WO2022059059A1 - 構造体用組成物、構造体、および構造体の製造方法 - Google Patents

構造体用組成物、構造体、および構造体の製造方法 Download PDF

Info

Publication number
WO2022059059A1
WO2022059059A1 PCT/JP2020/034858 JP2020034858W WO2022059059A1 WO 2022059059 A1 WO2022059059 A1 WO 2022059059A1 JP 2020034858 W JP2020034858 W JP 2020034858W WO 2022059059 A1 WO2022059059 A1 WO 2022059059A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
composition
less
average particle
particle diameter
Prior art date
Application number
PCT/JP2020/034858
Other languages
English (en)
French (fr)
Inventor
誠之 島田
Original Assignee
株式会社 ジャパンナノコート
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 ジャパンナノコート filed Critical 株式会社 ジャパンナノコート
Priority to PCT/JP2020/034858 priority Critical patent/WO2022059059A1/ja
Publication of WO2022059059A1 publication Critical patent/WO2022059059A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals

Definitions

  • the present invention relates to a composition for a structure, a structure, and a method for manufacturing the structure.
  • the structure is low in price, good processability, safety after pulverization, etc., and further has light weight, waterproofness, flame retardancy, etc.
  • An organic-inorganic composite composition can be considered as a method of using the used structure after crushing.
  • the organic-inorganic composite composition proposed as an organic-inorganic composite composition (Patent Document 1) is an organic-inorganic composite composition in which silica particles are finely and substantially uniformly dispersed in an organic synthetic resin. It is characterized in that it was obtained by mixing water glass with an aqueous emulsion of the organic synthetic resin and further aggregating the organic synthetic resin and the silica sol by adding an acid (Patent Document 1). Item 1 etc.).
  • silica fine particles are finely and uniformly dispersed in order to improve various properties of an organic synthetic resin such as a thermoplastic resin (Patent Document 1, paragraph 0001). ) Therefore, there is a drawback that it cannot be molded at room temperature or low temperature.
  • the subject of the present invention is a structure having good workability, safety after crushing, light weight, waterproofness, fire resistance, flame retardancy, etc., from a safe material which is inexpensive and not harmful to the human body. It is to provide the composition for the structure which can form the thing.
  • the present invention relates to a composition for a structure, a structure, and a method for producing the structure, which solves the above-mentioned problems by having the following configurations.
  • [1] Inorganic powder having an average particle diameter of 212 ⁇ m or less and (B) Water glass and (C) Spherical powder having an average particle diameter of 1 to 50 nm or flat powder having an average thickness of 50 nm or less, and (D) a solvent.
  • a composition for a structure comprising.
  • the present invention [4] it is possible to easily manufacture a structure having low cost, good processability, safety after crushing, and light weight, waterproofness, fire resistance, and flame retardancy. can.
  • a structure having low cost, good processability, safety after crushing, light weight, waterproofness, fire resistance, and flame retardancy can be easily manufactured at room temperature. be able to.
  • two or more kinds having different thermal conductivitys are low-priced, have good workability, safety after crushing, and are lightweight, waterproof, fire-resistant, and flame-retardant. Laminates of two or more types of structures having different thermal conductivity can be easily manufactured at low cost.
  • composition for a structure (hereinafter referred to as a composition) of the present invention comprises (A) an inorganic powder having an average particle diameter of 212 ⁇ m or less. (B) Water glass and (C) Spherical powder having an average particle diameter of 1 to 50 nm or flat powder having an average thickness of 50 nm or less, and (D) a solvent. It is characterized by including. With this configuration, for structures that can form structures with good workability, safety after crushing, light weight, waterproofness, fire resistance, flame retardancy, etc. from low-cost and safe materials. The composition can be provided. Here, the refractory means that the cured product of 1 cm 3 is not melted at 400 ° C. for 10 minutes. Further, the composition from which the component (A) has been removed can be impregnated into a thread, urethane foam or the like as a flame-retardant coating agent to make it flame-retardant. The structure can be crushed and reused.
  • the inorganic powder having an average particle diameter of 212 ⁇ m or less, which is a component (A), is not particularly limited, and from the viewpoint of recyclability and suppression of environmental pollution due to the disposal of structures, shellfish existing in the natural world and pottery that has been used for a long time. Etc. are preferred.
  • Examples of the inorganic powder include pottery powder, shell powder, coral powder, rice husk (rice husk) powder, carbon powder, carbon nanofibers (including single-wall carbon nanotubes and multi-wall carbon nanotubes), metal powder, hollow beads and the like. Can be mentioned. Mainly, the thermal conductivity of the structure can be controlled by the type of the component (A).
  • the powder having an average particle diameter of 212 ⁇ m or less is a powder that has passed through a sieve having a nominal opening of 212 ⁇ m.
  • the average particle size of the component (A) is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and further preferably 10 ⁇ m or less.
  • the metal powder include stainless steel, copper, iron powder and the like. In the case of metal powder, it is preferably 1 ⁇ m or less from the viewpoint of enhancing the safety of the debris after the structure is destroyed.
  • hollow beads for example, 3M: Glass Bubbles, Potters Barotini: Q-CEL, etc.
  • shrinkage during curing can be suppressed, weight reduction is possible, and the thermal conductivity of the structure is reduced. It is preferable because it can be lowered. Further, when it is added to the composition, the hollow beads can be prevented from being crushed and the compressive strength can be increased.
  • the component (A) may be used alone or in combination of two or more.
  • the water glass as the component (B) is a concentrated solution of an alkali silicate, and examples thereof include sodium silicate, lithium silicate, and the like, and examples thereof are Na 2O : 1 mol. SiO 2 : A colorless and highly viscous aqueous solution containing 2 to 4 mol.
  • Commercially available products can be used for this water glass.
  • a mixture of lithium silicate and sodium silicate can be used.
  • the water glass may be used alone or in combination of two or more. Examples of mixed water glass products include Nippon Chemical Industrial SLN-73, Tigalex FJ294, and the like.
  • polyvalent metal ions such as Ca 2+ , Mg 2+ , Al 3+ , Zn 4+ and boron (B)
  • the component (C) contains a silica powder having an average particle diameter of 5 nm or less, which is described later and has a curable ability by itself.
  • the liquid containing the components (B) and (C) include BW-35 manufactured by Japan Nanocoat.
  • the spherical powder having an average particle diameter of 1 to 50 nm examples include Tokuyama's dry silica powder (trade name: Leoloseal, a powder having a primary particle diameter of 5 to 50 nm).
  • the average particle size is a value based on a number standard measured by a dynamic light scattering method using a Zetasize-nano manufactured by Malvern Panalistic.
  • Flat powders with an average thickness of 50 nm or less include flat mica powder, synthetic layered silicate powder, smectite (including montmorillonite, biderite, saponite, hectorite, and stephensite), bentonite, layered titanium oxide powder, and graphene. Examples include nanopowder. Among these, layered titanium oxide powder is preferable from the viewpoint of improving infrared reflectivity and gas barrier property.
  • Layered silicate powder made by BYK, 2-3 nm thick, length: 20-200 nm
  • Synthetic layered silicate powder manufactured by BYK, trade name: laponite, average thickness: 0.92 nm
  • Layered silicate powder trade name: Micromica MK, manufactured by Katakura Corp.
  • Agri trade name: MK-100, MK-200, MK-300, average particle size: 2 to 20 ⁇
  • Purified bentonite powder trade name: Kunipia series, Kunipia-G10, Kunipia-G4, Kunipia-G, Kunipia-F, manufactured by Kunimine Kogyo, average particle size: 0.1 to 0.5 ⁇ m
  • Examples thereof include synthetic smectite powder (manufactured by Kunimine Kogyo, trade name: smecton series (smecton-SWF, smecton-SWN, smecton-SA), average particle size: 0.1 to 0.5 ⁇ m).
  • TAYCA's titanium oxide powder (product name: JR-1000) is preferable from the viewpoint of infrared reflection effect.
  • This TAYCA titanium oxide powder (product name: JR-1000) is flat, has a large particle size (major axis is about 1 ⁇ m), and has high reflectance in the infrared wavelength range.
  • the average particle size of the titanium oxide powder is preferably 0.5 to 1 ⁇ m.
  • the flat silica powder having an average thickness of 5 nm or less imparts molding ability at room temperature, flame retardancy, etc. to the composition.
  • the average particle size of silica is preferably 1 to 3 nm, more preferably 1 to 2 nm.
  • the inorganic powder having an average particle diameter of 212 ⁇ m or less is preferably 20 to 60 parts by mass, more preferably 30 to 50 parts by mass, in addition to 100 parts by mass of the composition.
  • the water glass is preferably 40 to 80 parts by mass, more preferably 20 to 50 parts by mass with respect to 100 parts by mass of the composition. If the amount of the component (B) exceeds 80 parts by mass, the composition tends to be difficult to be uniform, and if it is less than 40 parts by mass, the composition tends to be lumpy and difficult to knead.
  • the spherical powder having an average particle diameter of 1 to 50 nm is preferably 0.05 to 1 part by mass, more preferably 0.5 to 2 parts by mass with respect to 100 parts by mass of the composition.
  • the flat silica powder having an average thickness of 50 nm or less is preferably 0.0005 to 0.5 parts by mass with respect to 100 parts by mass of the composition.
  • the layered silicate powder when the amount is 0.5 parts by mass or more with respect to 100 parts by mass of the composition, the thixo property is exhibited and it becomes easy to be difficult to use. For example, it becomes difficult to penetrate into the base material. If it is 0.0001 part by mass or less, the composition becomes sticky and difficult to use.
  • the storage stability of the composition for a structure is 20 parts by mass or less with respect to 100 parts by mass of the water glass component when the component (C) is a flat silica powder having a thickness of 5 nm or less.
  • the curing rate can be controlled to an appropriate level.
  • the curing rate can be controlled to an appropriate level when the amount is 2 parts by mass or less with respect to 100 parts by mass of the water glass component.
  • B is preferably 0.1 to 0.5 parts by mass, preferably 0.35 parts by mass, out of 100 parts by mass of the composition for structure, from the viewpoint of storage stability of the composition. It is more preferably about 0.4 parts by mass.
  • Flat silica powder and layered silicate powder are preferable because they can increase flame retardancy when the particle size of wood powder is large.
  • the solvent examples include water, but water is preferable from the viewpoint of the dispersibility of the flat silica powder and the drying speed after application.
  • a small amount of a high boiling point solvent such as a glycol may be added.
  • Additives such as flame retardant aids can be added to the composition as needed, as long as the object of the present invention is not impaired.
  • the composition can be obtained, for example, by stirring, melting, mixing and dispersing various materials, solvents, other additives and the like simultaneously or separately while subjecting heat treatment as necessary.
  • the apparatus for mixing, stirring, dispersing, etc. is not particularly limited, but a propeller stirrer, a jet mill, an anchor type stirrer, a raikai machine, a ball mill, a planetary mixer, a bead mill, or the like can be used. Further, these devices may be used in combination as appropriate. When using hollow beads, a device that does not crush the beads is preferable.
  • the composition of the present invention has good releasability with respect to a plastic mold, it can be molded using a plastic mold that can be easily manufactured at low cost. Of course, like clay, it can also be molded by hand. Further, for example, two kinds of compositions can be put into one mold and then cured to integrally mold two kinds of structures having different physical properties such as thermal conductivity.
  • component (A) when naturally derived shells, ash, etc. are used for inorganic powder with an average particle size of 212 ⁇ m or less, component (A) is ubiquitous in the world, so materials for compositions other than component (A) are sent. By doing so, it is possible to locally produce the composition and manufacture the structure by this composition all over the world.
  • the structure of the present invention includes (A) an inorganic powder having an average particle diameter of 212 ⁇ m or less. (B) Water glass and (C) A spherical powder having an average particle diameter of 1 to 50 nm or a flat powder having an average thickness of 50 nm or less. including.
  • This structure is a cured product of the above-mentioned composition, and "(A) an inorganic powder having an average particle diameter of 212 ⁇ m or less" is used as "(B) water glass and (C) a spherical powder having an average particle diameter of 1 to 50 nm. Alternatively, it is hardened with "flat powder having an average thickness of 50 nm or less".
  • the structure preferably contains a cured product of flat silica powder having an average thickness of 5 nm or less as the component (C).
  • This structure uses an inorganic binder, and when the component (C) contains a cured product of flat silica powder having an average thickness of 5 nm or less, the inorganic flat silica powder is present on the surface of the structure. Therefore, it has waterproof performance. Further, this structure can be used not only as a heat-resistant member, but also as a structural member, as an interior material and an exterior material of a building material. Two or more types of structures having different thermal conductivitys are preferable.
  • this structure is very lightweight, in particular, when hollow beads are used for (A) an inorganic powder having an average particle diameter of 212 ⁇ m or less, a heat insulating and sound absorbing effect is added, and it is inexpensive due to an upside-down effect. It has a remarkable effect.
  • the structure can be recycled by crushing it, pulverizing it to an appropriate size, and using it, which is suitable for a sound material-cycle society.
  • the method for producing a structure of the present invention is a method for curing the above-mentioned composition for a structure, and it is preferable that the curing is performed at 0 to 40 ° C.
  • a more characteristic method for producing a structure of the present invention is a method in which the above-mentioned composition for a structure is injected into a plastic mold, cured, and then removed from the plastic mold.
  • the above-mentioned structural composition has releasability with respect to a plastic mold. Since the above-mentioned structure composition can be cured at room temperature or at a low temperature of 100 ° C. or lower, the production cost can be reduced. A method in which two or more kinds of structural compositions having different thermal conductivitys are laminated and integrally molded and then cured at 0 to 40 ° C. is more preferable.
  • the plastic mold can be easily produced by a three-dimensional printer or the like, it can be produced at low cost, and the curing temperature of the above-mentioned structural composition is low, so that the mold deteriorates. It has the advantage of being difficult.
  • Example 1 The ones used in Example 1 and the like are as follows.
  • A For the inorganic powder having an average particle diameter of 212 ⁇ m or less, the pottery was crushed with a hammer crusher crusher and a bead mill, and the recovered pottery crushed powder was used at a value equivalent to 100 ⁇ m under (106 ⁇ m or less).
  • B For the water glass, Nissan Chemical's lithium silicate (trade name: 45) and Fuji Chemical's sodium silicate (type: No. 3) were used.
  • C As the flat silica powder, a flat silica powder manufactured by Japan Nanocoat (thickness: 2 to 3 nm, size: 50 nm including 3%, and water as a solvent 97%)) was used. Spherical silica powder (containing 3% silica particles with an average particle size of 2 to 3 nm and 97% water as a solvent) was used.
  • ⁇ Flame retardant test The composition was molded to a thickness of 10 cm ⁇ ⁇ 0.5 cm using a vinyl chloride plate. A gas burner (1200 ° C or higher) or a turbo lighter (1200 ° C or higher) flame is applied to the molded body after drying at 25 ° C for 72 hours, and if it does not ignite for 1 minute or longer, it is regarded as "OK", otherwise it is "NG”. ". By this test, it can be confirmed that even a structure made of a composition using wood flour is a structure that does not ignite.
  • the composition was molded into a radius of 5 cm and a thickness of 0.5 mm.
  • the molded body was made perpendicular to the thickness direction, dropped from a height of 10 m or more with respect to the concrete surface, and the one that did not crack was regarded as "OK".
  • Example 1 (C) Flat silica powder: 2 parts by mass, (A) Pottery ground powder: 30 parts by mass, (B) Sodium silicate: 47.6 parts by mass and Lithium silicate: 20.4 parts by mass were mixed. A composition was prepared. A flammability test, a waterproof test, a heat resistance test, and an impact resistance test were performed. All were "OK".
  • Example 2 A composition was prepared in the same manner as in Example 1 except that gypsum board crushed powder (under 50 ⁇ m): 30 parts by mass was used instead of the crushed pottery powder, and the combustibility test, waterproofness test and heat resistance were prepared. Tests and impact resistance were performed. All were "OK”.
  • Example 3 A composition was prepared in the same manner as in Example 1 except that scallop shell crushed powder (under 5 ⁇ m): 30 parts by mass was used instead of the crushed pottery powder, and the combustibility test, waterproofness test and heat resistance were prepared. A sex test and an impact resistance test were performed. All were "OK".
  • Example 4 A composition was prepared in the same manner as in Example 1 except that oyster shell crushed powder (under 5 ⁇ m): 30 parts by mass was used instead of the crushed pottery powder, and the combustibility test, waterproofness test and heat resistance were used. A sex test and an impact resistance test were performed. All were "OK".
  • Example 5 A composition was prepared in the same manner as in Example 1 except that 30 parts by mass of rice husk crushed powder (under 100 ⁇ ) was used instead of the crushed pottery powder, and a flammability test, a waterproof property test and a heat resistance were used. A test and an impact resistance test were performed. All were "OK".
  • Example 6 A composition was prepared in the same manner as in Example 1 except that 25 parts by mass of Potters hollow beads (product name: Q-CELL7014) was used instead of the crushed pottery powder, and the combustibility test and waterproofness were obtained. The test was done. All were "OK”. The density of the structure which is a cured product of the composition using the hollow beads was 0.34 g / cm 3 while the density of Examples 1 to 6 was 0.7 to 0.8 g / cm 3 . No shrinkage was observed during curing. Here, the density was determined from the dimensions and mass of the composition or cured product.
  • Potters hollow beads product name: Q-CELL7014
  • Example 7 Showa Kagaku Kogyo Co., Ltd. Hollow beads (product name: W-3): 50 parts by mass were used instead of the crushed pottery powder. Sex test A heat resistance test and an impact resistance test were performed. All were "OK”.
  • Example 8 The composition was prepared in the same manner as in Example 1 except that 40 parts by mass of an inorganic hollow filler (product name: B-05, average particle size: about 70 ⁇ m) of Showa Chemical Industry Co., Ltd. was used instead of the crushed pottery powder. It was prepared and subjected to combustibility test, waterproofness test, heat resistance test and impact resistance test. All were "OK”.
  • an inorganic hollow filler product name: B-05, average particle size: about 70 ⁇ m
  • Example 9 A composition was prepared in the same manner as in Example 1 except that carbon powder (average particle size: about 70 ⁇ m): 40 parts by mass was used instead of the crushed pottery powder, and the combustibility test and the waterproofness test were performed. A heat resistance test and an impact resistance test were performed. All were "OK".
  • Example 10 Put the compositions of Example 1 and Example 10 in the same amount on a plastic mold, stack two kinds of compositions, and prepare an integrally molded body so that they harden at the same time. An impact resistance test was performed. All were "OK"
  • Example 11 A composition was prepared in the same manner as in Example 1 except that spherical silica powder was used instead of the flat silica powder, and a flammability test and a waterproofness test were performed. All were "OK".
  • Example 12 A test in which a composition was prepared and cured for 24 hours in the same manner as in Example 1 except that a synthetic layered silicate powder (manufactured by BYK, trade name: Laponite) was used instead of the flat silica powder. A flammability test and a waterproofness test were performed on the piece. All were "OK".
  • a synthetic layered silicate powder manufactured by BYK, trade name: Laponite
  • Example 13 A test in which a composition was prepared and cured for 24 hours in the same manner as in Example 1 except that synthetic smeknite powder (manufactured by Kunimine Industries, trade name: smecton-SWF) was used instead of the flat silica powder. A flammability test and a waterproofness test were performed on the piece. All were "OK".
  • synthetic smeknite powder manufactured by Kunimine Industries, trade name: smecton-SWF
  • Example 14 A test piece in which a composition was prepared and cured for 24 hours in the same manner as in Example 1 except that (B) Nippon Chemical Industrial SLN-73 was used instead of (B) sodium silicate and lithium silicate. So, a combustibility test and a waterproofness test were conducted. All were "OK”.
  • Example 15 A composition was prepared in the same manner as in Example 1 except that (B) Tigalex FJ294 was used instead of (B) sodium silicate and lithium silicate, and burned with a test piece cured for 24 hours. A sex test and a waterproof test were performed. All were "OK".
  • Example 16 (C) 2 parts by mass of flat silica powder, (A) 25 parts by mass of wood powder, (B) 56.7 parts by mass of sodium silicate and 6.3 parts by mass of lithium silicate, and 10 parts by mass of water were mixed. A composition was prepared. A flammability test and a waterproof test were performed. All were "OK”. By changing the ratio of sodium silicate and lithium silicate, the content of wood flour could be increased and the biodegradability could be improved.
  • Example 1 A composition was prepared in the same manner as in Example 1 except that the component (A) was not used. Without the component (A), the composition aggregated, cracks were generated, and a uniform molded product could not be formed.
  • composition was prepared in the same manner as in Example 1 except that the component (B) was not used, but the composition did not cure without the component (B).
  • composition for a structure of the present invention can be used not only as a heat-resistant structure but also as an interior material as a structural member, a building material as an exterior material, etc., and by exporting the composition for a structure, It is very useful because the structure can be produced locally anywhere in the world.

Abstract

低価格で、人体に有害ではない安全な材料から、良加工成形性、粉砕後の安全性、さらには、軽量性、防水性、耐火性、難燃性等を備える構造物を形成可能な構造体用組成物を提供することを課題とする。 (A)平均粒子径212μm以下の無機粉末と、(B)水ガラスと、平均粒子径1~50nmの球状粉末または平均厚さが50nm以下の扁平状粉末と、(D)溶媒と、を含むことを特徴とする、構造体用組成物である。また、(A)平均粒子径200μm以下の無機粉末と、(B)水ガラスと、(C)平均粒子径1~50nmの球状粉末または平均厚さが50nm以下の扁平状粉末と、を含む、構造体である。

Description

構造体用組成物、構造体、および構造体の製造方法
 本発明は、構造体用組成物、構造体、および構造体の製造方法に関する。
 現在、陶器、レンガ等の構造体は、使用後の廃棄処理が問題となっている。
 大量の使用済み構造体の廃棄物を減少させるための一案として、廃棄するための処理方法を考えるのではなく、そもそもの入口である構造体自体を環境にやさしいリサイクル可能なものに変えることにより、使用済み構造体の廃棄物自体の量を減らし、ごみ問題を解決する方法が、考えられる。
 ここで、リサイクル可能なものを利用する方法として、使用済み構造体を粉砕して、再度成形する方法が、考えられる。この方法で使用するためには、構造体に、低価格、良加工成形性、粉砕後の安全性等が求められ、さらに、軽量性、防水性、難燃性等を有すると、好ましい。
 粉砕後の使用済み構造体を使用する方法として、有機無機複合組成物が考えられる。有機無機複合組成物として提案されている有機無機複合組成物(特許文献1)は、有機合成樹脂中にシリカ粒子が微細に、かつ、略均一に分散してなる有機無機複合組成物であって、前記有機合成樹脂の水性エマルションに水ガラスを混合して、更に、酸を加えることによって前記有機合成樹脂及びシリカゾルを凝集させて得られたことを特徴とするものである(特許文献1の請求項1等)。
 しかしながら、この有機無機複合組成物は、熱可塑性樹脂を始めとする有機合成樹脂の諸特性を向上させるためにシリカ微粒子を微細にかつ均一に分散させたものである(特許文献1の第0001段落)ため、常温または低温で成形できない、という欠点がある。
特開2008-101049号公報
 本発明の課題は、低価格で、人体に有害ではない安全な材料から、良加工成形性、粉砕後の安全性、さらには、軽量性、防水性、耐火性、難燃性等を備える構造物を形成可能な構造体用組成物を提供することである。
 本発明は、以下の構成を有することによって上記問題を解決した構造体用組成物、構造体、および構造体の製造方法に関する。
〔1〕(A)平均粒子径212μm以下の無機粉末と、
(B)水ガラスと、
(C)平均粒子径1~50nmの球状粉末または平均厚さが50nm以下の扁平状粉末と、(D)溶媒と、
を含むことを特徴とする、構造体用組成物。
〔2〕(C)成分が、平均厚さ5nm以下の扁平状シリカ粉末を含む、上記〔1〕記載の構造体用組成物。
〔3〕(A)平均粒子径212μm以下の無機粉末と、
(B)水ガラスと、
(C)平均粒子径1~50nmの球状粉末または平均厚さが50nm以下の扁平状粉末と、を含む、構造体
〔4〕上記〔1〕または〔2〕記載の構造体用組成物を硬化する、構造体の製造方法。
〔5〕硬化を0~40℃で行う、上記〔4〕記載の構造体の製造方法。
〔6〕熱伝導率の違う上記〔1〕または〔2〕の構造体用組成物を、2種以上重ねて一体成型した後、硬化を0~40℃で行う、上記〔4〕記載の構造体の製造方法。
 本発明〔1〕によれば、低価格で、人体に有害ではない安全な材料から、良加工成形性、粉砕後の安全性、さらには、軽量性、防水性、耐火性、難燃性を備える構造物を形成可能な構造体用組成物を提供することができる。
 本発明〔3〕によれば、良加工成形性、粉砕後の安全性、さらには、軽量性、防水性、耐火性、難燃性を備える構造物を提供することができる。
 本発明〔4〕によれば、低価格、良加工成形性、粉砕後の安全性、さらには、軽量性、防水性、耐火性、難燃性を備える構造物を、簡便に製造することができる。本発明〔5〕によれば、低価格、良加工成形性、粉砕後の安全性、さらには、軽量性、防水性、耐火性、難燃性を備える構造物を、簡便に常温で製造することができる。本発明〔6〕によれば、熱伝導率の異なる2種以上の低価格、良加工成形性、粉砕後の安全性、さらには、軽量性、防水性、耐火性、難燃性を備える、熱伝導率の異なる2種以上の構造物の積層体を、安価で簡便に製造することができる。
〔構造体用組成物〕
 本発明の構造体用組成物(以下、組成物という)は、(A)平均粒子径212μm以下の無機粉末と、
(B)水ガラスと、
(C)平均粒子径1~50nmの球状粉末または平均厚さが50nm以下の扁平状粉末と、(D)溶媒と、
を含むことを特徴とする。この構成により、低価格で安全な材料から、良加工成形性、粉砕後の安全性、さらには、軽量性、防水性、耐火性、難燃性等を備える構造物を形成可能な構造体用組成物を提供することができる。ここで、耐火性とは、1cmの硬化体を、400℃で10分熔融しないことをいう。また、(A)成分を抜いた組成物を難燃コーティング剤として、糸、発泡ウレタン等に含浸させて、難燃性にすることができる。構造体を粉砕して、再度使用することができる。
 (A)成分である平均粒子径212μm以下の無機粉末は、特に限定されず、リサイクル性、構造体の廃棄に伴う環境汚染抑制の観点から、自然界に存在する貝類、古くから使用されている陶器等の粉末が、好ましい。無機粉末としては、陶器粉末、貝殻粉末、珊瑚粉末、稲殻(籾殻)粉末、カーボン粉体、カーボンナノファイバー(シングルウォールカーボンナノチューブ、マルチウォールカーボンナノチューブも含む)、金属粉末、中空ビーズ等が、挙げられる。主に、(A)成分の種類により、構造体の熱伝導率を制御することができる。ここで、平均粒子径212μm以下の粉末とは、公称目開き212μmの篩を通過した粉末である。(A)成分の平均粒子径は、100μm以下であると好ましく、50μm以下であると、より好ましく、10μm以下であると、さらに好ましい。カーボンナノファイバーの場合は、平均ファイバー径および平均ファイバー長さが212μm以下であり、平均ファイバー径および平均ファイバー長さは、透過型電子顕微鏡で測定した値(n=50)に基づく値とする。金属粉末としては、ステンレス、銅、鉄の粉末等が、挙げられる。金属粉の場合には、構造体が破壊された後の破片の安全性を寄り高める観点から、1μm以下であると、好ましい。中空ビーズ(例えば、3M:グラスバブルズ、ポッターズ・バロティーニ:Q―CEL等)を含むと、硬化時の収縮を抑えることができ、軽量化も可能になり、かつ構造体の熱伝導率を低くすることができるため、好ましい。また、組成物に入れると、中空ビーズを潰れにくくでき、耐圧縮強度を高くすることができる。
 (A)成分は、単独でも、2種以上を混合してもよい。
 (B)成分である水ガラスは、ケイ酸アルカリ塩の濃厚溶液であり、特に限定されず、ケイ酸ナトリウム、ケイ酸リチウム等が挙げられ、一例としては、NaO:1molに対して、SiO:2~4molを含む無色で粘性の高い水溶液である。この水ガラスには、市販品を使用することができる。この水ガラスには、例えば、ケイ酸リチウムとケイ酸ナトリウムの混合物を用いることができる。水ガラスは、単独でも、2種以上を混合してもよい。混合した水ガラスの製品例としては、日本化学工業SLN-73、タイガレックスFJ294等が、挙げられる。
 (C)成分である平均粒子径1~50nmの球状粉末、または平均厚さが50nm以下の扁平状粉末は、水ガラスに対して弱硬化性の硬化能を有するものが、好ましい。水ガラスは、Ca2+、Mg2+、Al3+、Zn4+などの多価金属イオンやホウ素(B)により重合し、ゲル化することが知られているが、これらの多価金属イオンやBは、構造体用組成物での含有量が多くなると、硬化反応が早くなり、組成物の保存性が悪くなり易くなるため、好ましくない。一方、(C)成分は、後述する単独で硬化能を有する平均粒子径5nm以下のシリカ粉末を含むと、好ましい。(B)、(C)成分を含めた液としてジャパンナノコート製BW-35があげられる。
 平均粒子径1~50nmの球状粉末としては、トクヤマの乾式シリカ粉末(商品名:レオロシール、5~50nmの一次粒子径からなる粉体)が、挙げられる。ここで、平均粒子径は、マルバーン・パナリティカル(Malvern Panalytical)社製ゼータサイザーナノ(Zetasize-nano)を用い、動的光散乱法で測定した個数基準に基づく値とする。
 平均厚さが50nm以下の扁平状粉末としては、扁平状マイカ粉末、合成層状ケイ酸塩粉末、スメクタイト(モンモリロナイト、バイデライト、サポナイト、ヘクトライト、スチーブンサイトを含む)、ベントナイト、層状酸化チタン粉末、グラフェンナノ粉末等が、挙げられる。これらの中で、層状酸化チタン粉末は、赤外線反射性とガスバリア性を向上させる観点から、好ましい。ここで、平均厚さは、透過型電子顕微鏡で測定した値(n=50)に基づく値とする。
 上記(C)成分の市販品としては、
層状ケイ酸塩粉末(BYK製、2~3nm厚、長さ:20~200nm)、
合成層状ケイ酸塩粉末(BYK製、商品名:ラポナイト、平均厚さ:0.92nm)、
層状ケイ酸塩粉末(商品名:ミクロマイカMK、片倉コープアグリ製、商品名:MK-100、MK-200、MK-300、平均粒子径:2~20μ)、
精製ベントナイト粉末(商品名:クニピアシリーズ、クニピア-G10、クニピア-G4、クニピア-G、クニピア-F、クニミネ工業製、いずれも平均粒子径:0.1~0.5μm)、
合成スメクナイト粉末(クニミネ工業製、商品名:スメクトンシリーズ(スメクトン-SWF,スメクトン-SWN、スメクトン-SA)、いずれも平均粒子径:0.1~0.5μm)、等が、挙げられる。
 酸化チタン粉末としては、赤外線反射効果の観点から、テイカ製酸化チタン粉末(品名:JR-1000)が、好ましい。このテイカ製酸化チタン粉末(品名:JR-1000)は、扁平状で、粒径が大きく(長径が約1μm)、赤外線波長域での反射率が高い。酸化チタン粉末の平均粒径は、0.5~1μmであると、好ましい。
 平均厚み5nm以下の扁平状シリカ粉末は、組成物に、常温での成形能、や難燃性等を付与する。シリカの平均粒子径は、1~3nmであると、好ましく、1~2nmであると、より好ましい。
 (A)平均粒子径212μm以下の無機粉末は、組成物100質量部に加えて、20~60質量部であると好ましく、30~50質量部が、より好ましい。
 (B)水ガラスは、組成物100質量部に対して、40~80質量部であると好ましく、20~50質量部であると、より好ましい。(B)成分が80質量部を超えると、組成物が均一になりにくく、40質量部より少ないと、組成物が、ダマになり易く、練りにくくなり易い。
 (C)平均粒子径1~50nmの球状粉末は、組成物100質量部に対して、0.05~1質量部であると好ましく、0.5~2質量部であると、より好ましい。
 また、平均厚さが50nm以下の扁平状シリカ粉末は、組成物100質量部に対して、0.0005~0.5質量部であると好ましい。層状ケイ酸塩粉末の場合には、組成物100質量部に対して、0.5質量部以上になると、チクソ性が出て、使いにくくなり易くなる。例えば、基材に浸透しにくくなる。0.0001質量部以下であると、組成物がべたつき、使用しにくくなる。
 一例としては、構造体用組成の保存性は、(C)成分が厚さ5nm以下の扁平状シリカ粉末の場合には、水ガラス成分100質量部に対して、20質量部以下の場合に、適度な硬化速度に、制御することができる。
 (C)成分が層状ケイ酸塩の場合には、水ガラス成分100質量部に対して、2質量部以下の場合に、適度な硬化速度に、制御することができる。
 (C)成分にBが含まれる場合、Bは、組成物の保存性の観点から、構造体用組成物100質量部中、0.1~0.5質量部であると好ましく、0.35~0.4質量部であると、より好ましい。
 扁平状シリカ粉末とよび層状ケイ酸塩粉末は、木粉の粒子径が大きい場合の難燃性を高めることができるため、好ましい。
 溶媒としては、水等が挙げられるが、扁平状シリカ粉末の分散性、塗布後の乾燥速度の観点から、水であると、好ましい。任意に、グリコール系等の高沸点溶媒等を少量添加しても良い。
 組成物には、本発明の目的を損なわない範囲で、更に必要に応じ、難燃助剤等の添加剤等を配合することができる。
 組成物は、例えば、各種材料、溶媒、およびその他添加剤等を、同時にまたは別々に、必要により加熱処理を加えながら、撹拌、溶融、混合、分散させることにより得ることができる。これらの混合、撹拌、分散等の装置としては、特に限定されるものではないが、プロペラ攪拌機、ジェットミル、アンカータイプ攪拌機、ライカイ機、ボールミル、プラネタリーミキサー、ビーズミル等を使用することができる。また、これら装置を適宜組み合わせて使用してもよい。なお、中空ビーズを使用する場合には、ビーズを潰さない装置が好ましい。
 本発明の組成物は、プラスチック製の型に対する離型性が良好であるので、安価で簡便に作製可能なプラスチック製の型を使用して成型することが可能である。当然、粘土のように、手で成形することもできる。また、例えば、2種の組成物を1つの型に入れた後、硬化させ、熱伝導率等の物性の異なる2種の構造体物を、一体成形することができる。
 また、平均粒子径212μm以下の無機粉末に天然由来の貝殻、灰等を使用する場合、(A)成分は、世界中の至る所にあるため、(A)成分以外の組成物の材料を送付することで、世界中の至る所で組成物の現地生産、この組成物による構造物の製造をすることが可能である。
〔構造体〕
 本発明の構造体(以下、構造体という)は、(A)平均粒子径212μm以下の無機粉末と、
(B)水ガラスと、
(C)平均粒子径1~50nmの球状粉末または平均厚さが50nm以下の扁平状粉末と、
を含む。この構造体は、上述の組成物の硬化体であり、「(A)平均粒子径212μm以下の無機粉末」を、「(B)水ガラスと、(C)平均粒子径1~50nmの球状粉末または平均厚さが50nm以下の扁平状粉末」で固めたものである。構造体は、(C)成分に、平均厚さ5nm以下の扁平状シリカ粉末の硬化物を含むと好ましい。
 この構造体は、無機のバインダーを使用しており、(C)成分に、平均厚さ5nm以下の扁平状シリカ粉末の硬化物を含むときには、構造体表面に無機の扁平状シリカ粉末が存在するため、防水性能を有する。また、この構造体は、耐熱部材として使用できるだけでなく、構造部材として、建材の内装材、外装材として使用することができる。なお、熱伝導率の違う2種以上の構造体が、好ましい。
 この構造体は、特に、(A)平均粒子径212μm以下の無機粉末に、中空ビーズを使用するときに、非常に軽量であり、断熱吸音効果も加え、かつかさまし効果により安価である、という顕著な効果を発揮する。加えて、構造体を粉砕して、適切な大きさに粉末化し、使用することにより、リサイクルも可能であるので、循環型社会に適している。
〔構造体の製造方法〕
 本発明の構造体の製造方法は、上述の構造体用組成物を硬化する方法であり、硬化を0~40℃で行うと、好ましい。より特徴的な本発明の構造体の製造方法は、プラスチック製の型中に、上述の構造体用組成物を注入し、硬化した後、プラスチック製の型から取り出す方法である。
 上述の構造体用組成物は、プラスチック製の型に対する離型性を有する。上述の構造体用組成物の硬化は、常温または100℃以下の低温乾燥で、行うことができるため、製造コストを安価にすることができる。熱伝導率の違う2種以上の構造体用組成物を、重ねて一体成型した後、硬化を0~40℃で行う方法は、より好ましい。
 プラスチック製の型は、三次元プリンター等で簡便に作成することが可能であるため、安価で作製可能である上に、上述の構造体用組成物の硬化温度が低いため、型の劣化も起きにくい、という利点がある。
 本発明について、実施例により説明するが、本発明はこれらに限定されるものではない。なお、以下の実施例において、部、%はことわりのない限り、質量部、質量%を示す。
 実施例1等で使用したものは、以下である。
 (A)平均粒子径212μm以下の無機粉末には、陶器を、ハンマークラッシャー粉砕機およびビーズミルで粉砕し、100μmアンダー相当(106μm以下)で、回収した陶器粉砕粉を用いた。
 (B)水ガラスには、日産化学製リチウムシリケート(商品名:45)と、富士化学製珪酸ソーダ(種類:3号)を用いた。
 (C)扁平状シリカ粉末には、ジャパンナノコート製扁平状シリカ粉末(厚さ:2~3nm、大きさ:50nmを3%、溶媒としての水97%を含む))を用いた。
 球形シリカ粉末(平均粒径2~3nmシリカ粒子3%、溶媒としての水97%を含む)を用いた。
《難燃性試験》
 組成物を、10cm□×0.5cm厚に、塩ビ板を用いて、成形した。25℃、72時間乾燥後の成形体に、ガスバーナー(1200℃以上)またはターボライター(1200℃以上)の炎を当てて、1分以上着火しない場合を「OK」とし、それ以外を「NG」とした。この試験により、木粉を用いた組成物による構造物であっても、着火しない構造物であることを確認することができる。
《防水性試験》
 組成物を、10cm□×0.5mm厚に成形した。成形体の10cm□を上面にし、上面を水で濡らした。25℃、72時間後に、成形体を割り、目視で、表面だけしか浸透していない場合を「OK」とした。
《耐熱性試験》
 組成物を、1cmに成形した。成形体を、400℃の電気炉に入れ、10分以上形状維持しているものを「OK」とした。
《耐衝撃性試験》
 組成物を半径5cm、厚み0.5mmに成形した。成形体を、厚み方向に垂直にし、高さ10m以上の高さからコンクリート面に対して落下し、割れないものを「OK」とした。
〔実施例1〕
 (C)扁平状シリカ粉末:2質量部、(A)陶器粉砕粉:30質量部、(B)ケイ酸ソーダ:47.6質量部とリチウムシリケート:20.4質量部を用いて混合し、組成物を作製した。燃焼性試験と防水性試験と耐熱性試験と耐衝撃性試験を、行った。全て「OK」であった。
〔実施例2〕
 陶器粉砕粉の代わりに、石膏ボード粉砕粉(50μmアンダー):30質量部を使用したこと以外は、実施例1と同様にして、組成物を作製し、燃焼性試験と防水性試験と耐熱性試験と耐衝撃性を、行った。全て「OK」であった。
〔実施例3〕
 陶器粉砕粉の代わりに、ホタテ貝殻の粉砕粉(5μmアンダー):30質量部を使用したこと以外は、実施例1と同様にして、組成物を作製し、燃焼性試験と防水性試験と耐熱性試験と耐衝撃性試験を、行った。全て「OK」であった。
〔実施例4〕
 陶器粉砕粉の代わりに、牡蠣貝殻の粉砕粉(5μmアンダー):30質量部を使用したこと以外は、実施例1と同様にして、組成物を作製し、燃焼性試験と防水性試験と耐熱性試験と耐衝撃性試験を、行った。全て「OK」であった。
〔実施例5〕
 陶器粉砕粉の代わりに、もみ殻粉砕粉(100μアンダー):30質量部を使用したこと以外は、実施例1と同様にして、組成物を作製し、燃焼性試験と防水性試験と耐熱性試験と耐衝撃性試験を、行った。全て「OK」であった。
〔実施例6〕
 陶器粉砕粉の代わりに、ポッターズ社中空ビーズ(品名:Q-CELL7014):25質量部を使用したこと以外は、実施例1と同様にして、組成物を作製し、燃焼性試験と防水性試験を、行った。全て「OK」であった。中空ビーズを使用した組成物の硬化体である構造体の密度は、実施例1~6の密度が0.7~0.8g/cmであったのに対して、0.34g/cmと低く、硬化時の収縮が見られなかった。ここで、密度は、組成物または硬化体の寸法と質量から求めた。
〔実施例7〕
 陶器粉砕粉の代わりに、昭和化学工業社中空ビーズ(品名:W-3):50質量部を使用したこと以外は、実施例1と同様にして、組成物を作製し、燃焼性試験と防水性試験耐熱性試験と耐衝撃性試験を、行った。全て「OK」であった。
〔実施例8〕
 陶器粉砕粉の代わりに、昭和化学工業社無機中空フィラー(品名:B-05、平均粒径:約70μm)を40質量部を使用したこと以外は、実施例1と同様にして、組成物を作製し、燃焼性試験と防水性試験と耐熱性試験と耐衝撃性試験を、行った。全て「OK」であった。
〔実施例9〕
 陶器粉砕粉の代わりに、カーボン粉(平均粒径:約70μm):40質量部を使用したこと以外は、実施例1と同様にして、組成物を作製し、燃焼性試験と防水性試験と耐熱性試験と耐衝撃性試験を、行った。全て「OK」であった。
〔実施例10〕
 プラスチック型に実施例1と実施例10の組成物を同量で、2種の組成物を重ね、同時に固まるように、一体成型体を作成し、燃焼性試験と防水性試験と耐熱性試験と耐衝撃性試験を、行った。全て「OK」であった
〔実施例11〕
 扁平状シリカ粉末の代わりに、球状シリカ粉末を使用したこと以外は、実施例1と同様にして、組成物を作製し、燃焼性試験と防水性試験を、行った。全て「OK」であった。
〔実施例12〕
 扁平状シリカ粉末の代わりに、合成層状ケイ酸塩粉末(BYK製、商品名:ラポナイト)を使用したこと以外は、実施例1と同様にして、組成物を作製し、24時間硬化させた試験片で、燃焼性試験と防水性試験を、行った。全て「OK」であった。
〔実施例13〕
 扁平状シリカ粉末の代わりに、合成スメクナイト粉末(クニミネ工業製、商品名:スメクトン-SWF)を使用したこと以外は、実施例1と同様にして、組成物を作製し、24時間硬化させた試験片で、燃焼性試験と防水性試験を、行った。全て「OK」であった。
〔実施例14〕
 (B)ケイ酸ソーダとリチウムシリケートの代わりに、(B)日本化学工業SLN-73を使用したこと以外は、実施例1と同様にして、組成物を作製し、24時間硬化させた試験片で、燃焼性試験と防水性試験を、行った。全て「OK」であった。
〔実施例15〕
 (B)ケイ酸ソーダとリチウムシリケートの代わりに、(B)タイガレックスFJ294を使用したこと以外は、実施例1と同様にして、組成物を作製し、24時間硬化させた試験片で、燃焼性試験と防水性試験を、行った。全て「OK」であった。
〔実施例16〕
 (C)扁平状シリカ粉末2質量部、(A)木粉25質量部、(B)ケイ酸ソーダ56.7質量部とリチウムシリケート6.3質量部、水10質量部を用いて混合し、組成物を作製した。燃焼性試験と防水性試験を、行った。全て「OK」であった。ケイ酸ソーダとリチウムシリケートの比率を変え、木粉の含有量を増加させることができ、生分解性を改良することができた。
〔比較例1〕
 (A)成分を使用しなかったこと以外は、実施例1と同様にして、組成物を作製した。(A)成分がないと、組成物が凝集して、クラックが発生し、均一な成形体ができなかった。
〔比較例2〕
 (B)成分を使用しなかったこと以外は、実施例1と同様にして、組成物を作製したが、(B)成分が無いと、組成物が硬化しなかった。
〔比較例3〕
 (C)成分を使用しなかったこと以外は、実施例1と同様にして、組成物を作製しようとしたが、組成物が凝集して、クラックが発生し、均一な成形体ができなかった。
〔比較例4〕
 (D)成分を使用しなかったこと以外は、実施例1と同様にした組成物を作製しようとしたが、溶媒を含まない(C)成分を準備することができなかった。
 本発明の構造体用組成物は、耐熱構造体として使用できるだけでなく、構造部材として内装材、外装材としての建材等に使用可能であり、また、構造体用組成物を輸出することにより、世界中どこででも現地で構造体の生産をすることができるため、非常に有用である。

Claims (6)

  1.  (A)平均粒子径212μm以下の無機粉末と、
    (B)水ガラスと、
    (C)平均粒子径1~50nmの球状粉末または平均厚さが50nm以下の扁平状粉末と、(D)溶媒と、
    を含むことを特徴とする、構造体用組成物。
  2.  (C)成分が、平均厚さ5nm以下の扁平状シリカ粉末を含む、請求項1記載の構造体用組成物。
  3.  (A)平均粒子径212μm以下の無機粉末と、
    (B)水ガラスと、
    (C)平均粒子径1~50nmの球状粉末または平均厚さが50nm以下の扁平状粉末と、を含む、構造体。
  4.  請求項1または2記載の構造体用組成物を硬化する、構造体の製造方法。
  5.  硬化を0~40℃で行う、請求項4記載の構造体の製造方法。
  6.  熱伝導率の違う請求項1または2の構造体用組成物を、2種以上重ねて一体成型した後、硬化を0~40℃で行う、請求項4記載の構造体の製造方法。
PCT/JP2020/034858 2020-09-15 2020-09-15 構造体用組成物、構造体、および構造体の製造方法 WO2022059059A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/034858 WO2022059059A1 (ja) 2020-09-15 2020-09-15 構造体用組成物、構造体、および構造体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/034858 WO2022059059A1 (ja) 2020-09-15 2020-09-15 構造体用組成物、構造体、および構造体の製造方法

Publications (1)

Publication Number Publication Date
WO2022059059A1 true WO2022059059A1 (ja) 2022-03-24

Family

ID=80777296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034858 WO2022059059A1 (ja) 2020-09-15 2020-09-15 構造体用組成物、構造体、および構造体の製造方法

Country Status (1)

Country Link
WO (1) WO2022059059A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000226250A (ja) * 1999-02-02 2000-08-15 Naigai Ceramics Kk 無機質成形体及びその製造方法並びに無機材料の接合方法
JP2004131332A (ja) * 2002-10-10 2004-04-30 Tokiwa Electric Co Ltd 無機バインダー及びその製造方法
JP2005154211A (ja) * 2003-11-27 2005-06-16 Sanyo Chem Ind Ltd グラウト材組成物
JP2008001573A (ja) * 2006-06-26 2008-01-10 Isolite Insulating Products Co Ltd 無機質繊維成形体の製造方法
JP2013512168A (ja) * 2009-11-26 2013-04-11 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハー 化学的耐性を有する建築用化学製品の製造のための無機バインダー系

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000226250A (ja) * 1999-02-02 2000-08-15 Naigai Ceramics Kk 無機質成形体及びその製造方法並びに無機材料の接合方法
JP2004131332A (ja) * 2002-10-10 2004-04-30 Tokiwa Electric Co Ltd 無機バインダー及びその製造方法
JP2005154211A (ja) * 2003-11-27 2005-06-16 Sanyo Chem Ind Ltd グラウト材組成物
JP2008001573A (ja) * 2006-06-26 2008-01-10 Isolite Insulating Products Co Ltd 無機質繊維成形体の製造方法
JP2013512168A (ja) * 2009-11-26 2013-04-11 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハー 化学的耐性を有する建築用化学製品の製造のための無機バインダー系

Similar Documents

Publication Publication Date Title
CA2973630A1 (en) Geopolymer composite and expandable vinyl aromatic polymer granulate and expanded vinyl aromatic polymer foam comprising the same
JP2007009205A (ja) ポリウレタン−グラファイト酸化物複合材料、その製造方法、耐火材料としての使用方法及び防火障壁への使用方法
KR101535465B1 (ko) 무기바인더를 이용한 친환경 무기 불연 보드 및 그 제조방법
CN1812943A (zh) 多层防火系统
JP5072726B2 (ja) 成型体の製造方法、その製造方法を用いた補修方法及びその成型体の粉末を含有する難燃性付与材
Jawahar et al. Preparation and properties of polyester-based nanocomposite gel coat system
JP2002087831A (ja) 微小中空ガラス球状体およびその製造方法
WO2022059059A1 (ja) 構造体用組成物、構造体、および構造体の製造方法
JP2002037645A (ja) 微小中空アルミノシリケートガラス球状体およびその製造方法
RU2502602C1 (ru) Связующее для стеклопластика и пултрузионный профиль из стеклопластика
Tangboriboon et al. Effects of Foaming Agents and Eggshell Calcium Carbonate (CaCO 3) Filler on Natural Rubber Foam Physical-Thermal-Mechanical Properties.
KR20120075821A (ko) 난연 조성물
WO2021053703A1 (ja) 構造体用組成物、構造体、および構造体の製造方法
KR101289807B1 (ko) 기계화학적 방법에 의한 사문석을 이용한 불연성 마그네슘 산화물보드 제조
JP2022048565A (ja) 構造体用組成物、構造体、および構造体の製造方法
JP4630446B2 (ja) 無機質硬化性組成物とその製造方法、無機質硬化体とその製造方法及び石膏系硬化体並びにセメント系硬化体
JP3324157B2 (ja) 不燃複合材料とその製法
JPH09124354A (ja) 硬化性無機質組成物
KR20120116254A (ko) 준불연성 코팅제 및 이를 포함하는 준불연성 발포 성형품
KR20040005035A (ko) 재활용 페놀 폼 복합체
CH691541A5 (de) Feuerbeständiges Stoffgemenge.
JPH04314744A (ja) 吸熱性粒状充填材およびその製造方法
JP2001172031A (ja) 軽量微小フィラーおよびそれを配合した成形体
JPH0873283A (ja) 発泡性無機質組成物
KR101356399B1 (ko) 기계화학적 방법에 의한 페로니켈슬래그와 석탄회를 이용한 불연성 마그네슘보드 제조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20954045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP