74 of the plurality of beams 71 to 74 are not aligned in one direction.
  • a polarization conversion unit that disturbs the polarization.
  • Such a laser light source device 1 is constituted by a plurality of semiconductor laser elements 101 to 104 provided separately, a rise in temperature due to laser oscillation is reduced.
  • the laser light source device 1 emits a plurality of beams 71 to 74 having different polarization directions, the occurrence of interference fringes and speckles generated when the plurality of beams 71 to 74 are combined is reduced.
  • the polarization conversion unit of the laser light source device 1 includes the polarization rotation elements 52 and 54 that rotate the polarization directions of some of the beams 72 and 74 among the plurality of beams 71 to 74 by 90 °.
  • the polarization rotation elements 52 and 54 are selectively arranged corresponding to the semiconductor laser elements 102 and 104 that emit some of the beams 72 and 74 among the plurality of semiconductor laser elements 101 to 104.
  • the laser light source device 1 emits two types of beams 71 to 74 having different polarization directions, and therefore reduces the occurrence of interference fringes and speckles generated when the two types of beams 71 to 74 are combined. .
  • the laser light source device 1 further includes a spacer 20 provided so as to cover the semiconductor laser elements 101 to 104.
  • the spacer 20 includes spacer windows 21 to 24 through which each of the plurality of beams 71 to 74 passes, and spacer steps 25 to 28 provided on the outer periphery of the spacer windows 21 to 24.
  • the polarization rotation elements 52 and 54 are held by the spacer steps 26 and 28.
  • the laser light source device 1 allows the polarization rotators 52 and 54 to be easily and selectively arranged.
  • the laser light source device 1 is provided corresponding to each of the plurality of semiconductor laser elements 101 to 104, and includes a plurality of lenses 41 to 44 that convert each of the plurality of beams 71 to 74 into parallel light. Is further included.
  • the spacer 20 is fixed to the base 30 and holds the plurality of lenses 41 to 44.
  • the laser light source device 1 can emit beams 71 to 74 with high output and high parallelism.
  • the laser light source device differs from the laser light source device 1 according to the first embodiment in the configuration of the spacer and the polarization rotation element.
  • FIG. 11 is a diagram showing a configuration of the spacer 120 and the polarization rotating elements 152 and 154 of the laser light source device according to the modification of the first embodiment.
  • the outer shape of the polarization rotation elements 152 and 154 has a parallelogram.
  • the outer shape of the spacer step portions 126 and 128 of the spacer 120 has a parallelogram that is a similar shape slightly larger than the outer shape of the polarization rotation elements 152 and 154.
  • the polarization rotation element is cut into a rectangular shape from a polarization element substrate which is a larger plate material. Since the angle forming the rectangle is 90 °, the polarization rotation element is cut out from the polarization element substrate without waste.
  • the polarization rotation elements 152 and 154 in the present modification are cut out at an angle ⁇ with respect to one direction.
  • FIG. 12 is a diagram illustrating a polarization element substrate including the polarization rotation elements 152 and 154.
  • the polarization rotation elements 152 and 154 are cut out at a slight angle ⁇ with respect to the x-axis direction. Therefore, the outer shape of the polarization rotation elements 152 and 154 has a parallelogram.
  • the outer shape of the spacer steps 126 and 128 of the spacer 120 has a parallelogram slightly similar to the outer shape of the polarization rotation elements 152 and 154. Accordingly, when the polarization rotation elements 152 and 154 are rotated by 90 ° or when the polarization rotation elements 152 and 154 are reversed, the polarization rotation elements 152 and 154 do not fit into the spacer step portions 126 and 128. Therefore, the installation directions of the polarization rotation elements 152 and 154 are limited.
  • FIG. 13 is a perspective view showing the configuration of the laser light source device 10 and the beams 171 to 174 emitted from the laser light source device 10 according to the second embodiment.
  • FIG. 14 is an exploded perspective view illustrating the configuration of the laser light source device 10.
  • the same reference numerals as those in the first embodiment denote the same or corresponding parts.
  • the polarization rotation elements 252 to 254 constitute a polarization conversion unit.
  • the polarization converter rotates the polarization directions of at least some of the beams 171 to 174 among the beams 171 to 174, and disturbs the polarization directions of the beams 171 to 174 so that they are not aligned in one direction.
  • the polarization rotation elements 252 to 254 are ⁇ wavelength plates.
  • the polarization rotation elements 252 to 254 are arranged so that the fast axis 50A forms an angle ⁇ with respect to the linearly polarized light in the y-axis direction emitted from the semiconductor laser elements 102 to 104, respectively. Is different for each of the polarization rotation elements 252 to 254.
  • FIG. 15 is a diagram showing the installation direction of each polarization rotation element and the polarization direction of each beam.
  • the polarization rotation elements 252 to 254 rotate the linearly polarized light in the y-axis direction by an angle 2 ⁇ .
  • the polarized light transmitted through the polarization rotation element 252 and the polarized light transmitted through the polarization rotation element 254 both have a polarization inclined by 45 ° with respect to the polarization of the incident light, but their polarization directions are orthogonal to each other.
  • No polarization rotation element is arranged in the spacer window 21.
  • a glass plate or the like that does not rotate polarized light may be provided.
  • the beam 171 that has passed through the spacer window 21 has linearly polarized light 181 whose polarization direction matches the y-axis.
  • the beams 172 to 174 transmitted through the polarization rotation elements 252 to 254 have linearly polarized light rotated by an angle 2 ⁇ . Then, the laser light source device 10 emits beams 171 to 174 having linear polarizations 181 to 184 in four directions together with the beam 171 transmitting through the spacer window 21.
  • the half-wave plate according to the second embodiment operates with no distinction between front and back.
  • the polarization rotator 254 is a half-wave plate arranged on the spacer step 28 with the same half-wave plate as the polarization rotator 252 reversed with respect to the y-axis.
  • the polarization rotator 253 for generating polarized light rotated by 90 ° and the polarization rotators 252 and 254 for generating two types of polarized light rotated by 45 ° depending on the use of the front and back surfaces are combined to provide two types of 1 / wavelengths.
  • the plate can generate linearly polarized light in four directions.
  • the polarization rotation element 252 and the polarization rotation element 254 when a half-wave plate that acts without distinction between front and back is applied to the polarization rotation element 252 and the polarization rotation element 254, one type of half-wave plate is used to generate linearly polarized light in two directions. It has been shown that generation is possible. Further, when a laser of multi-directional linearly polarized light is generated by a laser light source device including more semiconductor laser elements, a laser including linearly polarized light of 2n directions can be generated by n kinds of polarization rotating elements.
  • the polarization conversion unit of the laser light source device 10 is configured to rotate the polarization direction of at least a part of the beams 172 to 174 of the plurality of beams 171 to 174 from at least one polarization rotation element 252. 254.
  • the polarization rotation elements 252 to 254 are arranged such that the fast axis 50A forms an angle of ⁇ with respect to at least one direction that is the polarization direction of the beams 172 to 174, and rotates the polarization direction by an angle of 2 ⁇ .
  • n types of half-wave plates Includes n types of half-wave plates.
  • the laser light source device 10 rotates the polarized light in any direction, not limited to 90 °, by the polarization rotating elements 252 to 254. Since the beams 171 to 174 emitted from the laser light source device 10 are configured by linearly polarized light in multiple directions, it is possible to generate a beam that is closer to non-polarized light such as natural light. Such a laser light source device 10 reduces the occurrence of interference fringes and speckles, and reduces the temperature rise due to laser oscillation. Such a light source is suitable for a light source of a projection display device.
  • the laser light source device according to the modification of the second embodiment differs from the laser light source device according to the first or second embodiment in the configuration of the spacer and the polarization rotation element.
  • FIG. 16 is a diagram illustrating the configuration of the spacer 220 and the polarization rotating elements 253, 352, and 354 of the laser light source device according to the modification of the second embodiment.
  • the outer shape of the polarization rotation elements 352 and 354 has a parallelogram.
  • the outer shape of the spacer steps 226 and 228 of the spacer 220 has a parallelogram similar in shape to the outer shape of the polarization rotation elements 352 and 354.
  • the configuration of the polarization rotation element 253 is similar to that of the second embodiment.
  • FIG. 17 is a diagram illustrating a polarization element substrate including the polarization rotation elements 352 and 354.
  • the polarization rotation elements 352 and 354 are cut out at an angle ⁇ with respect to one direction (x-axis direction). Therefore, the outer shape of the polarization rotation elements 352 and 354 has a parallelogram.
  • the polarization rotation elements 352 and 354 are cut out in consideration of the relationship between the fast axis and the angle ⁇ so that the polarization of the incident light is rotated in an arbitrary direction other than 90 °.
  • the polarization rotation elements 352 and 354 cut out from the polarization element substrate are ⁇ wavelength plates having the same characteristics and the same outer shape.
  • the polarization rotation element 352 is disposed at the spacer step 226.
  • the outer shape of the spacer step portion 226 has a parallelogram similar in shape to the outer shape of the polarization rotation element 352.
  • the polarization rotation element 352 rotates the polarization clockwise.
  • the polarization rotation element 354 is disposed on the spacer step 228 with the relation of the polarization rotation element 352 upside down.
  • the outer shape of the spacer step portion 228 has a parallelogram similar in shape to the outer shape of the polarization rotation element 354.
  • the polarization rotation element 354 rotates the polarization counterclockwise.
  • the shape of the polarization rotation element 352 does not coincide with the shape of the polarization rotation element 354 whose surface is inverted on the xy plane. Therefore, the two are distinguishable.
  • the polarization rotation element 352 does not fit into the spacer step 228. Further, the polarization rotation element 354 does not fit in the spacer step 226. Therefore, the installation positions of the polarization rotation elements 352 and 354 are limited to the spacer step portions 226 and 228 respectively determined.
  • the polarization rotation element 253 is arranged at the spacer step 27.
  • the polarization rotation element 253 rotates the polarized light by 90 degrees.
  • the fast axis 50A of the polarization rotation element 253 makes an angle of 45 ° with the sides forming the outer shape.
  • the outer shape of the polarization rotation element 253 has a square shape. Therefore, the operation of the polarization rotation element 253 does not change even if it is turned upside down.
  • the outer shape of the polarization rotation element 253 may be rectangular in the x-axis direction as long as it covers the cross section of the beam 173.
  • the polarization rotation elements 352 and 354 may be parallelograms that cover the cross sections of the beams 172 and 173 and are long in the x-axis direction.
  • the shape of the polarization rotation element 253 may be different from the shape of the polarization rotation elements 352, 354.
  • the polarization rotation element 253 is cut out at an angle different from that of the polarization rotation elements 352 and 354, the front and back of the polarization rotation element 253 are also defined. Therefore, the polarization rotation element 253 can be distinguished from other polarization rotation elements.
  • the laser light source device configured as described above, the same effects as those of the other embodiments or modified examples can be obtained. Further, the laser light source device according to the modified example of the second embodiment enables a plurality of types of polarization rotating elements to be arranged at a predetermined position without being mistaken in an assembly process of the laser light source device.
  • Embodiment 3 A laser light source device according to Embodiment 3 will be described. The description of the same configuration and operation as those in the first or second embodiment is omitted.
  • FIG. 18 is a perspective view showing a configuration of laser light source device 100 and beams 71 to 74 emitted from laser light source device 100 according to the third embodiment.
  • FIG. 19 is an exploded perspective view showing the configuration of the laser light source device 100.
  • FIG. 20 is a perspective view showing the configuration of the spacer 320, the lenses 41 to 44, and the polarization rotating elements 52 and 54.
  • FIG. 21 is a cross-sectional view taken along the line C-C ′ shown in FIG.
  • the same reference numerals as those in the first embodiment denote the same or corresponding parts.
  • the laser light source device 100 has a configuration in which the base 30, the semiconductor laser elements 101 to 104, the spacer 320, the lenses 41 to 44, and the polarization rotating elements 52 and 54 are arranged in this order from below.
  • the structure of the spacer 320 for fixing the lenses 41 to 44 and the polarization rotating elements 52 and 54 is different from the structure of the spacer 20 of the first embodiment.
  • the spacer 320 includes spacer windows 321 to 324, lens holding steps 361 to 364, and polarization rotating element holding steps 325 to 328.
  • the spacer windows 321 to 324 include openings through which each of the plurality of beams 71 to 74 passes.
  • the outer shape of the opening is a circle similar to the lenses 41 to 44.
  • the diameter of the opening is slightly larger than the diameter of the lenses 41 to 44.
  • the lens holding steps 361 to 364 include a step formed by providing an opening smaller than the opening of the spacer windows 321 to 324 inside the opening of the spacer windows 321 to 324.
  • the lens holding steps 361 to 364 are steps provided on the inner periphery of the spacer windows 321 to 324.
  • the outer shape of the small opening forming the lens holding steps 361 to 364 is a circle similar to the lenses 41 to 44.
  • the diameter of the small opening is smaller than the diameter of the lenses 41 to 44. Since the spacer windows 321 to 324 and the lens holding steps 361 to 364 have such a configuration, the lenses 41 to 44 inserted into the spacer windows 321 to 324 are connected to the lens holding steps 361 to 364. Fixed.
  • the polarization rotation element holding steps 325 to 328 are steps provided above the lens holding steps 361 to 364, and include steps having openings larger than the openings of the spacer windows 321 to 324.
  • the polarization rotation element holding steps 325 to 328 are steps provided on the outer periphery of the spacer windows 321 to 324.
  • the outer shapes of the polarization rotating element holding steps 325 to 328 have similar shapes slightly larger than the outer shapes of the polarization rotating elements 52 and 54.
  • the outer shape of the polarization rotation elements 52 and 54 is larger than the diameter of the openings of the spacer windows 322 and 324. Therefore, the polarization rotation elements 52 and 54 are held by the polarization rotation element holding steps 326 and 328 without falling into the openings of the spacer windows 322 and 324, and the arrangement of the polarization rotation elements 52 and 54 is regulated. .
  • the positions of the polarization rotating element holding steps 325 to 328 in the height direction with respect to the lens holding steps 361 to 364 are higher than the tops of the lenses 41 to 44 fixed to the lens holding steps 361 to 364.
  • the polarization rotation elements 52 and 54 are held above the lenses 42 and 44 by the polarization rotation element holding steps 326 and 328.
  • the lenses 41 to 44 fixed to the lens holding steps 361 to 364 and the polarization rotating elements 52 and 54 held by the polarization rotating element holding steps 326 and 328 do not interfere with each other. Can be placed.
  • the position of the polarization rotating element holding steps 325 to 328 relative to the upper surface of the spacer 320 in the height direction is no limitation on the position of the polarization rotating element holding steps 325 to 328 relative to the upper surface of the spacer 320 in the height direction, as long as the positions of the polarization rotating elements 52 and 54 can be regulated.
  • the polarization rotation element holding steps 325 to 328 are located at a position lower than the thickness of the polarization rotation elements 52 and 54 from the upper surface of the spacer 320. In this case, the polarization rotation elements 52 and 54 held by the polarization rotation element holding steps 326 to 328 do not protrude above the upper surface of the spacer 320, so that the damage of the polarization rotation elements 52 and 54 can be suppressed.
  • the polarization rotators 52 and 54 constitute a polarization conversion unit as in the first embodiment.
  • the polarization conversion unit rotates the polarization direction of at least a part of the beams 71 to 74 and disturbs the polarization directions of the beams 71 to 74 so that they are not aligned in one direction.
  • the polarization rotation elements 52 and 54 in the third embodiment rotate the polarization directions of some of the beams 72 and 74 among the beams 71 to 74 by 90 °.
  • the polarization rotation elements 52 and 54 are selectively arranged corresponding to the semiconductor laser elements 102 and 104 that emit the beams 72 and 74.
  • the beams 71 to 74 emitted from the semiconductor laser elements 101 to 104 are converted by the lenses 41 to 44 into beams 71 to 74 parallel to the z-axis direction. Then, the collimated beams 72 and 74 are uniformly incident on all regions of the polarization rotation elements 52 and 54.
  • the rotation of the polarized light is determined by the optical path length when passing through the polarization rotating elements 52 and 54. If the optical path length is not appropriate, a component with insufficient polarization rotation is generated. For example, when a light beam obliquely inclined with respect to the plane of the polarization rotator enters the polarization rotator, the optical path length of the laser beam transmitted through the polarization rotator becomes longer. Occur.
  • the polarization is uniformly rotated over the entire region.
  • the linearly polarized light in the y-axis direction emitted from the semiconductor laser elements 102 and 104 is converted by the polarization rotating elements 52 and 54 into linearly polarized light 82 and 84 that vibrate in the x-axis direction.
  • the beams 71 and 73 emitted from the semiconductor laser elements 101 and 103 maintain the linearly polarized light 81 and 83 in the y-axis direction.
  • beams 72 and 74 of linearly polarized light 82 and 84 in the x-axis direction and beams 71 and 73 of linearly polarized light 81 and 83 in the y-axis direction are emitted from the laser light source device 100.
  • the beams 71 to 74 have the same cross-sectional shape (beam profile), the polarization directions are not aligned in one direction.
  • the laser light source device 100 rotates the polarization directions of some of the beams 72, 74 among the plurality of beams 71 to 74 by the polarization rotation elements 52, 54, thereby providing two types of polarization directions different from each other.
  • the beams 71 to 74 are emitted.
  • Such beams 71 to 74 reduce the occurrence of interference fringes and speckle.
  • the outer shape of the spacer windows 321 to 324 may be other shapes such as a rectangle as long as the arrangement of the lenses 41 to 44 can be restricted.
  • the diameter of the openings of the spacer windows 321 to 324 may be sufficiently larger than the diameter of the lenses 41 to 44. In the case of such a configuration, as shown in FIG. 21, the emission center (not shown) of the semiconductor laser element and the lenses 41 and 44 are aligned with the central axes 141 and 144 of the spacer windows 321 and 324. Can be adjusted.
  • the outer shape of the opening forming the lens holding steps 361 to 364 may be rectangular or elliptical according to the cross-sectional shape of the beams 71 to 74.
  • the polarization rotators 52 and 54 have a shape that does not fall into the spacer windows 322 and 324, the polarization rotators 52 and 54 have the same outer shape as the openings of the lens holding steps 362 and 364. May be rectangular or elliptical according to the cross-sectional shape of the beams 72 and 74. Such a structure makes it possible to minimize the size of the polarization rotation elements 52 and 54, and realizes cost reduction.
  • the laser light source device 100 includes a plurality of lenses 41 to 44.
  • the plurality of lenses 41 to 44 are provided corresponding to the plurality of semiconductor laser elements 101 to 104, respectively, and convert the plurality of beams 71 to 74 into parallel light.
  • Laser light source device 100 according to the third embodiment includes spacer 320 instead of spacer 20 according to the first embodiment.
  • the spacer 320 is provided so as to cover above the plurality of semiconductor laser elements 101 to 104.
  • the spacer 320 includes spacer windows 321 to 324, lens holding steps 361 to 364, and polarization rotating element holding steps 325 to 328.
  • the spacer windows 321 to 324 include openings through which each of the plurality of beams 71 to 74 passes.
  • the lens holding steps 361 to 364 include a step formed by providing an opening smaller than the opening of the spacer windows 321 to 324 inside the opening of the spacer windows 321 to 324.
  • the lens holding steps 361 to 364 hold the lenses 41 to 44 at the steps.
  • the polarization rotation element holding steps 325 to 328 are steps provided above the lens holding steps 361 to 364, and include steps having openings larger than the openings of the spacer windows 321 to 324. Above corresponds to the direction in which the beams 71 to 74 travel.
  • the polarization rotation element holding steps 326 and 328 hold the polarization rotation elements 52 and 54 above the lenses 42 and 44 corresponding to the polarization rotation elements 52 and 54 among the plurality of lenses 41 to 44.
  • the collimated beams 72 and 74 are uniformly incident on all regions of the polarization rotation elements 52 and 54. Since the beams 72 and 74 are collimated before the polarization rotators 52 and 54 are incident, the polarization is uniformly rotated over the entire region.
  • the laser light source device according to the modification of the third embodiment is different from the laser light source device 100 according to the third embodiment in the configuration of the spacer and the polarization rotation element.
  • FIG. 22 is a diagram showing a configuration of the spacer 420 and the polarization rotating elements 152 and 154 of the laser light source device according to the modification of the third embodiment.
  • the outer shape of the polarization rotation elements 152 and 154 has a parallelogram.
  • the outer shape of the polarization rotating element holding steps 426, 428 of the spacer 420 has a parallelogram slightly similar to the outer shape of the polarization rotating elements 152, 154.
  • the polarization rotation elements 152 and 154 do not fit into the polarization rotation element holding steps 426 and 428. Therefore, the installation directions of the polarization rotation elements 152 and 154 are limited.
  • the polarization rotator holding step is not provided above the lenses 43 and 41 where the polarization rotator is not provided. For this reason, the locations where the polarization rotation elements 152 and 154 are installed are limited.
  • Embodiment 4 A laser light source device according to Embodiment 4 will be described. The description of the same configuration and operation as any of the first to third embodiments will be omitted.
  • FIG. 23 is a perspective view showing the configuration of laser light source device 200 and beams 171 to 174 emitted from laser light source device 200 according to the fourth embodiment.
  • FIG. 24 is an exploded perspective view showing the configuration of the laser light source device 200.
  • the same reference numerals as those in the drawings of the second and third embodiments indicate the same or corresponding parts.
  • the spacer 320 according to the fourth embodiment has the same configuration as that of the third embodiment.
  • the configuration and operation of polarization rotation elements 252 to 254 are the same as the configuration and operation shown in FIG. 15 of the second embodiment.
  • the polarization rotation elements 252 to 254 constitute a polarization conversion unit.
  • the polarization converter rotates the polarization directions of at least some of the beams 171 to 174 among the beams 171 to 174, and disturbs the polarization directions of the beams 171 to 174 so that they are not aligned in one direction.
  • the polarization rotation elements 252 to 254 are ⁇ wavelength plates.
  • the polarization rotation elements 252 to 254 are arranged so that the fast axis 50A forms an angle ⁇ with respect to the linearly polarized light in the y-axis direction emitted from the semiconductor laser elements 102 to 104, respectively.
  • the polarization rotation elements 252 to 254 rotate the linearly polarized light in the y-axis direction by an angle 2 ⁇ .
  • the angle ⁇ differs for each of the polarization rotation elements 252 to 254.
  • the polarization rotation element 252 is disposed on the polarization rotation element holding step 326 with its fast axis 50A inclined at ⁇ 22.5 ° with respect to the y axis.
  • the linearly polarized light 182 of the beam 172 transmitted through the polarization rotation element 252 is rotated by ⁇ 45 °, that is, rotated 45 ° clockwise with respect to the linearly polarized light 181 of the beam 171 not transmitted through the polarization rotation element.
  • the polarization rotation element 253 is arranged on the polarization rotation element holding step 327 with its fast axis 50A inclined at ⁇ 45 ° with respect to the y axis.
  • the linearly polarized light 183 of the beam 173 transmitted through the polarization rotation element 253 is rotated by 90 ° with respect to the linearly polarized light 181 of the beam 171, that is, rotated from the y axis to the x axis.
  • the polarization rotation element 254 is disposed on the polarization rotation element holding step 328 with its fast axis 50A inclined by 22.5 ° with respect to the y axis.
  • the linearly polarized light 184 of the beam 174 transmitted through the polarization rotation element 254 is rotated by 45 ° with respect to the linearly polarized light 181 of the beam 171, that is, rotated by 45 ° counterclockwise.
  • the laser light source device 200 emits beams 171 to 174 having linear polarizations 181 to 184 in four directions together with the beam 171 not passing through the polarization rotation element.
  • the polarization rotator 254 is a ⁇ wavelength plate disposed on the polarization rotator holding step 328 with the same ⁇ wavelength plate as the polarization rotator 252 reversed with respect to the y-axis.
  • the polarization rotator 253 for generating polarized light rotated by 90 ° and the polarization rotators 252 and 254 for generating two types of polarized light rotated by 45 ° depending on the use of the front and back surfaces are combined to provide two types of 1 / wavelengths.
  • the plate can generate linearly polarized light in four directions.
  • linear polarization in two directions can be generated by one type of half-wave plate.
  • a laser light source device including more semiconductor laser elements generates a linearly polarized laser beam in multiple directions, it is possible to generate a laser beam containing linearly polarized light in 2n directions by using n kinds of polarization rotating elements. The effect and the effect are the same as in the second embodiment.
  • the beams 171 to 174 emitted from the semiconductor laser elements 101 to 104 are converted by the lenses 41 to 44 into beams 171 to 174 parallel to the z-axis direction. Since the beams 272 to 274 are collimated before the polarization rotators 252 to 254 are incident, the polarization is uniformly rotated over the entire region as in the third embodiment.
  • the laser light source device according to the modification of the fourth embodiment differs from the laser light source device 200 according to the fourth embodiment in the configuration of the spacer and the polarization rotation element.
  • FIG. 25 is a diagram showing a configuration of a spacer 520 and polarization rotating elements 253, 352, 354 of a laser light source device according to a modification of the fourth embodiment.
  • the outer shape of the polarization rotation elements 352 and 354 has a parallelogram.
  • the outer shape of the polarization rotation element holding steps 526 and 528 of the spacer 520 has a parallelogram similar to the outer shape of the polarization rotation elements 352 and 354, respectively.
  • the configuration of the polarization rotation element 253 is similar to that of the third embodiment.
  • the method of manufacturing the polarization rotation elements 352 and 354 is the same as that of the modification of the second embodiment shown in FIG. 17 and the description is omitted.
  • the polarization rotation elements 352 and 354 are half-wave plates having the same characteristics. , Have the same parallelogram outline.
  • the polarization rotation element 354 is the reverse of the polarization rotation element 352. Therefore, the outer shape of the polarization rotation element 352 has a different parallelogram from the outer shape of the polarization rotation element 354.
  • the fast axis 50A of the polarization rotation element 352 is also inclined in a different direction from that of the polarization rotation element 354.
  • the polarization rotation element holding steps 526 and 528 are configured to correspond to the outer shapes of the polarization rotation elements 352 and 354, respectively, the polarization rotation element 352 is provided on the polarization rotation element holding step 526, and the polarization rotation element 354 is provided on the polarization rotation element 354. It is arranged at the polarization rotation element holding step 528.
  • the polarization rotation element 253 has a rectangular shape different from the polarization rotation elements 352 and 354.
  • the polarization rotation element 253 is disposed on the polarization rotation element holding step 327 having a similar shape to the polarization rotation element 253.
  • the fast axis 50A of the polarization rotation element 352 is inclined by ⁇ 22.5 ° from the y axis.
  • the beam 172 transmitted through the polarization rotation element 352 has linearly polarized light 182 rotated by ⁇ 45 °, that is, rotated clockwise by 45 °.
  • the fast axis 50A of the polarization rotation element 354 is inclined by 22.5 ° from the y axis.
  • the beam 174 transmitted through the polarization rotation element 354 has linearly polarized light 184 rotated by 45 °, that is, rotated 45 ° counterclockwise.
  • the fast axis 50A of the polarization rotation element 253 is inclined by ⁇ 45 ° from the y axis.
  • the beam 173 transmitted through the polarization rotation element 253 becomes a linearly polarized light 183 rotated by ⁇ 90 °, that is, rotated from the y axis to the x axis.
  • the shape of the polarization rotation element 352 does not coincide with the shape of the polarization rotation element 354 whose surface is inverted on the xy plane. Therefore, the two are distinguishable.
  • the polarization rotation element 352 does not fit in the polarization rotation element holding step 528.
  • the polarization rotation element 354 does not fit into the polarization rotation element holding step 526. Therefore, the installation positions of the polarization rotation elements 352 and 354 are limited to the respectively determined polarization rotation element holding steps 526 and 528.
  • the polarization rotation element 253 is disposed in the polarization rotation element holding step 327.
  • the polarization rotation element 253 rotates the polarized light by 90 degrees.
  • the fast axis 50A of the polarization rotation element 253 makes an angle of 45 ° with the sides forming the outer shape.
  • the outer shape of the polarization rotation element 253 has a square shape. Therefore, the operation of the polarization rotation element 253 does not change even if it is turned upside down.
  • the outer shape of the polarization rotation element 253 may be rectangular.
  • the external shape of the polarization rotation element 253 may be different from the external shape of the polarization rotation elements 352 and 354.
  • the front and back of the polarization rotation element 253 are also defined. Therefore, the polarization rotation element 253 can be distinguished from other polarization rotation elements.
  • the laser light source device configured as described above, the same effects as those of the other embodiments or modified examples can be obtained. Further, the laser light source device according to the modified example of the fourth embodiment enables a plurality of types of polarization rotating elements to be arranged at a predetermined position without mistake in the assembly process of the laser light source device.
  • the laser light source device in which two (2 ⁇ 2) semiconductor laser elements are arranged in the x-axis direction and two in the y-axis direction is used.
  • This is shown as an example.
  • the number of semiconductor laser elements included in the laser light source device is not limited thereto.
  • the laser light source device may include a plurality of semiconductor laser elements, the number of which is increased in the x-axis direction and the y-axis direction. With such a configuration, a high-output laser light source device can be realized.
  • the arrangement of the semiconductor laser elements may be a two-dimensional array such as 2 ⁇ 4, 4 ⁇ 4, or a one-dimensional array such as 1 ⁇ 4.
  • the laser light source device can further reduce the occurrence of interference and speckle.
  • the semiconductor laser elements 101 and 102 oscillate a red laser having a wavelength of 638 nm and the semiconductor laser elements 103 and 104 oscillate a red laser having a wavelength of 642 nm
  • the laser light source device is not limited to the above polarization direction. , It is possible to emit four types of beams having different characteristics with respect to wavelength.
  • the spacer step where the polarization rotation element is arranged is not limited to the spacer step described in each embodiment. In other words, the same effects as described above can be obtained even when the polarization rotator is disposed at any one of the spacer steps different from the spacer steps shown in the drawings.
  • 1 laser light source device 10 laser light source device, 101-104 semiconductor laser element, 20 spacer, 25-28 spacer step portion, 30 base portion, 30A top surface, 41-44 lens, 50A fast axis, 50B slow axis, 52 rotation of polarization Element, 54 polarization rotation element, 252-254 degree polarization rotation element, 71-74 degree beam, 81-84 degree linear polarization.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)
  • Projection Apparatus (AREA)

Abstract

干渉縞およびスペックルの発生を低減し、かつ、レーザ発振による温度上昇を低減することができるレーザ光源装置の提供を目的とする。レーザ光源装置は、ベースと、各々が個別にベースの上面に保持され、偏光方向が一方向に揃った複数のビームを出射する複数の半導体レーザ素子と、複数のビームのうち少なくとも一部のビームの偏光方向を回転させることにより、複数のビームの偏光方向が一方向に揃わないように乱す偏光変換部と、を含む。

Description

レーザ光源装置
 本発明は、レーザ光源装置に関する。
 半導体レーザ素子は、消費電力が小さく、ビームの単色性および高指向性に優れる。このような特長を有する半導体レーザ素子は、現在普及しているランプの置き換え光源として期待されている。例えば、近年、半導体レーザ素子は、プロジェクタ等の投射型表示装置の光源として注目されている。半導体レーザ素子が投射型表示装置に光源として搭載される場合、半導体レーザ素子は発光面積が小さいことから、その光学設計において、ビームの空間合成に必要な光学素子の小型化を可能とする。さらに、光学素子の小型化は、デジタルミラーデバイス(DMD(Digital Mirror Device))、液晶ディスプレイ(LCD(Liquid Crystal Display))などの表示デバイス自体の小型化を可能とし、その結果、システムコストが低下する。
 現状の半導体レーザ素子は、1つの素子で投射型表示装置に求められる出力を達成することは困難である。そのため、一般的には、投射型表示装置の光源は、複数の半導体レーザ素子によって構成される。
 半導体レーザ素子から出射されるビームは、位相が揃った波により構成されている。この特徴により、半導体レーザの単色性、高指向性が生み出される。一方で、複数の波が重なり合った場合、互いの波の干渉性により縞模様あるいはスペックルが発生する。スペックルとは、スクリーン上に照射されたビームによって現れるランダムな波の干渉性による粒子状のパターンのことである。このような干渉パターンは、投射型表示装置の光源としてレーザを使用する際に問題となる。
 干渉縞やスペックルの軽減手段として、複数の波長の半導体レーザ光を混合する手段または半導体レーザ光の偏光を乱す手段が有効である。
 例えば、特許文献1には、レーザ光源が有する1個もしくは複数個の発光点から出射されるレーザ光の偏光を、その光軸上に配置された偏光回転部によって、90°回転させるレーザ光源装置が提案されている。
特許第5473774号公報
 特許文献1のレーザ光源装置においては、1つの半導体レーザチップから複数のレーザビームが発振するアレイ型レーザ光源である。そのため、隣接するレーザから発生する熱により、利得が低減する。特に中央部のレーザは両隣から熱を受けるため、大きく利得が低減する。その結果、十分な出力が得られない。
 本発明は、上記の課題を解決するためになされたものであり、干渉縞およびスペックルの発生を低減し、かつ、レーザ発振による温度上昇を低減することができるレーザ光源装置の提供を目的とする。
 本発明に係るレーザ光源装置は、ベースと、各々が個別にベースの上面に保持され、偏光方向が一方向に揃った複数のビームを出射する複数の半導体レーザ素子と、複数のビームのうち少なくとも一部のビームの偏光方向を回転させることにより、複数のビームの偏光方向が一方向に揃わないように乱す偏光変換部と、を含む。
 本発明によれば、干渉縞およびスペックルの発生を低減し、かつ、レーザ発振による温度上昇を低減するレーザ光源装置の提供が可能である。
 本発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白になる。
実施の形態1におけるレーザ光源装置の構成およびレーザ光源装置から出射されるビームを示す斜視図である。 実施の形態1におけるレーザ光源装置の構成を示す分解斜視図である。 実施の形態1における偏光回転素子の構成を示す図である。 実施の形態1における半導体レーザ素子の詳細な構成を示す斜視図である。 実施の形態1におけるベースおよび半導体レーザ素子の構成を示す斜視図である。 図5に示されたA-A’における断面図である。 実施の形態1における偏光回転素子の動作を説明する図である。 実施の形態1における偏光回転素子の動作を説明する図である。 実施の形態1におけるスペーサおよびレンズの構成を示す斜視図である。 図9に示されたB-B’における断面図である。 実施の形態1の変形例におけるスペーサおよび偏光回転素子の構成を示す図である。 実施の形態1の変形例における偏光回転素子を含む偏光素子基板を示す図である。 実施の形態2におけるレーザ光源装置の構成およびレーザ光源装置から出射されるビームを示す斜視図である。 実施の形態2におけるレーザ光源装置の構成を示す分解斜視図である。 実施の形態2における各偏光回転素子の設置方向および各ビームの偏光方向を示す図である。 実施の形態2の変形例におけるスペーサおよび偏光回転素子の構成を示す図である。 実施の形態2の変形例における偏光回転素子を含む偏光素子基板を示す図である。 実施の形態3におけるレーザ光源装置の構成およびレーザ光源装置から出射されるビームを示す斜視図である。 実施の形態3におけるレーザ光源装置の構成を示す分解斜視図である。 実施の形態3におけるスペーサおよびレンズの構成を示す斜視図である。 図20に示されたC-C’における断面図である。 実施の形態3の変形例におけるスペーサおよび偏光回転素子の構成を示す図である。 実施の形態4におけるレーザ光源装置の構成およびレーザ光源装置から出射されるビームを示す斜視図である。 実施の形態4におけるレーザ光源装置の構成を示す分解斜視図である。 実施の形態4の変形例におけるスペーサおよび偏光回転素子の構成を示す図である。
 <実施の形態1>
 実施の形態1におけるレーザ光源装置を説明する。図1は、実施の形態1におけるレーザ光源装置1の構成およびレーザ光源装置1から出射されるビーム71から74を示す斜視図である。図2は、レーザ光源装置1の構成を示す分解斜視図である。
 レーザ光源装置1は、ベース30、半導体レーザ素子101から104、レンズ41から44、スペーサ20、偏光回転素子52、54により構成されている。
 ベース30は、上面30Aにて半導体レーザ素子101から104を支持する。実施の形態1において、ベース30は、上面30Aに平面を有し、その平面に半導体レーザ素子101から104が固定されている。ベース30は、例えば、平板である。
 ベース30には、長穴31から34が設けられている。長穴31から34は、ここでは、貫通穴である。長穴31から34は、半導体レーザ素子101から104の各々が有する2本のリードピン14が差し込まれる穴である。各半導体レーザ素子には、リードピン14を介して電流が供給される。なお、各図に記載されたx、y、z軸は直交座標系を構成している。x軸とy軸とはベース30の上面30Aと平行であり、z軸はベース30の上方を指している。
 半導体レーザ素子101から104は、各々1つのレーザビームを発振する半導体レーザチップが搭載された素子である。半導体レーザ素子101から104の各々は、ベース30の上面30Aに保持される。ここでは、各半導体レーザ素子は、ベース30の上面30Aに形成された平面に固定されている。なお、半導体レーザチップは、効率を改善するため、発振部を2~3分割して構成する場合もある。
 半導体レーザ素子101から104は、各々の偏光方向が一方向に揃ったビーム71から74を出射する。実施の形態1において、半導体レーザ素子101から104から出射されるビーム71から74の偏光は、y軸方向に平行である(図示せず)。また、半導体レーザ素子101から104は、x軸方向に幅の広い断面形状を有するビーム71から74を、z軸方向と平行に出射する。
 スペーサ20は、半導体レーザ素子101から104の上方を覆って設けられる。スペーサ20は、後述するレンズ41から44を保持し、各レンズと各半導体レーザ素子との間隔を一定に保つ機能を有する。
 スペーサ20は、上面に、スペーサ窓部21から24を有する。実施の形態1において、スペーサ窓部21から24の外形は、正方形を有する。また、スペーサ20は、スペーサ窓部21から24のそれぞれの外周に設けられたスペーサ段差部25から28を有する。各スペーサ段差部には、偏光回転素子が設置可能である。半導体レーザ素子101から104から出射されるビーム71から74は、それぞれスペーサ窓部21から24を通過する。
 スペーサ20は、ベース30の上面30Aに、ねじによって締結固定されてもよいし、接着剤によって固定されてもよい。あるいは、スペーサ20は、その両方によって固定されていてもよい。スペーサ20は、例えば、成形性を考慮して亜鉛やアルミ等のダイキャストで製造される。ただし、スペーサ20に熱的な効果は求められないため、スペーサ20は、樹脂材料で製造されてもよい。
 偏光回転素子52、54は、偏光変換部を構成する。偏光変換部は、ビーム71から74のうち少なくとも一部のビームの偏光方向を回転させ、ビーム71から74の偏光方向が一方向に揃わないように乱す。実施の形態1において、偏光回転素子52、54は、ビーム71から74のうち一部のビーム72、74の偏光方向を回転させる。すなわち、偏光回転素子52、54は、ビーム72、74を出射する半導体レーザ素子102、104に対応して選択的に配置される。
 図3は、偏光回転素子52、54の構成を示す図である。偏光回転素子52、54は、屈折率が低い方位に速軸(F軸)50Aを、屈折率が高い方位に遅軸(S軸)50Bを有する。偏光回転素子52、54は、速軸(F軸)50Aと遅軸(S軸)50Bとが直交したFS面に対し平行な平面を有する板状の素子である。ここでは、偏光回転素子52、54は、ビーム72、74の速軸方向の成分に対して遅軸方向の成分を1/2波長分遅延させる1/2波長板である。
 偏光回転素子52、54は、実施の形態1において、半導体レーザ素子102、104から出射されるビーム72、74の偏光方向に対し、速軸50Aおよび遅軸50Bが45°の角度をなすように配置される。半導体レーザ素子102、104から出射されるビーム72、74の偏光は、y軸に平行な直線偏光である。よって、速軸50Aおよび遅軸50Bは、y軸に対し45°の角度をなす。
 偏光回転素子52、54の外形は、図2に示されるように、スペーサ段差部26、28の外形と相似関係にある正方形を有する。その正方形は、x軸またはy軸に平行な辺からなる。偏光回転素子52、54の速軸50Aおよび遅軸50Bは、その正方形の対角方向に一致する。偏光回転素子52、54は、それぞれスペーサ段差部26、28に保持される。このように、偏光回転素子52はスペーサ段差部26に、偏光回転素子54はスペーサ段差部28に収納されることにより、偏光回転素子52、54は半導体レーザ素子101から104のうち、一部の半導体レーザ素子102、104に対応して選択的に配置される。
 なお、実施の形態1において、偏光回転素子52、54は、スペーサ20の上面側に配置されているが、偏光回転素子52、54は、スペーサ20の底面側に配置されてもよい。その場合、偏光回転素子は、例えば、スペーサ20の裏面に設けられたスペーサ段差部に、接着剤もしくは保持部材によって固定される。
 また、偏光回転素子の形状は、矩形、円形、楕円形などであってもよく、半導体レーザ素子102、104のビーム72、74を覆う形状であればよい。
 レンズ41から44は、ビーム71から74を集光する。レンズ41から44を透過したビーム71から74は、それぞれz軸に対して平行な方向に進行する。レンズ41から44は、スペーサ20に保持されている。また、レンズ41から44は、それぞれスペーサ窓部21から24を覆うように配置される。
 次に実施の形態1における半導体レーザ素子101の詳細な構成について説明する。
 図4は半導体レーザ素子101の詳細な構成を示す斜視図である。半導体レーザ素子101は、TO-Canタイプのパッケージに半導体レーザチップが内包された構成を有する。TO-Canタイプの半導体レーザ素子101は、主にキャップ11、ガラス窓12、ステム13、リードピン14、および半導体レーザチップ(図示せず)によって構成されている。
 キャップ11は、ステム13の上部に設けられている。ガラス窓12は、キャップ11の上面に設けられている。リードピン14は、ステム13の下部に設けられている。半導体レーザチップは、キャップ11の内部に配置されている。
 半導体レーザチップは、主光軸をステム13に対して垂直な方向に有する。すなわち半導体レーザチップは、z軸方向にビーム71を出射する。一般的に、空気中の水分または粉塵が半導体レーザチップの端面に付着した場合、半導体レーザチップは容易に破壊に至る。しかし、TO-Canタイプのパッケージは、キャップ11によって半導体レーザチップを封止している。そのため、キャップ11の内部の気密性が保たれ、半導体レーザチップの駆動環境に求められる条件が緩和される。また、TO-Canタイプのパッケージ素子は小型である。そのため、使用個数の調整、すなわち要求仕様に応じた光出力のスケーリングが容易である。
 投射型表示装置の光源には、高出力の端面発光型のレーザチップが使用される。半導体レーザチップの主材料は、GaAsまたはGaN等の化合物半導体である。半導体レーザチップの活性層は、エピタキシャル成長により形成される。実施の形態1において、エピタキシャル成長の方向はx軸方向に、活性層の水平方向はy軸方向にそれぞれ対応する。レーザは、エピタキシャル成長の方向(x軸方向)と直交する方向(z軸方向)に位置するチップ端面から出射する。ビーム71は、そのチップ端面において、活性層の鉛直方向(x軸方向)に約1μm、活性層の水平方向(y軸方向)に数十から数百μmの発光輝点から出射される。活性層の鉛直方向(x軸方向)の出射口が非常に小さいため、ビーム71は、回折効果によってx軸方向に拡がる。そのx軸方向のビーム71の拡がりは、全角で約60°である。活性層の鉛直方向(x軸方向)のビームの拡がりは、活性層の水平方向(y軸方向)のビーム71の拡がりに対して約10倍大きい。したがって、ビーム71の断面すなわち遠視野像は、図4に示されるように、楕円形状を有する。
 また、一般的にTO-Canパッケージの半導体レーザ素子において、2本のリードピン14の配列方向は、半導体レーザチップの活性層の水平方向(y軸方向)と同方向である。そのため、ビーム71は、リードピン14の配列方向に拡がりが小さく、それと直交するx軸方向の拡がりが大きい。
 上記の構成を有する半導体レーザ素子101から出射されるビーム71の偏光は、活性層に水平な方向(y軸方向)と平行である。すなわち、半導体レーザ素子101は、活性層の水平方向(y軸方向)に電場が振動する直線偏光を出射する。ただし、活性層を構成する原子配列によっては、ビームは、活性層の鉛直方向(x軸方向)に偏光する場合もある。
 図5は、ベース30および半導体レーザ素子101から104の構成を示す斜視図である。図6は、図5に示されたA-A’における断面図である。
 半導体レーザ素子101から104の各々は、電流が供給されることによって駆動し、その駆動により熱が発生する。ステム13の熱容量だけでは、十分な放熱が行われないため、半導体レーザチップが高温となり、急激な光出力低下が起こり得る。また、そのような熱負荷の増大は、半導体レーザチップの短寿命化、もしくは半導体レーザ素子を構成する部品の熱的破壊を引き起こす。そのため、ステム13からベース30への放熱が必要である。実施の形態1において、ベース30は、熱伝導性の高い部材で構成される。ベース30は、例えば、Cu、Alなどの金属材料を含む。または、例えば、ベース30は、SiC、AlN等の高い熱伝導率を有するセラミックを含む。または、ステム13における熱容量および放熱面積を向上させるようなフィンや、水や冷媒が封入されたヒートパイプに接続された、冷却部材がステム13に付加されてもよい。
 半導体レーザ素子101から104は、熱伝導性の高いグリスもしくはシート状の放熱材を介して、ベース30の上面30Aに形成された平面に密着して固定されている。さらに放熱性を高めるために、各半導体レーザ素子は、はんだ材によって、ベース30にはんだ接合されることが好ましい。はんだ材は、例えば、SnAgCu、AuSn等を主成分に含む。
 次に実施の形態1におけるベース30の詳細について説明する。
 上述したように、ベース30は平板であるが、それに限定されるものではなく、ステム13と接触する面が平面であればよい。例えば、ベース30には、ステム13の形状に合わせたざぐりが設けられていてもよい。
 ベース30が導電性材料である場合、半導体レーザ素子101から104のリードピン14とベース30との間で確実な絶縁を確保する必要がある。長穴31から34は、リードピン14とベース30とが接触しないような穴形状を有し、また、リードピン14とベース30とが接触しないように配置されている。ベース30は、長穴31から34に代えて、リードピン14とベース30との接触を回避可能な丸穴を有していてもよい。または、ベース30は、長穴31から34に代えて、リードピン14とベース30との接触を回避し、かつ、半導体レーザ素子101から104に電流を供給する配線経路を確保できる溝構造を有していてもよい。
 次に実施の形態1における偏光回転素子52、54の詳細を説明する。
 偏光回転素子52、54は、例えば、複屈折性を有する無機材料または樹脂材料によって構成される。複屈折性を有する無機材料とは、例えば、水晶である。また、複屈折性を有する樹脂材料とは、例えば、ポリカーボネートなどを母材として含む樹脂であって、一方向に延伸されたものである。
 図7および図8は、偏光回転素子52、54の動作を説明する図である。空気よりも屈折率が高い媒質中を伝搬する光の速度は、空気中を伝搬する光の速度よりも遅い。すなわち、屈折率の高い媒質ほど、その媒質を伝搬する光の速度は遅い。偏光回転素子において、遅軸方向に電場が振動する光の伝搬速度は、速軸方向に電場が振動する光の伝搬速度よりも遅い。
 上述したように、実施の形態1において、偏光回転素子52、54は、1/2波長板である。図7に示されるように、速軸(F軸)および遅軸(S軸)に対して45°の角度をなす直線偏光80Aを有するビームが1/2波長板に入射した場合、速軸(F軸)方向の光線の伝搬に対して、遅軸(S軸)方向の光線の伝搬が遅れる。1/2波長板においては、速軸方向に対する遅軸方向の伝搬遅延が、1/2波長分に設計されている。そのため、図8に示されるように、偏光回転素子を透過した後のビームの偏光は、透過前の直線偏光80Aに対して90°回転した直線偏光80Bに変換される。
 次に実施の形態1におけるスペーサ20およびレンズ41から44の詳細な構成について説明する。
 図9は、スペーサ20およびレンズ41から44の構成を示す斜視図である。図10は、図9に示されたB-B’における断面図である。
 レーザ光源装置1から出射されたビーム71から74は、投射型表示装置(図示せず)の光学系の開口に集光される。レーザ光源装置1から投射型表示装置の光学系開口までの間隔は限定されないため、レーザ光源装置1から出射されるビーム71から74は平行光であることが好ましい。
 前述したように各半導体レーザ素子からは、拡がったビームが出射される。それらビームを平行光に変換するためには、凸レンズにより集光する必要がある。図10に示されるとおり、レンズ41から44は、入射面(-z方向の面)に平面を、出射面(+z方向の面)に軸対称の球面あるいは非球面の凸面を有する。すなわち、レンズ41から44は、凸レンズである。半導体レーザ素子101から104のレーザ発光端面が、レンズ41から44の焦点位置近傍に配置されることにより、レンズ41から44を透過したビーム71から74は平行光に変換される。
 なお、レンズ41から44は、必ずしもその入射面が平面である必要はない。各レンズは、凸レンズとしての機能を有する限り、凹面もしくは凸面を入射面または出射面に有していてもよい。ただし、スペーサ20の上面と接する可能性のある面は、平面であることが好ましい。
 また、各レンズの出射面および入射面は、軸対称の曲面である必要はない。例えば、各レンズは、出射面あるいは入射面に、半導体レーザ素子から出射されるビームの拡がり角が大きい活性層の鉛直方向(x軸方向)のみ平行光に変換するシリンドリカルレンズであってもよい。
 レンズ41、44の中心軸141、144は、それぞれ半導体レーザ素子101、104の光線の中心軸と一致するように配置される。レンズ41、44は、接着剤によって、スペーサ20の上面に固定されることが好ましい。なお、レンズ41、44がスペーサ20の上面に固定可能であれば、レンズ41、44は、上部から各レンズを抑える部材によって固定されてもよい。また、図10には示されていないが、レンズ42、43も、レンズ41、44と同様に、スペーサ20上面に固定される。
 スペーサ段差部28の外形は、偏光回転素子54の外形と相似関係にある。スペーサ段差部28の外形は、偏光回転素子54の外形より大きい。また、スペーサ段差部28の高さは、偏光回転素子54の厚みより大きい。そのため、偏光回転素子54は、スペーサ20の上面から上方にはみ出ることなく、スペーサ段差部28とレンズ44の底面とによって構成される空間に収納されるように配置される。なお、スペーサ段差部25から27の外形形状も、スペーサ段差部28の外形形状と同様である。
 なお、偏光回転素子が配置されていないスペーサ段差部25、27には、偏光を回転する機能を有しない透明基板が設けられてもよい。透明基板とは、例えば、ガラス板、透明樹脂板である。
 透明基板が配置されていない場合、半導体レーザ素子101、103の出射端面からレンズ41、43までの距離は、半導体レーザ素子102、104の出射端面からレンズ42、44までの、偏光回転素子52、54が挿入された見かけの距離より長い。透明基板が挿入されることにより、半導体レーザ素子101、103から、レンズ41、43までの見かけの距離が短くなる。そのため、半導体レーザ素子101から104のレーザ出射端面からレンズ41から44までの距離が、等距離に補正される。半導体レーザ素子101から104のレーザ出射端面からレンズ41から44が等距離に補正された結果、レーザ光源装置1から出射される4つのビーム71から74は、ほぼ同じ平行度でz軸方向に進行する。
 次に、レーザ光源装置1の動作を説明する。半導体レーザ素子101から104の駆動により発生する熱は、ベース30へ放熱される。各半導体レーザ素子は、分離しているため、各半導体レーザ素子で発生した熱は、その隣の半導体レーザ素子に伝達しにくい。このように、レーザ光源装置1は、半導体レーザ素子の温度上昇を抑える。
 また、図1に示されるように、半導体レーザ素子102、104から出射されたy軸方向の直線偏光は、偏光回転素子52、54によって、x軸方向に振動する直線偏光82、84に変換される。一方で、半導体レーザ素子101、103から出射されたビーム71、73は、y軸方向の直線偏光81、83を維持する。その結果、レーザ光源装置1からは、x軸方向の直線偏光82、84のビーム72、74と、y軸方向の直線偏光81、83のビーム71、73とが出射される。ビーム71から74は、同じ断面形状(ビームプロファイル)を有しながらも、偏光方向が一方向に揃っていない。
 このように、レーザ光源装置1は、偏光回転素子52、54により、複数のビーム71から74のうち一部のビーム72、74の偏光方向を回転させることにより、偏光方向が異なる2種類のビーム71から74を出射する。このようなビーム71から74は、干渉縞やスペックルの発生を低減する。
 以上をまとめると、実施の形態1におけるレーザ光源装置1は、ベース30と、各々が個別にベース30の上面30Aに保持され、偏光方向が一方向に揃った複数のビーム71から74を出射する複数の半導体レーザ素子101から104と、複数のビーム71から74のうち少なくとも一部のビーム72、74の偏光方向を回転させることにより、複数のビーム71から74の偏光方向が一方向に揃わないように乱す偏光変換部と、を含む。
 このようなレーザ光源装置1は、個別に設けられた複数の半導体レーザ素子101から104により構成されるため、レーザ発振による温度上昇を低減する。また、レーザ光源装置1は、偏光方向が異なる複数のビーム71から74を出射するため、それら複数のビーム71から74を合成した時に生じる干渉縞およびスペックルの発生を低減する。
 また、実施の形態1におけるレーザ光源装置1の偏光変換部は、複数のビーム71から74のうち一部のビーム72、74の偏光方向を90°回転させる偏光回転素子52、54を含む。偏光回転素子52、54は、複数の半導体レーザ素子101から104のうち一部のビーム72、74を出射する半導体レーザ素子102、104に対応して選択的に配置される。
 以上の構成により、レーザ光源装置1は、偏光方向が異なる2種類のビーム71から74を出射するため、それら2種類のビーム71から74を合成した時に生じる干渉縞およびスペックルの発生を低減する。
 また、実施の形態1におけるレーザ光源装置1は、複数の半導体レーザ素子101から104の上方を覆って設けられるスペーサ20を、さらに含む。スペーサ20は、複数のビーム71から74の各々が通過するスペーサ窓部21から24とスペーサ窓部21から24の外周に設けられたスペーサ段差部25から28とを含む。偏光回転素子52、54は、スペーサ段差部26、28に保持される。
 以上の構成により、レーザ光源装置1は、偏光回転素子52、54を容易にかつ選択的に配置することを可能にする。
 また、実施の形態1におけるレーザ光源装置1は、複数の半導体レーザ素子101から104のそれぞれに対応して設けられ、複数のビーム71から74のそれぞれを平行光に変換する複数のレンズ41から44を、さらに含む。スペーサ20は、ベース30に固定され、かつ、複数のレンズ41から44を保持する。
 以上の構成により、レーザ光源装置1は、高出力かつ平行度の高いビーム71から74を出射することを可能にする。
 (実施の形態1の変形例)
 実施の形態1の変形例におけるレーザ光源装置は、スペーサおよび偏光回転素子の構成が、実施の形態1におけるレーザ光源装置1のそれらとは異なる。
 図11は、実施の形態1の変形例におけるレーザ光源装置のスペーサ120および偏光回転素子152、154の構成を示す図である。偏光回転素子152、154の外形は、平行四辺形を有する。スペーサ120のスペーサ段差部126、128の外形は、偏光回転素子152、154の外形より少し大きい相似形状である平行四辺形を有する。
 通常、偏光回転素子は、それよりも大きな板材である偏光素子基板から矩形状に切り出される。その矩形を形成する角度が90°であるため、偏光素子基板から無駄なく偏光回転素子が切り出される。一方で、本変形例における偏光回転素子152、154は、一方向に対し角度αをなして切り出される。図12は、偏光回転素子152、154を含む偏光素子基板を示す図である。偏光回転素子152、154は、x軸方向に対し、わずかな角度αをなして切り出される。そのため、偏光回転素子152、154の外形は、平行四辺形を有する。
 また、上述した通り、スペーサ120のスペーサ段差部126、128の外形は、偏光回転素子152、154の外形より少し大きい相似形状である平行四辺形を有する。これにより、偏光回転素子152、154が90°回転した場合、またはその表裏が逆転した場合、偏光回転素子152、154は、スペーサ段差部126、128に嵌合しない。そのため、偏光回転素子152、154の設置方向が限定される。
 さらに、偏光回転素子が設置されないスペーサ窓部21、23には、スペーサ段差部が設けられていない。このような構成により、偏光回転素子の設置箇所が限定される。
 このような構成を有するレーザ光源装置であっても、実施の形態1と同様の効果が得られる。さらに、偏光回転素子の設置方向および設置位置が限定されるため、レーザ光源装置の組立工程における作業性が向上する。
 <実施の形態2>
 実施の形態2におけるレーザ光源装置を説明する。なお、実施の形態1と同様の構成および動作については説明を省略する。
 図13は、実施の形態2におけるレーザ光源装置10の構成およびレーザ光源装置10から出射されるビーム171から174を示す斜視図である。図14は、レーザ光源装置10の構成を示す分解斜視図である。なお、実施の形態2における各図において、実施の形態1に示された図面と同一符号は、同一または相当する部分を示す。
 偏光回転素子252から254は、偏光変換部を構成する。偏光変換部は、ビーム171から174のうち少なくとも一部のビーム172から174の偏光方向を回転させ、ビーム171から174の偏光方向が一方向に揃わないように乱す。実施の形態2において、偏光回転素子252から254は、1/2波長板である。偏光回転素子252から254は、速軸50Aが半導体レーザ素子102から104からそれぞれ出射されるy軸方向の直線偏光に対して、角度θをなすように配置される。角度θは、偏光回転素子252から254ごとに異なる。
 図15は、各偏光回転素子の設置方向および各ビームの偏光方向を示す図である。偏光回転素子252から254は、y軸方向の直線偏光を角度2θだけ回転させる。
 偏光回転素子252は、その速軸50Aがy軸に対して右回りに22.5°(θ=-22.5°)傾いた状態でスペーサ段差部26に配置される。偏光回転素子252は、y軸方向の直線偏光を2θ=-45°回転させる。すなわち、偏光回転素子252を透過したビーム172は、入射光の偏光に対して右回りに45°傾いた直線偏光182を有する。
 偏光回転素子253は、その速軸50Aがy軸に対して右回りに45°(θ=-45°)傾いた状態でスペーサ段差部27に配置される。偏光回転素子253は、y軸方向の直線偏光を2θ=-90°回転させる。すなわち、偏光回転素子253を透過したビーム173は、入射光の偏光に対して右回りに90°傾いた直線偏光183を有する。
 偏光回転素子254は、その速軸50Aがy軸に対して左回りに22.5°(θ=22.5°)傾いた状態でスペーサ段差部28に配置される。偏光回転素子254は、y軸方向の直線偏光を2θ=45°回転させる。すなわち、偏光回転素子254を透過したビーム174は、入射光の偏光に対して左回りに45°傾いた直線偏光184を有する。偏光回転素子252を透過した偏光と偏光回転素子254を透過した偏光とは、どちらも入射光線の偏光に対して45°傾いた偏光を有するが、互いの偏光方向は直交している。
 スペーサ窓部21には、偏光回転素子は配置されない。実施の形態1と同様に、偏光を回転させないガラス板等が配置されてもよい。スペーサ窓部21を通過したビーム171は、偏光方向がy軸に一致した直線偏光181を有する。
 このように、偏光回転素子252から254を透過したビーム172から174は、角度2θで回転した直線偏光を有する。そして、レーザ光源装置10は、スペーサ窓部21を透過するビーム171と合わせて、4方向の直線偏光181から184を有するビーム171から174を出射する。
 4方向の直線偏光を生成するためには、θ=-22.5°で配置される偏光回転素子252、θ=-45°で配置される偏光回転素子253、θ=22.5°で配置される偏光回転素子254からなる3種類の1/2波長板が必要である。しかし、実施の形態2における1/2波長板は、表裏の区別なく作用する。偏光回転素子254は、偏光回転素子252と同じ1/2波長板の表裏がy軸に対して反転した状態で、スペーサ段差部28に配置された1/2波長板である。
 このように、90°回転した偏光を生成する偏光回転素子253と、表裏の使い分けにより2種類の45°回転した偏光を生成する偏光回転素子252と254をあわせて、2種類の1/2波長板により、4方向の直線偏光が生成可能である。
 実施の形態2では、偏光回転素子252および偏光回転素子254に、表裏の区別なく作用する1/2波長板が適用された場合、1種類の1/2波長板により、2方向の直線偏光の生成が可能であることが示された。さらに、より多くの半導体レーザ素子を含むレーザ光源装置によって多方向の直線偏光のレーザを生成する場合、n種類の偏光回転素子により、2n方向の直線偏光を含むレーザの生成が可能である。
 また、上記の角度θに限らず、θ=45°や22.5°以外の任意の角度で偏光回転素子が配置されてもよい。それにより、レーザ光源装置10は、90°や45°以外の任意の角度2θの偏光方向が異なるビームを出射する。
 以上をまとめると、実施の形態2におけるレーザ光源装置10の偏光変換部は、複数のビーム171から174のうち少なくとも一部のビーム172から174の偏光方向を回転させる少なくとも1つの偏光回転素子252から254を含む。偏光回転素子252から254は、少なくとも一部のビーム172から174の偏光方向である一方向に対して、速軸50Aがθの角度をなすように配置され、偏光方向を2θの角度に回転させるn種類の1/2波長板を含む。n種類の1/2波長板を透過することにより偏光方向が回転した複数のビーム171から174は、2n種類の直線偏光を有する。
 このような構成により、レーザ光源装置10は、偏光回転素子252から254によって、90°に限らず任意の方向に偏光を回転させる。レーザ光源装置10から出射されるビーム171から174は、多方向の直線偏光により構成されるため、自然光のようなより無偏光に近いビームの生成を可能とする。そのようなレーザ光源装置10は、干渉縞およびスペックルの発生を低減し、かつ、レーザ発振による温度上昇を低減する。このような光源は、投射型表示装置の光源に適している。
 (実施の形態2の変形例)
 実施の形態2の変形例におけるレーザ光源装置は、スペーサおよび偏光回転素子の構成が、実施の形態1または2におけるレーザ光源装置のそれらとは異なる。
 図16は、実施の形態2の変形例におけるレーザ光源装置のスペーサ220および偏光回転素子253、352、354の構成を示す図である。
 偏光回転素子352、354の外形は、平行四辺形を有する。スペーサ220のスペーサ段差部226、228の外形は、偏光回転素子352、354の外形より少し大きい相似形状である平行四辺形を有する。偏光回転素子253の構成は、実施の形態2と同様である。
 図17は、偏光回転素子352、354を含む偏光素子基板を示す図である。偏光回転素子352、354は、一方向(x軸方向)に対し、角度αをなして切り出される。そのため、偏光回転素子352、354の外形は、平行四辺形を有する。
 この際、偏光回転素子352、354は、入射光の偏光を90°以外の任意の方向に回転するよう、速軸と角度αとの関係を考慮して切り出される。偏光素子基板から切り出された偏光回転素子352、354は、同じ特性を有する1/2波長板であり、同じ外形を有する。
 偏光回転素子352は、スペーサ段差部226に配置される。スペーサ段差部226の外形は、偏光回転素子352の外形より大きい相似形状である平行四辺形を有する。偏光回転素子352は、右回りに偏光を回転させる。
 偏光回転素子354は、偏光回転素子352との関係において、表裏反転して、スペーサ段差部228に配置される。スペーサ段差部228の外形は、偏光回転素子354の外形より大きい相似形状である平行四辺形を有する。偏光回転素子354は、左回りに偏光を回転させる。
 偏光回転素子352の形状と、それが表裏反転した偏光回転素子354の形状とは、xy平面において、一致しない。そのため、両者は区別可能である。偏光回転素子352は、スペーサ段差部228には、嵌合しない。また、偏光回転素子354は、スペーサ段差部226には、嵌合しない。よって、偏光回転素子352、354の設置位置は、それぞれ定められたスペーサ段差部226、228に限定される。
 偏光回転素子253は、スペーサ段差部27に配置される。偏光回転素子253は、偏光を90°回転させる。偏光回転素子253の速軸50Aは、その外形を構成する辺と45°の角度をなす。また、偏光回転素子253の外形は、正方形を有する。そのため、偏光回転素子253は、表裏反転してもその動作は変わらない。
 偏光回転素子253の外形は、ビーム173の断面を覆う形状であればx軸方向に長方形であってもよい。同様に偏光回転素子352、354も、ビーム172、173の断面を覆う、x軸方向に長い平行四辺形であってもよい。偏光回転素子253の外形は、偏光回転素子352、354の外形と異なる形状であればよい。また、偏光回転素子253が、偏光回転素子352、354と異なる角度で切り出された場合、偏光回転素子253の表裏も規定される。そのため、偏光回転素子253と、その他の偏光回転素子との区別が可能となる。
 このように構成されたレーザ光源装置であっても、他の実施の形態または変形例と同様の効果が得られる。さらに、実施の形態2の変形例におけるレーザ光源装置は、そのレーザ光源装置の組立工程において、複数種類の偏光回転素子を、所定の位置に間違えることなく配置することを可能とする。
 <実施の形態3>
 実施の形態3におけるレーザ光源装置を説明する。なお、実施の形態1または2と同様の構成および動作については説明を省略する。
 図18は、実施の形態3におけるレーザ光源装置100の構成およびレーザ光源装置100から出射されるビーム71から74を示す斜視図である。図19は、レーザ光源装置100の構成を示す分解斜視図である。図20は、スペーサ320、レンズ41から44および偏光回転素子52、54の構成を示す斜視図である。図21は、図20に示されたC-C’における断面図である。実施の形態3における各図において、実施の形態1に示された図面と同一符号は、同一または相当する部分を示す。
 レーザ光源装置100は、ベース30と、半導体レーザ素子101から104と、スペーサ320と、レンズ41から44と、偏光回転素子52、54とが、下方から順に配置された構成を有する。レーザ光源装置100においては、レンズ41から44および偏光回転素子52、54を固定するスペーサ320の構造が実施の形態1のスペーサ20の構造とは異なる。
 スペーサ320は、スペーサ窓部321から324と、レンズ保持段差部361から364と、偏光回転素子保持段差部325から328とを含む。
 スペーサ窓部321から324は、複数のビーム71から74の各々が通過する開口を含む。ここでは、その開口の外形は、レンズ41から44と同様の円形である。また、その開口の直径は、レンズ41から44の直径よりも少し大きい。
 レンズ保持段差部361から364は、スペーサ窓部321から324の開口の内側に、その開口よりも小さな開口が設けられることによって形成される段差を含む。言い換えると、レンズ保持段差部361から364は、スペーサ窓部321から324の内周に設けられた段差である。ここでは、レンズ保持段差部361から364を構成するその小さな開口の外形は、レンズ41から44と同様の円形である。また、その小さな開口の直径は、レンズ41から44の直径よりも小さい。スペーサ窓部321から324とレンズ保持段差部361から364とが、このような構成を有することにより、スペーサ窓部321から324に挿入されたレンズ41から44は、レンズ保持段差部361から364に固定される。
 偏光回転素子保持段差部325から328は、レンズ保持段差部361から364の上方に設けられる段差であって、スペーサ窓部321から324の開口よりも大きい開口からなる段差を含む。言い換えると、偏光回転素子保持段差部325から328は、スペーサ窓部321から324の外周に設けられた段差である。ここでは、偏光回転素子保持段差部325から328の外形は、偏光回転素子52、54の外形より少し大きい相似形状である。また、その偏光回転素子52、54の外形は、スペーサ窓部322、324の開口の直径よりも大きい。そのため、偏光回転素子52、54は、スペーサ窓部322、324の開口に落下することなく偏光回転素子保持段差部326、328に保持されるとともに、偏光回転素子52、54の配置が規制される。
 レンズ保持段差部361から364に対する偏光回転素子保持段差部325から328の高さ方向の位置は、レンズ保持段差部361から364に固定されたレンズ41から44の頂部よりも高い位置にある。言い換えると、偏光回転素子52、54は、偏光回転素子保持段差部326、328によって、レンズ42、44の上部に保持される。このような構成により、レンズ保持段差部361から364に固定されるレンズ41から44と、偏光回転素子保持段差部326、328に保持される偏光回転素子52、54とを、互いに干渉しないように配置できる。
 スペーサ320の上面に対する偏光回転素子保持段差部325から328の高さ方向の位置は、偏光回転素子52、54の位置が規制できれば、偏光回転素子52、54の厚みとの関係に制限はない。ただし、偏光回転素子保持段差部325から328が、スペーサ320の上面から偏光回転素子52、54の厚みよりも低い位置にあることが好ましい。この場合、偏光回転素子保持段差部326から328に保持された偏光回転素子52、54が、スペーサ320の上面よりも上方に突出しないため、偏光回転素子52、54の破損を抑制できる。
 偏光回転素子52、54は、実施の形態1と同様に、偏光変換部を構成する。偏光変換部は、ビーム71から74のうち少なくとも一部のビームの偏光方向を回転させ、ビーム71から74の偏光方向が一方向に揃わないように乱す。実施の形態3における偏光回転素子52、54は、ビーム71から74のうち一部のビーム72、74の偏光方向を90°回転させる。言い換えると、偏光回転素子52、54は、ビーム72、74を出射する半導体レーザ素子102、104に対応して選択的に配置される。
 半導体レーザ素子101から104を出射したビーム71から74は、レンズ41から44によりz軸方向に平行なビーム71から74に変換される。そして、平行化されたビーム72、74が、偏光回転素子52、54の全領域に均一に入射する。偏光の回転は、偏光回転素子52、54を透過する際の光路長により決定される。光路長が適正でない場合、偏光の回転が不十分な成分が発生する。例えば、偏光回転素子の面に対して斜めに傾いた光線が、偏光回転素子に入射した場合、偏光回転素子を透過するレーザ光の光路長が長くなるため、偏光の回転が不十分な成分が発生する。実施の形態3によれば、偏光回転素子52、54の入射前にビーム72、74が平行化されているので、全領域均一に偏光が回転する。
 半導体レーザ素子102、104から出射されたy軸方向の直線偏光は、偏光回転素子52、54によって、x軸方向に振動する直線偏光82、84に変換される。一方で、半導体レーザ素子101、103から出射されたビーム71、73は、y軸方向の直線偏光81、83を維持する。その結果、レーザ光源装置100からは、x軸方向の直線偏光82、84のビーム72、74と、y軸方向の直線偏光81、83のビーム71、73とが出射される。ビーム71から74は、同じ断面形状(ビームプロファイル)を有しながらも、偏光方向が一方向に揃っていない。
 このように、レーザ光源装置100は、偏光回転素子52、54により、複数のビーム71から74のうち一部のビーム72、74の偏光方向を回転させすることにより、偏光方向が異なる2種類のビーム71から74を出射する。このようなビーム71から74は、干渉縞やスペックルの発生を低減する。
 スペーサ窓部321から324の外形は、レンズ41から44の配置を規制できれば、矩形などの他の形状であってもよい。また、スペーサ窓部321から324の開口の直径は、レンズ41から44の直径よりも十分に大きくてもよい。そのような構成の場合、図21に示されるように、半導体レーザ素子の発光中心(図示せず)とレンズ41、44とを、スペーサ窓部321、324の中心軸141、144に一致するよう調整できる。
 また、レンズ保持段差部361から364を構成する開口の外形は、ビーム71から74の断面形状に合わせた矩形や楕円形状であってもよい。
 偏光回転素子52、54の外形は、偏光回転素子52、54がスペーサ窓部322、324に落ちない形状であれば、レンズ保持段差部362、364の開口と同様に、偏光回転素子52、54の外形も、ビーム72、74の断面形状に合わせた矩形や楕円であってもよい。このような構造は、偏光回転素子52、54の大きさを最小限にすることを可能とし、コストの低減を実現する。
 以上をまとめると、実施の形態3におけるレーザ光源装置100は、複数のレンズ41から44を含む。複数のレンズ41から44は、複数の半導体レーザ素子101から104のそれぞれに対応して設けられ、複数のビーム71から74を平行光に変換する。また、実施の形態3におけるレーザ光源装置100は、実施の形態1におけるスペーサ20に代えて、スペーサ320を含む。スペーサ320は、複数の半導体レーザ素子101から104の上方を覆うように設けられる。スペーサ320は、スペーサ窓部321から324と、レンズ保持段差部361から364と、偏光回転素子保持段差部325から328と、を含む。スペーサ窓部321から324は、複数のビーム71から74の各々が通過する開口を含む。レンズ保持段差部361から364は、スペーサ窓部321から324の開口の内側に、その開口よりも小さな開口が設けられることによって形成される段差を含む。レンズ保持段差部361から364は、その段差にレンズ41から44を保持する。また、偏光回転素子保持段差部325から328は、レンズ保持段差部361から364の上方に設けられる段差であって、スペーサ窓部321から324の開口よりも大きい開口からなる段差を含む。上方とは、複数のビーム71から74が進行する方向に対応する。偏光回転素子保持段差部326、328は、偏光回転素子52、54を、複数のレンズ41から44のうち偏光回転素子52、54に対応するレンズ42、44の上部に保持する。
 このようなレーザ光源装置100においては、平行化されたビーム72、74が、偏光回転素子52、54の全領域に均一に入射する。偏光回転素子52、54の入射前にビーム72、74が平行化されているので、全領域均一に偏光が回転する。
 (実施の形態3の変形例)
 実施の形態3の変形例におけるレーザ光源装置は、スペーサおよび偏光回転素子の構成が、実施の形態3におけるレーザ光源装置100のそれらとは異なる。
 図22は、実施の形態3の変形例におけるレーザ光源装置のスペーサ420および偏光回転素子152、154の構成を示す図である。偏光回転素子152、154の外形は、平行四辺形を有する。スペーサ420の偏光回転素子保持段差部426、428の外形は、偏光回転素子152、154の外形より少し大きい相似形状である平行四辺形を有する。
 偏光回転素子152、154の表裏が反転した場合、偏光回転素子152、154は、偏光回転素子保持段差部426、428に嵌合しない。そのため、偏光回転素子152、154の設置方向が限定される。また、偏光回転素子を設置しないレンズ43、41の上部には、偏光回転素子保持段差部が設けられていない。そのため、偏光回転素子152、154の設置箇所が限定される。
 なお、偏光回転素子152、154の作製方法は、実施の形態1の変形例の図12の説明と同様であり、ここでは詳述を省略する。
 このような構成を有するレーザ光源装置であっても、実施の形態3と同様の効果が得られる。さらに、偏光回転素子152、154の設置方向および設置位置が限定されるため、レーザ光源装置の組立工程における作業性が向上する。
 <実施の形態4>
 実施の形態4におけるレーザ光源装置を説明する。なお、実施の形態1から3のいずれかと同様の構成および動作については説明を省略する。
 図23は、実施の形態4におけるレーザ光源装置200の構成およびレーザ光源装置200から出射されるビーム171から174を示す斜視図である。図24は、レーザ光源装置200の構成を示す分解斜視図である。なお、実施の形態4における各図において、実施の形態2および3に示された図面と同一符号は、同一または相当する部分を示す。
 実施の形態4におけるスペーサ320は、実施の形態3と同様の構成を有する。偏光回転素子252から254の構成および作用は、実施の形態2の図15に示される構成および作用と同様である。
 偏光回転素子252から254は、偏光変換部を構成する。偏光変換部は、ビーム171から174のうち少なくとも一部のビーム172から174の偏光方向を回転させ、ビーム171から174の偏光方向が一方向に揃わないように乱す。実施の形態4において、偏光回転素子252から254は、1/2波長板である。偏光回転素子252から254は、速軸50Aが半導体レーザ素子102から104からそれぞれ出射されるy軸方向の直線偏光に対して、角度θをなすように配置される。偏光回転素子252から254は、y軸方向の直線偏光を角度2θだけ回転させる。ここでは、角度θは、偏光回転素子252から254ごとに異なる。
 偏光回転素子252は、その速軸50Aがy軸に対して-22.5°傾いた状態で、偏光回転素子保持段差部326に配置される。偏光回転素子252を透過したビーム172の直線偏光182は、偏光回転素子を透過しないビーム171の直線偏光181に対して、-45°回転、つまり右回りに45°回転している。
 偏光回転素子253は、その速軸50Aがy軸に対して-45°傾いた状態で、偏光回転素子保持段差部327に配置される。偏光回転素子253を透過したビーム173の直線偏光183は、ビーム171の直線偏光181に対して90°回転、つまりy軸からx軸に回転している。
 偏光回転素子254は、その速軸50Aがy軸に対して22.5°傾いた状態で、偏光回転素子保持段差部328に配置される。偏光回転素子254を透過したビーム174の直線偏光184は、ビーム171の直線偏光181に対して45°回転、つまり左回りに45°回転している。
 レーザ光源装置200は、偏光回転素子を透過しないビーム171と合わせて、4方向の直線偏光181から184を有するビーム171から174を出射する。
 4方向の直線偏光を生成するためには、偏光回転素子252、253、254の3種類の1/2波長板が必要である。しかし、実施の形態2の図14おいて詳述したように、1/2波長板は、表裏の区別なく作用する。偏光回転素子254は、偏光回転素子252と同じ1/2波長板の表裏がy軸に対して反転した状態で、偏光回転素子保持段差部328に配置された1/2波長板である。
 このように、90°回転した偏光を生成する偏光回転素子253と、表裏の使い分けにより2種類の45°回転した偏光を生成する偏光回転素子252と254をあわせて、2種類の1/2波長板により、4方向の直線偏光が生成可能である。
 また、偏光回転素子252および偏光回転素子254のように、表裏の区別なく作用する1/2波長板が適用された場合、1種類の1/2波長板により、2方向の直線偏光の生成が可能であるため、より多くの半導体レーザ素子を含むレーザ光源装置によって多方向の直線偏光のレーザを生成する場合、n種類の偏光回転素子により、2n方向の直線偏光を含むレーザの生成が可能であること、およびその効果は、実施の形態2と同様である。
 また、半導体レーザ素子101から104を出射したビーム171から174は、レンズ41から44によりz軸方向に平行なビーム171から174に変換される。偏光回転素子252から254の入射前にビーム272から274が平行化されているので、実施の形態3と同様に、全領域均一に偏光が回転する。
 (実施の形態4の変形例)
 実施の形態4の変形例におけるレーザ光源装置は、スペーサおよび偏光回転素子の構成が、実施の形態4におけるレーザ光源装置200のそれらとは異なる。
 図25は、実施の形態4の変形例におけるレーザ光源装置のスペーサ520および偏光回転素子253、352、354の構成を示す図である。
 偏光回転素子352および354の外形は、平行四辺形を有する。スペーサ520の偏光回転素子保持段差部526および528の外形は、それぞれ、偏光回転素子352および354の外形より少し大きい相似外形である平行四辺形を有する。偏光回転素子253の構成は、実施の形態3と同様である。
 偏光回転素子352、354の製作方法は、実施の形態2の変形例の図17と同様であり説明を省略するが、偏光回転素子352、354は、同じ特性を有する1/2波長板であり、同じ平行四辺形の外形を有する。ただし、偏光回転素子354は、偏光回転素子352の表裏を反転している。そのため、偏光回転素子352の外形は、偏光回転素子354の外形とは、異なる平行四辺形を有する。また、偏光回転素子352の速軸50Aも、偏光回転素子354のそれとは、異なった方向に傾いている。
 偏光回転素子保持段差部526および528は、偏光回転素子352および354の外形にそれぞれ対応するように構成されているため、偏光回転素子352は偏光回転素子保持段差部526に、偏光回転素子354は偏光回転素子保持段差部528に配置される。
 偏光回転素子253は、偏光回転素子352、354と異なる矩形形状を有する。偏光回転素子253は、偏光回転素子253と相似形状の偏光回転素子保持段差部327に配置される。
 偏光回転素子352の速軸50Aは、y軸から-22.5°傾いている。偏光回転素子352を透過したビーム172は、-45°回転、つまり右回りに45°回転した直線偏光182を有する。
 偏光回転素子354の速軸50Aは、y軸から22.5°傾いている。偏光回転素子354を透過したビーム174は、45°回転、つまり左回りに45°回転した直線偏光184を有する。
 偏光回転素子253の速軸50Aは、y軸から-45°傾いている。偏光回転素子253を透過したビーム173は、-90°回転、つまりy軸からx軸に回転した直線偏光183となる。
 偏光回転素子352の形状と、それが表裏反転した偏光回転素子354の形状とは、xy平面において、一致しない。そのため、両者は区別可能である。偏光回転素子352は、偏光回転素子保持段差部528には、嵌合しない。また、偏光回転素子354は、偏光回転素子保持段差部526には、嵌合しない。よって、偏光回転素子352、354の設置位置は、それぞれ定められた偏光回転素子保持段差部526、528に限定される。
 偏光回転素子253は、偏光回転素子保持段差部327に配置される。偏光回転素子253は、偏光を90°回転させる。偏光回転素子253の速軸50Aは、その外形を構成する辺と45°の角度をなす。また、偏光回転素子253の外形は、正方形を有する。そのため、偏光回転素子253は、表裏反転してもその動作は変わらない。
 偏光回転素子253の外形は、長方形であってもよい。偏光回転素子253の外形は、偏光回転素子352、354の外形と異なる外形であればよい。また、偏光回転素子253が、偏光回転素子352、354と異なる角度で切り出された場合、偏光回転素子253の表裏も規定される。そのため、偏光回転素子253と、その他の偏光回転素子との区別が可能となる。
 このように構成されたレーザ光源装置であっても、他の実施の形態または変形例と同様の効果が得られる。さらに、実施の形態4の変形例におけるレーザ光源装置は、そのレーザ光源装置の組立工程において、複数種類の偏光回転素子を、所定の位置に間違えることなく配置することを可能とする。
 以上の実施の形態1、2、3、4およびそれらの変形例においては、x軸方向に2個およびy軸方向に2個(2×2)の半導体レーザ素子が配列されたレーザ光源装置を一例として示した。しかし、レーザ光源装置が含む半導体レーザ素子の搭載個数は、それに限定されるものではない。レーザ光源装置は、x軸方向およびy軸方向に搭載個数を増加させた複数の半導体レーザ素子を含んでもよい。そのような構成により、高出力のレーザ光源装置が実現できる。また、半導体レーザ素子の配列は、2×4、4×4のような2次元アレイであってもよいし、1×4のような1次元アレイであってもよい。
 また、隣り合う行もしくは列の半導体レーザ素子の配列ピッチが、互いに半ピッチずれた関係にある場合、最密の配列が可能となる。このような構成は、集光レンズの有効径を縮小化させ、投射型表示装置の小型化、低コスト化に寄与する。
 また、半導体レーザ素子の各々が異なる波長のレーザを発振する場合、レーザ光源装置は、さらに干渉およびスペックルの発生を低減することができる。例えば、半導体レーザ素子101、102が、波長638nmの赤色のレーザを発振し、半導体レーザ素子103、104が波長642nmの赤色のレーザを発振する場合、レーザ光源装置は、上記の偏光方向だけでなく、波長に関しても特性が異なる4種類のビームを出射することが可能となる。
 また、偏光回転素子が配置されるスペーサ段差部は、各実施の形態に示されたスペーサ段差部に限定されない。つまり、偏光回転素子が各図に示されたスペーサ段差部とは異なるいずれかのスペーサ段差部に配置された場合であっても、上記と同様の効果を奏する。
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
 本発明は詳細に説明されたが、上記した説明は、全ての局面において、例示であって、本発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
 1 レーザ光源装置、10 レーザ光源装置、101~104 半導体レーザ素子、20 スペーサ、25~28 スペーサ段差部、30 ベース部、30A 上面、41~44 レンズ、50A 速軸、50B 遅軸、52 偏光回転素子、54偏光回転素子、252~254 偏光回転素子、71~74 ビーム、81~84 直線偏光。

Claims (15)

  1.  ベース(30)と、
     各々が個別に前記ベース(30)の上面(30A)に保持され、偏光方向が一方向に揃った複数のビームを出射する複数の半導体レーザ素子(101,102,103,104)と、
     前記複数のビームのうち少なくとも一部のビームの前記偏光方向を回転させることにより、前記複数のビームの前記偏光方向が前記一方向に揃わないように乱す偏光変換部と、を備えるレーザ光源装置(1,10,100,200)。
  2.  前記偏光変換部は、
     前記複数のビームのうち一部のビームの前記偏光方向を90°回転させる偏光回転素子(52,54)を含み、
     前記偏光回転素子(52,54)は、
     前記複数の半導体レーザ素子(101,102,103,104)のうち前記一部のビームを出射する半導体レーザ素子(102,104)に対応して選択的に配置される、請求項1に記載のレーザ光源装置(1,100)。
  3.  前記複数の半導体レーザ素子(101,102,103,104)の上方を覆って設けられるスペーサ(320)を、さらに備え、
     前記スペーサ(320)は、
     前記複数のビームの各々が通過するスペーサ窓部(321,322,323,324)と、
     前記スペーサ窓部(321,322,323,324)の内周に設けられたレンズ保持段差部(361,362,363,364)と、
     前記スペーサ窓部(321,322,323,324)の外周に設けられた偏光回転素子保持段差部(325,326,327,328)と、を含み、
     前記偏光回転素子(52,54)は、前記偏光回転素子保持段差部(326,328)に保持される、請求項2に記載のレーザ光源装置(100)。
  4.  前記偏光回転素子(152,154)の外形は、平行四辺形を有し、
     前記偏光回転素子保持段差部(426,428)の外形は、前記偏光回転素子(152,154)の前記外形よりも大きい相似形状を有する、請求項3に記載のレーザ光源装置。
  5.  前記複数の半導体レーザ素子(101,102,103,104)のそれぞれに対応して設けられ、前記複数のビームのそれぞれを平行光に変換する複数のレンズ(41,42,43,44)を、さらに備え、
     前記スペーサ(320)は、前記ベース(30)に固定され、
     前記複数のレンズ(41,42,43,44)の各々は、前記レンズ保持段差部(361,362,363,364)において保持され、
     前記偏光回転素子保持段差部(326,328)は、前記偏光回転素子(52,54)を、前記複数のレンズ(41,42,43,44)のうち前記偏光回転素子(52,54)に対応するレンズ(42,44)の上部に保持する、請求項3または請求項4に記載のレーザ光源装置(100)。
  6.  前記偏光変換部は、
     前記複数のビームのうち前記少なくとも一部のビームの前記偏光方向を回転させる少なくとも1つの偏光回転素子(252,253,254)を含み、
     前記少なくとも1つの偏光回転素子(252,253,254)は、
     前記少なくとも一部のビームの前記偏光方向である前記一方向に対して、速軸が角度θをなすように配置され、かつ、前記偏光方向を角度2θで回転させるn種類の1/2波長板を含み、
     前記n種類の1/2波長板を透過することにより前記偏光方向が回転した前記複数のビームは、2n種類の直線偏光を有する、請求項1に記載のレーザ光源装置(10,200)。
  7.  前記複数の半導体レーザ素子(101,102,103,104)の上方を覆って設けられるスペーサ(320)を、さらに備え、
     前記スペーサ(320)は、
     前記複数のビームの各々が通過するスペーサ窓部(321,322,323,324)と、
     前記スペーサ窓部(321,322,323,324)の内周に設けられたレンズ保持段差部(361,362,363,364)と、
     前記スペーサ窓部(321,322,323,324)の外周に設けられた偏光回転素子保持段差部(325,326,327,328)と、を含み、
     前記少なくとも1つの偏光回転素子(252,253,254)の各々は、前記偏光回転素子保持段差部(326,327,328)に保持される、請求項6に記載のレーザ光源装置(200)。
  8.  前記少なくとも1つの偏光回転素子(352,354)の各々の外形は、平行四辺形を有し、
     前記偏光回転素子保持段差部(526,528)の外形は、前記少なくとも1つの偏光回転素子の各々の前記外形よりも大きい相似形状を有する、請求項7に記載のレーザ光源装置。
  9.  前記複数の半導体レーザ素子(101,102,103,104)のそれぞれに対応して設けられ、前記複数のビームのそれぞれを平行光に変換する複数のレンズ(41,42,43,44)を、さらに備え、
     前記スペーサ(320)は、前記ベース(30)に固定され、
     前記複数のレンズ(41,42,43,44)の各々は、前記レンズ保持段差部(361,362,363,364)において保持され、
     前記偏光回転素子保持段差部(326,327,328)は、前記少なくとも1つの偏光回転素子(252,253,254)の各々を、前記複数のレンズ(41,42,43,44)のうち前記少なくとも1つの偏光回転素子(252,253,254)に対応するレンズ(42,43,44)の上部に保持する、請求項7または請求項8に記載のレーザ光源装置(200)。
  10.  前記複数の半導体レーザ素子(101,102,103,104)の上方を覆って設けられるスペーサ(20)を、さらに備え、
     前記スペーサ(20)は、前記複数のビームの各々が通過するスペーサ窓部(21,22,23,24)と前記スペーサ窓部(21,22,23,24)の外周に設けられたスペーサ段差部(25,26,27,28)とを含み、
     前記偏光回転素子(52,54)は、前記スペーサ段差部(26,28)に保持される、請求項2に記載のレーザ光源装置(1)。
  11.  前記偏光回転素子(152,154)の外形は、平行四辺形を有し、
     前記スペーサ段差部(126,128)の外形は、前記偏光回転素子(152,154)の前記外形よりも大きい相似形状を有する、請求項10に記載のレーザ光源装置。
  12.  前記複数の半導体レーザ素子(101,102,103,104)のそれぞれに対応して設けられ、前記複数のビームのそれぞれを平行光に変換する複数のレンズ(41,42,43,44)を、さらに備え、
     前記スペーサ(20)は、前記ベース(30)に固定され、かつ、前記複数のレンズ(41,42,43,44)を保持する、請求項10または請求項11に記載のレーザ光源装置(1)。
  13.  前記複数の半導体レーザ素子(101,102,103,104)の上方を覆って設けられるスペーサ(20)を、さらに備え、
     前記スペーサ(20)は、前記複数のビームの各々が通過するスペーサ窓部(21,22,23,24)と前記スペーサ窓部(21,22,23,24)の外周に設けられたスペーサ段差部(25,26,27,28)とを含み、
     前記少なくとも1つの偏光回転素子(252,253,254)の各々は、前記スペーサ段差部(26,27,28)に保持される、請求項6に記載のレーザ光源装置(10)。
  14.  前記少なくとも1つの偏光回転素子(352,354)の各々の外形は、平行四辺形を有し、
     前記スペーサ段差部(226,228)の外形は、前記少なくとも1つの偏光回転素子(352,354)の各々の前記外形よりも大きい相似形状を有し、
     前記角度2θは、90°以外である、請求項13に記載のレーザ光源装置。
  15.  前記複数の半導体レーザ素子(101,102,103,104)のそれぞれに対応して設けられ、前記複数のビームのそれぞれを平行光に変換する複数のレンズ(41,42,43,44)を、さらに備え、
     前記スペーサ(20)は、前記ベース(30)に固定され、かつ、前記複数のレンズ(41,42,43,44)を保持する、請求項13または請求項14に記載のレーザ光源装置(10)。
PCT/JP2019/016663 2018-09-27 2019-04-18 レーザ光源装置 WO2020066096A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/036888 WO2020066868A1 (ja) 2018-09-27 2019-09-20 レーザ光源装置
JP2020549101A JPWO2020066868A1 (ja) 2018-09-27 2019-09-20 レーザ光源装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2018/035915 2018-09-27
PCT/JP2018/035915 WO2020065819A1 (ja) 2018-09-27 2018-09-27 レーザ光源装置

Publications (1)

Publication Number Publication Date
WO2020066096A1 true WO2020066096A1 (ja) 2020-04-02

Family

ID=69950476

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/035915 WO2020065819A1 (ja) 2018-09-27 2018-09-27 レーザ光源装置
PCT/JP2019/016663 WO2020066096A1 (ja) 2018-09-27 2019-04-18 レーザ光源装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035915 WO2020065819A1 (ja) 2018-09-27 2018-09-27 レーザ光源装置

Country Status (2)

Country Link
JP (1) JPWO2020066868A1 (ja)
WO (2) WO2020065819A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003198031A (ja) * 2001-12-26 2003-07-11 Sumitomo Electric Ind Ltd 発光モジュールおよび光増幅器
US20130100974A1 (en) * 2011-10-21 2013-04-25 Barco N.V. Light emitting systems
JP2014138116A (ja) * 2013-01-17 2014-07-28 Sony Corp 半導体レーザーの位置決め部材及び光学ユニット
WO2015162767A1 (ja) * 2014-04-24 2015-10-29 Necディスプレイソリューションズ株式会社 レーザー光源、レーザー光源を備えたプロジェクタ、レーザー光源製造方法
JP2016051902A (ja) * 2014-08-29 2016-04-11 日亜化学工業株式会社 半導体発光装置用の保持部材、光源装置及びその製造方法
WO2017017864A1 (ja) * 2015-07-28 2017-02-02 三菱電機株式会社 レーザ光源装置
JP2018004868A (ja) * 2016-06-30 2018-01-11 セイコーエプソン株式会社 照明装置およびプロジェクター

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003198031A (ja) * 2001-12-26 2003-07-11 Sumitomo Electric Ind Ltd 発光モジュールおよび光増幅器
US20130100974A1 (en) * 2011-10-21 2013-04-25 Barco N.V. Light emitting systems
JP2014138116A (ja) * 2013-01-17 2014-07-28 Sony Corp 半導体レーザーの位置決め部材及び光学ユニット
WO2015162767A1 (ja) * 2014-04-24 2015-10-29 Necディスプレイソリューションズ株式会社 レーザー光源、レーザー光源を備えたプロジェクタ、レーザー光源製造方法
JP2016051902A (ja) * 2014-08-29 2016-04-11 日亜化学工業株式会社 半導体発光装置用の保持部材、光源装置及びその製造方法
WO2017017864A1 (ja) * 2015-07-28 2017-02-02 三菱電機株式会社 レーザ光源装置
JP2018004868A (ja) * 2016-06-30 2018-01-11 セイコーエプソン株式会社 照明装置およびプロジェクター

Also Published As

Publication number Publication date
WO2020065819A1 (ja) 2020-04-02
JPWO2020066868A1 (ja) 2021-04-01

Similar Documents

Publication Publication Date Title
JP6178991B2 (ja) 光源ユニットおよびそれを用いた光源モジュール
US6975659B2 (en) Laser diode array, laser device, wave-coupling laser source, and exposure device
JP5817313B2 (ja) 光源装置及びプロジェクター
JP2015501508A (ja) 光源システムおよびレーザ光源
WO2019128232A1 (zh) 一种多只To封装半导体激光器的空间耦合结构
WO2012039168A1 (ja) 蛍光体発光装置
CN107209444B (zh) 激光光源装置和视频显示装置
JP2020052172A (ja) プロジェクター
JP6187023B2 (ja) 光源装置及びプロジェクター
WO2020066868A1 (ja) レーザ光源装置
JP7110851B2 (ja) 光源装置およびプロジェクター
JP4980454B2 (ja) レーザ光源装置
WO2019087290A1 (ja) レーザ光源装置およびその製造方法
WO2020066096A1 (ja) レーザ光源装置
JP2015056576A (ja) 光源ユニット、光源ユニットを用いた照明光学系
WO2020079774A1 (ja) レーザ光源装置
JP6137265B2 (ja) 光源装置及びプロジェクター
JP7515075B2 (ja) レーザ装置およびレーザ装置の光軸調整方法
WO2019198219A1 (ja) レーザ光源装置
JP2021144110A (ja) ミラー装置及びそのミラー装置を有する光源装置
CN109906408B (zh) 光整形装置
JP7586175B2 (ja) 光源装置および投射型表示装置
JP7230732B2 (ja) 光源装置およびプロジェクター
US20230305376A1 (en) Light source apparatus and projector
JPH0918087A (ja) マルチビーム半導体レーザ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP