WO2022059311A1 - ベンゾチオキサンテン化合物、樹脂粒子および蛍光免疫染色試薬 - Google Patents

ベンゾチオキサンテン化合物、樹脂粒子および蛍光免疫染色試薬 Download PDF

Info

Publication number
WO2022059311A1
WO2022059311A1 PCT/JP2021/026088 JP2021026088W WO2022059311A1 WO 2022059311 A1 WO2022059311 A1 WO 2022059311A1 JP 2021026088 W JP2021026088 W JP 2021026088W WO 2022059311 A1 WO2022059311 A1 WO 2022059311A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin particles
compound
benzothioxanthene
resin
group
Prior art date
Application number
PCT/JP2021/026088
Other languages
English (en)
French (fr)
Inventor
健作 高梨
理枝 櫻木
慎 中山
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2022059311A1 publication Critical patent/WO2022059311A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to benzothioxanthene compounds, resin particles and fluorescent immunostaining reagents.
  • green luminescent dye a dye having coumarin, rhodamine, fluorescein, and BODIPY as a skeleton is well known. These are green emission dyes having an excitation wavelength of 475 to 510 nm and an emission wavelength of 510 to 545 nm, and can be distinguished from red emission by being combined with a suitable fluorescence observation filter.
  • Patent Document 1 discloses a dye having a coumarin skeleton as a green luminescent dye.
  • the dye having the above skeleton is not particularly excellent in terms of light resistance. Therefore, when observing using a fluorescence microscope, the emission intensity gradually decreases when the dye is irradiated with excitation light.
  • the present invention has been made in view of the above circumstances, and provides a green luminescent dye having excellent light resistance, resin particles containing the green luminescent dye, and a fluorescent immunostaining reagent containing the resin particles. With the goal.
  • the benzothioxanthene compound according to the embodiment of the present invention has a structure represented by the following formula 1, and has an excitation wavelength of 475 to 510 nm and an emission wavelength of 510 to 545 nm.
  • R 1 is independently an H, an alkyl group or an ether group, respectively.
  • R 2 is a saturated hydrocarbon which may have a substituent or an aromatic hydrocarbon which may have a substituent.
  • X is independently H, a sulfonic acid group or a sulfonic acid base.
  • the resin particles according to the embodiment of the present invention contain the above-mentioned benzothioxanthene compound.
  • the fluorescent immunostaining reagent according to the embodiment of the present invention contains the above resin particles.
  • the present invention it is possible to provide a green luminescent dye having excellent light resistance, to provide resin particles containing the green luminescent dye, and to provide a fluorescent immunostaining reagent containing the resin particles.
  • the fluorescent immunostaining reagent contains resin particles containing a benzothioxanthene compound having a structure represented by the following formula 1.
  • R 1 is independently an H, an alkyl group or an ether group, respectively.
  • R 2 is a saturated hydrocarbon group which may have a substituent or an aromatic hydrocarbon which may have a substituent.
  • X is independently H, a sulfonic acid or a sulfonate.
  • the resin particles may be modified with a biomolecule recognition molecule.
  • biomolecule recognition molecules include avidin, streptavidin, and neutravidin.
  • the resin particles modified with the biomolecule recognition molecule can be used as a fluorescent immunostaining reagent. Specifically, for example, the antigen of the tissue section is reacted with the primary antibody, and then the biotinylated secondary antibody is reacted. Next, the resin particles containing the luminescent dye modified with avidin are reacted to bind biotin and avidin. In this way, the resin particles modified with the biomolecule recognition molecule can be used as a fluorescent immunostaining reagent.
  • the benzothioxanthene compound has a structure represented by the above formula 1.
  • This benzothioxanthene compound has an excitation wavelength of 475 to 510 nm and an emission wavelength of 510 to 545 nm, and emits light when irradiated with excitation light, so that it can be used as a green luminescent dye. Further, this benzothioxanthene compound has excellent light resistance, and the emission intensity does not easily decrease even when irradiated with excitation light.
  • R 1 in the formula 1 is independently an H, an alkyl group or an ether group, respectively.
  • alkyl groups include alkyl groups having 1 to 18 carbon atoms.
  • ether group include an ether group having 1 to 18 carbon atoms.
  • R 2 in the formula 1 is a saturated hydrocarbon which may have a substituent or an aromatic hydrocarbon which may have a substituent.
  • saturated hydrocarbons that may have substituents include alkyl groups having 1 to 18 carbon atoms.
  • aromatic hydrocarbons which may have a substituent include benzene, benzene having a substituent, benzene having an isopropyl group and the like.
  • X in Formula 1 is H, sulfonic acid or sulfonate, respectively.
  • sulfonates include sodium sulfonate, potassium sulfonate and the like.
  • benzothioxanthene compounds 1, 2, 3, and 4 are shown as examples of the benzothioxanthene compound according to the embodiment of the present invention.
  • the resin particles contain the above-mentioned benzothioxanthene compound.
  • the resin particles can contain the benzothioxanthene compound by being formed in a solution containing the benzothioxanthene compound.
  • the resin forming the resin particles include a thermoplastic resin or a thermosetting resin.
  • thermoplastic resins include polystyrene, polyacrylonitrile, polyfran, or similar resins.
  • the thermosetting resin polyxylene, polylactic acid, glycidyl methacrylate, amino resin, polypeptide, polyurea, polybenzoguanamine, polyamide, phenol resin, polysaccharide or a similar resin can be preferably used.
  • thermosetting resin an amino resin is preferable, and a melamine resin, which is one of the amino resins, is particularly preferable.
  • the melamine resin is preferable because it can suppress the elution of the luminescent dye contained in the resin particles even by the treatments such as dehydration, permeation, and encapsulation using an organic solvent such as ethanol and xylene, which are performed after staining the tissue sections.
  • the resin particles are provided with a functional group for at least directly or indirectly binding a biomolecule recognition molecule to the surface.
  • a functional group the same functional group as in the case of binding various biomolecules to each other can be used in the technical field to which the present invention belongs, but for example, an epoxy group and an amino group are preferable.
  • the method for preparing the resin particles having a functional group is not particularly limited, but for example, a predetermined functional group is previously side-chained as a monomer for synthesizing a thermoplastic resin or a thermosetting resin constituting the resin particles. After (co) copolymerizing the (co) monomer having in the above, or after synthesizing a thermoplastic resin or a thermosetting resin, the functional group possessed by the resin monomer unit constituting the thermoplastic resin is treated with a reagent to obtain the predetermined functional group. A method of conversion can be used.
  • resin particles of a polystyrene-based resin having an epoxy group on the surface may be produced by copolymerizing with styrene using glycidyl methacrylate as a monomer. Further, styrene carboxylic acid or styrene sulfonic acid may be copolymerized with styrene to produce resin particles of a polystyrene-based resin having a carboxylic acid or sulfonic acid on the surface. Further, resin particles of a polystyrene-based resin having an amino group on the surface may be produced by copolymerizing aminosulfonic acid with styrene. The epoxy group contained in the glycidyl methacrylate can also be converted into an amino group by a predetermined treatment.
  • thermosetting resin for example, a melamine resin raw material (for example, MX-035, manufactured by Nippon Carbide Industries Co., Ltd.) is used as a monomer and copolymerized to form a melamine resin. Particles may be produced.
  • a melamine resin raw material for example, MX-035, manufactured by Nippon Carbide Industries Co., Ltd.
  • the average particle size of the resin particles is not particularly limited, but is preferably 30 to 300 nm, more preferably 40 nm to 200 nm, from the viewpoint that bright spots can be preferably observed even with a general-purpose fluorescence microscope.
  • the average particle diameter can be taken as the average value by measuring the major axis of each particle (100 or more) shown in the image taken by the scanning electron microscope.
  • the resin particles may be modified with a biomolecule recognition molecule as described above.
  • biomolecule recognition molecules include avidin, streptavidin, and neutravidin. It also includes primary and secondary antibodies that bind to the desired antigen, and anti-hapten antibodies against haptens such as fluorescein, digoxigenin and DNP.
  • the method for producing the resin particles according to the present invention is not particularly limited.
  • the resin particles according to the present invention can be produced, for example, by the following steps: (1) mixing step, (2) polymerization step, (3) washing step, and (4) biomolecule recognition molecule addition step.
  • the mixing step is a step of mixing the benzothioxanthene compound as described above with one or more of the monomers or oligomers for resin formation.
  • a proton feeder or a polymerization reaction accelerator can be optionally included.
  • a surfactant can be included to dissolve the benzothioxanthene compound.
  • the benzothioxanthene compound By premixing the benzothioxanthene compound with the resin monomer, the benzothioxanthene compound can be combined with one or more of the monomers or oligomers to facilitate the incorporation of the benzothioxanthene compound into the resin particles. can.
  • thermosetting resin As a reaction accelerator for the thermoplastic resin, a known polymerization catalyst such as a metal can be used.
  • an acid can be used as a reaction accelerator for the thermosetting resin. It is known that the reaction of melamine resin, urea resin, xylene resin, and phenol resin is promoted by an acid catalyst.
  • the acid for example, formic acid, acetic acid, sulfuric acid, hydrochloric acid, nitric acid, p-toluenesulfonic acid, dodecylbenzenesulfonic acid and the like are known.
  • the reaction of the thermosetting resin proceeds only by heating, but when a reaction accelerator is added, the reaction proceeds at a lower temperature, so that the reaction and performance can be added within a controllable range.
  • each resin can be used alone or in combination.
  • the resin monomer or oligomer electrically or covalently bonded to the benzothioxanthene compound is thermally cured or radically polymerized, or the resin particles are thermally cured or radically polymerized while incorporating a fluorescent dye.
  • the reaction conditions (temperature, time) of the polymerization step are determined from the composition of the monomer or oligomer to be polymerized, and can be carried out according to a known method.
  • the cleaning step is a step of removing impurities such as surplus resin raw materials, fluorescent dyes, and emulsifiers from the obtained dispersion of fluorescent resin particles.
  • the resin component is centrifuged from the reaction solution, the supernatant is removed, and then ultrapure water is added and ultrasonically irradiated to disperse the resin component again for cleaning. It is preferable that the series of washing operations of centrifugation, removal of the supernatant, and redispersion in ultrapure water are repeated a plurality of times until no absorption / fluorescence derived from the resin or dye is observed in the supernatant.
  • the optional addition step is a step of adding a biomolecule recognition molecule to the surface of the fluorescent resin particles after the cleaning step (3).
  • a biomolecule recognition molecule is added via the added PEG.
  • An amino group can be introduced into the resin particles by a known means using an amino group introduction reagent. Specifically, the resin particles obtained in the polymerization step are dispersed in pure water, and the above-mentioned amino group-introducing reagent is reacted with the dispersion. After completion of the reaction, resin particles having an amino group introduced on the surface can be obtained by centrifugation or filtration. Conditions such as the type and amount of the amino group-introducing reagent to be used, the reaction temperature and the reaction time may be appropriately prepared in consideration of the properties of the resin particles and the like.
  • PEGylation reagents can be used to introduce PEG into fluorescent resin particles by known means.
  • the N-hydroxysuccinimidyl ester group of the PEGylation reagent is added by reacting with the above amino group introduced into the dye resin particles.
  • PBS containing 2 mM (molar concentration) of EDTA (“SM (PEG) TM (trademark) manufactured by Thermoscientific Co., Ltd.)" (PBS PEG can be introduced by reacting with the particles adjusted to a final concentration of 10 mM in phosphate buffer (physiological saline) at room temperature for 30 minutes.
  • Conditions such as the type and amount of the PEGylation reagent used, the reaction temperature and the reaction time may be appropriately adjusted in consideration of the properties of the fluorescent resin particles and the like.
  • the biomolecule recognition molecule can be added to the fluorescent resin particles by reacting and binding the maleimide group of PEG added to the fluorescent resin particles and the thiol group added to the biomolecule recognition molecule.
  • streptavidin is subjected to thiol group addition treatment using 2-Iminothiolane or SATA, and an excess reaction reagent is removed by a gel filtration column to obtain a streptavidin solution that can be bound to fluorescent resin particles.
  • the fluorescent resin particles to which the PEG added and streptavidin obtained above are mixed in PBS containing 2 mM of EDTA and reacted for 1 hour to bond the fluorescent resin particles and streptavidin.
  • Conditions such as the type and amount of the biomolecule recognition molecule to be used, the reaction temperature, and the reaction time may be appropriately adjusted in consideration of the properties of the fluorescent resin particles and the use of the fluorescent resin particles.
  • benzothioxanthene compounds 1 to 4 of Examples As the above-mentioned benzothioxanthene compound 1, a commercially available benzothioxanthene compound (Benzothioxanthene-3, 4-dicarboxylic acid-N-starylimide, manufactured by Arimoto Chemical Co., Ltd.) was used.
  • the above benzothioxanthene compound 3 was obtained by condensing with benzothioxanthene anhydride (manufactured by Sigma-Aldrich) using 2,6-diisopropylaniline.
  • the above coumarin compound 1 was sulfonated in the same manner as the above benzothioxanthene compound 2 to obtain the following coumarin compound 2.
  • pyrromethene compound 1 A commercially available pyrromethene compound (pyromethene 546, manufactured by Tokyo Chemical Industry Co., Ltd.) represented by the following formula was designated as pyrromethene compound 1.
  • pyrromethene compound 2 As the sulfonated compound of the above-mentioned pyrromethene compound 1, a commercially available pyrromethene compound (pyromethene 556, Tokyo Chemical Industry Co., Ltd.) was used as the pyrromethene compound 2.
  • Rhodamine compound 1 A commercially available rhodamine compound (Rhodamine 110, manufactured by Sigma-Aldrich) represented by the following formula was designated as Rhodamine compound 1.
  • the above rhodamine compound 1 was sulfonated in the same manner as the above benzothioxanthene compound 2 to obtain the following rhodamine compound 2.
  • the obtained dispersion of benzothioxanthene compound 1-encapsulating resin particles was washed with pure water to remove excess resin raw materials and impurities such as benzothioxanthene compound 1. Specifically, it was centrifuged at 20000 G for 15 minutes with a centrifuge (micro-cooled centrifuge manufactured by Kubota Co., Ltd.), and after removing the supernatant, ultrapure water was added and ultrasonically irradiated to redisperse. Washing by centrifugation, removal of supernatant and redispersion in ultrapure water was repeated 5 times.
  • This streptavidin solution was desalted with a gel filtration column (Zaba Spin Desalting Colors: Funakoshi) to obtain streptavidin capable of binding to the above resin particles.
  • the total amount of streptavidin (containing 0.04 mg) and 740 ⁇ L of the resin particles adjusted to 0.67 nM above were mixed with PBS containing 2 mM of EDTA, and reacted at room temperature for 1 hour.
  • Example 2 (Manufacturing of Resin Particles of Example 2)
  • the resin particles of Example 2 were obtained in the same manner as in Example 1 except that the benzothioxanthene compound 2 was used instead of the benzothioxanthene compound 1 and no surfactant was used.
  • the benzothioxanthene compound 2 did not need to be used because it was well dissolved in water without using a surfactant. It is considered that this is because the benzothioxanthene compound 2 has a sulfonic acid.
  • Example 3 Manufacturing of Resin Particles of Example 3
  • the resin particles of Example 3 were obtained in the same manner as in Example 1 except that the benzothioxanthene compound 3 was used instead of the benzothioxanthene compound 1.
  • Example 4 Manufacturing of Resin Particles of Example 4
  • the resin particles of Example 4 were obtained in the same manner as in Example 1 except that the benzothioxanthene compound 4 was used instead of the benzothioxanthene compound 1 and no surfactant was used.
  • the benzothioxanthene compound 4 did not need to be used because it was well dissolved in water without using a surfactant. It is considered that this is because the benzothioxanthene compound 4 has a sulfonic acid.
  • Resin particles of Comparative Example 5 were obtained in the same manner as in Example 1 except that Rhodamine compound 1 was used instead of the benzothioxanthene compound 1.
  • the resin particles of Examples 1 to 4 and Comparative Examples 1 to 6 were dispersed in PBS adjusted to a concentration of 0.3 mM, respectively. After adding the dispersion onto APS glass (manufactured by Matsunami Glass Industry Co., Ltd.), wash with PBS to wash excess resin particles, then wash with ethanol 3 times to dehydrate, and then wash with xylene 3 times to ethanol. Was replaced with xylene. Next, resin particles were encapsulated with a cover glass using Marinol (manufactured by Muto Chemical Co., Ltd.) as an encapsulant, and a slide glass to which the resin particles were sprayed was obtained.
  • APS glass manufactured by Matsunami Glass Industry Co., Ltd.
  • the obtained glass slide is irradiated with excitation light of the excitation wavelength of each resin particle under a fluorescence microscope (manufactured by Olympus) under 40 times conditions, and microscope fluorescence images before and after unit energy irradiation are taken before and after. It was confirmed that the brightness value of the emission wavelength was changed in. The brightness value on the entire screen was used as the brightness value, and the brightness maintenance rate before and after irradiation was taken as the light resistance. The excitation light intensity was measured using a power meter. The measurement results are shown in Table 1.
  • Examples 1 and 3 a surfactant was required to disperse the dye in water when obtaining the resin particles containing the dye, but in Examples 2 and 4, it was not necessary. It is considered that this is because the benzothioxanthene compound used in Examples 2 and 4 is sulfonated.
  • the benzothioxanthene compound according to this embodiment is useful for fluorescent immunostaining and the like.

Abstract

本発明は、耐光性に優れた緑色発光色素を提供することに関する。本発明の実施の形態に係るベンゾチオキサンテン化合物は、下記の式1で表される構造を持ち、励起波長475~510nm、発光波長510~545nmである。 (式1中、Rはそれぞれ独立にH、アルキル基またはエーテル基であり、Rは置換基を有してもよい飽和炭化水素または置換基を有してもよい芳香族炭化水素であり、Xはそれぞれ独立に、H、スルホン酸基またはスルホン酸塩基である。)

Description

ベンゾチオキサンテン化合物、樹脂粒子および蛍光免疫染色試薬
 本発明は、ベンゾチオキサンテン化合物、樹脂粒子および蛍光免疫染色試薬に関する。
 従来、緑色発光色素として、クマリンやローダミン、フルオレセイン、BODIPYを骨格として有する色素がよく知られている。これらは励起波長475~510nm、発光波長510~545nmの緑色発光色素であり、適合する蛍光観察用のフィルターと組み合わせることで赤色発光と区別することができる。
 たとえば、特許文献1は緑色発光色素としてクマリン骨格を有する色素を開示している。
特開2003-157980号公報
 上記のような骨格を有する色素は耐光性の観点では特段優れているわけではない。そのため、蛍光顕微鏡を用いて観察を行う場合、色素に励起光を照射すると発光強度が徐々に減少していく。
 本発明は上記事情に鑑みてなされたものであり、耐光性に優れた緑色発光色素を提供すること、当該緑色発光色素を内包する樹脂粒子、当該樹脂粒子を含む蛍光免疫染色試薬を提供することを目的とする。
 本発明の実施の形態に係るベンゾチオキサンテン化合物は、下記の式1で表される構造を持ち、励起波長475~510nm、発光波長510~545nmである。
Figure JPOXMLDOC01-appb-C000002
 (式1中、Rはそれぞれ独立にH、アルキル基またはエーテル基であり、
 Rは置換基を有してもよい飽和炭化水素または置換基を有してもよい芳香族炭化水素であり、
 Xはそれぞれ独立に、H、スルホン酸基またはスルホン酸塩基である。)
 本発明の実施の形態に係る樹脂粒子は、上記のベンゾチオキサンテン化合物を内包する。
 本発明の実施の形態に係る蛍光免疫染色試薬は、上記の樹脂粒子を含む。
 本発明によれば、耐光性に優れた緑色発光色素を提供すること、当該緑色発光色素を内包する樹脂粒子を提供すること、当該樹脂粒子を含む蛍光免疫染色試薬を提供することができる。
 [蛍光免疫染色試薬]
 本発明の実施の形態に係る蛍光免疫染色試薬は、下記の式1で表される構造を持つベンゾチオキサンテン化合物を内包した樹脂粒子を含む。
Figure JPOXMLDOC01-appb-C000003
 (式1中、Rはそれぞれ独立にH、アルキル基またはエーテル基であり、
 Rは置換基を有してもよい飽和炭化水素基または置換基を有してもよい芳香族炭化水素であり、
 Xはそれぞれ独立に、H、スルホン酸またはスルホン酸塩である。)
 樹脂粒子は、生体分子認識分子で修飾されていてもよい。生体分子認識分子の例には、アビジン、ストレプトアビジン、ニュートラアビジンが含まれる。生体分子認識分子で修飾された樹脂粒子は、蛍光免疫染色試薬として使用することができる。具体的には、例えば、組織切片の抗原に一次抗体を反応させ、次にビオチン化2次抗体を反応させる。次にアビジンで修飾された、発光色素を含む樹脂粒子を反応させ、ビオチンとアビジンとを結合させる。このようにして生体分子認識分子で修飾された樹脂粒子を蛍光免疫染色試薬として使用することができる。
 (ベンゾチオキサンテン化合物)
 ベンゾチオキサンテン化合物は、上記の式1で表される構造を有する。このベンゾチオキサンテン化合物は、励起波長475~510nmであり、発光波長510~545nmであり、励起光を照射することにより発光するので緑色発光色素として用いることができる。また、このベンゾチオキサンテン化合物は、耐光性に優れ、励起光を照射されても発光強度が減少しにくい。
 上記のように式1中のRはそれぞれ独立にH、アルキル基またはエーテル基である。アルキル基の例には炭素数が1~18であるアルキル基が含まれる。また、エーテル基の例には炭素数が1~18であるエーテル基が含まれる。
 上記のように式1中のRは置換基を有してもよい飽和炭化水素または置換基を有してもよい芳香族炭化水素である。置換基を有してもよい飽和炭化水素の例には、炭素数が1~18のアルキル基等が含まれる。置換基を有してもよい芳香族炭化水素の例には、ベンゼン、置換基を有するベンゼン、イソプロピル基を有するベンゼン等が含まれる。
 上記のように式1中のXはそれぞれ独立に、H、スルホン酸またはスルホン酸塩である。スルホン酸塩の例には、スルホン酸ナトリウム、スルホン酸カリウムなどが含まれる。
 以下に本発明の実施の形態に係るベンゾチオキサンテン化合物の例として、ベンゾチオキサンテン化合物1、2、3、4を示す。
Figure JPOXMLDOC01-appb-C000004
ベンゾチオキサンテン化合物1
Figure JPOXMLDOC01-appb-C000005
ベンゾチオキサンテン化合物2
Figure JPOXMLDOC01-appb-C000006
ベンゾチオキサンテン化合物3
Figure JPOXMLDOC01-appb-C000007
ベンゾチオキサンテン化合物4
 (樹脂粒子)
 樹脂粒子は、上記のベンゾチオキサンテン化合物を内包する。樹脂粒子は、ベンゾチオキサンテン化合物を有する溶液中で形成されることでベンゾチオキサンテン化合物を内包することができる。樹脂粒子を形成する樹脂の例には、熱可塑性樹脂または熱硬化性樹脂が含まれる。熱可塑性樹脂の例には、ポリスチレン、ポリアクリロニトリル、ポリフラン、または、これに類する樹脂が含まれる。熱硬化性樹脂の例には、ポリキシレン、ポリ乳酸、グリシジルメタクリレート、アミノ樹脂、ポリメラミン、ポリウレア、ポリベンゾグアナミン、ポリアミド、フェノール樹脂、多糖類またはこれに類する樹脂を好適に用いることができる。熱硬化性樹脂は、アミノ樹脂が好ましく、アミノ樹脂の1種であるメラミン樹脂が特に好ましい。メラミン樹脂は、組織切片の染色後に行われる、エタノールやキシレンなどの有機溶媒を用いる脱水、透徹、封入などの処理によっても、樹脂粒子に内包させた発光色素の溶出を抑制できる点で好ましい。
 樹脂粒子は、表面に少なくとも直接的または間接的に生体分子認識分子を結合させるための官能基を備えることが好ましい。このような官能基としては、本発明の属する技術分野において様々な生体分子同士を結合させる場合と同様の官能基を利用することができるが、例えば、エポキシ基およびアミノ基が好ましい。
 官能基を有する樹脂粒子の調製方法は特に限定されるものではないが、例えば、樹脂粒子を構成する熱可塑性樹脂または熱硬化性樹脂を合成するためのモノマーとして、所定の官能基をあらかじめ側鎖に有する(コ)モノマーを(共)重合させるか、熱可塑性樹脂または熱硬化性樹脂の合成後に、それを構成している樹脂モノマー単位が有する官能基を試薬処理して前記所定の官能基に変換する方法を用いることができる。
 熱可塑性の樹脂を用いて樹脂粒子を製造する場合、例えば、スチレンと共にグリシジルメタクリレートをモノマーとして用いて共重合させることにより、表面にエポキシ基を有するポリスチレン系樹脂の樹脂粒子を製造してもよい。また、スチレンとともにスチレンカルボン酸またはスチレンスルホン酸を共重合させて、表面にカルボン酸またはスルホン酸を有するポリスチレン系樹脂の樹脂粒子を製造してもよい。また、スチレンと共にアミノスルホン酸を共重合させて表面にアミノ基を有するポリスチレン系樹脂の樹脂粒子を製造してもよい。なお、前記グリシジルメタクリレートが有するエポキシ基は、所定の処理によりアミノ基に変換することもできる。
 一方、熱硬化性の樹脂を用いて樹脂粒子を製造する場合、例えば、メラミン樹脂原料(例えばMX-035、日本カーバイド工業社製)をモノマーとして用いて共重合させることにより、メラミン系樹脂の樹脂粒子を製造してもよい。
 樹脂粒子の平均粒子径は、特に限定されないが、汎用の蛍光顕微鏡でも好適に輝点の観察が可能となる観点から、好ましくは30~300nmであり、より好ましくは40nm~200nmである。平均粒子径が300nmを超える場合、染色後の観察の際に細胞1個当たりの区別しうる輝点数が減って輝点観察がしにくくなるおそれがある。逆に平均粒子径が30nm未満の場合、細胞1個当たりの輝点数が増えて輝点観察がしにくくなるおそれがある。なお、平均粒子径は走査型電子顕微鏡で撮影した画像に写っている各粒子(100個以上)の長径を測定し、その平均値とすることができる。
 樹脂粒子は上記のように生体分子認識分子で修飾されていてもよい。生体分子認識分子の例には、アビジン、ストレプトアビジン、ニュートラアビジンが含まれる。また、所望の抗原に結合する一次抗体や二次抗体、フルオレセインやジゴキシゲニンやDNP等のハプテンに対する抗ハプテン抗体が含まれる。
 [ベンゾチオキサンテン化合物を内包した樹脂粒子の製造方法]
 本発明に係る樹脂粒子の製造方法は、特に限定されない。本発明に係る樹脂粒子は、例えば、以下の各工程:(1)混合工程、(2)重合工程、(3)洗浄工程、および(4)生体分子認識分子付加工程により製造されうる。
 (1)混合工程
 混合工程は、前述したようなベンゾチオキサンテン化合物と、樹脂形成用のモノマーまたはオリゴマーの1種または2種以上とを混合する工程である。この混合させる物として、任意にプロトン供給剤や重合反応促進剤を含めることができる。また、ベンゾチオキサンテン化合物を溶解させるために界面活性剤を含めることができる。
 ベンゾチオキサンテン化合物と樹脂モノマーとを事前に混合させることで、ベンゾチオキサンテン化合物とモノマーまたはオリゴマーの1種または2種以上と結合させて、樹脂粒子内にベンゾチオキサンテン化合物を取り込みやすくすることができる。
 熱可塑性樹脂の反応促進剤として、例えば金属等の公知の重合触媒を用いる事ができる。一方、熱硬化性樹脂の反応促進剤として、例えば酸を用いる事ができる。メラミン樹脂や尿素樹脂、キシレン樹脂、フェノール樹脂は、いずれも酸触媒により反応が促進される事が知られている。酸としては、例えば、ギ酸、酢酸、硫酸、塩酸、硝酸、パラトルエンスルホン酸、ドデシルベンゼンスルホン酸、等が知られている。熱硬化性樹脂の反応は加温のみでも進行するが、反応促進剤を加えるとより低温で進行するので、反応や性能を制御できる範囲で添加することができる。また、各樹脂は単独または混合して使用することができる。
(2)重合工程
 重合工程は、ベンゾチオキサンテン化合物と電気的結合もしくは共有結合した樹脂モノマーまたはオリゴマーを熱硬化やラジカル重合させるか、蛍光色素を取り込みながら熱硬化やラジカル重合させることにより、樹脂粒子を形成する工程である。重合工程の反応条件(温度、時間)は、重合させるモノマーまたはオリゴマーの組成から決定され、公知の方法に則して行うことができる。
(3)洗浄工程
 洗浄工程は、得られた蛍光樹脂粒子の分散液から、余剰の樹脂原料や蛍光色素、乳化剤等の不純物を除く工程である。例えば、反応液から樹脂成分を遠心分離し、上澄み除去後、超純水を加えて超音波照射して再度分散させることで洗浄を行う。遠心分離、上澄み除去、超純水への再分散の一連の洗浄操作は、上澄みに樹脂や色素に由来する吸光・蛍光が見られなくなるまで、複数回繰り返し行うことが好ましい。
(4)付加工程
 任意に行われる付加工程は、洗浄工程(3)を終えた蛍光樹脂粒子の表面に対して生体分子認識分子を付加させる工程である。具体的な手順の一例としては、樹脂粒子の表面にアミノ基を導入し、導入されたアミノ基を介してPEGを付加し、次に付加されたPEGを介して生体分子認識分子を付加させる。以下、これらの工程について説明する。
 (アミノ基導入)
 アミノ基導入試薬を用いて、公知の手段により樹脂粒子にアミノ基を導入することができる。具体的には、重合工程で得られた樹脂粒子を純水中に分散させ、これに前述したアミノ基導入試薬を反応させる。反応終了後、遠心分離又はろ過により表面にアミノ基が導入された樹脂粒子を得ることができる。使用するアミノ基導入試薬の種類や添加量、反応温度および反応時間等の条件は、樹脂粒子の性状などを考慮しながら、適宜調製すればよい。
 (PEG付加)
 PEG化試薬を用いて、公知の手段により蛍光樹脂粒子にPEGを導入することができる。例えば、PEG化試薬のN-ヒドロキシスクシンイミジルエステル基を色素樹脂粒子に導入した上記アミノ基と反応させて付加する。具体的には、PEG化試薬のsuccinimidyl-[(N-maleimidopropionamid)-dodecaethyleneglycol]ester(サーモサイエンティフィック社製「SM(PEG)(商標))を、EDTAを2mM(モル濃度)含有したPBS(リン酸緩衝液生理的食塩水)に最終濃度10mMとなるよう調整、3nMに調整した粒子と室温で30分反応させることで、PEGを導入することができる。
 使用するPEG化試薬の種類や添加量、反応温度および反応時間等の条件は、蛍光樹脂粒子の性状などを考慮しながら、適宜調整すればよい。
 (生体分子認識分子の付加)
 蛍光樹脂粒子に付加したPEGのマレイミド基と生体分子認識分子に付加したチオール基とを反応して結合させることで生体分子認識分子を蛍光樹脂粒子に付加させることができる。具体例としては、ストレプトアビジンを、2-IminothiolaneやSATAを用いてチオール基付加処理を行い、ゲルろ過カラムにより過剰の反応試薬を除去することにより蛍光樹脂粒子に結合可能なストレプトアビジン溶液を得る。上記で得られたPEGを付加した蛍光樹脂粒子とストレプトアビジンとを、EDTAを2mM含有したPBS中で混合し、1時間反応させることで蛍光樹脂粒子とストレプトアビジンとを結合させることができる。
 使用する生体分子認識分子の種類や添加量、反応温度および反応時間等の条件は、蛍光樹脂粒子の性状や蛍光樹脂粒子の用途などを考慮しながら、適宜調整すればよい。
 本実施の形態によれば、耐光性に優れた緑色発光色素を提供することができる。
 以下、本実施の形態に係る発明について実施例を参照して詳細に説明するが、本実施の形態に係る発明はこれらの実施例により限定されない。
 (実施例のベンゾチオキサンテン化合物1~4の取得)
 上記のベンゾチオキサンテン化合物1として、市販のベンゾチオキサンテン化合物(Benzothioxanthene-3,4-dicarboxylic acid-N-stearylimide, 有本化学社製)を用いた。
 20mLバイアル管瓶にベンゾチオキサンテン化合物1 500mgを入れ、発煙硫酸5mLを加えて、室温(25℃)にて4時間撹拌し、反応を行なった。反応の進行はTLCにて確認を行ない、反応液をLiOH水にて中和した後、EtOHを加え、LiSOを加えて乾燥し、EtOH溶液をろ過した。ろ過して回収したEtOH溶液をエバポレータで蒸発乾固し、目的のスルホン化した上記のベンゾチオキサンテン化合物2を得た。
 上記のベンゾチオキサンテン化合物3は、ベンゾチオキサンテン無水物(シグマアルドリッチ社製)と2,6-ジイソプロピルアニリンを用いて縮合することで得た。
 ベンゾチオキサンテン化合物2と同様に、上記のベンゾチオキサンテン化合物3をスルホン化して上記のベンゾチオキサンテン化合物4を得た。
 (比較例の発光色素の取得)
 下記の式で表される市販のクマリン化合物(クマリン545T、東京化成工業社製)をクマリン化合物1とした。
Figure JPOXMLDOC01-appb-C000008
クマリン化合物1
 上記のクマリン化合物1を上記のベンゾチオキサンテン化合物2と同様にスルホン化して下記のクマリン化合物2を得た。
Figure JPOXMLDOC01-appb-C000009
クマリン化合物2
 下記の式で表される市販のピロメテン化合物(ピロメテン546、東京化成工業社製)をピロメテン化合物1とした。
Figure JPOXMLDOC01-appb-C000010
ピロメテン化合物1
 上記のピロメテン化合物1をスルホン化した化合物として、市販のピロメテン化合物(ピロメテン556、東京化成工業社)をピロメテン化合物2とした。
Figure JPOXMLDOC01-appb-C000011
ピロメテン化合物2
 下記の式で表される市販のローダミン化合物(ローダミン110、シグマアルドリッチ社製)をローダミン化合物1とした。
Figure JPOXMLDOC01-appb-C000012
ローダミン化合物1
 上記のローダミン化合物1を上記のベンゾチオキサンテン化合物2と同様にスルホン化して下記のローダミン化合物2を得た。
Figure JPOXMLDOC01-appb-C000013
ローダミン化合物2
 (実施例1の樹脂粒子の製造)
 ベンゾチオキサンテン化合物1 14.4mgを界面活性剤(emulgen430、花王社製)1.1gに加えて超音波分散(MODEL Q55、Qsonica社)を行なって均一に分散し、水20.9mLに加え、色素を分散した。
 この溶液をホットスターラー上で撹拌しながら70℃まで昇温させた後、この溶液にメラミン樹脂原料ニカラックMX-035(日本カーバイド工業社製)を0.65g加えた。この溶液に反応開始剤としてドデシルベンゼンスルホン酸(関東化学社製)の10%水溶液を1000μL加え、70℃で50分間加熱撹拌し、その後、90℃に昇温して20分間加熱撹拌した。以上の操作により、ベンゾチオキサンテン化合物1内包樹脂粒子を得た。
 得られたベンゾチオキサンテン化合物1内包樹脂粒子の分散液から、純水による洗浄を行い、余剰の樹脂原料やベンゾチオキサンテン化合物1などの不純物を除いた。具体的には、遠心分離機(クボタ社製マイクロ冷却遠心機3740)にて20000Gで15分間、遠心分離し、上澄み除去後、超純水を加えて超音波照射して再分散した。遠心分離、上澄み除去および超純水への再分散による洗浄を5回繰り返した。
 洗浄した樹脂粒子の一部を用いて表面修飾を行った。具体的には、ベンゾチオキサンテン化合物を内包した樹脂粒子を、EDTA(エチレンジアミン四酢酸)を2mM含有するPBS(リン酸緩衝液生理的食塩水)を用いて3nMに調整し、この溶液に最終濃度10mMとなるようにSM(PEG)12(サーモサイエンティフィック社製、succinimidyl-[(N-maleimidopropionamid)-dodecanethyleneglycol]ester)を混合し、5℃で1時間反応させた。
 この混合液を、10000Gで20分遠心分離を行い、上澄みを除去した後に、EDTAを2mM含有したPBSを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順による洗浄を3回行うことで末端にマレイミド基がついたベンゾチオキサンテン化合物を内包した樹脂粒子を得た。
 1mg/mLに調整したストレプトアビジン(和光純薬工業社製)40μLを210μLのボレートバッファーに加えた後、64mg/mLに調整した2-イミノチオラン塩酸塩(シグマアルドリッチ社製)70μLを加え、室温で1時間反応させた。これにより、ストレプトアビジンのアミノ基に対してチオール基(-NH-C(=NH Cl)-CH-CH-CH-SH)を導入した。
 このストレプトアビジン溶液をゲルろ過カラム(Zaba Spin Desalting Columns:フナコシ)により脱塩し、上記の樹脂粒子に結合可能なストレプトアビジンを得た。このストレプトアビジン全量(0.04mg含有)とEDTAを2mM含有したPBSを用いて上記0.67nMに調整した樹脂粒子740μLとを混合し、室温で1時間反応させた。
 10mMメルカプトエタノールを添加し、反応を停止させた。得られた溶液を遠心フィルターで濃縮後、精製用ゲルろ過カラムを用いて未反応ストレプトアビジン等を除去し、ストレプトアビジンが結合した実施例1の樹脂粒子を得た。
 (実施例2の樹脂粒子の製造)
 ベンゾチオキサンテン化合物1の代わりにベンゾチオキサンテン化合物2を用いて、界面活性剤を用いなかった以外は実施例1と同様にして実施例2の樹脂粒子を得た。なお、ベンゾチオキサンテン化合物2は界面活性剤を用いなくても水によく溶けたので用いる必要がなかった。これは、ベンゾチオキサンテン化合物2はスルホン酸を有するためであると考えられる。
 (実施例3の樹脂粒子の製造)
 ベンゾチオキサンテン化合物1の代わりにベンゾチオキサンテン化合物3を用いた以外は実施例1と同様にして実施例3の樹脂粒子を得た。
 (実施例4の樹脂粒子の製造)
 ベンゾチオキサンテン化合物1の代わりにベンゾチオキサンテン化合物4を用いて、界面活性剤を用いなかった以外は実施例1と同様にして実施例4の樹脂粒子を得た。なお、ベンゾチオキサンテン化合物4は界面活性剤を用いなくても水によく溶けたので用いる必要がなかった。これは、ベンゾチオキサンテン化合物4はスルホン酸を有するためであると考えられる。
 (比較例1の樹脂粒子の製造)
 ベンゾチオキサンテン化合物1の代わりにクマリン化合物1を用いた以外は実施例1と同様にして比較例1の樹脂粒子を得た。
 (比較例2の樹脂粒子の製造)
 ベンゾチオキサンテン化合物1の代わりにクマリン化合物2を用いて、界面活性剤を用いなかった以外は実施例1と同様にして比較例2の樹脂粒子を得た。
 (比較例3の樹脂粒子の製造)
 ベンゾチオキサンテン化合物1の代わりにピロメテン化合物1を用いた以外は実施例1と同様にして比較例3の樹脂粒子を得た。
 (比較例4の樹脂粒子の製造)
 ベンゾチオキサンテン化合物1の代わりにピロメテン化合物2を用いて、界面活性剤を用いなかった以外は実施例1と同様にして比較例4の樹脂粒子を得た。
 (比較例5の樹脂粒子の製造)
 ベンゾチオキサンテン化合物1の代わりにローダミン化合物1を用いた以外は実施例1と同様にして比較例5の樹脂粒子を得た。
 (比較例6の樹脂粒子の製造)
 ベンゾチオキサンテン化合物1の代わりにローダミン化合物2を用いて、界面活性剤を用いなかった以外は実施例1と同様にして比較例6の樹脂粒子を得た。
 (励起波長、発光波長の測定)
 ベンゾチオキサンテン化合物1~4、クマリン化合物1、2、ピロメテン化合物1、2、ローダミン化合物1、2をそれぞれ水に分散させた。また、実施例1~4、比較例1~6の樹脂粒子をそれぞれ水に分散させた。なお、水への分散性が悪い場合は界面活性剤(emulgen430)を添加した。色素分散液、樹脂粒子分散液をそれぞれ1cmセルにいれ、蛍光光度計F7100(日立ハイテクサイエンス社製)を用い、励起波長と発光波長を測定した。測定結果を表1に示す。
 (耐光性評価)
 実施例1~4、比較例1~6の樹脂粒子をそれぞれ0.3mM濃度に調整したPBSに分散させた。分散液をAPSガラス(松波硝子工業社製)上に添加した後、PBSで洗浄して余剰の樹脂粒子を洗浄後、エタノールで3回洗浄して脱水し、次いでキシレンで3回洗浄してエタノールをキシレンに置換した。次に、封入剤にマリノール(武藤化学社製)を用いてカバーガラスで樹脂粒子を封入し、樹脂粒子を散布したスライドガラスを得た。得られたガラススライドに対して、蛍光顕微鏡(オリンパス社製)で40倍の条件で、それぞれの樹脂粒子の励起波長の励起光を照射し、単位エネルギー照射前後の顕微鏡蛍光画像を撮影し、前後での発光波長の輝度値の変化を確認した。輝度値は全画面での輝度値を用い、照射前後での輝度維持率を耐光性とした。励起光強度はパワーメータを用いて測定をした。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000014
 実施例1~4と比較例1~6とを比べると、実施例1~4は、内包色素としてベンゾチオキサンテン化合物を用いているので耐光性が良好であった。また、実施例1~4のうち、スルホン化したベンゾチオキサンテン化合物を内包する実施例2、4の樹脂粒子の方が、耐光性がより良好であった。
 また、実施例1、3は色素を内包した樹脂粒子を得る際に色素を水に分散させるために界面活性剤が必要であったが、実施例2、4では不要であった。これは実施例2、4で用いられているベンゾチオキサンテン化合物がスルホン化されているためであると考えられる。
 本出願は、2020年9月15日出願の特願2020-154813に基づく優先権を主張する。当該出願明細書に記載された内容は、すべて本願明細書に援用される。
 本実施の形態に係るベンゾチオキサンテン化合物は、蛍光免疫染色などに有用である。

Claims (6)

  1.  下記の式1で表される構造を持ち、励起波長475~510nm、発光波長510~545nmであるベンゾチオキサンテン化合物。
    Figure JPOXMLDOC01-appb-C000001
     (式1中、Rはそれぞれ独立にH、アルキル基またはエーテル基であり、
     Rは置換基を有してもよい飽和炭化水素または置換基を有してもよい芳香族炭化水素であり、
     Xはそれぞれ独立に、H、スルホン酸またはスルホン酸塩である。)
  2.  Xはそれぞれ独立にスルホン酸またはスルホン酸塩である、請求項1に記載のベンゾチオキサンテン化合物。
  3.  発光色素として用いられる、請求項1または2に記載のベンゾチオキサンテン化合物。
  4.  請求項1~3のいずれか一項に記載のベンゾチオキサンテン化合物を内包した樹脂粒子。
  5.  前記樹脂粒子はアミノ樹脂を含む、請求項4に記載の樹脂粒子。
  6.  請求項4または5に記載の樹脂粒子を含む、蛍光免疫染色試薬。
PCT/JP2021/026088 2020-09-15 2021-07-12 ベンゾチオキサンテン化合物、樹脂粒子および蛍光免疫染色試薬 WO2022059311A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-154813 2020-09-15
JP2020154813 2020-09-15

Publications (1)

Publication Number Publication Date
WO2022059311A1 true WO2022059311A1 (ja) 2022-03-24

Family

ID=80775774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026088 WO2022059311A1 (ja) 2020-09-15 2021-07-12 ベンゾチオキサンテン化合物、樹脂粒子および蛍光免疫染色試薬

Country Status (1)

Country Link
WO (1) WO2022059311A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004534142A (ja) * 2001-07-09 2004-11-11 クラリアント・インターナシヨナル・リミテツド 熱可塑性蛍光顔料
JP2005533904A (ja) * 2002-07-26 2005-11-10 スリーエム イノベイティブ プロパティズ カンパニー 機能性蛍光染料
WO2008001036A2 (en) * 2006-06-28 2008-01-03 Fujifilm Imaging Colorants Limited Compound, composition and use
JP2012077069A (ja) * 2010-09-09 2012-04-19 Osaka Prefecture Univ ビス(アミノビフェニルエチニル)系化合物、青色蛍光色素および有機el素子
JP2013530255A (ja) * 2010-03-24 2013-07-25 ヴァイヴ クロップ プロテクション インコーポレイテッド 中性有機化合物とポリマーナノ粒子とを配合する方法
JP2015509987A (ja) * 2011-11-23 2015-04-02 シクパ ホルディング ソシエテ アノニムSicpa Holding Sa S原子又はs(=o)2基を含む多環式芳香族化合物及びそれらの染料としての使用
WO2019038354A1 (en) * 2017-08-24 2019-02-28 Basf Se ELECTROMAGNETIC RADIATION DATA AND TRANSMISSION TRANSMISSION TRANSMITTER IN THE VISIBLE SPECTRAL RANGE AND DATA TRANSMISSION SYSTEM
CN111635754A (zh) * 2020-06-22 2020-09-08 浙江工业大学 苯并硫杂蒽类衍生物的应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004534142A (ja) * 2001-07-09 2004-11-11 クラリアント・インターナシヨナル・リミテツド 熱可塑性蛍光顔料
JP2005533904A (ja) * 2002-07-26 2005-11-10 スリーエム イノベイティブ プロパティズ カンパニー 機能性蛍光染料
WO2008001036A2 (en) * 2006-06-28 2008-01-03 Fujifilm Imaging Colorants Limited Compound, composition and use
JP2013530255A (ja) * 2010-03-24 2013-07-25 ヴァイヴ クロップ プロテクション インコーポレイテッド 中性有機化合物とポリマーナノ粒子とを配合する方法
JP2012077069A (ja) * 2010-09-09 2012-04-19 Osaka Prefecture Univ ビス(アミノビフェニルエチニル)系化合物、青色蛍光色素および有機el素子
JP2015509987A (ja) * 2011-11-23 2015-04-02 シクパ ホルディング ソシエテ アノニムSicpa Holding Sa S原子又はs(=o)2基を含む多環式芳香族化合物及びそれらの染料としての使用
WO2019038354A1 (en) * 2017-08-24 2019-02-28 Basf Se ELECTROMAGNETIC RADIATION DATA AND TRANSMISSION TRANSMISSION TRANSMITTER IN THE VISIBLE SPECTRAL RANGE AND DATA TRANSMISSION SYSTEM
CN111635754A (zh) * 2020-06-22 2020-09-08 浙江工业大学 苯并硫杂蒽类衍生物的应用

Similar Documents

Publication Publication Date Title
WO2011088744A1 (zh) 光致发光纳米粒子及其制备方法与应用
CN111171806B (zh) 一种基于上转换纳米材料的分子印迹比率型荧光探针的制备方法及其应用
CN113105349B (zh) 具有聚集诱导的发光化合物及超分子聚合荧光纳米材料和制备方法
US8273875B2 (en) High performance luminescent compounds
CN110951076B (zh) 一类超支化聚醚酰亚胺及其制备与应用
Liu et al. Preparation of carbon quantum dots with a high quantum yield and the application in labeling bovine serum albumin
Liu et al. BSA stabilized tetraphenylethylene nanocrystals as aggregation-induced enhanced electrochemiluminescence emitters for ultrasensitive microRNA assay
WO2011059457A1 (en) High performance luminescent compounds
CN108164712B (zh) 一种聚磷腈高分子荧光微球及其制备方法
JP6614161B2 (ja) 蛍光観察に使用する蛍光体集積ナノ粒子
Tian et al. Development of 4-oxime-1, 8-naphthalimide as a bioorthogonal turn-on probe for fluorogenic protein labeling
CN111363539A (zh) 一种单分散多色发光微球及其制备方法与应用
Wan et al. Polyacrylic esters with a “one-is-enough” effect and investigation of their AIEE behaviours and cyanide detection in aqueous solution
CN105623651A (zh) 一种稀土荧光标记的复合微球标记物及其制备方法
WO2022059311A1 (ja) ベンゾチオキサンテン化合物、樹脂粒子および蛍光免疫染色試薬
JP7456438B2 (ja) 発光色素含有粒子及び病理診断用標識剤
CN113278155A (zh) 一种近红外有机超分子组装体及其制备方法和应用
WO2020075751A1 (ja) 発光色素含有粒子及び病理診断用標識剤
Shi et al. Click-formed polymer gels with aggregation-induced emission and dual stimuli-responsive behaviors
CN115216294B (zh) 一种光敏制备过氧化草酸酯-碳点化学发光凝胶的方法
CN114853962B (zh) 一种具有AIE活性的近红外二区β-二酮类大分子稀土配合物的制备方法
WO2022234721A1 (ja) 蛍光色素含有ナノ粒子及びその製造方法
Guo et al. Multiple Stimuli‐Responsive Supramolecular Hydrogels Constructed by Decamethylcucurbit [5] uril‐para‐phenylenediamine Exclusion Complex
CN110172071B (zh) 一种溴戊基取代bodipy衍生物及其制备方法与应用
CN113896871A (zh) 一种环氧-石墨烯体系的分散剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868998

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21868998

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP