CN113278155A - 一种近红外有机超分子组装体及其制备方法和应用 - Google Patents

一种近红外有机超分子组装体及其制备方法和应用 Download PDF

Info

Publication number
CN113278155A
CN113278155A CN202110517040.3A CN202110517040A CN113278155A CN 113278155 A CN113278155 A CN 113278155A CN 202110517040 A CN202110517040 A CN 202110517040A CN 113278155 A CN113278155 A CN 113278155A
Authority
CN
China
Prior art keywords
compound
assembly
supramolecular
cucurbit
dsa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110517040.3A
Other languages
English (en)
Other versions
CN113278155B (zh
Inventor
曾毅
尹文霞
李嫕
陈金平
于天君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technical Institute of Physics and Chemistry of CAS
Original Assignee
Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technical Institute of Physics and Chemistry of CAS filed Critical Technical Institute of Physics and Chemistry of CAS
Priority to CN202110517040.3A priority Critical patent/CN113278155B/zh
Publication of CN113278155A publication Critical patent/CN113278155A/zh
Application granted granted Critical
Publication of CN113278155B publication Critical patent/CN113278155B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1416Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1466Heterocyclic containing nitrogen as the only heteroatom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种有机超分子组装体,包括化合物A和化合物B,其中,所述化合物A为二苯乙烯基蒽类衍生物;所述化合物B为葫芦[7]脲和/或葫芦[8]脲。所述组装体的制备方法简单,能够实现有机分子的固态近红外发光,且具有良好的水溶性和生物相容性,可以用于生物成像、光动力诊疗等。

Description

一种近红外有机超分子组装体及其制备方法和应用
技术领域
本发明涉及有机发光材料技术领域,尤其是涉及一种近红外有机超分子组装体及其制备方法和应用。
背景技术
有机发光材料因其在生物传感器、荧光探针、细胞成像、发光二极管等领域具有广泛的应用前景而备受关注,传统的有机发光分子存在聚集诱导荧光猝灭(Aggregation-Caused Quenching,ACQ)的缺陷,即在稀溶液中具有高的荧光量子产率,而在高浓度或者固体状态下荧光大幅度降低甚至消失,长波长发光化合物即近红外发光化合物在固态下更易出现荧光自猝灭现象,但是,由于近红外光对生物组织的穿透性较强,且光损伤较小,具有更好的空间分辨率,开发具有近红外发光的固态有机材料一直是本领域研究的热点。
目前已有研究发现一类在聚集体状态或固体状态下发光强度大幅度提高的分子,即聚集诱导发光(Aggregation-induced emission,AIE)特征分子(AIEgen),AIEgen具有较大的斯托克斯位移、优秀的光稳定性以及更高的荧光强度,被视为极具潜力的发光材料,目前,已报道通过分子设计获得固态下发光性质良好的材料。
发明内容
本发明的目的是提供一种近红外有机超分子组装体及其制备方法和应用,所述组装体的制备方法简单,能够实现有机分子的固态近红外发光,且具有良好的水溶性和生物相容性,可以用于生物成像、光动力诊疗等。
本发明提供一种有机超分子组装体,包括化合物A和化合物B,其中,所述化合物A为二苯乙烯基蒽类衍生物;所述化合物B为葫芦[7]脲和/或葫芦[8]脲;所述二苯乙烯基蒽类衍生物具有如下的结构:
Figure BDA0003062709020000021
其中,R1、R2相同或不同,彼此独立地选自H、C1-10烷基、C3-10环烷基、芳基取代的C1-10烷基、烷基芳基取代的C1-10烷基;
X为卤素:氟、氯、溴或碘。
根据本发明,化合物B具有如下结构:
Figure BDA0003062709020000022
作为示例的,C1-10烷基为甲基、乙基、丙基、异丙基、正丁基、仲丁基、异丁基、叔丁基、正戊基、正己基、正庚基、正辛基或正壬基。
作为示例地,C3-10环烷基为环丙基、环丁基、环戊基、环己基或金刚烷基。
作为示例地,芳基可为苯基、萘基、菲基;
在一个实施方式中,化合物A中,R1、R2相同或不同,彼此独立地选自H、C1-6烷基、苯基、苄基、4-甲基苄基、4-乙基苄基或2-萘甲基。
优选地,X为氯或溴。
在本发明一个实施方式中,化合物A中,R1、R2相同,且为H、甲基、乙基、苄基、或4-甲基苄基。
根据本发明,所述有机超分子组装体,其中化合物A和化合物B形成主客体化合物,化合物A的分子插入到化合物B的空腔中。所述组装体可以为小分子主客体化合物,也可以为寡聚物,或超分子聚合物。
在一个实例方式中,所述有机超分子组装体为小分子主客体化合物,其由化合物A和葫芦[7]脲通过主客体相互作用形成。
在一个实例方式中,所述有机超分子组装体为小分子主客体化合物,其由化合物A、葫芦[8]脲通过主客体相互作用形成。
在一个实例方式中,所述有机超分子组装体为寡聚物主客体化合物,其由化合物A、葫芦[7]脲和葫芦[8]脲通过主客体相互作用形成。
在一个实施方式中,所述有机超分子组装体为有机超分子聚合物,其由化合物A、葫芦[7]脲和葫芦[8]脲通过主客体相互作用形成超分子聚合物,其含有如式Ⅰ所示的结构。
Figure BDA0003062709020000031
根据本发明,在所述超分子聚合物中,所述化合物A、葫芦[7]脲和葫芦[8]脲的摩尔比为:1:2:1。
所述超分子聚合物的晶体结构为金字塔形。
根据本发明,上述有机超分子聚合物由化合物A先与葫芦[7]脲自组装,再和葫芦[8]脲自组装而形成。
根据本发明,所述超分子聚合物具有如图5所示的扫描电镜图。
根据本发明,所述超分子聚合物具有如图6所示的X射线衍射图。
根据本发明,所述超分子聚合物包括溶液状态和固体状态。
优选地,当所述超分子聚合物为溶液状态时,所述溶液的紫外发射波长为615nm,荧光量子产率为1.01%。
优选地,当所述超分子聚合物为固体状态时,所述固体的紫外发射波长大于等于660nm,例如661nm,荧光量子产率为14.3%。
本发明还提供一种有机超分子组装体的制备方法,其包括以下步骤:将化合物A与化合物B在溶剂中混合,得到超分子组装体,所述化合物A、化合物B如上定义。
根据本发明,将化合物A和化合物B混合后,静置一段时间,进行自组装。所述静置时间为1h-10d,优选地,为12h-5d,作为示例地,为10h、1d、2d、5d。
根据本发明,所述溶剂为水、醋酸钠缓冲溶液、水-甲醇、水-乙醇或水-二甲亚砜混合溶剂,优选地,所述混合溶剂中水的体积分数不低于70%,优选地,所述混合溶剂中水的体积分数不低于75%,优选地,所述混合溶剂中水的体积分数不低于80%。
根据本发明,所述超分子聚合物的制备方法包括如下步骤:将化合物A溶解于溶剂,加入葫芦[7]脲混合,静置,再加入葫芦[8]脲混合,静置。
根据本发明,上述方法中,将化合物A与化合物B在溶剂中混合,静置,进行自组装,得到超分子组装体的溶液。再将上述溶液除去溶剂,得到固体超分子组装体。例如将上述溶液经旋转蒸发除掉溶剂,再真空烘干,得到固体超分子组装体。
根据本发明,所述固态有机超分子聚合物能够溶于极性溶剂,例如水中。
本发明还提供一种超分子组装体的用途,其用于生物成像、光动力诊疗、或电致发光器件中。
本发明的有益效果为:
1)本发明通过二苯乙烯基蒽类衍生物与葫芦脲主体分子之间的超分子相互作用,制备了一种近红外荧光增强功能的新型超分子组装体,当二苯乙烯基蒽类衍生物与葫芦[7]脲组装后,同等浓度下组装物溶液的荧光强度比二苯乙烯基蒽类衍生物溶液的荧光强度增强了约20倍,进一步与葫芦[8]脲形成超分子聚合物固体后,固体的荧光量子产率比溶液的荧光量子产率提高了约10倍,本发明组装后的产物具有聚集诱导发光特征,且有效提高了荧光强度和荧光量子产率。
本发明的发光原理为:二苯乙烯基蒽类衍生物中的苯环是通过单键连接的,在稀溶液中苯环围绕碳-碳单键快速自由旋转,耗散掉激发态的能量,减弱了其辐射衰减产生的荧光;当分子葫芦[7]脲和/或葫芦[8]脲组装后,限制了分子内的自由旋转,大大降低激发态的非辐射跃迁,从而大幅增加了荧光强度;进一步的,二苯乙烯基蒽类衍生物本身具有聚集的特性,将其制备为固态的超分子组装体后,其非辐射跃迁进一步被抑制,从而再次提高其荧光量子效率。
2)本发明制备的二苯乙烯基蒽类衍生物与葫芦脲组装后,水溶性明显增加,生物相容性增加,且生物毒性大大降低,可以将其用于Hela细胞等癌细胞成像,同时,也可以用作生物组织成像。此外,当二苯乙烯基蒽类衍生物先与CB[7]组装,再与CB[8]组装后,在扫描电镜和偏光显微镜下均显示这种超分子组装体最终形成了金字塔形的晶体,其稳定性很高,因此这类组装体是一类高稳定性高发光效率的主体型发光材料,有望作为发光材料应用于有机电致发光器件中。
附图说明
图1示出了实施例6中制备的有机超分子聚合物组装的示意图;
图2示出了实施例3制备得到的DSA-(Py+-CH2-ph)2与不同比例的CB[7]和CB[8]组装后在DMSO-d6中和D2O混合溶剂中的1H NMR(400MHz)图谱;
图3示出了实施例4制备得到的2Py+-DSA与不同当量CB[7]组装后的吸收光谱和发光光谱图(图a-b);2Py+-DSA与不同当量CB[8]组装后的吸收光谱和发光光谱图(图c-d);
图4示出了实施例5制备得到的DSA-(Py+-CH2-ph)2与不同当量的CB[7]组装后的吸收光谱和发光光谱图(图a-b);DSA-(Py+-CH2-ph)2与2当量CB[7]组装后再与不同比例的CB[8]组装得到的吸收光谱和发光光谱图(图c-d);
图5示出了实施例6制备得到的DSA-(Py+-CH2-ph)2与CB[7]和CB[8]组装后形成超分子聚合物的扫描电镜图;
图6示出了实施例6制备得到的DSA-(Py+-CH2-ph)2与CB[7]和CB[8]组装后形成超分子聚合物的粉末X射线衍射图,以及单纯CB[7]和CB[8]化合物的X射线衍射图;
图7示出了实施例8制备得到的DSA-(Py+-CH2-ph)2与CB[7]组装形成的组装体、DSA-(Py+-CH2-ph)2与CB[7]和CB[8]组装后形成超分子聚合物的MTT实验对比图;
图8示出了实施例8制备得到的DSA-(Py+-CH2-ph)2与CB[7]组装形成的组装体、DSA-(Py+-CH2-ph)2与CB[7]和CB[8]组装后形成超分子聚合物的细胞成像图。
具体实施方式
下文将结合具体实施例对本发明的通式化合物及其制备方法和应用做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。
除非另有说明,以下实施例中使用的原料和试剂均为市售商品,或者可以通过已知方法制备。
实施例1制备二苯乙烯基蒽类衍生物2Py-DSA和2Py+-DSA
合成9,10-双((E)-4-(吡啶-4-基)苯乙烯基)蒽(2Py-DSA):
Figure BDA0003062709020000061
将0.6mmol的9,10-双((E)-4-溴代苯乙烯)蒽(0.33g)、2.4mmol的吡啶-4-基硼酸(0.29g)加入48mL甲苯中,再加入0.03mmol催化量的Pd(PPh3)4(35mg),在N2气氛中搅拌15min,然后加入6mL浓度为0.8M的K2CO3水溶液和6mL乙醇混合均匀,在氮气气氛中连续回流反应6.5h后,冷却至室温,用去离子水洗涤三次,使用乙酸乙酯萃取有机层并用无水MgSO4干燥,将沉淀物置于真空干燥箱中干燥,采用柱层析法得到纯度较高的产物,其中洗脱剂为二氯甲烷(CH2Cl2)和乙醇(体积比为9:1),用CH2Cl2重结晶得到2Py-DSA,其中,2Py-DSA为橙黄色固体粉末,产率为81%。
合成4,4'-(((1E,1'E)蒽-9,10-二基双(乙烯-2,1-二基))二(4,1-亚苯基))二(1-甲基-1-鎓)氯化物(2Py+-DSA):
Figure BDA0003062709020000071
将9,10-双((E)-4-(吡啶-4-基)苯乙烯基)蒽(2Py-DSA)(0.11g,0.2mmol)和碘甲烷(0.30g,1.6mmol)溶于10mL THF中,加热至90℃回流24小时,过滤并将固体产物溶解在甲醇中,加入饱和四丁基氯化铵(TBACl)甲醇溶液静置24h,再用乙醇溶液重结晶,得到0.12g的橙红色固体2Py+-DSA,产率为94%。
1H NMR(400MHz,DMSO-d6)δ9.03(d,J=6.8Hz,4H),8.61(d,J=6.8Hz,4H),8.49–8.38(m,6H),8.23(d,J=8.4Hz,4H),8.12(d,J=8.4Hz,4H),7.62(dd,J=6.9,3.1Hz,4H),7.11(d,J=16.6Hz,2H),4.35(s,6H).
实施例2.制备二苯乙烯基蒽类衍生物DSA-(Py+-CH2-ph)2
合成(4,4'-(((1E,1'E)蒽-9,10-二基双(乙烯-2,1-二基))二(4,1-亚苯基))二(1-苄基吡啶-1-鎓)溴化物(DSA-(Py+-CH2-ph)2):
Figure BDA0003062709020000072
将9,10-双((E)-4-(吡啶-4-基)苯乙烯基)蒽(2Py-DSA)加入DMF与THF的(DMF与THF的体积比为1:1)混合溶剂中,将混合物加热回流至溶液呈橘黄色,滴加(0.2mL,1.6mmol)溴化苄至溶液变红,升温至90℃反应6h,待反应体系产生大量橙黄色沉淀后冷却至室温,对橙黄色沉淀进行过滤,使用乙醇和乙醚洗涤,将固体产物在乙醇和丙酮中再结晶,得到棕红色粉末DSA-(Py+-CH2-ph)20.14g,产率为81%。
1H NMR(400MHz,DMSO-d6)δ9.24(d,J=6.8Hz,1H),8.64(d,J=6.8Hz,1H),8.47–8.40(m,2H),8.22(d,J=8.5Hz,1H),8.12(d,J=8.5Hz,1H),7.64–7.57(m,2H),7.48(q,J=8.1,7.2Hz,1H),7.11(d,J=16.5Hz,1H),5.86(s,1H).
实施例3
制备DSA-(Py+-CH2-ph)2与不同比例的葫芦[7]脲(以下简称CB[7])和葫芦[8]脲(以下简称CB[8])的组装体,具体步骤如下:
测试(DSA-(Py+-CH2-ph)2)在DMSO-d6中的1H NMR(400MHz)图谱;
将1当量DSA-(Py+-CH2-ph)2和2当量的CB[7]在含甲醇的水溶液中充分组装,旋转蒸发去除大量溶剂,再用真空干燥箱将其烘干,然后用30%d6-DMSO和70%D2O混合溶剂将其溶解,测试其1H NMR(400MHz)图谱(见图2),CB[7]将DSA-(Py+-CH2-ph)2上的e,f,g,h位点包裹,得到2Py+-DSA+2CB[7]组装体;
将1当量DSA-(Py+-CH2-ph)2和4当量的CB[7]在含甲醇的水溶液中充分组装,旋转蒸发去除大量溶剂,再用真空干燥箱将其烘干,然后用30%d6-DMSO和70%D2O混合溶剂将其溶解,测试其1H NMR(400MHz)图谱,此时,CB[7]不仅将DSA-(Py+-CH2-ph)2上的e,f,g,h位点包裹,而且将苄基包裹,得到2Py+-DSA+4CB[7]组装体;
将1当量DSA-(Py+-CH2-ph)2和2当量的CB[7]在溶液中自组装完成后,再加入1当量的CB[8]在含甲醇的水溶液中充分组装,旋转蒸发去除大量溶剂,再用真空干燥箱将其烘干,然后用30%d6-DMSO和70%D2O混合溶剂将其溶解,测试其1H NMR(400MHz)图谱,此时,CB[7]将DSA-(Py+-CH2-ph)2上的e,f,g,h位点包裹,CB[8]将苄基包裹,得到2Py+-DSA+2CB[7]+CB[8]组装体;
如图2所示,将测试的核磁共振氢谱1H NMR进行对比,可以看出当CB[7]为2eq时,位于e,f,g,h的氢原子被包裹;继续滴加CB[7]时,苄基上面的氢明显向高场移动,d处的峰移动明显,由此可见继续滴加CB[7]时,苄基被包裹。
实施例4
制备2Py+-DSA与葫芦脲的组装体:
将2Py+-DSA溶解在色谱甲醇中,配制浓度为10-4M的甲醇溶液,取1mL该甲醇溶液,使用超纯水稀释到10mL,得到浓度为0.01mM的2Py+-DSA溶液。
取2mL 0.01mM的2Py+-DSA溶液于比色皿中,逐渐滴加1mM的CB[7]水溶液,搅拌1min使其充分组装,得到2Py+-DSA+2CB[7]组装体,测试组装体溶液的紫外-可见吸收光谱和发光光谱。
取2mL 0.01mM的2Py+-DSA溶液于比色皿中,逐渐滴加0.1mM的CB[8]水溶液,搅拌1min使其充分组装,得到2Py+-DSA+2CB[8]组装体,测试组装体溶液的紫外-可见吸收光谱和发光光谱。
结果如图3所示,从中可以看出,2Py+-DSA+2CB[7]的组装体具有稳定的吸收峰和发射波长,而2Py+-DSA+2CB[8]的吸收峰和发射波长随浓度变化而变化。
这一变化是由于2Py+-DSA与CB[8]组装时,一个CB[8]可以包结两个发色团分子,从而使面对面堆积的两个发色团分子间发生电荷转移,导致吸收光谱发生红移,荧光没有明显增强。
实施例5
制备DSA-(Py+-CH2-ph)2与葫芦脲的组装体:
将DSA-(Py+CH2-ph)2溶解在色谱甲醇中,配制浓度为10-4M的甲醇溶液,取1mL该甲醇溶液,使用超纯水稀释到10mL,得到浓度为0.01mM的DSA-(Py+-CH2-ph)2溶液。
取2mL 0.01mM的DSA-(Py+-CH2-ph)2溶液于比色皿中,逐渐滴加入1mM的CB[7]水溶液,搅拌1min使其充分组装,得到DSA-(Py+-CH2-Ph)2+2CB[7]组装体(DSA-(Py+-CH2-Ph)2:CB[7]为1:2),测试组装体溶液的紫外-可见吸收光谱和发光光谱。
取2mL 0.01mM的DSA-(Py+-CH2-ph)2溶液于比色皿中,先滴加1mM的CB[7]溶液40μL,搅拌使其充分组装,然后逐渐滴加0.1mM CB[8]水溶液,搅拌使其充分组装,得到DSA-(Py+-CH2-Ph)2+2CB[7]+CB[8]组装体(DSA-(Py+-CH2-Ph)2:CB[7]:CB[8]为1:2:1),测试组装体溶液的紫外-可见吸收光谱和发光光谱。
结果参见图4,图4a、4b示出了DSA-(Py+-CH2-ph)2与不同当量的CB[7]组装后的吸收光谱和发光光谱图;图4c、4d示出了DSA-(Py+-CH2-ph)2与2当量CB[7]组装后再与不同当量的CB[8]组装得到的吸收光谱和发光光谱图。从图中可以看出,DSA-(Py+-CH2-Ph)2+2CB[7]组装体的发射波长小于DSA-(Py+-CH2-Ph)2+2CB[7]+1CB[8],且最大吸收峰发生明显的红移。
实施例6
制备固态DSA-(Py+-CH2-ph)2与葫芦脲的超分子聚合物组装体:
称取2.2mg DSA-(Py+-CH2-ph)2置于圆底烧瓶,加入甲醇使其溶解,将其旋转蒸发至溶液饱和,用去离子水稀释,然后将2eq CB[7]加入上述溶液中搅拌,静置使CB[7]与DSA-(Py+-CH2-ph)2完全组装,然后加入1eq CB[8]溶液搅拌使其完全组装后,得到超分子聚合物组装体(见图1)。再旋转蒸发上述溶液除掉甲醇溶剂,超分子聚合物组装体在溶液中会逐渐聚集形成结晶性的聚集体,在不同的静置时间取样实时监测超分子聚合物组装体的聚集过程。
利用扫描电镜可以观察组装体的聚集过程,DSA-(Py+-CH2-Ph)2+2CB[7]+CB[8]超分子聚合物先形成层状聚集体,随后逐层自下而上生长,最终会形成“金字塔”形的聚集体(经过5天)(见图5),平均尺寸大约为500nm,偏光显微镜下可以看到明显的双折射现象和黑色十字消光现象,所制备的超分子聚合物的XRD图参见图6,从中可以看到与葫芦脲CB[7]和葫芦脲CB[8]晶体相对应的尖峰,表明组装体形成的是晶态聚集体。该晶态聚集体呈橙红色。
实施例7
对DSA-(Py+-CH2-Ph)2组装体在溶液和固体状态下的光物理性质进行表征:
表1.DSA-(Py+-CH2-Ph)2和CB[7]、CB[8]组装体在水溶液中的光物理参数
Figure BDA0003062709020000111
由表1可知,在水溶液中时,DSA-(Py+-CH2-Ph)2的最大吸收峰对应的波长为334nm和438nm,发射波长为630nm,与CB[7]组装后,发生20nm蓝移,进一步与CB[8]组装后,红移至615nm,且荧光量子产率均有所提高。
表2.DSA-(Py+-CH2-Ph)2和CB[7]、CB[8]组装体在固体状态下的光物理参数
Figure BDA0003062709020000112
由表2可知,在固体状态下,DSA-(Py+-CH2-Ph)2的发射波长为680nm,与在水溶液中相比,发生了较大的红移,与CB[7]、CB[7]+CB[8]组装后,发射也仍然不小于660nm的位置,且荧光量子产率显著提高。
实施例8
DSA-(Py+-CH2-ph)2)与葫芦脲的组装体的生物应用:
1、细胞MTT实验用DSA-(Py+-CH2-Ph)2与组装体DSA-(Py+-CH2-Ph)2+2CB[7],DSA-(Py+-CH2-Ph)2+2eq CB[7]+1eq CB[8]测其对Hela细胞的暗毒性:
将悬浮细胞滴加在96孔板中,设置6个浓度梯度的组装体溶液(组装体的浓度分别设置为0uM、0.5uM、1uM、2uM、4uM、6uM),每个浓度设置5个平行实验,用DMEM(dulbecco'smodified eagle medium培养基,本实施例选用含血清培养基)培养24h,再用相应浓度的DSA-(Py+-CH2-Ph)2或上述组装体溶液孵育22h后,将组装体用PBS洗涤除去,加入浓度为0.5mg/mL MTT溶液(溶剂为不含血清的DMEM)培养4h;将MTT吸出后,加入200uL DMSO(二甲基亚砜),用移液枪吹均匀,振荡10min,用酶标仪测定其吸收值。
实验结果如图7所示,从图中可以看出,随着浓度的增加,DSA-(Py+-CH2-ph)2的细胞毒性增大(当为2uM时,其MTT值低于98%,当为4uM时,其MTT值低于60%),而与CB[7]或CB[7]+CB[8]组装后,即使在较高的浓度下,其细胞毒性均较小,说明CB[7]或CB[7]+CB[8]与DSA-(Py+-CH2-ph)2组装后,能够有效降低DSA-(Py+-CH2-ph)2的生物毒性,使其能够用于生物成像。
2、细胞成像实验
将长满细胞的培养皿(约80%-90%)用胰酶消化下来后,转入小皿中,在二氧化碳培养箱中培养过夜使细胞贴壁,贴壁之后,分别加入2μM相应的DSA-(Py+-CH2-ph)2染料、DSA-(Py+-CH2-Ph)2+2CB[7]组装体,孵育4h,然后使用共聚焦显微镜(双光子显微镜)观察组装体与细胞孵育的结果。
结果如图8所示,左图为DSA-(Py+-CH2-Ph)2染料染色的细胞,染料分子不仅附着在细胞表面,而且部分进入细胞核;右图为组装体染色的细胞(处理时间均为4h),大量组装体附着在细胞表面且发出清晰明亮的红光,且有少量组装体进入细胞,分布在细胞质中,但均未进入细胞核。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种有机超分子组装体,其特征在于,包括化合物A和化合物B,其中,所述化合物A为二苯乙烯基蒽类衍生物;所述化合物B为葫芦[7]脲和/或葫芦[8]脲;所述二苯乙烯基蒽类衍生物具有如下的结构:
Figure FDA0003062709010000011
其中,R1、R2相同或不同,彼此独立地选自H、C1-10烷基、C3-10环烷基、芳基取代的C1-10烷基、烷基芳基取代的C1-10烷基;
X为卤素:氟、氯、溴或碘。
2.如权利要求1所述的有机超分子组装体,其特征在于,所述化合物B具有如下结构:
Figure FDA0003062709010000012
3.如权利要求2所述的有机超分子组装体,其特征在于,化合物A中,R1、R2相同或不同,彼此独立地选自H、C1-6烷基、苯基、苄基、4-甲基苄基、4-乙基苄基或2-萘甲基。
优选地,X为氯或溴。
优选地,所述化合物A中,R1、R2相同,且为H、甲基、乙基、苄基、或4-甲基苄基。
4.如权利要求1所述的有机超分子组装体,其特征在于,所述有机超分子组装体,其中化合物A和化合物B形成主客体化合物,化合物A的分子插入到化合物B的空腔中;所述组装体可以为小分子主客体化合物,也可以为寡聚物,或超分子聚合物。
5.如权利要求4所述的有机超分子组装体,其特征在于,所述有机超分子组装体为有机超分子聚合物,其由化合物A、葫芦[7]脲和葫芦[8]脲通过主客体相互作用形成超分子聚合物,其含有如式Ⅰ所示的结构,
Figure FDA0003062709010000021
优选地,在所述超分子聚合物中,所述化合物A、葫芦[7]脲和葫芦[8]脲的摩尔比为:1:2:1。
优选地,所述超分子聚合物的晶体结构为金字塔形。
6.一种权利要求1至5中任一项所述有机超分子组装体的制备方法,包括以下步骤:将化合物A与化合物B在溶剂中混合,得到超分子组装体,所述化合物A、化合物B如上定义。
7.如权利要求6所述的有机超分子组装体的制备方法,其中,将化合物A和化合物B混合后,静置一段时间,进行自组装。所述静置时间为1h-10d,优选地,为12h-5d。
优选地,所述溶剂为水、醋酸钠缓冲溶液、水-甲醇、水-乙醇或水-二甲亚砜混合溶剂,优选地,所述混合溶剂中水的体积分数不低于70%,优选地,所述混合溶剂中水的体积分数不低于75%。
8.如权利要求6所述的有机超分子组装体的制备方法,其中,当所述超分子组装体为超分子聚合物时,其制备方法包括如下步骤:将化合物A溶解于溶剂,加入葫芦[7]脲混合,静置,再加入葫芦[8]脲混合,静置。
9.如权利要求6所述的有机超分子组装体的制备方法,其中,上述方法中,将化合物A与化合物B在溶剂中混合,静置,进行自组装,得到超分子组装体的溶液,再将上述溶液除去溶剂,得到固体超分子组装体。例如将上述溶液经旋转蒸发除掉溶剂,再真空烘干,得到固体超分子组装体。
10.一种权利要求1至6中任一项所述超分子组装体的用途,其特征在于,其用于生物成像、光动力诊疗或电致发光器件中。
CN202110517040.3A 2021-05-12 2021-05-12 一种近红外有机超分子组装体及其制备方法和应用 Active CN113278155B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110517040.3A CN113278155B (zh) 2021-05-12 2021-05-12 一种近红外有机超分子组装体及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110517040.3A CN113278155B (zh) 2021-05-12 2021-05-12 一种近红外有机超分子组装体及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113278155A true CN113278155A (zh) 2021-08-20
CN113278155B CN113278155B (zh) 2022-07-29

Family

ID=77278944

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110517040.3A Active CN113278155B (zh) 2021-05-12 2021-05-12 一种近红外有机超分子组装体及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113278155B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114591342A (zh) * 2022-04-01 2022-06-07 贵州大学 一种检测水中Al3+和Fe3+的荧光探针的制备方法及应用
CN115057864A (zh) * 2022-07-27 2022-09-16 郑州大学第一附属医院 基于aie分子/葫芦脲7检测金刚烷胺的荧光探针及其检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105061775A (zh) * 2015-08-09 2015-11-18 大连理工大学 一种通过葫芦脲阴离子组装制备新型有机固体荧光材料的方法
CN105936669A (zh) * 2016-05-17 2016-09-14 南开大学 一种基于葫芦[8]脲的多孔超分子组装体及其制备方法
US20200129957A1 (en) * 2018-10-26 2020-04-30 Korea Institute Of Energy Research Cucurbituril-polyethylenimine-silica complex, preparation method thereof and carbon dioxide absorbent comprising same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105061775A (zh) * 2015-08-09 2015-11-18 大连理工大学 一种通过葫芦脲阴离子组装制备新型有机固体荧光材料的方法
CN105936669A (zh) * 2016-05-17 2016-09-14 南开大学 一种基于葫芦[8]脲的多孔超分子组装体及其制备方法
US20200129957A1 (en) * 2018-10-26 2020-04-30 Korea Institute Of Energy Research Cucurbituril-polyethylenimine-silica complex, preparation method thereof and carbon dioxide absorbent comprising same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114591342A (zh) * 2022-04-01 2022-06-07 贵州大学 一种检测水中Al3+和Fe3+的荧光探针的制备方法及应用
CN115057864A (zh) * 2022-07-27 2022-09-16 郑州大学第一附属医院 基于aie分子/葫芦脲7检测金刚烷胺的荧光探针及其检测方法

Also Published As

Publication number Publication date
CN113278155B (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
Horak et al. Tuneable solid-state emitters based on benzimidazole derivatives: Aggregation induced red emission and mechanochromism of D-π-a fluorophores
Qi et al. Exploring highly efficient light conversion agents for agricultural film based on aggregation induced emission effects
CN113278155B (zh) 一种近红外有机超分子组装体及其制备方法和应用
Zhang et al. Non-conjugated fluorescent molecular cages of salicylaldehyde-based tri-Schiff bases: AIE, enantiomers, mechanochromism, anion hosts/probes, and cell imaging properties
Ding et al. D–A–D type chromophores with aggregation-induced emission and two-photon absorption: synthesis, optical characteristics and cell imaging
CN113105349B (zh) 具有聚集诱导的发光化合物及超分子聚合荧光纳米材料和制备方法
CN111995580B (zh) 四苯乙烯并咪唑环结构的荧光染料及其应用
Tan et al. Carbazole-based highly solid-state emissive fluorene derivatives with various mechanochromic fluorescence characteristics
Yin et al. A positively charged aggregation-induced emission (AIE) luminogen as an ultra-sensitive mechanochromic luminescent material: design, synthesis and versatile applications
Yu et al. Pure E/Z isomers of N-methylpyrrole-benzohydrazide-based BF 2 complexes: Remarkable aggregation-, crystallization-induced emission switching properties and application in sensing intracellular pH microenvironment
Ding et al. Molecular engineering to achieve AIE-active photosensitizers with NIR emission and rapid ROS generation efficiency
Li et al. Facile synthesis of a photoresponsive AIEgen used for monitoring UV light and photo-patterning
CN107759504B (zh) 一种固液态均具较强荧光的双相有机荧光材料及制备方法
Hu et al. Perylene imide derivatives: Structural modification of imide position, aggregation caused quenching mechanism, light-conversion quality and photostability
Qu et al. The Aggregation Regularity Effect of Multiarylpyrroles on Their Near‐Infrared Aggregation‐Enhanced Emission Property
Deng et al. Benzothiadiazole-based dibenzobenzimidazole derivatives with aggregation-induced deep-red fluorescence and different mechanically responsive fluorescence features
Chen et al. Effect of solid-state packing on the photophysical properties of two novel carbazole derivatives containing tetraphenylethylene and cyano groups
Chen et al. Photodynamic and photothermal synergistic behavior of triphenylamine-porphyrin nanoparticles for DNA interaction, cellular cytotoxicity and localization
Pan et al. Unification of molecular NIR fluorescence and aggregation-induced blue emission via novel dendritic zinc phthalocyanines
Han et al. A diphenylacrylonitrile conjugated porphyrin with near-infrared emission by AIE–FRET
Li et al. One-pot synthesis of trichromatic fluorescent carbon dots for printing and imaging
Zhou et al. AIEE compounds based on 9, 10-dithienylanthracene-substituted triphenylamine: design, synthesis, and applications in cell imaging
Zhang et al. An unexpected fluorescent emission of anthracene derivatives in the solid state
CN110117235B (zh) 具有聚集诱导发光和力致变色特性的化合物及其制备方法和应用
CN113024443A (zh) 9-酰基-3-碘咔唑类化合物及其作为磷光材料的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant