WO2021049509A1 - 半導体レーザ装置 - Google Patents

半導体レーザ装置 Download PDF

Info

Publication number
WO2021049509A1
WO2021049509A1 PCT/JP2020/034041 JP2020034041W WO2021049509A1 WO 2021049509 A1 WO2021049509 A1 WO 2021049509A1 JP 2020034041 W JP2020034041 W JP 2020034041W WO 2021049509 A1 WO2021049509 A1 WO 2021049509A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength dispersion
dispersion element
base
semiconductor laser
diffraction grating
Prior art date
Application number
PCT/JP2020/034041
Other languages
English (en)
French (fr)
Inventor
秀雄 山口
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US17/633,305 priority Critical patent/US20220285916A1/en
Publication of WO2021049509A1 publication Critical patent/WO2021049509A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • H01S5/142External cavity lasers using a wavelength selective device, e.g. a grating or etalon which comprises an additional resonator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • H01S5/143Littman-Metcalf configuration, e.g. laser - grating - mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1086Beam splitting or combining systems operating by diffraction only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02438Characterized by cooling of elements other than the laser chip, e.g. an optical element being part of an external cavity or a collimating lens
    • H01S5/02446Cooling being separate from the laser chip cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4062Edge-emitting structures with an external cavity or using internal filters, e.g. Talbot filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4068Edge-emitting structures with lateral coupling by axially offset or by merging waveguides, e.g. Y-couplers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength

Definitions

  • This disclosure relates to a semiconductor laser device.
  • Patent Document 1 there is an external resonator type semiconductor laser device that resonates outside the semiconductor light emitting element (see, for example, Patent Document 1).
  • the conventional semiconductor laser device disclosed in Patent Document 1 includes a first semiconductor light emitting element, a second semiconductor light emitting element, a wavelength dispersion element, and a partial reflection mirror.
  • the light emitted from each of the first light emitting point of the first semiconductor light emitting element and the second light emitting point of the second semiconductor light emitting element is superimposed on one beam due to the wavelength dispersion effect of the wavelength dispersion element.
  • the partial reflection mirror is irradiated.
  • Part of the light emitted to the partially reflected mirror is transmitted and emitted from the partially reflected mirror as a normal oscillation output beam (laser light). The remaining part is reflected by the partial reflection mirror.
  • an external laser resonator (external resonator) is formed between the first semiconductor light emitting element and the second semiconductor light emitting element and the partial reflection mirror via a wavelength dispersion element (in other words, a diffraction grating). Will be done.
  • the laser light emitted through the partially reflected mirror is a laser light in which two lights from the first light emitting point and the second light emitting point are superimposed by the wavelength dispersion element and pass through one optical path. Therefore, in the conventional semiconductor laser apparatus, the brightness can be doubled by the first semiconductor light emitting element and the second semiconductor light emitting element as compared with the case where there is only one semiconductor light emitting element.
  • the normal oscillation output beam resonates on one optical path between the partial reflection mirror and the wavelength dispersion element.
  • the wavelength of each light emitted from the first light emitting point and the second light emitting point is automatically determined.
  • the pitch of a plurality of grooves formed in the wavelength dispersion element is light.
  • the wavelength of the light returned from the partially reflecting mirror to the semiconductor light emitting element is greatly deviated.
  • the wavelength of the light deviates, an optical path in which a beam enters and exits from each other is formed between the first semiconductor light emitting element and the second semiconductor light emitting element, and an unintended optical resonance occurs in the optical path.
  • the laser beam may exceed the ASE (Amplified Spontaneous Emission) boundary, and the intended resonance may not occur between the partial reflection mirror and the semiconductor light emitting element, and / or the resonance may become unstable. There is. Further, in such a case, there is a possibility that the light output of the laser light emitted from the partially reflected mirror may decrease due to the occurrence of unintended resonance.
  • the present disclosure provides a semiconductor laser device capable of suppressing the occurrence of unintended resonance.
  • the semiconductor laser apparatus includes a plurality of amplification units that emit light, a diffraction grating that emits light emitted from each of the plurality of amplification units so as to pass through one optical path, and the above-mentioned
  • a base for supporting the diffraction grating and a pressing portion for fixing the diffraction grating to the base by pressing the diffraction grating are provided, and the pressing portion is perpendicular to the surface on which the diffraction grating is provided.
  • the diffraction grating is pressed in the direction.
  • the semiconductor laser device According to the semiconductor laser device according to one aspect of the present disclosure, it is possible to suppress the occurrence of unintended resonance.
  • FIG. 1 is a perspective view showing a semiconductor laser device according to the first embodiment.
  • FIG. 2 is a schematic diagram for explaining the resonance of light in the semiconductor laser device according to the first embodiment.
  • FIG. 3A is a perspective view showing the main surface side of the confluence portion included in the semiconductor laser device according to the first embodiment.
  • FIG. 3B is a rear view showing a wave junction portion included in the semiconductor laser device according to the first embodiment.
  • FIG. 3C is a perspective view showing the back side of the wave-matching portion included in the semiconductor laser device according to the first embodiment.
  • FIG. 3D is a cross-sectional view showing a wave junction portion of the semiconductor laser apparatus according to the first embodiment on the line IIID-IIID of FIG. 3B.
  • FIG. 4 is a perspective view showing a manufacturing process of a semiconductor element unit included in the semiconductor laser device according to the first embodiment.
  • FIG. 5 is an exploded perspective view showing an optical unit included in the semiconductor laser device according to the first embodiment.
  • FIG. 6 is a cross-sectional view showing a wave junction portion according to the first modification of the first embodiment.
  • FIG. 7A is a perspective view showing the main surface side of the converging portion according to the second modification of the first embodiment.
  • FIG. 7B is a rear view showing a merging portion according to the second modification of the first embodiment.
  • FIG. 7C is a perspective view showing the back side of the converging portion according to the second modification of the first embodiment.
  • FIG. 7D is a cross-sectional view showing a merging portion according to the second modification of the first embodiment in the VIID-VIID line of FIG. 7B.
  • FIG. 8A is a perspective view showing the main surface side of the converging portion according to the third modification of the first embodiment.
  • FIG. 8B is a rear view showing a merging portion according to the third modification of the first embodiment.
  • FIG. 8C is a perspective view showing the back side of the converging portion according to the third modification of the first embodiment.
  • FIG. 8D is a cross-sectional view showing a merging portion according to the third modification of the first embodiment on the VIIID-VIIID line of FIG. 8B.
  • FIG. 9 is a perspective view showing the semiconductor laser device according to the second embodiment.
  • FIG. 10 is a schematic diagram for explaining the resonance of light in the semiconductor laser device according to the second embodiment.
  • FIG. 11A is a perspective view showing the main surface side of the confluence portion included in the semiconductor laser device according to the second embodiment.
  • FIG. 11B is a front view showing a wave junction portion included in the semiconductor laser device according to the second embodiment.
  • FIG. 11C is a cross-sectional view showing a wave junction portion of the semiconductor laser apparatus according to the second embodiment on the XID-XID line of FIG. 11B.
  • FIG. 12 is a cross-sectional view showing a wave junction portion according to a modified example of the second embodiment.
  • FIG. 13 is a perspective view showing the semiconductor laser device according to the third embodiment.
  • FIG. 14 is a perspective view showing an amplification unit included in the semiconductor laser device according to the third embodiment.
  • FIG. 15 is a schematic diagram for explaining the resonance of light in the semiconductor laser device according to the third embodiment.
  • each figure is a schematic diagram and is not necessarily exactly illustrated. Therefore, for example, the scales and the like do not always match in each figure. Further, in each figure, the same reference numerals are given to substantially the same configurations, and duplicate explanations for substantially the same configurations may be omitted or simplified.
  • the terms “upper” and “lower” do not refer to the upward direction (vertically upward) and the downward direction (vertically downward) in absolute spatial recognition. Also, the terms “upper” and “lower” are used not only when the two components are spaced apart from each other and another component exists between the two components, but also when the two components It also applies when the two components are placed in close contact with each other and touch each other.
  • the X-axis, the Y-axis, and the Z-axis indicate the three axes of the three-dimensional Cartesian coordinate system.
  • the Y-axis direction is the vertical direction
  • the direction perpendicular to the Y-axis is the horizontal direction.
  • the positive direction of the Y-axis may be described as upward, and the negative direction of the Y-axis may be described as downward.
  • top view means when the main surface is viewed from the normal direction of the main surface of the base.
  • FIG. 1 is a schematic perspective view showing a semiconductor laser device 100 according to the first embodiment.
  • FIG. 2 is a schematic diagram for explaining the resonance of light in the semiconductor laser device 100 according to the first embodiment.
  • the semiconductor laser device 100 is an external cavity type laser device that emits a laser beam 310 using an external cavity 400.
  • the semiconductor laser apparatus 100 is used, for example, as a light source of a processing device for laser processing an object.
  • the semiconductor laser device 100 includes a base 110, a plurality of semiconductor element units 120, a coupling optical system 130, a combiner 140, and a partial reflection mirror 150.
  • the base 110 is a table on which various components included in the semiconductor laser device 100 are placed. Specifically, the semiconductor element unit 120, the coupling optical system 130, the wave combining portion 140, and the partial reflection mirror 150 are mounted on the main surface 111 (upper surface of the base 110) of the base 110.
  • the material used for the base 110 is not particularly limited.
  • the material used for the base 110 may be, for example, a metal material, a resin material, or a ceramic material.
  • the shape of the base 110 is not particularly limited. In this embodiment, the base 110 is rectangular in top view. Also. The portion on which the semiconductor element unit 120 is placed is higher on the Y-axis positive direction side than the other portions.
  • the semiconductor element unit 120 is a light source unit having a semiconductor light emitting element (amplification unit) 121 that emits light.
  • the light emitted from each of the plurality of semiconductor element units 120 includes a fast-axis collimator lens 163, a 90 ° image rotation optical system 162, a coupling optical system 130, and a combination.
  • the partial reflection mirror 150 is irradiated through the wave portion 140. Part of the light emitted to the partial reflection mirror 150 is transmitted and emitted from the partial reflection mirror 150 as a normal oscillation output beam (laser light 310), and the other portion is reflected and emitted from the partial reflection mirror 150 to be reflected. It becomes light 320.
  • the reflected light 320 reflected by the partially reflected mirror 150 propagates in the opposite direction in the same optical path as the light directed from the semiconductor element unit 120 (specifically, the semiconductor light emitting element 121) to the partially reflected mirror 150.
  • the light from the semiconductor light emitting element 121 to the partial reflection mirror 150 is indicated by a solid line arrow
  • the light from the partial reflection mirror 150 toward the semiconductor light emitting element 121 is indicated by a broken line arrow.
  • the coupling optical system 130, the wavelength dispersion element (diffraction grating) 142 of the combiner 140, the 90 ° image rotation optical system 162, and the speed axis Optical resonance occurs through the collimator lens 163, in other words, an external laser cavity (external cavity 400) is formed.
  • a part of the resonated light is emitted from the partial reflection mirror 150 as a laser beam 310 as a laser beam 310.
  • the wavelength of the laser beam 310 emitted by the semiconductor laser device 100 may be arbitrarily set.
  • the semiconductor laser device 100 includes three semiconductor element units 120.
  • Each of the three semiconductor element units 120 has one semiconductor light emitting element 121 that resonates light with the partial reflection mirror 150 via a coupling optical system 130, a combiner unit 140, and the like.
  • the semiconductor light emitting element 121 emits laser light by generating light resonance with the external resonator 400. At this time, in the present embodiment, the semiconductor light emitting device 121 emits laser light so that the Y-axis direction is the speed axis.
  • the coupling optical system 130 is arranged between the plurality of semiconductor light emitting elements 121 and the wavelength dispersion element 142, and the light emitted from each of the plurality of semiconductor light emitting elements 121 is emitted from the main surface 142a of the wavelength dispersion element 142 (see FIG. 3A). ) Is an optical member to be superimposed. Specifically, the coupling optical system 130 superimposes the light emitted from each of the three semiconductor element units 120 on the same position on the main surface 142a of the wavelength dispersion element 142 included in the combiner unit 140. In this embodiment, the coupling optical system 130 is one convex lens. The coupling optical system 130 collects the light emitted from each of the three semiconductor element units 120 on the wavelength dispersion element 142.
  • the coupled optical system 130 is on the optical path of the resonated light generated by the external resonator 400, and is arranged between the plurality of semiconductor light emitting elements 121 and the wavelength dispersion element 142.
  • the coupling optical system 130 is arranged between the speed axis collimator lens 163 and the wavelength dispersion element 142. More specifically, the coupling optical system 130 is arranged between the 90 ° image rotating optical system 162 and the wavelength dispersion element 142.
  • the semiconductor laser device 100 includes one convex lens as the coupling optical system 130, but the shape of the lens of the coupling optical system 130 included in the semiconductor laser device 100, the number of lenses, and the like are not particularly limited. ..
  • the combined wave unit 140 is an optical member having a wavelength dispersion element 142 that combines and emits light emitted from the coupled optical system 130 that passes through different optical paths so as to pass through one optical path.
  • the combiner unit 140 has a wavelength dispersion element 142 in which a plurality of grooves are formed on the main surface 142a, and the wavelength dispersion element 142 refracts light incident from different directions and having different wavelengths at different angles. By emitting light, a plurality of lights each passing through different optical paths are combined and emitted so as to pass through one optical path.
  • the combiner 140 is the light emitted from each of the plurality of semiconductor element units 120, which is incident from different directions and has different wavelengths, so as to pass through one optical path. Waves and emits.
  • the partial reflection mirror 150 is an optical member that transmits a part of the light and emits the light, and reflects and emits the light of the other part. Specifically, the partial reflection mirror 150 reflects several% to several tens of% of the total light output of the light combined by the combined wave unit 140, and transmits the remaining several% to several tens of%.
  • the light reflectance of the partial reflection mirror 150 is not particularly limited.
  • the light reflectance of the partial reflection mirror may be 50% or more or less than 50%.
  • the external resonator 400 is formed by the fast-axis collimator lens 163, the 90 ° image rotating optical system 162, the wavelength dispersion element 142, and the partial reflection mirror 150.
  • the external cavity 400 includes a speed axis collimator lens 163, a 90 ° image rotating optical system 162, a wavelength dispersion element 142, and a partial reflection mirror 150.
  • the 90 ° image rotation optical system 162 is an optical element that rotates a spot of light emitted from the semiconductor light emitting element 121 by 90 °. Specifically, the 90 ° image rotation optical system 162 swaps the fast axis direction and the slow axis direction of the light emitted from the fast axis collimator lens 163.
  • the 90 ° image rotation optical system 162 is, for example, a BT (Beam Twister).
  • the 90 ° image rotation optical system 162 and the speed axis collimator lens 163 are also collectively referred to as BTU (Beam Twisted Lens Unit).
  • the 90 ° image rotation optical system 162 may be an optical luminous flux converter disclosed in Japanese Patent Application Laid-Open No. 2000-137139.
  • a part of the 90 ° image rotation optical system 162 is fixed to the optical holder 161 and the other part is fixed to the speed axis collimator lens 163.
  • the speed axis collimator lens 163 is a lens that collimates the speed axis directions of the light emitted from each of the plurality of semiconductor light emitting elements 121.
  • the light emitted from the semiconductor light emitting element 121 is collimated by the speed axis collimator lens 163 to become parallel light, and the light spot is rotated by 90 ° by the 90 ° image rotation optical system 162. ..
  • the light emitted from the semiconductor light emitting device 121 is switched between the fast axis and the slow axis by the 90 ° image rotation optical system 162. Therefore, for example, the light emitted from the semiconductor light emitting element 121 passes through the optical unit 160 and becomes light that is collimated in the horizontal direction and whose vertical direction is the slow axis direction.
  • FIG. 3A is a perspective view showing the main surface 142a side of the merging unit 140.
  • FIG. 3B is a rear view showing the merging unit 140.
  • FIG. 3C is a perspective view showing the back surface 142b side of the merging unit 140.
  • FIG. 3D is a cross-sectional view showing a confluence portion 140 on the line IIID-IIID of FIG. 3B.
  • FIG. 3B shows the wave-matching portion 140 from the normal direction of the surface of the wavelength dispersion element 142 on which the light emitted from the semiconductor element unit 120 is incident (in other words, the thickness direction of the wavelength dispersion element 142). It is a figure which shows the case of seeing.
  • the combiner portion 140 includes a base 141, a wavelength dispersion element 142, a pressing portion 143, and an adjusting screw 212.
  • the base 141 is a base on which the wavelength dispersion element 142 is placed.
  • the base 141 fixes the wavelength dispersion element 142 at an arbitrary height.
  • the base 141 is placed on the main surface 111 of the base 110 and fixed to the base 110.
  • the base 141 is formed with a through hole 240 penetrating in the thickness direction.
  • the wavelength dispersion element 142 is arranged in the through hole 240.
  • the diameter of the through hole 240 is different between the side where the light from the semiconductor light emitting element 121 is irradiated and the side where the light is transmitted and emitted to the partial reflection mirror 150.
  • the diameter of the through hole 240 is smaller on the side irradiated with the light from the semiconductor light emitting element 121 than on the side that transmits the light and emits it to the partial reflection mirror 150.
  • the wavelength dispersion element 142 is arranged in the through hole 240 on the side where the light from the semiconductor light emitting element 121 is irradiated, and is brought into contact with the abutting portion 220 of the base 141 by the pressing portion 143. It is fixed to the base 141.
  • the base 141 has an inclined portion 148 on the peripheral edge of the through hole 240 on the side where the light from the semiconductor light emitting element 121 is irradiated to the main surface 142a of the wavelength dispersion element 142.
  • the inclined portion 148 is an inclined surface formed on the base 141b.
  • the inclined portion 148 is inclined in a top view with respect to the normal direction of the main surface 142a of the wavelength dispersion element 142, for example.
  • Light from the semiconductor light emitting device 121 is incident on the wavelength dispersion element 142 from a plurality of directions. Since the base 141 has the inclined portion 148, the wavelength dispersion element 142 does not irradiate the base 141, and the light from the semiconductor light emitting device 121 at a wider angle with respect to the normal direction of the main surface 142a. Can be irradiated.
  • the base 141 may be fixed to the base 110 with an adhesive or the like, or may be integrally formed with the base 110.
  • the material used for the base 141 is not particularly limited.
  • the material used for the base 141 may be, for example, a metal material or a ceramic material.
  • the wavelength dispersion element 142 is a diffraction grating (optical element) in which a plurality of irregularities extending in the first direction are alternately formed on the main surface 142a of the wavelength dispersion element 142.
  • the wavelength dispersion element 142 has a plate shape, and a plurality of grooves extending in the first direction are provided on the main surface 142a side by side in a direction orthogonal to the first direction.
  • the first direction is the Y-axis direction.
  • the first direction may be arbitrarily determined, and may be, for example, a direction that intersects the Y-axis.
  • the wavelength dispersion element 142 is irradiated with the light emitted from each of the plurality of semiconductor element units 120 at the central portion of the main surface 142a. Therefore, one light spot 300 formed by superimposing a plurality of lights emitted from the speed axis collimator lens 163 is located at the center of the main surface 142a of the wavelength dispersion element 142.
  • the wavelength dispersion element 142 combines the light emitted from each of the plurality of semiconductor element units 120 and emits the light from the back surface 142b toward the partial reflection mirror 150 so as to pass through one optical path. In this way, the wavelength dispersion element 142 emits the plurality of lights with their respective optical axes aligned.
  • the optical axes of the plurality of lights emitted from the speed axis collimator lens 163 are formed on the main surface 142a of the wavelength dispersion element 142 (more specifically, the surface on which grooves (concavities and convexities) are formed). It is good if they overlap. Further, in the light spot 300, it is not necessary that the plurality of lights emitted from the speed axis collimator lens 163 are completely superimposed, and at least a part of the light of each of the plurality of lights emitted from the speed axis collimator lens 163 is emitted. It suffices if they are superimposed.
  • the wavelength dispersion element 142 emits the reflected light 320 reflected by the partial reflection mirror 150 toward each of the semiconductor element units 120. Specifically, the wavelength dispersion element 142 demultiplexes the reflected light 320 and emits the reflected light 320 toward each of the semiconductor element units 120 so as to pass through the original optical path of the light emitted from each of the semiconductor element units 120. To do.
  • the material used for the wavelength dispersion element 142 is not particularly limited.
  • the wavelength dispersion element 142 is made of, for example, a resin material, glass, or the like. In the present embodiment, the wavelength dispersion element 142 is made of a translucent material.
  • the pitch of the plurality of grooves formed in the wavelength dispersion element 142 is not particularly limited.
  • the pitch may be arbitrarily formed so that the laser beam 310 has a desired wavelength.
  • the pressing portion 143 is a member that fixes the wavelength dispersion element 142 to the base 141 by pressing the wavelength dispersion element 142 against the base 141.
  • the pressing portion 143 is in a direction perpendicular to the surface on which the wavelength dispersion element 142 is provided (that is, the main surface 142a in which a plurality of grooves are formed) (in the present embodiment, the normal direction of the main surface 142a or the wavelength dispersion element).
  • the wavelength dispersion element 142 is pressed in the direction of the thickness of 142). More specifically, the pressing portion 143 presses the wavelength dispersion element 142 in the thickness direction of the wavelength dispersion element 142. As a result, the pressing portion 143 fixes the wavelength dispersion element 142 to the base 141.
  • the pressing portion 143 is, for example, a long leaf spring, one end of which is fixed to the base 141 and the other end of which presses the wavelength dispersion element 142. In the present embodiment, the pressing portion 143 presses the back surface 142b of the wavelength dispersion element 142.
  • the pressing portion 143 when the pressing portion 143 is viewed from the front (when viewed from the normal direction of the main surface 142a), the light emitted from each of the plurality of semiconductor light emitting elements 121 is superimposed on the main surface 142a.
  • the wavelength dispersion element 142 is fixed to the base 141 by pressing the wavelength dispersion element 142 in the thickness direction of the wavelength dispersion element 142 at a position symmetrical with respect to the center of the formed light spot 300.
  • the pressing portion 143 is formed from two locations symmetrically above and below the light spot 300, that is, in a direction in which the groove passing through the light spot 300 and formed on the main surface 142a extends.
  • the wavelength dispersion element 142 is pressed at a position symmetrical to the line where the plane orthogonal to and the back surface 142b intersect.
  • the light spot 300 is located at the central portion (substantially center) of the wavelength dispersion element 142 when viewed from the front or the back. Therefore, the pressing portion 143 presses the wavelength dispersion element 142 in the thickness direction of the wavelength dispersion element 142 at a position symmetrical with respect to the central portion of the wavelength dispersion element 142 when viewed from the front or the back.
  • the wavelength dispersion element 142 is fixed to the base 141.
  • the pressing portion 143 is in a direction orthogonal to the long direction of the wavelength dispersion element 142. It is long.
  • One end of the pressing portion 143 is fixed to the base 141 by the adjusting screw 212, and the other end is formed with a convex portion 145 protruding from the surface of the flat plate-shaped pressing portion 143 toward the wavelength dispersion element 142. ..
  • the wavelength dispersion element 142 is pressed and fixed to the base 141 by being pressed by the convex portion 145.
  • the pressing portion 143 presses the wavelength dispersion element 142 from the back surface 142b facing the main surface 142a toward the base 141. As a result, the main surface 142a is brought into contact with the base 141 (more specifically, the contact portion 220 of the base 141).
  • a groove portion 147 is formed on the base 141.
  • the adjusting screw 212 is fitted in the groove portion 147 and fixed to the base 141.
  • a coil spring (not shown) may be arranged in the groove portion 147 so as to surround the circumference of the adjusting screw 212.
  • the pressing portion 143 may be supported so as not to come off from the base 141 by being sandwiched between the adjusting screw 212 and the coil spring.
  • the base 141 is formed with two groove portions 147.
  • an adjusting screw 212 and a coil spring (not shown) are arranged in each of the two groove portions 147.
  • the adjusting screw 212 and the coil spring arranged in each of the two groove portions 147 support the pressing portion 143, respectively.
  • the wavelength dispersion element 142 is pressed from above by the convex portions 145 of the two pressing portions 143 and fixed to the base 141. By adjusting the degree of fastening of the adjusting screw 212, the pressing force of the pressing portion 143 fixed to the adjusting screw 212 on the wavelength dispersion element 142 is adjusted.
  • the wave matching portion 140 included in the semiconductor laser device 100 is pressed toward the base 141 by a leaf spring (pressing portion 143) from the back surfaces 142b at both ends of the wavelength dispersion element 142 in the vertical direction, and the wavelength dispersion element 142. Is fixed. Further, the combiner portion 140 has a configuration in which the pressing force on the wavelength dispersion element 142 can be changed by rotating the adjusting screw (adjusting screw 212) that supports the other end of the leaf spring.
  • FIG. 4 is a perspective view showing a manufacturing process of the semiconductor element unit 120.
  • the semiconductor light emitting element 121 As shown in FIG. 4A, first, the semiconductor light emitting element 121, the submount 122, and the first base block 123 are prepared.
  • the semiconductor light emitting element 121 is a light source that emits light in the semiconductor element unit 120. Further, light resonance is generated between the partial reflection mirror 150 and the semiconductor light emitting element 121.
  • the semiconductor light emitting element 121 has one light emitting point and emits light from one place.
  • the material used for the semiconductor light emitting device 121 is not particularly limited.
  • the semiconductor light emitting element 121 is mounted on the submount 122.
  • the submount 122 is a member on which the semiconductor light emitting element 121 is mounted and is mounted on the first base block 123.
  • the submount 122 plays a role of enhancing the heat dissipation of the semiconductor light emitting element 121. Further, the submount 122 suppresses the semiconductor light emitting element 121 from being destroyed due to the difference in the coefficient of thermal expansion between the semiconductor light emitting element 121 and the first base block 123.
  • the material used for the submount 122 is not particularly limited.
  • the material used for the submount 122 is, for example, a ceramic material or the like.
  • the first base block 123 is a block on which the submount 122 on which the semiconductor light emitting element 121 is mounted is mounted.
  • the first base block 123 is placed on the main surface 111 of the base 110.
  • the first base block 123 is formed with holes 200, 201, 202, 203 on the upper surface into which screws for fixing the second base block 125, which will be described later, are fitted to the first base block 123.
  • the insulating sheet 124 is arranged on the upper surface of the first base block.
  • the insulating sheet 124 is a sheet that electrically insulates the first base block 123 and the second base block 125 when the second base block 125 is arranged on the first base block 123.
  • the insulating sheet 124 may have any electrical insulating property, and any material may be used.
  • the insulating sheet 124 is formed with through holes in accordance with the positions of the holes 200, 201, 202, and 203.
  • the second base block 125 is arranged on the first base block 123. Specifically, the second base block 125 is arranged on the first base block 123 via the insulating sheet 124 so as to sandwich the insulating sheet 124 together with the first base block 123.
  • the second base block 125 is a block that is placed on the first base block 123 via the insulating sheet 124. Through holes are formed in the second base block 125 in accordance with the positions of the holes 200, 201, 202, and 203. For example, screws 210 and 211 are arranged in the through hole. The first base block 123 and the second base block 125 are fixed by screws 210 and 211.
  • the first base block 123 and the second base block 125 are formed of, for example, a metal material, a ceramic material, or the like.
  • the optical unit 160 is fixed to the side surface of the second base block 125.
  • the optical unit 160 is an optical system that controls the light distribution of the light emitted from the semiconductor light emitting element 121.
  • the optical unit 160 is arranged at a position in the semiconductor element unit 120 where the light emitted by the semiconductor light emitting element 121 is irradiated.
  • FIG. 5 is an exploded perspective view showing the optical unit 160.
  • the optical unit 160 includes an optical holder 161, a 90 ° image rotation optical system 162, and a speed axis collimator lens 163.
  • the optical holder 161 is a member for fixing the 90 ° image rotation optical system 162 and the speed axis collimator lens 163 to the light emitting side of the semiconductor light emitting element 121.
  • the optical holder 161 is partially fixed to the second base block 125, and the other part is fixed to the 90 ° image rotation optical system 162.
  • the material used for the optical holder 161 is, for example, glass, metal material, or the like.
  • the plurality of semiconductor light emitting elements 121 that emit light and the light emitted from each of the plurality of semiconductor light emitting elements 121 pass through one optical path.
  • the wavelength dispersion element 142 that emits light as described above, a base 141 that supports the wavelength dispersion element 142, and a pressing portion 143 that fixes the wavelength dispersion element 142 to the base 141 by pressing the wavelength dispersion element 142 are provided.
  • the pressing portion 143 presses the wavelength dispersion element 142 in a direction perpendicular to the surface on which the wavelength dispersion element 142 is provided. That is, the pressing portion 143 presses the wavelength dispersion element 142 in the thickness direction of the wavelength dispersion element 142.
  • the semiconductor laser apparatus 100 collimates the speed axis directions of the three semiconductor light emitting elements 121 that emit light and the light emitted from each of the three semiconductor light emitting elements 121, and each emits light.
  • the wavelength dispersion element 142 which transmits a plurality of lights emitted from each of the three fast-axis collimator lenses 163 and the three fast-axis collimator lenses 163 and emits the plurality of lights so as to pass through one optical path.
  • an external collimator 400 having a partial reflection mirror 150 that transmits a part of the light emitted from the wavelength dispersion element 142 and reflects the other part.
  • the wavelength dispersion element 142 needs to be provided with a groove in which a plurality of lights are combined with high accuracy in size and shape.
  • the groove provided in the wavelength dispersion element 142 may be distorted from a desired shape due to a manufacturing error, heat generation due to irradiation with light, or the like. Therefore, in the semiconductor laser device 100, the pressing portion 143 presses and fixes the wavelength dispersion element 142. According to this, the pressing portion 143 can appropriately distort the wavelength dispersion element 142 by pressing an appropriate position. In other words, the pressing portion 143 presses the wavelength dispersion element 142 at an appropriate position, so that the wavelength dispersion element 142 distorted into an unintended shape can be formed into a desired shape.
  • the pressing portion 143 may press an appropriate position of the wavelength dispersion element 142 to support the wavelength dispersion element 142, which may be distorted into an unintended shape due to heat or the like, so as to maintain a desired shape. it can.
  • the semiconductor laser device 100 for example, when the semiconductor laser device 100 is adopted as a light source that resonates externally, the influence of the wavelength dispersion element 142 on the combined wave of a plurality of lights can be suppressed, so that the semiconductor laser It is possible to suppress the occurrence of unintended resonance between the device 100 and the resonator.
  • the pressing portion 143 when viewed from the thickness direction of the wavelength dispersion element 142, the light emitted from each of the plurality of semiconductor light emitting elements 121 is superimposed on the main surface 142a of the wavelength dispersion element 142.
  • the wavelength dispersion element 142 is pressed in the thickness direction of the wavelength dispersion element 142 at a position symmetrical with respect to the center of the formed light spot 300.
  • the pressing portion 143 presses the wavelength dispersion element 142 at a position symmetrical with respect to the center of the light spot 300. Therefore, the pressing portion 143 slightly distorts the wavelength dispersion element 142 (more specifically, the shape of the groove formed on the main surface 142a of the wavelength dispersion element 142), that is, the main surface 142a of the wavelength dispersion element 142a. Even when the pitches of the plurality of grooves formed in the above are deviated from a desired pitch, the pitches of the plurality of grooves are deviated symmetrically with respect to the light spot 300.
  • the pressing portion 143 presses the wavelength dispersion element 142 from the back surface 142b facing the main surface 142a toward the base 141.
  • the main surface 142a of the wavelength dispersion element 142 is pressed against the base 141 (more specifically, the contact portion 220) by the pressing portion 143. Therefore, the heat generated by irradiating the main surface 142a with light easily escapes from the main surface 142a of the wavelength dispersion element 142 to the base 141. Therefore, the wavelength dispersion element 142 is less likely to be deteriorated by heat.
  • the pressing portion 143 is a long leaf spring, one end of which is fixed to the base 141 and the other end of which presses the wavelength dispersion element 142.
  • the wavelength dispersion element 142 can be pressed by the pressing portion 143 with an appropriate pressing force with a simple configuration.
  • the pressing portion 143 is a leaf spring
  • the wavelength is dispersed by the pressing portion 143 with a simple configuration by adjusting the degree of fastening of the adjusting screw 212 for fixing the other end of the leaf spring to the base 141.
  • the pressing force on the element 142 can be adjusted.
  • the semiconductor laser device 100 (more specifically, the external resonator 400) is further arranged between the plurality of semiconductor light emitting elements 121 and the wavelength dispersion element 142, and each of the plurality of semiconductor light emitting elements 121 is arranged.
  • the coupling optical system 130 is provided by superimposing the light emitted from the device on the wavelength dispersion element 142.
  • the coupling optical system 130 transmits a plurality of lights emitted from the speed axis collimator lens 163 between the speed axis collimator lens 163 and the wavelength dispersion element 142 into one light spot 300 by the wavelength dispersion element 142. Overlay so that
  • the light emitted from each of the plurality of semiconductor light emitting elements 121 can be collected by the coupling optical system 130, so that the distance between the plurality of semiconductor light emitting elements 121 and the wavelength dispersion element 142 can be shortened.
  • the light emitted from each of the plurality of semiconductor light emitting elements 121 can be easily converted into one light spot 300 by the wavelength dispersion element 142. Therefore, according to such a configuration, the semiconductor laser device 100 can be miniaturized.
  • the semiconductor laser device 100 (more specifically, the external cavity 400) further collimates the speed axis directions of the light emitted from each of the plurality of semiconductor light emitting elements 121, respectively.
  • the semiconductor laser apparatus 100 includes three speed axis collimator lenses 163 so as to have a one-to-one correspondence with each of the three semiconductor light emitting elements 121.
  • the light in the fast axis direction has a larger radiation angle (spread angle) than the light in the slow axis direction. Therefore, by providing the fast-axis collimator lens 163, it is possible to suppress the spread of the light emitted from the semiconductor light emitting element 121. As a result, the distance between the wavelength dispersion element 142 and the semiconductor light emitting element 121 can be widened. Therefore, the positions where the wavelength dispersion element 142 and the semiconductor light emitting element 121 are arranged can be made more free.
  • FIG. 6 is a cross-sectional view showing a wave junction 140a according to the first modification of the first embodiment.
  • the cross section shown in FIG. 6 is a cross section corresponding to the cross section shown in FIG. 3D.
  • the combine wave portion 140a includes a flow path 149. More specifically, the base 141a included in the merging unit 140a has a flow path 149 inside.
  • the flow path 149 is a through hole formed in the base 141a. Although not shown, the respective flow paths 149 formed in the upper part and the lower part of the base 141a are provided in communication with each other.
  • the flow path 149 penetrates the inside of the base 110a from the main surface 111a of the base 110a in which the confluence portion 140a is arranged, and communicates with the hole 340 provided in the lower part of the base 110a.
  • a cooling liquid or gas is introduced into the flow path 149 from the hole 340, whereby the base 141 is cooled. Therefore, the wavelength dispersion element 142 is cooled. Therefore, the wavelength dispersion element 142 is less likely to undergo deterioration such as deformation due to heat.
  • both ends of the flow path 149 penetrate the base 110a.
  • the cooling liquid and gas flowing in from the hole 340 communicating with the flow path 149 pass through the flow path 149 and flow out from a hole (not shown) at the other end of the flow path 149.
  • cooling liquid and gas may be arbitrary.
  • the cooling liquid and gas may be, for example, water or air.
  • the flow path 149 does not have to penetrate the base 110.
  • the flow path 149 may be connected to a hole provided in the upper part of the base 141a.
  • the cooling liquid or gas may flow in through the pores.
  • FIG. 7A is a perspective view showing the main surface 142a side of the wavelength dispersion element 142 included in the wave combining portion 140b according to the second modification of the first embodiment.
  • FIG. 7B is a rear view showing the merging portion 140b according to the second modification of the first embodiment.
  • FIG. 7C is a perspective view showing the back surface 142b side of the wavelength dispersion element 142 included in the wave matching portion 140b according to the second modification of the first embodiment.
  • FIG. 7D is a cross-sectional view showing a merging portion 140b according to the second modification of the first embodiment in the VIID-VIID line of FIG. 7B.
  • the pressing portion 143a included in the combine wave portion 140b fixes the wavelength dispersion element 142 to the base 141b by pressing the wavelength dispersion element 142 against the base 141b. Specifically, the pressing portion 143a fixes the wavelength dispersion element 142 to the base 141 by pressing the wavelength dispersion element 142 in the thickness direction of the wavelength dispersion element 142. In the present embodiment, the pressing portion 143a fixes the wavelength dispersion element 142 to the base 141a by pressing the wavelength dispersion element 142 from the back surface 142b to the base 141.
  • the pressing portion 143a is formed by superimposing the light emitted from each of the plurality of semiconductor light emitting elements 121 on the main surface 142a when viewed from the front (when viewed from the normal direction of the main surface 142a).
  • the wavelength dispersion element 142 is fixed to the base 141 by pressing the wavelength dispersion element 142 in the thickness direction of the wavelength dispersion element 142 at a position symmetrical with respect to the center of the light spot 300.
  • the pressing portion 143a uses the wavelength dispersion element 142 from two locations in the left-right direction (direction parallel to the XZ plane) that is symmetrical with respect to the light spot 300 when viewed from the front or the back. Press.
  • the light spot 300 is located at the center (substantially center) of the wavelength dispersion element 142 when viewed from the front or the back. Therefore, the pressing portion 143a places the wavelength dispersion element 142 at a position symmetrical (line-symmetrical or rotationally symmetric) with respect to the central portion of the wavelength dispersion element 142 when viewed from the front or the back, and the thickness of the wavelength dispersion element 142.
  • the wavelength dispersion element 142 is fixed to the base 141.
  • the pressing portion 143a is elongated in a direction parallel to the elongated direction of the wavelength dispersion element 142 when the wavelength dispersion element 142 is viewed from the rear.
  • One end of the pressing portion 143 is fixed to the base 141a by the adjusting screw 212, and the other end is formed with a convex portion 145 protruding from the surface of the flat plate-shaped pressing portion 143a toward the wavelength dispersion element 142. ..
  • the wavelength dispersion element 142 is pressed and fixed to the base 141b by being pressed by the convex portion 145.
  • One end of the pressing portion 143a is fixed to the base 141a by an adjusting screw 212 that fits into a groove portion (not shown) provided on the base 141a, similarly to the base 141.
  • FIG. 8A is a perspective view showing the main surface 142a side of the wavelength dispersion element 142 included in the merging unit 140c according to the third modification of the first embodiment.
  • FIG. 8B is a rear view showing the merging portion 140b according to the third modification of the first embodiment.
  • FIG. 8C is a perspective view showing the back surface 142b side of the wavelength dispersion element 142 included in the merging unit 140c according to the third modification of the first embodiment.
  • FIG. 8D is a cross-sectional view showing a merging portion 140c according to the third modification of the first embodiment on the VIIID-VIIID line of FIG. 8B.
  • the pressing portion 143b included in the combine wave portion 140c fixes the wavelength dispersion element 142 to the base 141c by pressing the wavelength dispersion element 142 against the base 141c. Specifically, the pressing portion 143b fixes the wavelength dispersion element 142 to the base 141c by pressing the wavelength dispersion element 142 in the thickness direction of the wavelength dispersion element 142. In the present embodiment, the pressing portion 143a fixes the wavelength dispersion element 142 to the base 141 by pressing the wavelength dispersion element 142 from the back surface 142b to the base 141.
  • the pressing portion 143b is formed by superimposing the light emitted from each of the plurality of semiconductor light emitting elements 121 on the main surface 142a when viewed from the front (when viewed from the normal direction of the main surface 142a).
  • the wavelength dispersion element 142 is fixed to the base 141 by pressing the wavelength dispersion element 142 in the thickness direction of the wavelength dispersion element 142 at a position symmetrical with respect to the center of the light spot 300.
  • the pressing portion 143b presses the wavelength dispersion element 142 from four corners of the wavelength dispersion element 142 that is symmetrical with respect to the light spot 300 when viewed from the front or the back.
  • the light spot 300 is located at the center (substantially center) of the wavelength dispersion element 142 when viewed from the front or the back. Therefore, the pressing portion 143b places the wavelength dispersion element 142 in the thickness direction of the wavelength dispersion element 142 at a position that is symmetrical (twice rotational symmetry) with respect to the central portion of the wavelength dispersion element 142 when viewed from the front or the back.
  • the wavelength dispersion element 142 is fixed to the base 141 by pressing against.
  • One end of the pressing portion 143b is fixed to the base 141 by the adjusting screw 212, and the other end is formed with a convex portion 145 protruding from the surface of the flat plate-shaped pressing portion 143b toward the wavelength dispersion element 142. ..
  • the wavelength dispersion element 142 is pressed and fixed to the base 141c by being pressed by the convex portion 145.
  • One end of the pressing portion 143b is fixed to the base 141c by an adjusting screw 212 that fits into a groove portion (not shown) provided on the base 141c, similarly to the base 141.
  • the position where the pressing portion 143 presses the wavelength dispersion element 142 may be a position symmetrical with respect to the light spot 300.
  • symmetry with respect to the light spot 300 means symmetry with respect to the center of the light spot 300 when viewed from the normal direction of the main surface 142a in which a plurality of grooves are formed.
  • symmetry with respect to the light spot 300 means that the plurality of grooves pass through the center of the light spot 300 and extend in the direction when viewed from the normal direction of the main surface 142a in which the plurality of grooves are formed. It may be symmetrical with respect to parallel directions. Further, for example, symmetrical with respect to the light spot 300, when viewed from the normal direction of the main surface 142a in which the plurality of grooves are formed, the plurality of grooves extend through the center of the light spot 300.
  • symmetry with respect to the light spot 300 may be n-fold rotational symmetry (n is a positive even number) when viewed from the normal direction of the main surface 142a in which a plurality of grooves are formed.
  • FIG. 9 is a perspective view showing the semiconductor laser device 100d according to the second embodiment.
  • FIG. 10 is a schematic diagram for explaining the resonance of light in the semiconductor laser device 100d according to the second embodiment.
  • the semiconductor laser device 100d includes a base 110, a plurality of semiconductor element units 120, a coupling optical system 130, a combiner unit 140d, and a partial reflection mirror 150.
  • the external cavity 400d included in the semiconductor laser device 100d according to the second embodiment includes a speed axis collimator lens 163, a 90 ° image rotation optical system 162, a coupling optical system 130, a partial reflection mirror 150, and a combiner 140d. It is composed of the wavelength dispersion element 142 provided in the above.
  • the semiconductor laser device 100d according to the second embodiment has a different configuration of the wave combining portion 140d from the semiconductor laser device 100 according to the first embodiment.
  • the wavelength dispersion element 142 included in the combiner unit 140 according to the first embodiment is a so-called transmissive type that transmits light.
  • the wavelength dispersion element (diffraction grating) 230 included in the wave combination unit 140d according to the second embodiment is a so-called reflection type that reflects light.
  • FIG. 11A is a perspective view showing the main surface 230a side of the confluence portion 140d included in the semiconductor laser device 100d according to the second embodiment.
  • FIG. 11B is a front view showing a wave-matching unit 140d included in the semiconductor laser device 100d according to the second embodiment.
  • FIG. 11C is a cross-sectional view showing a combined wave portion 140d included in the semiconductor laser apparatus 100d according to the second embodiment on the XID-XID line of FIG. 11B.
  • the combiner unit 140d includes a base 141d, a wavelength dispersion element 230, a pressing unit 143c, and an adjusting screw 212.
  • the base 141d is a base on which the wavelength dispersion element 230 is placed.
  • the base 141d is formed with a recess 241 recessed in the thickness direction.
  • the wavelength dispersion element 142 is arranged in the recess 241.
  • the wavelength dispersion element 230 has a plate shape, and a plurality of irregularities extending in the first direction are formed on the main surface 230a of the wavelength dispersion element 230, in other words, a plurality of grooves extending in the first direction are formed. It is a diffraction grating (optical element).
  • the wavelength dispersion element 230 has light reflectivity.
  • a reflective film such as silver or aluminum having light reflectivity is formed on the surface of a plurality of grooves formed in the wavelength dispersion element 230.
  • the reflective film is formed on the main surface 230a, for example, so as to follow the uneven shape formed on the main surface 230a.
  • the wavelength dispersion element 230 may be made of a material having light reflectivity.
  • the material used for the wavelength dispersion element 230 or the reflective film formed on the wavelength dispersion element 230 is not particularly limited as long as it has light reflectivity.
  • the material used for the wavelength dispersion element 230 or the reflective film formed on the wavelength dispersion element 230 is, for example, silver or aluminum.
  • the pressing portion 143c is a member that fixes the wavelength dispersion element 230 to the base 141d by pressing the wavelength dispersion element 230 against the base 141d.
  • the pressing portion 143c is, for example, a long leaf spring, one end of which is fixed to the base 141d and the other end of which presses the wavelength dispersion element 230.
  • the pressing portion 143c presses the wavelength dispersion element 230 from the main surface 230a of the wavelength dispersion element 230 toward the base 141d.
  • the pressing portion 143c is formed of a material having high thermal conductivity such as metal, the heat generated by irradiating the main surface 230a with light is the wavelength dispersion element 230. It becomes easy to escape from the main surface 230a of the above to the pressing portion 143c. Therefore, the wavelength dispersion element 230 is less likely to be deteriorated by heat.
  • FIG. 12 is a cross-sectional view showing a wave junction 140e according to a modified example of the second embodiment.
  • the cross section shown in FIG. 12 is a cross section corresponding to the cross section shown in FIG. 11C.
  • the combine wave portion 140e includes a flow path 149a. More specifically, the base 141e included in the combine unit 140e has a flow path 149a inside.
  • the flow path 149a is a through hole formed in the base 141e.
  • the flow path 149a penetrates the base 110a and communicates with the hole 340a provided in the lower part of the base 110a.
  • a cooling liquid or gas is introduced into the flow path 149a from the hole 340a, whereby the base 141e is cooled. Therefore, the wavelength dispersion element 230 is cooled. Therefore, the wavelength dispersion element 230 is less likely to undergo deterioration such as deformation due to heat.
  • both ends of the flow path 149a penetrate the base 110a.
  • the cooling liquid and gas flowing in from the hole 340a communicating with one end of the flow path 149a pass through the flow path 149a and flow out from the other end of the flow path 149a, which is not shown.
  • FIG. 13 is a perspective view showing the semiconductor laser device 100f according to the third embodiment.
  • the semiconductor laser device 100f includes a base 110, one semiconductor element unit 120a, a coupling optical system 130, a wave junction 140, and a partial reflection mirror 150.
  • the semiconductor laser device 100f according to the third embodiment has a different configuration of the semiconductor element unit 120a from the semiconductor laser device 100 according to the first embodiment.
  • FIG. 14 is a perspective view showing an amplification unit 121a included in the semiconductor laser device 100f according to the third embodiment.
  • a plurality of amplification units 121a semiconductor light emitting element array 190
  • a speed axis collimator lens 163 among the constituent elements included in the semiconductor element unit 120a
  • a speed axis collimator lens 163 among the constituent elements included in the semiconductor element unit 120a
  • a speed axis collimator lens 163 among the constituent elements included in the semiconductor element unit 120a
  • 90 ° Image rotation optical systems 162a 90
  • ° Image rotation optical system array 170 is shown, and other components are not shown.
  • the speed axis collimator lens 163 and the 90 ° image rotation optical system array 170 are arranged apart from each other, but they may be in contact with each other.
  • FIG. 15 is a schematic diagram for explaining the resonance of light in the semiconductor laser device 100f according to the third embodiment.
  • the semiconductor light emitting element 121 becomes the semiconductor light emitting element array 190
  • the 90 ° image rotating optical system 162 becomes the 90 ° image rotating optical system array 170. ..
  • the other components have the same configuration as the semiconductor element unit 120 shown in FIG. 4, for example.
  • the semiconductor light emitting device array 190 is a semiconductor light emitting device having a plurality of amplification units 121a.
  • the semiconductor light emitting device array 190 emits light from each of the plurality of amplification units 121a toward the speed axis collimator lens 163. In other words, the semiconductor light emitting device array 190 emits a plurality of lights toward the fast axis collimator lens 163.
  • the semiconductor laser device according to the present disclosure may be provided with a plurality of amplification units that emit light.
  • a plurality of amplification units are realized by the plurality of semiconductor light emitting elements 121.
  • a plurality of amplification units 121a may be realized by the semiconductor light emitting device array 190.
  • the semiconductor laser device according to the present disclosure may have one or more speed axis collimator lenses 163, and may be provided with one speed axis collimator lens 163 for one amplification unit, or may have a plurality of speed axis collimator lenses 163.
  • One speed axis collimator lens may be provided for the amplification unit.
  • the 90 ° image rotation optical system array 170 is an array lens including a plurality of 90 ° image rotation optical systems 162a. Specifically, the 90 ° image rotation optical system array 170 includes the same number of 90 ° image rotation optical systems 162a as the amplification units 121a.
  • the 90 ° image rotating optical system array 170 is arranged between the speed axis collimator lens 163 and the wavelength dispersion element 142, similarly to the 90 ° image rotating optical system 162 shown in FIG.
  • the 90 ° image rotation optical system array 170 includes a plurality of 90 ° image rotation optical systems 162a at the same pitch as the plurality of amplification units 121a.
  • the 90 ° image rotating optical system array 170 includes a plurality of 90 ° image rotating optical systems 162a at a pitch equal to the light emitting points 330 of the plurality of amplification units 121a. That is, as shown in FIG. 15, the external resonator 400f is emitted from the fast-axis collimator lens 163, which is arranged between the fast-axis collimator lens 163 and the wavelength dispersion element 142 at the same pitch as the plurality of amplification units 121a.
  • a 90 ° image rotation optical system array 170 having a plurality of 90 ° image rotation optical systems 162a that switch the fast axis direction and the slow axis direction of the light is provided.
  • the pitch of the plurality of 90 ° image rotating optical systems 162a is the distance between the centers of the plurality of 90 ° image rotating optical systems 162a.
  • the center is, for example, the center in the top view of the 90 ° image rotation optical system 162a, or the 90 ° image rotation optical system array 170 from the normal direction of the light emitting surface of the 90 ° image rotation optical system array 170. It is the center of the 90 ° image rotation optical system 162a when viewed.
  • the semiconductor laser device 100f is, for example, a semiconductor light emitting device array having a plurality of amplification units 121a instead of the plurality of semiconductor light emitting devices 121 in the configuration of the semiconductor laser device 100. It is equipped with 190.
  • the relative positions of the plurality of amplification units 121a do not change as compared with the case where the positions of the plurality of semiconductor light emitting elements 121 are adjusted (optical adjustment), so that the optical adjustment becomes simple.
  • the semiconductor laser device 100f (more specifically, the external cavity 400f) according to the third embodiment further has a plurality of amplification units 121a between the speed axis collimator lens 163 and the wavelength dispersion element 142.
  • a 90 ° image rotating optical system array 170 having a plurality of 90 ° image rotating optical systems 162a at the same pitch as.
  • the surface of the wavelength dispersion element on the side where the light from the amplification unit is incident is the main surface, and a plurality of grooves are formed on the main surface.
  • the surface on the side opposite to the surface on which the light from the amplification unit is incident may be the main surface.
  • the semiconductor laser apparatus of the present disclosure is used, for example, as a light source of a processing apparatus used for laser processing.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)

Abstract

半導体レーザ装置(100)は、光を出射する複数の半導体発光素子(121)と、当該複数の半導体発光素子(121)のそれぞれから出射された光が1つの光路を通過するように出射する波長分散素子(回折格子)(142)と、波長分散素子(142)を支持する基台(141)と、波長分散素子(142)を押圧することで基台(141)に波長分散素子(142)を固定する押圧部(143)と、を備える。押圧部(143)は、波長分散素子(142)が設けられた面に垂直な方向に波長分散素子(142)を押圧する。

Description

半導体レーザ装置
 本開示は、半導体レーザ装置に関する。
 従来、半導体発光素子の外部で共振させる外部共振器型の半導体レーザ装置がある(例えば、特許文献1参照)。
 特許文献1に開示されている従来の半導体レーザ装置は、第1の半導体発光素子と、第2の半導体発光素子と、波長分散素子と、部分反射ミラーと、を備える。
 第1の半導体発光素子の第1の発光点、及び、第2の半導体発光素子の第2の発光点それぞれから出射された光は、波長分散素子の波長分散効果により、1つのビームに重畳されて部分反射ミラーに照射される。
 部分反射ミラーに照射された光は、一部が透過して、正規発振出力ビーム(レーザ光)として部分反射ミラーから出射される。また、残りの一部は、部分反射ミラーで反射される。
 部分反射ミラーで反射された光は、第1の発光点及び第2の発光点から部分反射ミラーへ向かう光と同じ光路で逆向きに伝播して、第1の発光点及び第2の発光点に戻る。これにより、第1の半導体発光素子及び第2の半導体発光素子と、部分反射ミラーとの間で、波長分散素子(言い換えると、回折格子)を介して外部レーザ共振器(外部共振器)が形成される。
 部分反射ミラーを透過して出射されるレーザ光は、第1の発光点及び第2の発光点からの2つの光が波長分散素子によって重畳されて1つの光路を通過するレーザ光である。そのため、従来の半導体レーザ装置は、半導体発光素子が1つの場合と比べて、第1の半導体発光素子及び第2の半導体発光素子によって、輝度を約2倍にできる。
特許第6289640号公報 特開2000-137139号公報
 外部共振器が形成されている状態(つまり、光の共振が発生している状態)では、部分反射ミラーと波長分散素子との間で1つの光路上で正規発振出力ビームが共振するように、第1の発光点及び第2の発光点から出射されるそれぞれの光の波長が自動的に決定される。
 ここで、波長分散素子を用いて2つの光を合波させる(つまり、2つの光を1つの光路上を通過するようにさせる)場合、波長分散素子に形成された複数の溝のピッチが光の熱及び/又は外乱によってサブミクロンのオーダで変化すると、部分反射ミラーから半導体発光素子に帰還する光の波長は、大きくずれてしまう。当該光の波長がずれると、第1の半導体発光素子及び第2の半導体発光素子の間で相互にビームが入射及び出射する光路が形成されて、その光路で意図しない光の共振が発生する場合がある。
 これにより、レーザ光のASE(Amplified Spontaneous Emission)境域を越えてしまい、部分反射ミラーと半導体発光素子との間で意図している共振が発生しない、及び/又は、当該共振が不安定になる虞がある。また、このような場合、意図しない共振が発生することで、部分反射ミラーから出射されるレーザ光の光出力が低下する虞がある。
 本開示は、意図しない共振の発生を抑制できる半導体レーザ装置を提供する。
 本開示の一態様に係る半導体レーザ装置は、光を出射する複数の増幅部と、前記複数の増幅部のそれぞれから出射された光が1つの光路を通過するように出射する回折格子と、前記回折格子を支持する基台と、前記回折格子を押圧することで前記基台に前記回折格子を固定する押圧部と、を備え、前記押圧部は、前記回折格子が設けられた面に垂直な方向に前記回折格子を押圧する。
 本開示の一態様に係る半導体レーザ装置によれば、意図しない共振の発生を抑制できる。
図1は、実施の形態1に係る半導体レーザ装置を示す斜視図である。 図2は、実施の形態1に係る半導体レーザ装置における光の共振を説明するための概略図である。 図3Aは、実施の形態1に係る半導体レーザ装置が備える合波部の主面側を示す斜視図である。 図3Bは、実施の形態1に係る半導体レーザ装置が備える合波部を示す背面図である。 図3Cは、実施の形態1に係る半導体レーザ装置が備える合波部の背面側を示す斜視図である。 図3Dは、図3BのIIID-IIID線における、実施の形態1に係る半導体レーザ装置が備える合波部を示す断面図である。 図4は、実施の形態1に係る半導体レーザ装置が備える半導体素子ユニットの製造工程を示す斜視図である。 図5は、実施の形態1に係る半導体レーザ装置が備える光学ユニットを示す分解斜視図である。 図6は、実施の形態1の変形例1に係る合波部を示す断面図である。 図7Aは、実施の形態1の変形例2に係る合波部の主面側を示す斜視図である。 図7Bは、実施の形態1の変形例2に係る合波部を示す背面図である。 図7Cは、実施の形態1の変形例2に係る合波部の背面側を示す斜視図である。 図7Dは、図7BのVIID-VIID線における、実施の形態1の変形例2に係る合波部を示す断面図である。 図8Aは、実施の形態1の変形例3に係る合波部の主面側を示す斜視図である。 図8Bは、実施の形態1の変形例3に係る合波部を示す背面図である。 図8Cは、実施の形態1の変形例3に係る合波部の背面側を示す斜視図である。 図8Dは、図8BのVIIID-VIIID線における、実施の形態1の変形例3に係る合波部を示す断面図である。 図9は、実施の形態2に係る半導体レーザ装置を示す斜視図である。 図10は、実施の形態2に係る半導体レーザ装置における光の共振を説明するための概略図である。 図11Aは、実施の形態2に係る半導体レーザ装置が備える合波部の主面側を示す斜視図である。 図11Bは、実施の形態2に係る半導体レーザ装置が備える合波部を示す正面図である。 図11Cは、図11BのXID-XID線における、実施の形態2に係る半導体レーザ装置が備える合波部を示す断面図である。 図12は、実施の形態2の変形例に係る合波部を示す断面図である。 図13は、実施の形態3に係る半導体レーザ装置を示す斜視図である。 図14は、実施の形態3に係る半導体レーザ装置が備える増幅部を示す斜視図である。 図15は、実施の形態3に係る半導体レーザ装置における光の共振を説明するための概略図である。
 以下、図面を参照して、本開示の実施の形態を詳細に説明する。なお、以下で説明する実施の形態は、いずれも本開示の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序等は、一例であり、本開示を限定する主旨ではない。
 なお、各図は模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺等は必ずしも一致しない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、実質的に同一の構成に対する重複説明は省略又は簡略化する場合がある。
 また、以下の実施の形態において、「上方」及び「下方」という用語は、絶対的な空間認識における上方向(鉛直上方)及び下方向(鉛直下方)を指すものではない。また、「上方」及び「下方」という用語は、2つの構成要素が互いに間隔をあけて配置されて2つの構成要素の間に別の構成要素が存在する場合のみならず、2つの構成要素が互いに密着して配置されて2つの構成要素が接する場合にも適用される。
 また、本明細書及び図面において、X軸、Y軸及びZ軸は、三次元直交座標系の三軸を示している。各実施の形態では、Y軸方向を鉛直方向とし、Y軸に垂直な方向(XZ平面に平行な方向)を水平方向としている。
 また、以下で説明する実施の形態において、Y軸正方向を上方と記載し、Y軸負方向を下方と記載する場合がある。
 また、以下で説明する実施の形態において、「上面視」とは、ベースの主面の法線方向から当該主面を見たときのことをいう。
 (実施の形態1)
 [構成]
 <全体構成>
 図1は、実施の形態1に係る半導体レーザ装置100を示す概略斜視図である。図2は、実施の形態1に係る半導体レーザ装置100における光の共振を説明するための概略図である。
 半導体レーザ装置100は、外部共振器400を用いてレーザ光310を出射する外部共振器型のレーザ装置である。半導体レーザ装置100は、例えば、対象物をレーザ加工する加工機器の光源として利用される。
 半導体レーザ装置100は、ベース110と、複数の半導体素子ユニット120と、結合光学系130と、合波部140と、部分反射ミラー150と、を備える。
 ベース110は、半導体レーザ装置100が備える各種構成要素が載置される台である。具体的には、ベース110の主面111(ベース110の上面)には、半導体素子ユニット120と、結合光学系130と、合波部140と、部分反射ミラー150とが載置されている。
 なお、ベース110に採用される材料は、特に限定されない。ベース110に採用される材料は、例えば、金属材料でもよいし、樹脂材料でもよいし、セラミック材料でもよい。
 また、ベース110の形状は、特に限定されない。本実施の形態では、ベース110は、上面視で矩形である。また。半導体素子ユニット120が載置される部分は、他部よりもY軸正方向側に高くなっている。
 半導体素子ユニット120は、光を出射する半導体発光素子(増幅部)121を有する光源部である。複数の半導体素子ユニット120(具体的には、複数の半導体発光素子121)のそれぞれから出射された光は、速軸コリメータレンズ163、90°像回転光学系162、結合光学系130、及び、合波部140を介して、部分反射ミラー150に照射される。部分反射ミラー150に照射された光は、一部が透過して正規発振出力ビーム(レーザ光310)として部分反射ミラー150から出射され、他部が反射されて部分反射ミラー150から出射されて反射光320となる。
 部分反射ミラー150で反射された反射光320は、半導体素子ユニット120(具体的には、半導体発光素子121)から部分反射ミラー150へ向かう光と同じ光路で逆向きに伝播する。例えば、図2には、半導体発光素子121から部分反射ミラー150へ向かう光を実線の矢印で示し、部分反射ミラー150から半導体発光素子121へ向かう光を破線の矢印で示している。
 これにより、半導体発光素子121と、部分反射ミラー150との間で、結合光学系130、合波部140が有する波長分散素子(回折格子)142、90°像回転光学系162、及び、速軸コリメータレンズ163を介して、光の共振が発生する、言い換えると、外部レーザ共振器(外部共振器400)が形成される。共振された光は、レーザ光310として部分反射ミラー150から一部がレーザ光310として出射される。
 なお、半導体レーザ装置100が出射するレーザ光310の波長は、任意に設定されてよい。
 本実施の形態では、半導体レーザ装置100は、3つの半導体素子ユニット120を備える。3つの半導体素子ユニット120は、それぞれ、部分反射ミラー150との間で、結合光学系130、合波部140等を介して光を共振させる半導体発光素子121を1つずつ有する。
 また、半導体発光素子121は、外部共振器400との間で光の共振が発生されることにより、レーザ光を出射する。このとき、本実施の形態では、半導体発光素子121は、Y軸方向が速軸となるように、レーザ光を出射する。
 結合光学系130は、複数の半導体発光素子121と波長分散素子142との間に配置され、複数の半導体発光素子121のそれぞれから出射された光を波長分散素子142の主面142a(図3A参照)で重畳させる光学部材である。具体的には、結合光学系130は、3つの半導体素子ユニット120からそれぞれ出射された光を合波部140が有する波長分散素子142の主面142aの同じ位置に重畳させる。本実施の形態では、結合光学系130は、1つの凸レンズである。結合光学系130は、3つの半導体素子ユニット120からそれぞれ出射された光を波長分散素子142に集光させる。
 結合光学系130は、外部共振器400によって発生される、共振した光の光路上であって、複数の半導体発光素子121と波長分散素子142との間に配置されている。本実施の形態では、結合光学系130は、速軸コリメータレンズ163と波長分散素子142との間に配置されている。より具体的には、結合光学系130は、90°像回転光学系162と波長分散素子142との間に配置されている。
 なお、本実施の形態では、半導体レーザ装置100は、結合光学系130として1つの凸レンズを備えるが、半導体レーザ装置100が備える結合光学系130のレンズの形状、レンズの数等は、特に限定されない。
 合波部140は、結合光学系130から出射された互いに異なる光路を通過する光を1つの光路を通過するように合波して出射する波長分散素子142を有する光学部材である。合波部140は、主面142aに複数の溝が形成された波長分散素子142を有し、波長分散素子142によって、異なる方向から入射された、互いに波長が異なる光をそれぞれ異なる角度に屈折させて出射することで、それぞれが互いに異なる光路を通過する複数の光を1つの光路を通過するように合波して出射する。
 複数の半導体素子ユニット120と部分反射ミラー150との間で光の共振が発生されている状態では、部分反射ミラー150と合波部140との間では、1つの光路を光が通過して光の共振が発生されるように、複数の半導体素子ユニット120のそれぞれが出射する光の波長が自動的に決定される。また、複数の半導体素子ユニット120それぞれから出射される光は、それぞれ互いに異なる方向から合波部140(より具体的には、波長分散素子142)に入射されるために、複数の半導体素子ユニット120それぞれから出射される光の波長は、それぞれ互いに異なる波長となる。
 そのため、合波部140は、複数の半導体素子ユニット120のそれぞれから出射された光であって、互いに異なる方向から入射され、且つ、互いに波長が異なる光を、1つの光路を通過するように合波して出射する。
 部分反射ミラー150は、一部の光を透過して出射し、且つ、他部の光を反射して出射する光学部材である。具体的には、部分反射ミラー150は、合波部140で合波された光における総光出力の数%~数十%を反射させ、残りの数%~数十%を透過させる。
 なお、部分反射ミラー150の光反射率は、特に限定されない。例えば、部分反射ミラーの光反射率は、50%以上でもよいし、50%未満でもよい。
 本実施の形態では、図2に示すように、速軸コリメータレンズ163、90°像回転光学系162、波長分散素子142、及び、部分反射ミラー150によって、外部共振器400が形成されている。言い換えると、外部共振器400は、速軸コリメータレンズ163、90°像回転光学系162、波長分散素子142、及び、部分反射ミラー150を有する。
 90°像回転光学系162は、半導体発光素子121から出射された光のスポットを90°回転させる光学素子である。具体的には、90°像回転光学系162は、速軸コリメータレンズ163から出射された光の速軸方向と遅軸方向とを入れ替える。90°像回転光学系162は、例えば、BT(Beam Twister)である。90°像回転光学系162と速軸コリメータレンズ163とをあわせてBTU(Beam Twisted Lens Unit)ともいう。また、例えば、90°像回転光学系162は、特開2000-137139に開示されている光学的光束変換器でもよい。
 90°像回転光学系162は、光学ホルダ161に一部が固定されており、他の一部が速軸コリメータレンズ163に固定されている。
 速軸コリメータレンズ163は、複数の半導体発光素子121のそれぞれから出射された光の速軸方向をそれぞれコリメートするレンズである。
 半導体発光素子121から出射された光は、速軸コリメータレンズ163によって速軸方向に広がる光がコリメートされて平行光となり、さらに、90°像回転光学系162によって光のスポットが90°回転される。言い換えると、半導体発光素子121から出射された光は、90°像回転光学系162によって速軸と遅軸とが入れ替えられる。そのため、例えば、半導体発光素子121から出射された光は、光学ユニット160を通過することで、水平方向にコリメートされ、且つ、鉛直方向が遅軸方向となった光となる。
 <合波部>
 続いて、図3A~図3Dを参照しながら、合波部140の構成について、詳細に説明する。図3Aは、合波部140の主面142a側を示す斜視図である。図3Bは、合波部140を示す背面図である。図3Cは、合波部140の背面142b側を示す斜視図である。図3Dは、図3BのIIID-IIID線における合波部140を示す断面図である。
 なお、図3Bは、波長分散素子142における、半導体素子ユニット120から出射された光が入射される側の面の法線方向(言い換えると、波長分散素子142の厚み方向)から、合波部140を見た場合を示す図である。
 図3A~図3Dに示すように、合波部140は、基台141と、波長分散素子142と、押圧部143と、調整ねじ212と、を備える。
 基台141は、波長分散素子142が載置される台である。基台141は、波長分散素子142を任意の高さに固定する。基台141は、ベース110の主面111に載置され、ベース110に固定されている。本実施の形態では、基台141には、厚み方向に貫通する貫通孔240が形成されている。波長分散素子142は、貫通孔240に配置されている。
 また、貫通孔240は、半導体発光素子121からの光が照射される側と、当該光を透過して部分反射ミラー150へ出射する側とで径が異なる。本実施の形態では、半導体発光素子121からの光が照射される側の方が、当該光を透過して部分反射ミラー150へ出射する側よりも、貫通孔240の径が小さい。また、波長分散素子142は、半導体発光素子121からの光が照射される側の貫通孔240に配置されており、押圧部143によって基台141の当接部220に当接されることで、基台141に固定されている。
 また、基台141は、半導体発光素子121からの光が波長分散素子142の主面142aに照射される側の貫通孔240の周縁部に傾斜部148を有する。
 傾斜部148は、基台141bに形成された傾斜面である。傾斜部148は、例えば、波長分散素子142の主面142aの法線方向に対して上面視で傾斜している。波長分散素子142には、半導体発光素子121からの光が複数の向きから入射される。基台141が傾斜部148を有することで、波長分散素子142には、基台141に照射されることなく、主面142aの法線方向に対してより広い角度で半導体発光素子121からの光が照射され得る。
 なお、基台141は、接着剤等によりベース110に固定されていてもよいし、ベース110と一体的に形成されていてもよい。
 基台141に採用される材料は、特に限定されない。基台141に採用される材料は、例えば、金属材料でもよいし、セラミック材料でもよい。
 波長分散素子142は、波長分散素子142の主面142aに、第1方向に延在する凹凸が交互に複数形成された回折格子(光学素子)である。具体的には、波長分散素子142は、板状であり、主面142aに第1方向に延在する溝が第1方向に直交する方向に複数並んで設けられている。本実施の形態では、第1方向は、Y軸方向である。なお、第1方向は、任意に定められてよく、例えば、Y軸と交差する方向でもよい。
 波長分散素子142には、例えば、主面142aの中央部に複数の半導体素子ユニット120のそれぞれから出射された光が照射される。そのため、波長分散素子142の主面142aの中央部には、速軸コリメータレンズ163から出射された複数の光が重畳されることで形成された1つの光スポット300が位置する。波長分散素子142は、複数の半導体素子ユニット120のそれぞれから出射された光を合波して、1つの光路を通過するように、背面142bから部分反射ミラー150に向けて出射する。このように、波長分散素子142は、複数の光のそれぞれの光軸を揃えて出射する。
 なお、光スポット300では、速軸コリメータレンズ163から出射された複数の光の光軸が、波長分散素子142の主面142a(より具体的には、溝(凹凸)が形成された面)で重なっているとよい。また、光スポット300では、速軸コリメータレンズ163から出射された複数の光が完全に重畳している必要はなく、速軸コリメータレンズ163から出射された複数の光それぞれの少なくとも一部の光が重畳されていればよい。
 また、波長分散素子142は、部分反射ミラー150で反射された反射光320を、半導体素子ユニット120のそれぞれに向けて出射する。具体的には、波長分散素子142は、半導体素子ユニット120のそれぞれから出射された光の元の光路を通過するように、反射光320を分波して半導体素子ユニット120のそれぞれに向けて出射する。
 波長分散素子142に採用される材料は、特に限定されない。波長分散素子142は、例えば、樹脂材料、ガラス等で形成される。本実施の形態では、波長分散素子142は、透光性を有する材料で形成されている。
 また、波長分散素子142に形成される複数の溝のピッチは、特に限定されない。当該ピッチは、レーザ光310が所望の波長となるように、任意に形成されればよい。
 押圧部143は、基台141に波長分散素子142を押圧することで、波長分散素子142を基台141に固定する部材である。押圧部143は、波長分散素子142が設けられた面(つまり、複数の溝が形成された主面142a)に垂直な方向(本実施の形態では、主面142aの法線方向又は波長分散素子142の厚み方向ともいう)に波長分散素子142を押圧する。より具体的には、押圧部143は、波長分散素子142を波長分散素子142の厚み方向に押圧する。これにより、押圧部143は、波長分散素子142を基台141に固定する。押圧部143は、例えば、長尺状の板ばねであって、一端が基台141に固定され、他端が波長分散素子142を押圧する板ばねである。本実施の形態では、押圧部143は、波長分散素子142の背面142bを押圧する。
 ここで、押圧部143は、正面視した場合(主面142aの法線方向から見た場合)に、複数の半導体発光素子121のそれぞれから出射された光が主面142aで重畳されることで形成される光スポット300の中心に対して対称となる位置で波長分散素子142を当該波長分散素子142の厚み方向に押圧することで、波長分散素子142を基台141に固定する。本実施の形態では、押圧部143は、光スポット300に対して対称となる上方及び下方の2箇所から、つまり、光スポット300を通過し且つ主面142aに形成された溝が延在する方向に直交する面と背面142bとが交差する線に対称な位置で波長分散素子142を押圧する。本実施の形態では、光スポット300は、正面視又は背面視した場合に、波長分散素子142の中央部(略中心)に位置する。そのため、押圧部143は、正面視又は背面視した場合に、波長分散素子142の中央部に対して対称となる位置で波長分散素子142を当該波長分散素子142の厚み方向に押圧することで、波長分散素子142を基台141に固定する。
 押圧部143は、波長分散素子142を背面視した場合(波長分散素子142が半導体素子ユニット120からの光を出射する側から見た場合)、波長分散素子142の長尺な方向と直交する方向に長尺となっている。押圧部143は、一端が調整ねじ212によって基台141に固定されており、他端には平板状の押圧部143の面から波長分散素子142に向かって突出した凸部145が形成されている。波長分散素子142は、凸部145に押圧されることで、基台141に押圧されて固定されている。
 また、例えば、押圧部143は、主面142aに背向する背面142bから基台141に向けて波長分散素子142を押圧する。これにより、主面142aは、基台141(より具体的には、基台141の当接部220)に当接される。
 また、基台141には、溝部147が形成されている。調整ねじ212は、溝部147に嵌合されて基台141に固定されている。
 また、溝部147には、調整ねじ212の周囲を囲むように、図示しないコイルばねが配置されていてもよい。調整ねじ212とコイルばねとに挟まれることで、押圧部143は、基台141から外れないように支持されていてもよい。
 本実施の形態では、基台141には2つの溝部147が形成されている。2つの溝部147には、例えば、調整ねじ212と図示しないコイルばねとがそれぞれ配置されている。2つの溝部147のそれぞれに配置された調整ねじ212とコイルばねとは、それぞれ押圧部143を支持している。波長分散素子142は、2つの押圧部143のそれぞれの凸部145によって、上部から押圧されて基台141に固定されている。調整ねじ212の締結度合いを調整されることで、調整ねじ212に固定されている押圧部143による波長分散素子142への押圧力は、調整される。
 このように、半導体レーザ装置100が備える合波部140は、波長分散素子142の上下方向の両端の背面142bから板ばね(押圧部143)にて基台141側へ押圧して波長分散素子142を固定している。また、合波部140は、板ばねの他端を支持している調整ねじ(調整ねじ212)を回転させることにより、波長分散素子142への押圧力を変更可能な構成となっている。
 <半導体素子ユニット>
 続いて、図4及び図5を参照しながら、半導体素子ユニット120の構成について、詳細に説明する。
 図4は、半導体素子ユニット120の製造工程を示す斜視図である。
 図4の(a)に示すように、まず、半導体発光素子121と、サブマウント122と、第1ベースブロック123と、を準備する。
 半導体発光素子121は、半導体素子ユニット120における、光を出射する光源である。また、部分反射ミラー150と半導体発光素子121との間で、光の共振は、発生される。
 本実施の形態では、半導体発光素子121は、1つの発光点を有し、1箇所から光を出射する。
 また、半導体発光素子121に採用される材料は、特に限定されない。
 半導体発光素子121は、サブマウント122に載置されている。
 サブマウント122は、半導体発光素子121が載置され、第1ベースブロック123に載置される部材である。
 サブマウント122は、半導体発光素子121の放熱性を高める役割を担う。また、サブマウント122は、半導体発光素子121と第1ベースブロック123との熱膨張率の差により半導体発光素子121が破壊されることを抑制する。
 サブマウント122に採用される材料は、特に限定されない。サブマウント122に採用される材料は、例えば、セラミック材料等である。
 第1ベースブロック123は、半導体発光素子121が載置されたサブマウント122が載置されるブロックである。第1ベースブロック123は、ベース110の主面111に載置される。
 第1ベースブロック123には、後述する第2ベースブロック125を第1ベースブロック123に固定するためのねじが嵌合される孔200、201、202、203が上面に形成されている。
 次に、図4の(b)に示すように、第1ベースブロックの上面に、絶縁シート124を配置する。
 絶縁シート124は、第1ベースブロック123上に第2ベースブロック125を配置した際に、第1ベースブロック123と第2ベースブロック125とを電気的に絶縁するシートである。
 絶縁シート124は、電気的な絶縁性を有していればよく、任意の材料が採用されてよい。
 また、絶縁シート124には、孔200、201、202、203の位置に合わせて貫通孔が形成されている。
 次に、図4の(c)に示すように、第1ベースブロック123上に第2ベースブロック125を配置する。具体的には、第2ベースブロック125は、第1ベースブロック123とともに絶縁シート124を挟むように、絶縁シート124を介して第1ベースブロック123上に配置される。
 第2ベースブロック125は、第1ベースブロック123に絶縁シート124を介して載置されるブロックである。第2ベースブロック125には、孔200、201、202、203の位置に合わせて貫通孔が形成されている。当該貫通孔には、例えば、ねじ210、211が配置される。第1ベースブロック123と第2ベースブロック125とは、ねじ210、211によって固定されている。
 第1ベースブロック123及び第2ベースブロック125は、例えば、金属材料、セラミック材料等で形成される。
 次に、図4の(d)に示すように、第2ベースブロック125の側面に光学ユニット160を固定する。
 <光学ユニット>
 光学ユニット160は、半導体発光素子121から出射された光の配光を制御する光学系である。光学ユニット160は、半導体素子ユニット120における、半導体発光素子121が出射した光が照射される位置に配置される。
 図5は、光学ユニット160を示す分解斜視図である。
 光学ユニット160は、光学ホルダ161と、90°像回転光学系162と、速軸コリメータレンズ163と、を有する。
 光学ホルダ161は、90°像回転光学系162と速軸コリメータレンズ163とを半導体発光素子121の光出射側に固定するための部材である。本実施の形態では、光学ホルダ161は、第2ベースブロック125に一部が固定されており、且つ、90°像回転光学系162に他の一部が固定されている。
 光学ホルダ161に採用される材料は、例えば、ガラス、金属材料等である。
 [効果等]
 以上説明したように、実施の形態1に係る半導体レーザ装置100は、光を出射する複数の半導体発光素子121と、複数の半導体発光素子121のそれぞれから出射された光が1つの光路を通過するように出射する波長分散素子142と、波長分散素子142を支持する基台141と、波長分散素子142を押圧することで基台141に波長分散素子142を固定する押圧部143と、を備える。押圧部143は、波長分散素子142が設けられた面に垂直な方向に波長分散素子142を押圧する。つまり、押圧部143は、波長分散素子142の厚み方向に波長分散素子142を押圧する。
 本実施の形態では、半導体レーザ装置100は、光を出射する3つの半導体発光素子121と、3つの半導体発光素子121のそれぞれから出射された光の速軸方向をそれぞれコリメートしてそれぞれが光を出射する3つの速軸コリメータレンズ163、3つの速軸コリメータレンズ163のそれぞれから出射された複数の光を透過して当該複数の光が1つの光路を通過するように出射する波長分散素子142、及び、波長分散素子142から出射された光の一部を透過し、且つ、他部を反射する部分反射ミラー150を有する外部共振器400を備える。
 波長分散素子142は、複数の光を合波するために、寸法及び形状が精度のよく形成された溝が設けられる必要がある。ここで、波長分散素子142に設けられた溝は、製造誤差又は光が照射されることによる発熱等によって、所望の形状からゆがむことがある。そこで、半導体レーザ装置100では、押圧部143が、波長分散素子142を押圧して固定する。これによれば、押圧部143は、適切な位置を押圧することで、適切に波長分散素子142をゆがませることができる。言い換えると、押圧部143が波長分散素子142の適切な位置を押圧することで、意図しない形状にゆがんだ波長分散素子142を、所望の形状にすることができる。或いは、押圧部143が波長分散素子142の適切な位置を押圧することで、熱等により意図しない形状にゆがむ可能性のある波長分散素子142を、所望の形状を維持できるように支持することができる。これにより、半導体レーザ装置100によれば、例えば、半導体レーザ装置100が外部共振する光源として採用された場合に、波長分散素子142による複数の光の合波への影響を抑制できるため、半導体レーザ装置100と共振器との間での、意図しない共振の発生を抑制できる。
 また、例えば、押圧部143は、波長分散素子142の厚み方向から見た場合に、複数の半導体発光素子121のそれぞれから出射された光が波長分散素子142の主面142aで重畳されることで形成される光スポット300の中心に対して対称となる位置で波長分散素子142を波長分散素子142の厚み方向に押圧する。
 このような構成によれば、押圧部143は、光スポット300の中心に対して対称となる位置で波長分散素子142を押圧する。そのため、押圧部143によって波長分散素子142(より具体的には、波長分散素子142の主面142aに形成された溝の形状)がわずかにゆがんでしまう、つまり、波長分散素子142の主面142aに形成された複数の溝のピッチが所望のピッチからずれてしまう場合においても、光スポット300に対して対称に当該複数の溝のピッチがずれる。そのため、このような構成によれば、光スポット300に対して非対称に当該複数の溝のピッチがずれる場合と比較して、複数の光の合波への影響を抑制できる。これにより、半導体レーザ装置100によれば、意図しない共振の発生をさらに抑制できる。
 また、例えば、押圧部143は、主面142aに背向する背面142bから基台141に向けて波長分散素子142を押圧する。
 このような構成によれば、波長分散素子142の主面142aは、押圧部143によって基台141(より具体的には、当接部220)に押圧される。そのため、主面142aで光が照射されることにより発生した熱は、波長分散素子142の主面142aから基台141へ逃げやすくなる。そのため、波長分散素子142は、熱による劣化がしにくくなる。
 また、例えば、押圧部143は、長尺状の板ばねであって、一端が基台141に固定され、他端が波長分散素子142を押圧する板ばねである。
 このような構成によれば、簡便な構成で押圧部143によって適切な押圧力で波長分散素子142を押圧させることができる。また、例えば、押圧部143が板ばねである場合、板ばねの他端を基台141に固定するための調整ねじ212の締結度合いを調整することで、簡便な構成で押圧部143による波長分散素子142への押圧力を調整できる。
 また、例えば、半導体レーザ装置100(より具体的には、外部共振器400)は、さらに、複数の半導体発光素子121と波長分散素子142との間に配置され、複数の半導体発光素子121のそれぞれから出射された光を波長分散素子142で重畳させる結合光学系130を備える。本実施の形態では、結合光学系130は、速軸コリメータレンズ163と波長分散素子142との間に、速軸コリメータレンズ163から出射された複数の光を波長分散素子142で1つの光スポット300となるように重畳させる。
 このような構成によれば、例えば、結合光学系130によって複数の半導体発光素子121のそれぞれから出射された光を集光できるため、複数の半導体発光素子121と波長分散素子142との距離を近づけても、複数の半導体発光素子121のそれぞれから出射された光を波長分散素子142で1つの光スポット300にしやすくなる。そのため、このような構成によれば、半導体レーザ装置100は、小型化され得る。
 また、例えば、半導体レーザ装置100(より具体的には、外部共振器400)は、さらに、複数の半導体発光素子121のそれぞれから出射された光の速軸方向をそれぞれコリメートする速軸コリメータレンズ163を備える。本実施の形態では、半導体レーザ装置100は、3つの半導体発光素子121のそれぞれに一対一で対応するように、3つの速軸コリメータレンズ163を備える。
 速軸方向の光は、遅軸方向の光と比較して光の放射角度(広がり角)が大きい。そのため、速軸コリメータレンズ163が設けられることにより、半導体発光素子121から出射される光が広がることが抑制される。これにより、波長分散素子142と半導体発光素子121との距離を広く設けることができる。そのため、波長分散素子142及び半導体発光素子121を配置する位置を、より自由にすることができる。
 [変形例]
 続いて、実施の形態1の変形例について説明する。なお、以下で説明する変形例は、合波部以外の構成は実施の形態1に係る半導体レーザ装置100の構成と同様である。以下で説明する変形例においては、半導体レーザ装置100と実質的に同様の構成については、同様の符号を付し、説明を一部簡略化又は省略する場合がある。
 <変形例1>
 図6は、実施の形態1の変形例1に係る合波部140aを示す断面図である。なお、図6に示す断面は、図3Dに示す断面に対応する断面である。
 合波部140aは、流路149を備える。より具体的には、合波部140aが備える基台141aは、内部に流路149を有する。
 流路149は、基台141aに形成された貫通孔である。なお、図示しないが、基台141aの上部と下部とに形成されたそれぞれの流路149は、連通して設けられている。
 また、流路149は、合波部140aが配置されているベース110aの主面111aからベース110aの内部を貫通してベース110aの下部に設けられた孔340と連通している。例えば、流路149には、孔340から冷却用の液体又は気体が導入される、これにより、基台141が冷却される。そのため、波長分散素子142が冷却される。そのため、波長分散素子142は、熱による変形等の劣化を起こしにくくなる。
 なお、図示しないが、流路149の両端がベース110aを貫通している。これにより、例えば、流路149と連通している孔340から流入された冷却用の液体及び気体は、流路149を通過して流路149の他端である図示しない孔から流出される。
 また、冷却用の液体及び気体は、いずれも任意でよい。冷却用の液体及び気体は、例えば、水でもよいし、空気でもよい。
 また、流路149は、ベース110を貫通していなくてもよい。例えば、流路149は、基台141aの上部に設けられた孔と接続されていてもよい。冷却用の液体又は気体は、当該孔から流入されてもよい。
 <変形例2>
 図7Aは、実施の形態1の変形例2に係る合波部140bが備える波長分散素子142の主面142a側を示す斜視図である。図7Bは、実施の形態1の変形例2に係る合波部140bを示す背面図である。図7Cは、実施の形態1の変形例2に係る合波部140bが備える波長分散素子142の背面142b側を示す斜視図である。図7Dは、図7BのVIID-VIID線における、実施の形態1の変形例2に係る合波部140bを示す断面図である。
 合波部140bが備える押圧部143aは、基台141bに波長分散素子142を押圧することで、波長分散素子142を基台141bに固定する。具体的には、押圧部143aは、波長分散素子142を波長分散素子142の厚み方向に押圧することで、波長分散素子142を基台141に固定する。本実施の形態では、押圧部143aは、波長分散素子142を背面142bから基台141に押圧することで、波長分散素子142を基台141aに固定する。
 押圧部143aは、正面視した場合(主面142aの法線方向から見た場合)に、複数の半導体発光素子121のそれぞれから出射された光が主面142aで重畳されることで形成される光スポット300の中心に対して対称となる位置で波長分散素子142を当該波長分散素子142の厚み方向に押圧することで、波長分散素子142を基台141に固定する。
 ここで、本変形例では、押圧部143aは、正面視又は背面視した場合に光スポット300に対して対称となる左右方向(XZ平面に平行な方向)の2箇所から、波長分散素子142を押圧する。本変形例では、光スポット300は、正面視又は背面視した場合に、波長分散素子142の中央部(略中心)に位置する。そのため、押圧部143aは、正面視又は背面視した場合に、波長分散素子142の中央部に対して対称(線対称又は回転対称)となる位置で波長分散素子142を当該波長分散素子142の厚み方向に押圧することで、波長分散素子142を基台141に固定する。
 押圧部143aは、波長分散素子142を背面視した場合、波長分散素子142の長尺な方向と平行な方向に長尺となっている。押圧部143は、一端が調整ねじ212によって基台141aに固定されており、他端には平板状の押圧部143aの面から波長分散素子142に向かって突出した凸部145が形成されている。波長分散素子142は、凸部145に押圧されることで、基台141bに押圧されて固定されている。
 なお、押圧部143aは、基台141と同様に、基台141aに設けられた図示しない溝部に勘合する調整ねじ212によって一端が基台141aに固定されている。
 <変形例3>
 図8Aは、実施の形態1の変形例3に係る合波部140cが備える波長分散素子142の主面142a側を示す斜視図である。図8Bは、実施の形態1の変形例3に係る合波部140bを示す背面図である。図8Cは、実施の形態1の変形例3に係る合波部140cが備える波長分散素子142の背面142b側を示す斜視図である。図8Dは、図8BのVIIID-VIIID線における、実施の形態1の変形例3に係る合波部140cを示す断面図である。
 合波部140cが備える押圧部143bは、基台141cに波長分散素子142を押圧することで、波長分散素子142を基台141cに固定する。具体的には、押圧部143bは、波長分散素子142を波長分散素子142の厚み方向に押圧することで、波長分散素子142を基台141cに固定する。本実施の形態では、押圧部143aは、波長分散素子142を背面142bから基台141に押圧することで、波長分散素子142を基台141に固定する。
 押圧部143bは、正面視した場合(主面142aの法線方向から見た場合)に、複数の半導体発光素子121のそれぞれから出射された光が主面142aで重畳されることで形成される光スポット300の中心に対して対称となる位置で波長分散素子142を当該波長分散素子142の厚み方向に押圧することで、波長分散素子142を基台141に固定する。
 ここで、本変形例では、押圧部143bは、正面視又は背面視した場合に光スポット300に対して対称となる波長分散素子142の4角の4箇所から、波長分散素子142を押圧する。本変形例では、光スポット300は、正面視又は背面視した場合に、波長分散素子142の中央部(略中心)に位置する。そのため、押圧部143bは、正面視又は背面視した場合に、波長分散素子142の中央部に対して対称(2回回転対称)となる位置で波長分散素子142を当該波長分散素子142の厚み方向に押圧することで、波長分散素子142を基台141に固定する。
 押圧部143bは、一端が調整ねじ212によって基台141に固定されており、他端には平板状の押圧部143bの面から波長分散素子142に向かって突出した凸部145が形成されている。波長分散素子142は、凸部145に押圧されることで、基台141cに押圧されて固定されている。
 なお、押圧部143bは、基台141と同様に、基台141cに設けられた図示しない溝部に勘合する調整ねじ212によって一端が基台141cに固定されている。
 変形例2及び変形例3に示すように、押圧部143が波長分散素子142を押圧する位置は、光スポット300に対して対称となる位置であればよい。
 なお、光スポット300に対して対称とは、複数の溝が形成された主面142aの法線方向から見た場合に、光スポット300の中心に対して対称であることを示す。例えば、光スポット300に対して対称とは、複数の溝が形成された主面142aの法線方向から見た場合に、光スポット300の中心を通過し当該複数の溝が延在する方向に平行な方向に対して対称でもよい。また、例えば、光スポット300に対して対称とは、複数の溝が形成された主面142aの法線方向から見た場合に、光スポット300の中心を通過し当該複数の溝が延在する方向に平行な方向に対して対称でもよい。例えば、光スポット300に対して対称とは、複数の溝が形成された主面142aの法線方向から見た場合に、n回回転対称(nは、正の偶数)でもよい。
 (実施の形態2)
 続いて、実施の形態2に係る半導体レーザ装置について説明する。なお、以下で説明する実施の形態2は、合波部以外の構成は実施の形態1に係る半導体レーザ装置100の構成と同様である。以下で説明する実施の形態2においては、半導体レーザ装置100と実質的に同様の構成については、同様の符号を付し、説明を一部簡略化又は省略する場合がある。
 [構成]
 図9は、実施の形態2に係る半導体レーザ装置100dを示す斜視図である。図10は、実施の形態2に係る半導体レーザ装置100dにおける光の共振を説明するための概略図である。
 半導体レーザ装置100dは、ベース110と、複数の半導体素子ユニット120と、結合光学系130と、合波部140dと、部分反射ミラー150と、を備える。実施の形態2に係る半導体レーザ装置100dが備える外部共振器400dは、速軸コリメータレンズ163と、90°像回転光学系162と、結合光学系130と、部分反射ミラー150と、合波部140dが備える波長分散素子142と、から構成される。実施の形態2に係る半導体レーザ装置100dは、実施の形態1に係る半導体レーザ装置100と、合波部140dの構成が異なる。
 実施の形態1に係る合波部140が備える波長分散素子142は、光を透過するいわゆる透過型タイプである。実施の形態2に係る合波部140dが備える波長分散素子(回折格子)230は、光を反射するいわゆる反射型タイプである。
 図11Aは、実施の形態2に係る半導体レーザ装置100dが備える合波部140dの主面230a側を示す斜視図である。図11Bは、実施の形態2に係る半導体レーザ装置100dが備える合波部140dを示す正面図である。図11Cは、図11BのXID-XID線における、実施の形態2に係る半導体レーザ装置100dが備える合波部140dを示す断面図である。
 合波部140dは、基台141dと、波長分散素子230と、押圧部143cと、調整ねじ212と、を備える。
 基台141dは、波長分散素子230が載置される台である。本実施の形態では、基台141dには、厚み方向に凹んだ凹部241が形成されている。波長分散素子142は、凹部241に配置されている。
 波長分散素子230は、板状であり、波長分散素子230の主面230aに、第1方向に延在する凹凸が複数形成された、言い換えると、第1方向に延在する複数の溝が形成された回折格子(光学素子)である。本実施の形態では、波長分散素子230は、光反射性を有する。例えば、波長分散素子230に形成された複数の溝の表面には、光反射性を有する銀、アルミニウム等の反射膜が形成されている。当該反射膜は、例えば、主面230aに形成された凹凸形状に追従するように、主面230a上に形成されている。或いは、波長分散素子230が、光反射性を有する材料で形成されていてもよい。
 波長分散素子230、又は、波長分散素子230に形成される反射膜に用いられる材料は、光反射性を有していればよく、特に限定されない。波長分散素子230、又は、波長分散素子230に形成される反射膜に用いられる材料は、例えば、銀又はアルミニウム等である。
 押圧部143cは、基台141dに波長分散素子230を押圧することで、波長分散素子230を基台141dに固定する部材である。押圧部143cは、例えば、長尺状の板ばねであって、一端が基台141dに固定され、他端が波長分散素子230を押圧する板ばねである。本実施の形態では、押圧部143cは、波長分散素子230の主面230aから基台141dに向けて波長分散素子230を押圧する。
 このような構成によれば、例えば、押圧部143cが金属等の熱伝導性が高い材料によって形成されていれば、主面230aで光が照射されることにより発生した熱は、波長分散素子230の主面230aから押圧部143cへ逃げやすくなる。そのため、波長分散素子230は、熱による劣化がしにくくなる。
 [変形例]
 続いて、実施の形態2の変形例について説明する。なお、以下で説明する変形例は、合波部以外の構成は実施の形態2に係る半導体レーザ装置100dの構成と同様である。以下で説明する変形例においては、半導体レーザ装置100dと実質的に同様の構成については、同様の符号を付し、説明を一部簡略化又は省略する場合がある。
 図12は、実施の形態2の変形例に係る合波部140eを示す断面図である。なお、図12に示す断面は、図11Cに示す断面に対応する断面である。
 合波部140eは、流路149aを備える。より具体的には、合波部140eが備える基台141eは、内部に流路149aを有する。
 流路149aは、基台141eに形成された貫通孔である。
 また、流路149aは、ベース110aを貫通してベース110aの下部に設けられた孔340aと連通している。例えば、流路149aには、孔340aから冷却用の液体又は気体が導入される、これにより、基台141eが冷却される。そのため、波長分散素子230が冷却される。そのため、波長分散素子230は、熱による変形等の劣化を起こしにくくなる。
 なお、図示しないが、流路149aの両端がベース110aを貫通している。これにより、例えば、流路149aの一端と連通している孔340aから流入された冷却用の液体及び気体は、流路149aを通過して流路149aの他端である図示しない孔から流出される。
 (実施の形態3)
 続いて、実施の形態3に係る半導体レーザ装置について説明する。なお、実施の形態3に係る半導体レーザ装置の説明においては、実施の形態1に係る半導体レーザ装置との差異点を中心に説明する。実施の形態3に係る半導体レーザ装置の説明においては、実施の形態1に係る半導体レーザ装置と同様の構成について同様の符号を付し、説明を一部省略又は簡略化する場合がある。
 [構成]
 図13は、実施の形態3に係る半導体レーザ装置100fを示す斜視図である。
 半導体レーザ装置100fは、ベース110と、1つの半導体素子ユニット120aと、結合光学系130と、合波部140と、部分反射ミラー150と、を備える。実施の形態3に係る半導体レーザ装置100fは、実施の形態1に係る半導体レーザ装置100と、半導体素子ユニット120aの構成が異なる。
 図14は、実施の形態3に係る半導体レーザ装置100fが備える増幅部121aを示す斜視図である。なお、図14においては、半導体素子ユニット120aが備える構成要素のうちの複数の増幅部121a(半導体発光素子アレイ190)と、速軸コリメータレンズ163と、複数の90°像回転光学系162a(90°像回転光学系アレイ170)とを、示し、他の構成要素については図示を省略している。また、図14では、速軸コリメータレンズ163と90°像回転光学系アレイ170とを離間して配置しているが、接触していてもよい。図15は、実施の形態3に係る半導体レーザ装置100fにおける光の共振を説明するための概略図である。
 半導体素子ユニット120aでは、実施の形態1に係る半導体素子ユニット120から、半導体発光素子121が半導体発光素子アレイ190となり、90°像回転光学系162が90°像回転光学系アレイ170となっている。他の構成要素については、例えば、図4に示す半導体素子ユニット120と同様の構成となっている。
 半導体発光素子アレイ190は、複数の増幅部121aを有する半導体発光素子である。半導体発光素子アレイ190は、複数の増幅部121aのそれぞれから速軸コリメータレンズ163に向けて光を出射する。言い換えると、半導体発光素子アレイ190は、速軸コリメータレンズ163に向けて複数の光を出射する。
 このように、本開示に係る半導体レーザ装置は、光を出射する複数の増幅部を備えていればよく、例えば、図2に示すように複数の半導体発光素子121により複数の増幅部が実現されてもよいし、図14に示すように半導体発光素子アレイ190により複数の増幅部121aが実現されてもよい。また、本開示に係る半導体レーザ装置は、1以上の速軸コリメータレンズ163を有していればよく、1つの増幅部に対して1つの速軸コリメータレンズ163を備えてもよいし、複数の増幅部に対して1つの速軸コリメータレンズを備えてもよい。
 90°像回転光学系アレイ170は、90°像回転光学系162aを複数備えるアレイレンズである。具体的には、90°像回転光学系アレイ170は、90°像回転光学系162aを増幅部121aと同じ数だけ備える。
 90°像回転光学系アレイ170は、図2に示す90°像回転光学系162と同様に、速軸コリメータレンズ163と波長分散素子142との間に配置される。
 ここで、90°像回転光学系アレイ170は、複数の90°像回転光学系162aを、複数の増幅部121aと等しいピッチで備える。言い換えると、90°像回転光学系アレイ170は、複数の90°像回転光学系162aを、複数の増幅部121aの発光点330と等しいピッチで備える。つまり、外部共振器400fは、図15に示すように、速軸コリメータレンズ163と波長分散素子142との間に、複数の増幅部121aと等しいピッチで配列された、速軸コリメータレンズ163から出射された光の速軸方向と遅軸方向とを入れ替える複数の90°像回転光学系162aを有する90°像回転光学系アレイ170を備える。ここで、例えば、複数の90°像回転光学系162aのピッチとは、複数の90°像回転光学系162aの中心間距離である。ここで、中心とは、例えば、90°像回転光学系162aの上面視における中心、又は、90°像回転光学系アレイ170の光出射面の法線方向から90°像回転光学系アレイ170を見た場合における90°像回転光学系162aの中心である。
 [効果等]
 以上説明したように、実施の形態3に係る半導体レーザ装置100fは、例えば、半導体レーザ装置100の構成おいて、複数の半導体発光素子121の代わりに、複数の増幅部121aを有する半導体発光素子アレイ190を備える。
 このような構成によれば、複数の半導体発光素子121の位置調整(光学調整)をする場合と比較して、複数の増幅部121aの相対位置が変わらないために、光学調整が簡便になる。
 また、例えば、実施の形態3に係る半導体レーザ装置100f(より具体的には、外部共振器400f)は、さらに、速軸コリメータレンズ163と波長分散素子142との間に、複数の増幅部121aと等しいピッチで複数の90°像回転光学系162aを有する90°像回転光学系アレイ170を備える。
 複数の増幅部121aからは、互いに平行な光が出射される。そのため、90°像回転光学系アレイ170が複数の増幅部121aと等しいピッチで配列された、速軸コリメータレンズ163から出射された光の速軸方向と遅軸方向とを入れ替える複数の90°像回転光学系162aを有することで、複数の増幅部121aから出射される光をそれぞれ、簡便な調整で複数の90°像回転光学系162aそれぞれに入射させることができる。
 (その他の実施の形態)
 以上、本開示の実施の形態に係る半導体レーザ装置について、各実施の形態に基づいて説明したが、本開示は、これらの実施の形態に限定されるものではない。
 例えば、上記実施の形態では、波長分散素子における、増幅部からの光が入射される側の面を主面とし、当該主面に複数の溝が形成されるとして説明した。例えば、波長分散素子における、増幅部からの光が入射される側の面と反対側の面を主面としてもよい。
 その他、本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を各実施の形態に施したもの、又は、異なる実施の形態における構成要素を組み合わせて構築される形態も、一つ又は複数の態様の範囲内に含まれてもよい。
 本開示の半導体レーザ装置は、例えば、レーザ加工に用いられる加工装置の光源として利用される。
 100、100d、100f 半導体レーザ装置
 110、110a ベース
 111、111a、142a、230a 主面
 120、120a 半導体素子ユニット
 121 半導体発光素子(増幅部)
 121a 増幅部
 122 サブマウント
 123 第1ベースブロック
 124 絶縁シート
 125 第2ベースブロック
 130 結合光学系
 140、140a、140b、140c、140d、140e 合波部
 141、141a、141b、141c、141d、141e 基台
 142、230 波長分散素子(回折格子)
 142b 背面
 143、143a、143b、143c 押圧部
 145 凸部
 147 溝部
 148 傾斜部
 149、149a 流路
 150 部分反射ミラー
 160 光学ユニット
 161 光学ホルダ
 162、162a 90°像回転光学系
 163 速軸コリメータレンズ
 170 90°像回転光学系アレイ
 190 半導体発光素子アレイ
 200、201、202、203、340、340a 孔
 210、211 ねじ
 212 調整ねじ
 220 当接部
 240 貫通孔
 241 凹部
 300 光スポット
 310 レーザ光
 320 反射光
 330 発光点
 400、400d、400f 外部共振器

Claims (10)

  1.  光を出射する複数の増幅部と、
     前記複数の増幅部のそれぞれから出射された光が1つの光路を通過するように出射する回折格子と、
     前記回折格子を支持する基台と、
     前記回折格子を押圧することで前記基台に前記回折格子を固定する押圧部と、を備え、
     前記押圧部は、前記回折格子が設けられた面に垂直な方向に前記回折格子を押圧する
     半導体レーザ装置。
  2.  前記押圧部は、前記回折格子の厚み方向から見た場合に、前記複数の増幅部のそれぞれから出射された光が前記回折格子の主面で重畳されることで形成される光スポットの中心に対して対称となる位置で前記回折格子を当該回折格子の厚み方向に押圧する
     請求項1に記載の半導体レーザ装置。
  3.  前記押圧部は、前記主面から前記基台に向けて前記回折格子を押圧する
     請求項2に記載の半導体レーザ装置。
  4.  前記押圧部は、前記主面に背向する背面から前記基台に向けて前記回折格子を押圧する
     請求項2に記載の半導体レーザ装置。
  5.  前記押圧部は、長尺状の板ばねであって、一端が前記基台に固定され、他端が前記回折格子を押圧する板ばねである
     請求項1~4のいずれか1項に記載の半導体レーザ装置。
  6.  前記基台は、内部に流路を有する
     請求項1~5のいずれか1項に記載の半導体レーザ装置。
  7.  さらに、前記複数の増幅部と前記回折格子との間に配置され、前記複数の増幅部のそれぞれから出射された光を前記回折格子の主面で重畳させる結合光学系を備える
     請求項1~6のいずれか1項に記載の半導体レーザ装置。
  8.  前記複数の増幅部を有する半導体発光素子アレイを備える
     請求項1~7のいずれか1項に記載の半導体レーザ装置。
  9.  さらに、前記複数の増幅部のそれぞれから出射された光の速軸方向をそれぞれコリメートする速軸コリメータレンズを備える
     請求項1~8のいずれか1項に記載の半導体レーザ装置。
  10.  さらに、前記速軸コリメータレンズと前記回折格子との間に、前記複数の増幅部と等しいピッチで配列された、前記速軸コリメータレンズから出射された光の速軸方向と遅軸方向とを入れ替える複数の90°像回転光学系を有する90°像回転光学系アレイを備える
     請求項9に記載の半導体レーザ装置。
PCT/JP2020/034041 2019-09-13 2020-09-09 半導体レーザ装置 WO2021049509A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/633,305 US20220285916A1 (en) 2019-09-13 2020-09-09 Semiconductor laser device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019167197 2019-09-13
JP2019-167197 2019-09-13

Publications (1)

Publication Number Publication Date
WO2021049509A1 true WO2021049509A1 (ja) 2021-03-18

Family

ID=74865693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034041 WO2021049509A1 (ja) 2019-09-13 2020-09-09 半導体レーザ装置

Country Status (2)

Country Link
US (1) US20220285916A1 (ja)
WO (1) WO2021049509A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174221A (ja) * 2001-12-04 2003-06-20 Gigaphoton Inc グレーティング固定装置及び狭帯域化レーザ装置
JP2013168473A (ja) * 2012-02-15 2013-08-29 Gigaphoton Inc エキシマレーザおよびレーザ装置
WO2016013653A1 (ja) * 2014-07-25 2016-01-28 三菱電機株式会社 半導体レーザ装置
CN107147004A (zh) * 2017-07-06 2017-09-08 北京航空航天大学 一种外腔式半导体激光器结构
JP2019057620A (ja) * 2017-09-21 2019-04-11 日亜化学工業株式会社 波長ビーム結合装置
US20190214786A1 (en) * 2018-01-09 2019-07-11 Daylight Solutions, Inc. Laser assembly with spectral beam combining
JP2020145291A (ja) * 2019-03-05 2020-09-10 パナソニック株式会社 半導体レーザ装置の製造方法、及び、半導体レーザ装置
JP2020145355A (ja) * 2019-03-07 2020-09-10 パナソニック株式会社 半導体レーザ装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174221A (ja) * 2001-12-04 2003-06-20 Gigaphoton Inc グレーティング固定装置及び狭帯域化レーザ装置
JP2013168473A (ja) * 2012-02-15 2013-08-29 Gigaphoton Inc エキシマレーザおよびレーザ装置
WO2016013653A1 (ja) * 2014-07-25 2016-01-28 三菱電機株式会社 半導体レーザ装置
CN107147004A (zh) * 2017-07-06 2017-09-08 北京航空航天大学 一种外腔式半导体激光器结构
JP2019057620A (ja) * 2017-09-21 2019-04-11 日亜化学工業株式会社 波長ビーム結合装置
US20190214786A1 (en) * 2018-01-09 2019-07-11 Daylight Solutions, Inc. Laser assembly with spectral beam combining
JP2020145291A (ja) * 2019-03-05 2020-09-10 パナソニック株式会社 半導体レーザ装置の製造方法、及び、半導体レーザ装置
JP2020145355A (ja) * 2019-03-07 2020-09-10 パナソニック株式会社 半導体レーザ装置

Also Published As

Publication number Publication date
US20220285916A1 (en) 2022-09-08

Similar Documents

Publication Publication Date Title
US8427749B2 (en) Beam combining light source
CN107085288B (zh) 高亮度二极管输出方法和装置
US8437086B2 (en) Beam combining light source
US9157604B2 (en) Laser-based white light source
JP6178991B2 (ja) 光源ユニットおよびそれを用いた光源モジュール
JP2011520292A5 (ja)
KR101354322B1 (ko) 레이저 광원 장치
JP2022549941A (ja) レーザーパッケージおよびレーザーパッケージを備えたシステム
US7424044B2 (en) Semiconductor laser device
CN113922204A (zh) 一种激光器及投影设备
WO2021049509A1 (ja) 半導体レーザ装置
US20200028319A1 (en) Optical module
JP4024270B2 (ja) 半導体レーザ装置
JP2020145355A (ja) 半導体レーザ装置
JP2019211536A (ja) 照明装置の光源装置
JP4153130B2 (ja) レーザ装置
JP2020145291A (ja) 半導体レーザ装置の製造方法、及び、半導体レーザ装置
CN217545225U (zh) 一种多芯片封装的半导体激光器
CN114976876A (zh) 一种多芯片封装的半导体激光器
JP2012156233A (ja) 光源装置及びプロジェクター
CN111352288B (zh) 一种激光器、激光投影光源和激光投影设备
CN113448018A (zh) 光源装置、投影仪及机械加工装置
JP2021086862A (ja) マルチチップパッケージ、プロジェクター
WO2021157396A1 (ja) 半導体レーザ装置
JP2021064736A (ja) 半導体レーザ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20862740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20862740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP