CN113105349B - 具有聚集诱导的发光化合物及超分子聚合荧光纳米材料和制备方法 - Google Patents

具有聚集诱导的发光化合物及超分子聚合荧光纳米材料和制备方法 Download PDF

Info

Publication number
CN113105349B
CN113105349B CN202110290411.9A CN202110290411A CN113105349B CN 113105349 B CN113105349 B CN 113105349B CN 202110290411 A CN202110290411 A CN 202110290411A CN 113105349 B CN113105349 B CN 113105349B
Authority
CN
China
Prior art keywords
compound
reaction
preparation
aggregation
dissolving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110290411.9A
Other languages
English (en)
Other versions
CN113105349A (zh
Inventor
尹小英
曹梦慧
瞿祎
严一楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai University of Engineering Science
Original Assignee
Shanghai University of Engineering Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai University of Engineering Science filed Critical Shanghai University of Engineering Science
Priority to CN202110290411.9A priority Critical patent/CN113105349B/zh
Publication of CN113105349A publication Critical patent/CN113105349A/zh
Priority to GB2315197.0A priority patent/GB2620508A/en
Priority to PCT/CN2021/120065 priority patent/WO2022193601A1/zh
Priority to ZA2023/00328A priority patent/ZA202300328B/en
Application granted granted Critical
Publication of CN113105349B publication Critical patent/CN113105349B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C225/00Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones
    • C07C225/22Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C221/00Preparation of compounds containing amino groups and doubly-bound oxygen atoms bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D221/00Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
    • C07D221/02Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
    • C07D221/04Ortho- or peri-condensed ring systems
    • C07D221/06Ring systems of three rings
    • C07D221/14Aza-phenalenes, e.g. 1,8-naphthalimide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/28Phenalenes; Hydrogenated phenalenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Nanotechnology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Luminescent Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种具有聚集诱导的发光化合物及超分子聚合荧光纳米材料和制备方法,其中超分子聚合荧光纳米材料的制备方法为:将具有聚集诱导发光的化合物与PCDA共价结合得到新化合物;将得到的新化合物溶于二氯甲烷或氯仿中;将PCDA溶于二氯甲烷或氯仿中;通过薄膜水化法将溶液制备超分子聚合荧光纳米材料前驱体。与现有技术相比,本发明在具有聚集诱导发光(AIE)性质的化合物基础上,将AIE分子通过共价/非共价引入到超分子体系中,以分子间的亲疏水作用自发组装成纳米颗粒,最后通过光交联产生致密且稳定的AIE点,具有高亮度,表面功能化的特点。

Description

具有聚集诱导的发光化合物及超分子聚合荧光纳米材料和制 备方法
技术领域
本发明涉及一种医用材料领域,尤其是涉及一种具有聚集诱导的发光化合物及超分子聚合荧光纳米材料和制备方法。
背景技术
超分子化学是研究多个简单的小分子通过分子间相互作用力形成有序聚集体的科学。通常,超分子发光材料都是由有机共轭平面分子来构建的,但是由于π-π相互作用,形成的超分子材料发光效率低下,甚至荧光猝灭。2001年,唐本忠院士首次发现了具有“聚集诱导发光(AIE)”的性能的分子。这些分子在游离态或者单分子态的荧光强度很微弱,甚至不发光;在聚集态或固态状态,反而具有显著的荧光强度。因此将AIE分子与超分子材料结合解决了传统超分子发光材料的荧光猝灭问题。
此外,大多数AIE分子通常是π共轭的和疏水的,仅可溶于有机溶剂,这使其不适合生物应用。AIE点的制备方法可分为2种类型。第一种是最早的无载体方法,也是最简单的通过溶剂交换产生纳米点,如在搅拌下将样品的良溶剂溶液加入到可混溶的不良溶剂中。第二种方法是使用物理包层,其中AIEgen被两亲性分子包裹以改善尺寸控制和胶体稳定。然而, 这种情况下AIEgen容易泄漏,并且导致光学性质的变化。为了避免泄漏问题, 因此可以将AIE分子与离子或亲水链共价缀合会生成水溶性AIE类似物或两亲性AIE大分子,然后通过分子间的亲疏水自组装成AIE荧光超分子聚合物。
本发明通过利用二乙炔在自组装方面的优异性能,将AIE小分子共价/非共价引入到聚二乙炔超分子体系中,以分子间的亲疏水作用自发组装成聚集诱导发光超分子聚合物。解决了聚集荧光猝灭问题,同时赋予它们良好的水溶性。此外,二乙炔聚合使得聚集体结构刚性化,可以防止荧光染料的泄露,从而开发出具有明确结构的新型纳米结构。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供发光化合物、超分子聚合荧光纳米材料及制备方法,在具有聚集诱导发光(AIE)性质的化合物基础上,将AIE分子通过共价/非共价引入到超分子体系中,以分子间的亲疏水作用自发组装成纳米颗粒,最后通过光交联产生致密且稳定的AIE点。
本发明的目的可以通过以下技术方案来实现:
本发明的第一个目的是保护一种具有聚集诱导的发光化合物,所述发光化合物的分子结构式为:
Figure SMS_1
其中D基团为供体基团。
进一步地,所述D基团为如下结构的具有电子供体的三苯胺、二苯胺,
Figure SMS_2
其中,R1为苯基或氢,R2为氢或硼酸基,R3为氢、羟基、氨基中的一种。
进一步地,所述R1、R2、R3均为氢。
本发明的第二个目的是保护一种超分子聚合荧光纳米材料的制备方法,包括以下步骤:
将具有聚集诱导发光的化合物与PCDA共价结合得到新化合物,具体操作为:
A1:将具有聚集诱导发光的化合物溶于二氯甲烷或氯仿中;
A2:将PCDA溶于二氯甲烷或氯仿中;
A3:通过薄膜水化法将A1和A2中得到的溶液制备超分子聚合荧光纳米材料前驱体;
A4:将A3中得到的前驱体冷却并在2~6℃的冰箱中过夜,使其自组装,使用前,用254nm的紫外灯照射,使纳米粒子聚合,得到超分子聚合荧光纳米材料;
进一步地,所述具有聚集诱导发光的化合物的制备过程包括以下步骤:
B1:将化合物3、DMAP、DCC溶于有机溶剂中,搅拌溶解,缓慢加入PCDA溶液,避光搅拌反应,得到反应产物混合液;
B2:将反应产物混合液蒸去溶剂,干燥,使用二氯甲烷溶解,得到的溶液用过饱和NaHCO3萃取,以此去除DCC,加无水硫酸钠去除水,得到粗产品,将粗产品提纯,得到具有聚集诱导发光的化合物;
其中化合物3的结构式为:
Figure SMS_3
进一步地,B1中化合物3、DMAP、DCC的投加比例为151mg:47.14mg:100mg。
进一步地,所述化合物3的制备过程包括以下步骤:
C1:将化合物2、4-硼酸三苯胺、四(三苯基膦)钯加入反应器,加入THF、重蒸 DMF、K2CO3 溶液,混合均匀后得到澄清透明溶液;
C2:将C1中得到的澄清透明溶液抽真空,并在惰性气体保护下进行反应温度为80℃,反应过程中采用TLC 监测反应进程,反应完全后,停止加热,让其自然冷却至室温,得到上层呈橘橙色荧光且下层无色的分层液体;
C3:将C2中得到的分层液体去除溶剂,用 DCM 萃取,饱和食盐水洗涤,用 100-200目硅胶层析柱提纯,得到纯净黄色的化合物3;
其中化合物2的结构式为:
Figure SMS_4
进一步地,化合物2、4-硼酸三苯胺、四(三苯基膦)钯的投加比例为300mg :259mg:47mg 。
进一步地,所述化合物2的制备过程包括以下步骤:
D1:将4 溴-1,8 萘二甲酸酐、3-氨基苯酚、乙酸加入反应器中,在氮气保护下在130℃下进行反应,反应过程中采用TLC 监测反应进程,反应完全后,加入水以此溶解乙酸,静置,抽滤,得到淡黄色固体,乙酸重结晶,得到纯净产物黄色固体粉末即化合物2。
进一步地,4 溴-1,8 萘二甲酸酐、3-氨基苯酚、乙酸的投加比为:2.00g :1.023g:10ml。
作为本技术方案的核心构思:通过利用二乙炔在自组装方面的优异性能,将AIE小分子共价/非共价引入到聚二乙炔超分子体系中,以分子间的亲疏水作用自发组装成聚集诱导发光超分子聚合物。解决了聚集荧光猝灭问题,同时赋予它们良好的水溶性。此外,二乙炔聚合使得聚集体结构刚性化,可以防止荧光染料的泄露,从而开发出具有明确结构的新型纳米结构。
与现有技术相比,本发明具有以下技术优势:
1、本发明中制备的化合物中萘酰亚胺4-C与强给电子基团连接,可以提高荧光量子效率和有助于斯托克斯位移转换移动到红外线波长。
2、本发明的聚集诱导发光纳米材料具有较大的斯托克斯位移,可应用与细胞成像,避免背景荧光的影响。
3、本发明通过纳米沉淀和随后的光交联,制备了的AIE点,具有高亮度,表面功能化。
4、与传统的荧光材料如有机染料、荧光蛋白和无机量子点相比,该类发光材料具有聚集态荧光强度高的优势。
附图说明
图1为实施例1中步骤三合成的化合物4的氢谱
图2为实施例1中步骤三合成的化合物4的紫外吸收光谱
图3为实施例1中步骤三合成的化合物4的荧光吸收光谱
图4为实施例1中步骤三合成的化合物4粉末的SEM图
图5为实施例1中的AIE性质图
图6为实施例1中步骤三合成的化合物4的高分辨质谱
图7为实施例1中步骤四形成的超分子聚合荧光纳米颗粒的粒径分布图
图8为实施例1中步骤四形成的超分子聚合荧光纳米颗粒的SEM图
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
本实施例的合成过程流程如下。
Figure SMS_5
步骤一,化合物2的合成:
将 4 溴-1,8 萘二甲酸酐(2.00g, 7.22mmol)、 3-氨基苯酚(1.023g, 9.39mmol)与 10ml 乙酸加入到 100ml 三口烧瓶中,氮气保护,温度逐渐升高至 130℃,搅拌得到澄清褐色溶液,反应 4.5h, TLC 监测(DCM:EA=10:1,V/V),待反应完全后,系自然冷却,有黄色固体析出,向烧瓶中加入 20ml 水(溶解乙酸),静置,抽滤,得到淡黄色固体 2.31g,乙酸重结晶,得到纯净产物黄色固体粉末。
步骤二,化合物3的合成:
在室温下,将化合物 2(300mg,0.815mmol)、 4-硼酸三苯胺(259mg,0.8967mmol)、四(三苯基膦)钯(47mg, 0.04076mmol)置于 100ml 反应管中,加入 10ml THF,2.5ml 重蒸DMF,K2CO3 溶液(1.12g/5ml 水),使固体化合物完全溶解,得到澄清透明溶液,抽真空,气体保护,反应开始,逐渐升温至 80℃。在反应过程中,可以观察到澄清透明的溶液有橘橙色荧光生成,TLC 监测(DCM:EA=20:1,v/v),反应完全后,停止加热,让其自然冷却至室温,在冷却的过程中,发现分层现象,上层有橘橙色荧光,下层无色。将反应管中的液体倒入圆底烧瓶中,旋蒸(除掉溶剂),然后用 DCM 萃取,饱和食盐水洗涤,用 100-200 目硅胶层析柱提纯(洗脱剂为 DCM),得到纯净黄色化合物3。
步骤三,化合物4的合成:
在天平上精密称取化合物3 (151mg)、DMAP(47.14mg)、DCC(100mg)加入25ml的反应管中,加5ml的四氢呋喃,搅拌使之溶解;然后精密称取(106mg)PCDA于小烧杯中,加5ml的四氢呋喃使之溶解,再将溶解好的PCDA溶液缓慢逐滴加入上述的反应管中;反应过程中用锡纸包裹避光,置于磁力搅拌器上室温搅拌72h,点板确定反应的进行程度后;反应结束后,将反应管中的溶液转移到圆底烧瓶中,减压旋蒸去除四氢呋喃(35℃),旋干后用适量的二氯甲烷溶解;得到的溶液用过饱和NaHCO3萃取,目的是去除DCC;加适量的无水硫酸钠去除水,得到粗产品;最后加少量硅胶使化合物吸附在硅胶上,减压旋蒸形成粉末,然后将粉末慢慢加入到装好的硅胶柱中,在化合物上方铺上一层石英玻璃。洗脱剂选用二氯甲烷:石油醚=1:1。得到目标化合物4,其定性的氢谱参见图1。图4为实施例中步骤三合成的化合物4粉末的SEM图。图6为实施例1中步骤三合成的化合物4的高分辨质谱,以此验证了合成的化合物4的分子结构。
步骤四,采用薄膜水化法制备超分子聚合荧光纳米颗粒:
首先NT-DA与PCDA的储备液是由氯仿溶剂配置。配置的具体过程为精确称量8.89mg NT-DA粉末于10ml的容量瓶配置成1mM储备液。精确称量18.7mg PCDA粉末于10ml的容量瓶配置成5mM储备液。NT-DA样品需要超声10min使其完全溶解,PCDA样品超声2min使其完全溶解。用移液枪分别取10μL的NT-DA和10μL的PCDA储备液加入到圆底烧瓶中,旋转蒸发去除有机溶剂,在圆底烧瓶上形成薄膜。在往圆底烧瓶中加入2ml的80℃去离子水,超声5min。常温下冷却后放置在4℃的冰箱中过夜,使其自组装。使用前,用254nm的紫外灯照射3min,使纳米粒子聚合。图7为实施例中步骤四形成的超分子聚合荧光纳米颗粒的粒径分布图,可见粒径均一并集中于132.9nm左右。图8为实施例中步骤四形成的超分子聚合荧光纳米颗粒的SEM图,可见明显看到大量的粒径较为接近的荧光纳米颗粒。
NT-DA光学性能的测试
步骤:在25 ℃下,测量了NT-DA的紫外吸收和荧光发射光谱,探针 NT-DA的储备液是由 DMSO(1× 10-3mol/L)溶剂配置。在测试过程中,使用移液枪精密移取10uL探针于装有2ml不同溶剂的比色皿中,测试均在室温下进行。考察了10uLNT-DA(1mM)在不同体积比DMSO/H2O混合溶剂中(总体积为2mL)荧光发射光谱的变化。
光学性能测试结果
如图2 NT-DA的紫外-可见吸收光谱显示,有两个最大的吸收峰,图3发射光谱排列在500 - 800 nm处,峰值在590 nm左右。可见,该化合物具有较大的斯托克斯位移( 167nm) ,避免了生物医学成像过程中激发光的光污染和发射的自吸收。
如图5,NT-DA具有典型的AIE效应特征,在DMSO中几乎是弱发射的,当逐渐加入0%-90% 去离子水后,随着水比例的增加,由于分子内运动的限制,探针逐渐形成聚集,有效地阻挡非辐射通道并激活其辐射跃迁。AIEgen的荧光被激活,在588nm发射波长处出现明亮的持续增强的橙色发射荧光,发射强度相当。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (4)

1.一种超分子聚合荧光纳米材料的制备方法,其特征在于,包括以下步骤:
将具有聚集诱导发光的化合物与PCDA共价结合得到新化合物,具体操作为:
A1:将具有聚集诱导发光的化合物溶于二氯甲烷或氯仿中;
A2:将PCDA溶于二氯甲烷或氯仿中;
A3:通过薄膜水化法将A1和A2中得到的溶液制备超分子聚合荧光纳米材料前驱体;
A4:将A3中得到的前驱体冷却并在2~6℃的冰箱中过夜,使其自组装,使用前,用254nm的紫外灯照射,使纳米粒子聚合,得到超分子聚合荧光纳米材料;
所述具有聚集诱导发光的化合物为化合物4,所述化合物4的分子结构式为:
Figure QLYQS_1
所述化合物4的制备过程包括以下步骤:
B1:将化合物3、DMAP、DCC溶于有机溶剂中,搅拌溶解,缓慢加入PCDA溶液,避光搅拌反应,得到反应产物混合液;
B2:将反应产物混合液蒸去溶剂,干燥,使用二氯甲烷溶解,得到的溶液用过饱和NaHCO3萃取,以此去除DCC,加无水硫酸钠去除水,得到粗产品,将粗产品提纯,得到具有聚集诱导发光的化合物;
其中化合物3的结构式为:
Figure QLYQS_2
所述化合物3的制备过程包括以下步骤:
C1:将化合物2、4-硼酸三苯胺、四(三苯基膦)钯加入反应器,加入THF、重蒸 DMF、K2CO3溶液,混合均匀后得到澄清透明溶液;
C2:将C1中得到的澄清透明溶液抽真空,并在惰性气体保护下进行反应温度为80℃,反应过程中采用TLC 监测反应进程,反应完全后,停止加热,让其自然冷却至室温,得到上层呈橘橙色荧光且下层无色的分层液体;
C3:将C2中得到的分层液体去除溶剂,用 DCM 萃取,饱和食盐水洗涤,用 100-200 目硅胶层析柱提纯,得到纯净黄色的化合物3;
其中化合物2的结构式为:
Figure QLYQS_3
所述化合物2的制备过程包括以下步骤:
D1:将4 溴-1,8 萘二甲酸酐、3-氨基苯酚、乙酸加入反应器中,在氮气保护下在130℃下进行反应,反应过程中采用TLC 监测反应进程,反应完全后,加入水以此溶解乙酸,静置,抽滤,得到淡黄色固体,乙酸重结晶,得到纯净产物黄色固体粉末即化合物2。
2.根据权利要求1所述的一种超分子聚合荧光纳米材料的制备方法,其特征在于,B1中化合物3、DMAP、DCC的投加比例为151mg:47.14mg:100mg。
3.根据权利要求1所述的一种超分子聚合荧光纳米材料的制备方法,其特征在于,化合物2、4-硼酸三苯胺、四(三苯基膦)钯的投加比例为300mg :259mg:47mg 。
4.根据权利要求1所述的一种超分子聚合荧光纳米材料的制备方法,其特征在于,4-溴-1,8-萘二甲酸酐、3-氨基苯酚、乙酸的投加比为:2.00g :1.023g:10ml。
CN202110290411.9A 2021-03-18 2021-03-18 具有聚集诱导的发光化合物及超分子聚合荧光纳米材料和制备方法 Active CN113105349B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202110290411.9A CN113105349B (zh) 2021-03-18 2021-03-18 具有聚集诱导的发光化合物及超分子聚合荧光纳米材料和制备方法
GB2315197.0A GB2620508A (en) 2021-03-18 2021-09-24 Aggregation-induced luminescent compound, and supramolecular polymerized fluorescent nano-material and preparation method therefor
PCT/CN2021/120065 WO2022193601A1 (zh) 2021-03-18 2021-09-24 具有聚集诱导的发光化合物及超分子聚合荧光纳米材料和制备方法
ZA2023/00328A ZA202300328B (en) 2021-03-18 2023-01-06 Aggregation-induced luminescent compound, and supramolecular polymerized fluorescent nano-material and preparation method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110290411.9A CN113105349B (zh) 2021-03-18 2021-03-18 具有聚集诱导的发光化合物及超分子聚合荧光纳米材料和制备方法

Publications (2)

Publication Number Publication Date
CN113105349A CN113105349A (zh) 2021-07-13
CN113105349B true CN113105349B (zh) 2023-04-28

Family

ID=76711842

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110290411.9A Active CN113105349B (zh) 2021-03-18 2021-03-18 具有聚集诱导的发光化合物及超分子聚合荧光纳米材料和制备方法

Country Status (4)

Country Link
CN (1) CN113105349B (zh)
GB (1) GB2620508A (zh)
WO (1) WO2022193601A1 (zh)
ZA (1) ZA202300328B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113105349B (zh) * 2021-03-18 2023-04-28 上海工程技术大学 具有聚集诱导的发光化合物及超分子聚合荧光纳米材料和制备方法
CN113248433B (zh) * 2021-04-15 2022-09-09 中山大学 一种超分子化合物纳米载体及其制备方法和应用
CN116041348B (zh) * 2022-12-31 2023-12-01 长江师范学院 一种对十氟化二硫具有增强荧光响应的纳米材料及其制备方法和应用
CN116217485A (zh) * 2023-03-02 2023-06-06 天津大学 一类基于aie特性的萘酰亚胺类荧光团及合成方法和应用
CN116253683A (zh) * 2023-03-06 2023-06-13 北京大学 一种可聚合的湿度和酸碱度响应性荧光分子开关及其制备方法和应用
CN118165727A (zh) * 2024-01-31 2024-06-11 广东省大湾区华南理工大学聚集诱导发光高等研究院 一种基于活性溶胀的聚集诱导发光磁性编码微球及其制备方法与应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106588975B (zh) * 2016-12-06 2018-06-01 湖南科技大学 一种基于聚集诱导发光的温敏荧光材料及其制备方法和应用
CN112920117B (zh) * 2021-01-29 2022-12-20 上海工程技术大学 基于聚集诱导发光的光敏剂在细胞成像和光动力疗法中的应用方法
CN113105349B (zh) * 2021-03-18 2023-04-28 上海工程技术大学 具有聚集诱导的发光化合物及超分子聚合荧光纳米材料和制备方法

Also Published As

Publication number Publication date
ZA202300328B (en) 2024-01-31
GB2620508A (en) 2024-01-10
CN113105349A (zh) 2021-07-13
WO2022193601A1 (zh) 2022-09-22
GB202315197D0 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
CN113105349B (zh) 具有聚集诱导的发光化合物及超分子聚合荧光纳米材料和制备方法
Liu et al. Tetrathienylethene based red aggregation-enhanced emission probes: super red-shifted mechanochromic behavior and highly photostable cell membrane imaging
Gao et al. Stoichiometric imbalance-promoted synthesis of polymers containing highly substituted naphthalenes: rhodium-catalyzed oxidative polycoupling of arylboronic acids and internal diynes
Chang et al. Constructing small molecular AIE luminophores through a 2, 2-(2, 2-diphenylethene-1, 1-diyl) dithiophene core and peripheral triphenylamine with applications in piezofluorochromism, optical waveguides, and explosive detection
CN111057174A (zh) 一种聚苯乙烯高荧光微球及其制备方法
Liang et al. Sticky nanopads made of crystallizable fluorescent polymers for rapid and sensitive detection of organic pollutants in water
Gu et al. Electrospinning preparation, thermal, and luminescence properties of Eu 2 (BTP) 3 (Phen) 2 complex doped in PMMA
CN113278155B (zh) 一种近红外有机超分子组装体及其制备方法和应用
Xia et al. Self-assembly of an alkynylpyrene derivative for multi-responsive fluorescence behavior and photoswitching performance
Huang et al. An acrylate AIE-active dye with a two-photon fluorescent switch for fluorescent nanoparticles by RAFT polymerization: synthesis, molecular structure and application in cell imaging
Li et al. Liquid and solid-state tunable fluorescent carbon dots for trace water detection
CN110156962B (zh) 一种具有聚集诱导发光特性的高分子和其共价修饰碳纳米管及制备方法
Deng et al. Polymeric nanoparticles based on CDs with photoreversible dual-color fluorescence modulation
CN111607102B (zh) 共价有机框架材料及其制备方法和应用
CN109301021B (zh) 固态红-转-黄上转换共聚物体系的应用
Li et al. New sensors for the detection of picric acid: Ionic liquids based on polyhedral oligomeric silsesquioxanes prepared via a thiol-ene click reaction
Xu et al. Wavelength tunable barbituric acid derivatives: Synthesis, aggregation-induced emission and nitroaromatic detection
CN113791060B (zh) 一种氰基苯乙烯衍生物及其制备方法和应用、聚合物检测探针及荧光检测方法
CN113265042B (zh) 一种可调控荧光发光方式的共聚物及其制备方法和应用
Kong et al. Dynamic photo-enhanced polyacrylic acid-based room temperature phosphorescence materials with persistent long-wavelength and even near-infrared luminescence via Förster resonance energy transfer
Yang et al. Organic Nanocrystals Based on a Solid-Emission-Tunable AIEgen for Cell Imaging
Chang et al. An organic-inorganic hybrid comprised of tetraphenylethene peripheries and octavinylsilsesquioxane core for aggregation-induced emission and photoelectric property
Yan et al. Covalently bonded assembly and photoluminescent properties of rare earth/silica/poly (methyl methacrylate-co-maleic anhydride) hybrid materials
Wu et al. Inducing the distinctly different fluorescence properties of a tetraphenylethene (TPE) derivative modified lanthanide nanowire upon the addition of a pair of cis-and trans-isomers of fatty acids
Liu et al. Microbelts and flower-like particles of hexakis-(4-(5-styryl-1, 3, 4-oxazodiazol-2-yl)-phenoxy)-cyclotriphosphazene: self-assembly and photoreaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant