WO2022057681A1 - 一种四轮定位系统 - Google Patents

一种四轮定位系统 Download PDF

Info

Publication number
WO2022057681A1
WO2022057681A1 PCT/CN2021/116925 CN2021116925W WO2022057681A1 WO 2022057681 A1 WO2022057681 A1 WO 2022057681A1 CN 2021116925 W CN2021116925 W CN 2021116925W WO 2022057681 A1 WO2022057681 A1 WO 2022057681A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
vehicle
target
camera
camera assembly
Prior art date
Application number
PCT/CN2021/116925
Other languages
English (en)
French (fr)
Inventor
刘连军
Original Assignee
深圳市道通科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通科技股份有限公司 filed Critical 深圳市道通科技股份有限公司
Publication of WO2022057681A1 publication Critical patent/WO2022057681A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/275Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing wheel alignment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/013Wheels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/10Wheel alignment
    • G01B2210/14One or more cameras or other optical devices capable of acquiring a two-dimensional image

Definitions

  • the present application relates to the technical field of four-wheel alignment instruments, and in particular, to a four-wheel alignment system.
  • the four-wheel aligner is mainly used to detect the wheel alignment parameters of the car, and compare it with the original design parameters, and guide the user to adjust the wheel alignment parameters accordingly, so as to meet the original design requirements, so as to achieve the ideal car driving performance.
  • the inventor of the present invention found that the four-wheel aligner is usually installed on the cart, and when the four-wheel alignment of the vehicle is performed, the staff is required to manually move the cart and push the four-wheel aligner to the trolley. In front of the vehicle, the four-wheel alignment of the vehicle is completed, and the staff manually pushes the cart, which is less efficient.
  • embodiments of the present invention provide a four-wheel alignment system, which overcomes the above problems or at least partially solves the above problems.
  • a four-wheel alignment system including:
  • One end of a boom is used for fixing with the ceiling; a beam is fixed with the other end of the boom, wherein the beam is suspended so that the vehicle can move under the beam; two camera assemblies, two The camera assemblies are respectively arranged at both ends of the beam; wheel targets are used to be installed on the wheels of the vehicle, the number of the wheel targets is at least two, and at least two of the wheel targets are respectively installed On the wheels on both sides of the vehicle, the wheel target includes a target surface, and a preset pattern is set on the target surface.
  • the processor is connected to the two camera assemblies respectively, and the processing The device is configured to perform a positioning operation on the wheel of the vehicle according to the image of the wheel target collected by the camera assembly.
  • the four-wheel alignment system includes two first clamping devices, two supporting frames and two limiting devices; one of the first clamping devices is clamped on the vehicle and the other is clamped.
  • the limiting device includes a connecting rod, a suction cup and a suction device;
  • One end of the connecting rod is fixed with a surface of the support frame away from the wheel target, the other end of the connecting rod is fixed with the suction cup, the air suction device is connected with the suction cup, and the suction cup is connected to the suction cup.
  • the device is used for extracting the gas in the suction cup, and the suction cup is used for adsorbing on the vehicle or the ground, so that when the wheel rotates, the supporting frame remains stationary.
  • the four-wheel alignment system further includes two second clamping devices; one of the second clamping devices is used to clamp the wheel on one side of the vehicle, and the other The target is fixed on one of the second clamping devices.
  • the camera assembly includes two cameras, the two cameras are arranged adjacently, and the field of view of one camera in each of the camera assemblies covers a wheel on one wheel on one side of the vehicle The target face of the target.
  • the camera assembly includes one camera, and the field of view of the one camera in each camera assembly covers the target surfaces of the wheel targets on all wheels on the same side of the vehicle.
  • the four-wheel alignment system further includes a first angle adjustment device and a second angle adjustment device, the first angle adjustment device and the second angle adjustment device are fixed to the beam, and the The first angle adjustment device and the second angle adjustment device are connected to the processor; the first angle adjustment device is connected to a camera assembly, and the first angle adjustment device is used to adjust the pitch angle of the camera assembly, The second angle adjustment device is connected to another camera assembly, and the second angle adjustment device is used to adjust the pitch angle of the other camera assembly.
  • the number of the suspension rods is two, one of the suspension rods is fixed to one end of the beam, and the other is fixed to the other end of the beam.
  • the boom is a telescopic beam.
  • the four-wheel positioning system further includes a display, which is connected to the processor and used to display the positioning parameters output by the processor.
  • the beam is fixed under the ceiling by means of a boom, two camera assemblies are arranged at both ends of the beam, and at least two wheel targets are installed For the wheels on both sides of the vehicle, the field of view of the two camera assemblies covers the target surfaces of the wheel targets on the wheels on both sides of the vehicle respectively.
  • the image of the wheel target on the wheel is collected, and finally the vehicle wheel is positioned and calculated by the processor. The whole process of positioning the vehicle wheel is very convenient and efficient.
  • FIG. 1 is a schematic diagram of the overall structure of a four-wheel alignment system according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing the connection between a processor and other components of a four-wheel alignment system according to an embodiment of the present invention
  • Fig. 3 is the right side view of the working state of a four-wheel alignment system according to an embodiment of the present invention.
  • FIG. 4 is a front view of a working state of a four-wheel alignment system according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a fixed wheel target assembly in a working state of a four-wheel alignment system according to an embodiment of the present invention
  • FIG. 6 is a top view of another working state of a four-wheel alignment system according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a fixed wheel target assembly in another working state of a four-wheel alignment system according to an embodiment of the present invention.
  • the four-wheel alignment system 01 includes: a boom 10, a beam 20, two camera assemblies 30, at least two wheel targets 40, a processor 50 (not shown), and two angle adjustment devices 60 and a display 70 (not shown). At least two wheel targets 40 are respectively mounted on the wheels on both sides of the vehicle.
  • the suspension rod 10 is fixed to the ceiling
  • the beam 20 is fixed to the suspension rod 10
  • two angle adjustment devices 60 are arranged on the beam 20
  • an angle adjustment device 60 is connected to a camera assembly 30, so that the two camera assemblies 30 are arranged in the air, and the angle
  • the adjusting device 60 can adjust the pitch angle and the yaw angle of the corresponding camera assembly 30 .
  • the processor 50 is connected to the angle adjustment device 60 and the display 70, respectively.
  • the processor 50 is used to control the camera assembly 30 to collect the image of the wheel target 40 when the vehicle passes under the camera assembly 30, and to position the vehicle wheel according to the image, without requiring the user to manually push the four-wheel positioning system 01, which is very convenient , and high efficiency.
  • the ceiling refers to the top of the space for accommodating the vehicle.
  • one end of the suspender 10 is fixed to the ceiling, and the other end is fixed to the beam 20 .
  • the fixing method between the boom 10 and the beam 20 may be screwing fixing, welding fixing or the like.
  • the boom 10 is retractable, so that the cross beam 20 can be lifted and lowered, that is, the distance of the cross beam 20 relative to the vehicle support surface can be adjusted.
  • the vehicle support surface refers to the surface in contact with at least three wheels in the vehicle, which may be the ground in the space for accommodating the vehicle, or the contact surface between the lift frame for adjusting the height of the vehicle and the wheels.
  • the cross member 20 is in the shape of a long strip, and the length of the cross member 20 is greater than or equal to the vehicle width, wherein the vehicle width can cover the vehicle width of various vehicle types.
  • the beam 20 may be hollow, wherein the cavity may be used to accommodate electronic components such as the processor 50 and the wiring between the processor 50 and the camera assembly 30 .
  • the cross member 20 is arranged substantially perpendicular to the central axis of the vehicle, the central axis of the vehicle passes through the front and rear of the vehicle, and the two sides of the vehicle are symmetrical with respect to the central axis of the vehicle.
  • the suspension setting of the beam 20 means that there is a certain space distance between the beam 20 and the vehicle support surface, so that the vehicle to be tested can be accommodated, and further, the vehicle can be moved under the beam 20 .
  • the vehicle can move back and forth within a certain range under the beam 20 , or move in one direction.
  • the camera assembly 30 can capture the image of the wheel target 40 .
  • the beam is fixed under the ceiling through a boom, but in some embodiments, according to actual needs, for example, the four-wheel alignment system is not limited to four-wheel alignment for vehicles entering under the beam from the same direction,
  • the beam can also be rotated relative to the boom.
  • two camera assemblies 30 can be arranged at both ends of the beam 20 respectively, and their field of view can cover the front and rear targets on the same side of the wheel.
  • One camera assembly 30 is installed On an angle adjusting device 60 , the two camera assemblies 30 are suspended in the air for the vehicle to move below.
  • the two camera assemblies 30 and the two angle adjustment devices 60 are both connected to the processor 50.
  • the processor 50 is used to adjust the camera according to the images collected by the camera assembly 30 when the vehicle with the wheel target 40 is installed under the camera.
  • the vehicle may be driven under the camera assembly 30 and then stationary and the target surface 401 is kept facing the ceiling.
  • the camera assembly 30 may collect images of the wheel target 40 when the vehicle is stationary, and the processor 50 may The image of the target surface 401 performs a positioning calculation on the wheels of the vehicle.
  • the camera assembly 30 may include two cameras, the relative positional relationship between the two cameras is fixed, and the two cameras are respectively used for photographing the wheel target 40 installed on the front wheel and the rear wheel on the same side of the vehicle Wheel target 40 mounted on.
  • the camera assembly 30 may also include a camera whose field of view may cover one of the front wheel target 40 and the rear wheel target 40, or the camera's field of view may cover both the front wheel Target 40 and rear wheel target 40 .
  • the vehicle under the beam 20 can be divided into two methods: static measurement and dynamic measurement.
  • static measurement it means that the vehicle does not move during the measurement process, and the system can measure the wheel-related parameters.
  • dynamic measurement it means that the vehicle Moving during the measurement process, the system obtains wheel-related parameters by measuring the movement of the vehicle.
  • the angle adjustment device 60 can rotate the camera assembly 30 relative to the beam 20 .
  • the angle adjustment device 60 can make the camera assembly 30 rotate around an axis parallel to the length direction of the beam 20 , that is, the camera assembly 30 can adjust the field of view along the length direction of the vehicle body, so that its field of view can cover the wheel target 40 .
  • the angle adjustment device 60 is used to adjust the pitch angle of the camera assembly 30; in another case, the angle adjustment device 60 may be a direction of the camera assembly 30 that is perpendicular to the length of the beam 20 and is substantially parallel to the vehicle bearing surface.
  • Rotation of the shaft that is, the camera assembly 30 can adjust the field of view in the width direction of the vehicle so that the field of view can cover the wheel targets 40 mounted on vehicles of different widths.
  • the angle adjustment device 60 is used to adjust the deflection angle of the camera assembly 30 .
  • the four-wheel alignment system 01 includes two angle adjustment devices 60 , the two angle adjustment devices 60 are fixed on both ends of the beam 20 , and an angle adjustment device 60 is connected to a camera assembly 30 for adjusting a camera Component 30 angle. Communication between the two angle adjustment devices 60 can be realized, or controlled by the same controller, so as to realize the synchronous angle adjustment of the camera assemblies 30 at both ends.
  • an angle adjusting device 30 may also be provided between the boom 10 and the beam 20 , so as to realize the rotation of the beam 20 relative to the boom 10 .
  • the beam 20 can be rotated around an axis parallel to the length of the beam 20, that is, the beam 20 can adjust the pitch angle relative to the boom 10.
  • the camera assembly 30 and the beam 20 can be fixedly connected. According to the rotation angle of the boom 10 , the pitch angle of the camera assembly 30 can be adjusted, thereby adjusting the field of view of the camera assembly 30 .
  • the angle adjusting device 60 can adjust the pitch angle of the camera assembly 30, and can also adjust the pitch angle and/or the yaw angle of the camera assembly 30 at the same time.
  • the angle adjusting device 60 includes a motor, and the motor casing is fixed on the beam 20, The output shaft of the motor is fixed to the camera assembly 30, and the output shaft of the motor is used to adjust the pitch angle of the camera assembly 30 to realize one-axis adjustment of the camera assembly 30.
  • the angle adjustment device 60 includes two motors, and the housing of one motor is fixed on the beam 20, and the output shaft is fixed with the casing of the other motor, the output shaft of the other motor is fixed with the camera assembly 30, the one motor is used to adjust the deflection angle of the camera assembly 30, and the other motor is used to adjust the camera assembly 30.
  • the pitch angle realizes two-axis adjustment of the camera assembly 30 .
  • the angle adjustment device 60 may not be provided, and the two camera assemblies 30 may be directly disposed at both ends of the beam 20, and the field of view of the two camera assemblies 30 faces downward, so as to capture the passing Image of the vehicle below camera assembly 30 .
  • the at least two wheel targets 40 are respectively installed on the wheels on both sides of the vehicle.
  • the wheel target 40 includes a target surface 401 on which a preset pattern (not shown) is set, and the preset pattern is used for four-wheel alignment of the vehicle.
  • the number of the wheel targets 40 is two or four. If the number of the wheel targets 40 is two, the two wheel targets 40 are installed on the front or rear wheels on both sides of the vehicle. If the number of the wheel targets 40 is four, the four wheel targets 40 are respectively installed on the four wheels of the vehicle.
  • the camera assembly 30 captures the image of the preset pattern, and according to the geometric relationship of the pattern layout, the positional relationship of the wheel target 40 relative to the camera assembly 30 can be determined.
  • the positional relationship between the wheels on both sides is determined by the positional relationship between the wheel targets 40 on both sides relative to the camera assemblies 30 at both ends of the beam 20, and the positional relationship between the camera assemblies 30 at both ends of the beam 20, and then the positioning parameters of the wheels are obtained.
  • the target surface 401 may face the ceiling.
  • the target surface 401 is rotated by the wheel, or the angle between the target surface 401 and the wheel in the wheel target 40 is adjusted
  • the target surface 401 is generally facing the ceiling, so that the field of view of the camera assembly 30 can cover the target surface 401 .
  • the target surface 401 may be a plane or a curved surface.
  • the target surface 401 is fixed relative to the wheel, and the target surface 401 faces the ceiling and is within the field of view of the camera assembly 30 .
  • the face of the wheel target 40 facing the ceiling means that the face of the wheel target 40 is substantially parallel to the ceiling, and the side provided with the preset pattern faces upward.
  • the surface of the wheel target 40 may have a certain angle relative to the ceiling, and the angle may be compensated for the image operation result by using a compensation algorithm, which is not limited herein.
  • the angle of the target surface 401 can be adjusted relative to the wheel, and the target surface 401 can be oriented toward the ceiling by adjusting the angle of the target surface 401 .
  • the target surface 401 is fixed relative to the wheel, the target surface 401 rotates with the rotation of the wheel, and the processor 50 obtains the target according to the operation program.
  • the image of the preset pattern when the target surface 401 faces upwards.
  • the orientation of the wheel target 40 is maintained by a specific mechanism, that is, the orientation of the wheel target 40 does not change with the rotation of the wheel.
  • the processor 50 may include a processing unit and a storage unit, and the number of the processing unit and the storage unit may be one or more respectively, and multiple processing units or multiple storage units may be distributed or integrated.
  • the storage unit may be integrated in the processing unit, or the storage unit may exist independently of the processing unit.
  • the storage unit is used for storing data and executable programs, and the processing unit can calculate the positioning parameters of the wheel according to the image of the wheel target 40 collected by the camera assembly 30 by running the executable program, that is, the positioning operation is performed on the wheel to determine the direction of the wheel. Whether calibration is required, etc.
  • the processor 50 may further include a control unit for controlling the rotation direction and rotation angle of the camera assembly 30 relative to the beam 20 .
  • the control unit can also be used to control the motorized changes of other components in the system, such as controlling the extension and retraction of the boom 10 .
  • the following describes the operation program executed by the processor 50 and the several cooperative manners in which the camera assembly 30 collects the image of the wheel target 40 . It is understandable that several cooperation manners can be implemented independently or integrated with each other.
  • the processor 50 implements static measurement through an arithmetic program. Specifically, the processor 50 controls the camera assembly 30 to capture an image of the wheel target 40 , and the image of the wheel target 40 includes a preset pattern. The processor 50 uses the acquired images of the wheel target 40 to determine the positioning parameters of the wheel. In an implementation manner, the vehicle needs to be static at different positions during the measurement process, and the processor 50 controls the camera assembly 30 to collect images of the wheel target 40 when the vehicle is at different positions to form a set of images and process the images. Using this set of images, the engine 50 determines the positioning parameters of the wheel.
  • the processor 50 implements dynamic measurement through an arithmetic program.
  • the processor 50 needs to control the camera assembly 30 to collect images of the wheel target 40 in real time, select a target image from the images of the wheel target 40 , and determine the positioning parameters of the wheel according to the target image.
  • the processor 50 selects a target image including a preset pattern from the collected images of the wheel target 40, and then uses the target image to determine the positioning parameters of the wheel.
  • the processor 50 controls the camera assembly 30 to collect the image of the wheel target 40 in real time, and selects the image of the wheel target 40 from the collected images according to preset filtering conditions A target image is selected from the image of the wheel target 40, and the positioning parameters of the wheel are determined by using the target image.
  • the preset filtering conditions may include that the quality of the acquired images reaches a preset standard, or the images acquired when the vehicle is at a preset position, and the like.
  • the processor 50 controls the camera assembly 30 to collect images of the wheel target 40 at certain trigger moments or when certain trigger conditions are met, and determine the positioning parameters of the wheel according to the collected images. Further, the processor 50 can also filter out the target image from the collected images, and determine the positioning parameters of the wheel according to the target image.
  • the processor 50 executes any one of the above implementation manners, and different implementation manners may be implemented by different operation programs, and the processor 50 may invoke any one of the operation programs to implement measurement according to different application scenarios.
  • the processor 50 can control the camera assembly 30 to collect images of the wheel target 40 in real time during the movement of the vehicle.
  • the camera assembly 30 can rotate around an axis parallel to the beam 20,
  • the positioning parameters of the wheel are determined according to the collected images.
  • the processor 50 may control the camera assembly 30 to collect images of the wheel target 40 at certain trigger moments or when certain trigger conditions are met during the movement of the vehicle, and determine the positioning parameters of the wheel according to the collected images.
  • the processor 50 can control the camera assembly 30 to rotate to a certain angle or to a certain position, so as to realize the image acquisition of the wheel target 40 .
  • the reciprocating movement of the vehicle can be divided into multiple moving stages, and the moving directions of two adjacent moving stages are opposite.
  • the processor 50 can control the camera assembly 30 to collect a set of The images of the wheel targets 40, the number of the images of the group of wheel targets 40 is one or more, and the positioning parameters of the wheels are determined according to the images of the multiple groups of wheel targets 40 respectively collected in multiple moving stages.
  • the manner in which the processor 50 acquires the image of the wheel target 40 in each moving stage may refer to the above-mentioned implementation manner, such as controlling the camera assembly 30 to capture in real time, or controlling the camera assembly 30 to capture at certain trigger moments or certain trigger conditions.
  • the processor 50 can control the field of view of the camera assembly 30 to adapt to the width of the vehicle to be measured, such as adjusting the angle of the camera assembly 30 around the vertical beam 20 and the axis parallel to the bearing surface .
  • the four-wheel positioning system 01 described in the embodiment of the present application may further include a display 70, and the display 70 may be disposed on the beam 20, which is electrically connected to the processor 50, and is used for displaying the calculated value obtained by the processor 50. wheel alignment parameters, or display images captured by the camera assembly 30, etc.
  • the display 70 may be set as a handheld display 70, and the handheld display 70 and the processor 50 are communicatively connected through a wireless communication module. Further, the handheld display 70 may further include a user input device, such as a touch device, etc., for receiving the user's instruction, and sending the user's instruction to the processor 50 through the wireless communication module, so that the processor 50 executes the instruction.
  • the user's instruction may include controlling the angle adjustment of the camera assembly 30 , controlling the shooting time of the camera assembly 30 , controlling the extension and retraction of the boom 10 , and the like.
  • the four-wheel alignment system 01 includes two first clamping devices 80 , two supporting frames 90 and two limiting devices 100 .
  • a first clamping device 80 clamps a wheel on one side of the vehicle
  • a support frame 90 is rotatably connected to a first clamping device 80
  • a target wheel 40 is mounted on a support frame 90
  • a limiting device 100 is used for
  • a support frame 90 is positioned so that when the first clamping device 80 is clamped to the wheel, the wheel target 40 remains oriented toward the ceiling even if the wheel rotates.
  • the limiting device 100 includes a connecting rod 1001 , a suction cup 1002 and a suction device 1003 , wherein one end of the connecting rod 1001 is fixed to a surface of the support frame 90 facing away from the wheel target 40 , and the other end of the connecting rod 1001 is fixed with
  • the suction cup 1002 is fixed, the suction device 1003 is connected to the suction cup 1002, the suction device 1003 is used to extract the gas in the suction cup 1002, and the suction cup 1002 is used to be adsorbed on the vehicle or the ground, so that when the wheel rotates, the support frame 90 remains stationary, thereby The target face 401 of the wheel target 40 is kept towards the ceiling.
  • the limiting device 100 is not limited to the above structure, and other structures are also possible, as long as the limiting device 100 can make the target surface 401 of the wheel target 40 always face the ceiling when the wheel rotates.
  • the four-wheel alignment system 01 includes two second clamping devices 110 , one second clamping device 110 is used to clamp the wheel on one side of the vehicle, one The target 40 is fixed on a second clamping device 110, the second clamping device 110 fixes the wheel target 40 on the wheel, and rotates with the rotation of the wheel, and the camera assembly 30 captures the image of the wheel target 40 when it rotates , and the collected images are processed by the processor 50 to complete the wheel alignment.
  • the beam 20 is fixed under the ceiling by the boom 10
  • the two camera assemblies 30 are respectively arranged on both ends of the beam 20
  • at least two wheel targets 40 are installed on the wheels on both sides of the vehicle
  • the two camera assemblies The field of view of 30 covers the target surfaces 401 of the wheel targets 40 on the wheels on both sides of the vehicle respectively.
  • the user only needs to drive the vehicle under the beam or park under the beam, and the two camera assemblies 30 at both ends of the beam 20 are installed on the wheels.
  • the image of the wheel target 40 above is collected, and finally, the processor 50 is used to perform a positioning operation on the vehicle wheels. The whole process of positioning the vehicle wheels is very convenient and has high efficiency.

Abstract

一种四轮定位系统,包括吊杆(10),其一端用于与天花板固定;横梁(20),与吊杆(10)的另一端固定,其中,横梁(20)呈悬空设置,以供车辆从横梁(20)下方穿过;两个相机组件(30),两个相机组件(30)分设于横梁(20)的两端;轮标靶(40),轮标靶(40)的数量为至少两个,至少两个轮标靶(40)分别安装于车辆的两侧的车轮,轮标靶(40)包括标靶面(401),标靶面(401)上设置有预设图案,轮标靶(40)安装于车轮上时,标靶面(401)朝向天花板,两个相机组件(30)的视野范围分别覆盖车辆的两侧的车轮上的轮标靶(40)的标靶面(401);处理器(50),分别与两个相机组件(30)连接,处理器(50)用于根据相机组件(30)所采集的轮标靶(40)的图像,对车辆的车轮进行定位运算。

Description

一种四轮定位系统
本申请要求于2020年9月21日提交中国专利局、申请号为202010997774.1、申请名称为“一种四轮定位系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及四轮定位仪技术领域,特别是涉及一种四轮定位系统。
背景技术
四轮定位仪主要用于检测汽车车轮定位参数,并与原厂设计参数进行对比,指导使用者对车轮定位参数进行相应的调整,使其符合原设计要求,以达到理想的汽车行驶性能。
但是,本发明的发明人在实现本发明的过程中,发现:四轮定位仪通常安装在推车,当进行车辆四轮定位时,需要工作人员手动移动推车,将四轮定位仪推动到车辆的前方,再完成车辆四轮定位,工作人员手动推动推车的方式,效率较低。
发明内容
鉴于上述问题,本发明实施例提供了一种四轮定位系统,克服了上述问题或者至少部分地解决了上述问题。
根据本发明实施例的一个方面,提供了一种四轮定位系统,包括:
吊杆,其一端用于与天花板固定;横梁,与所述吊杆的另一端固定,其中,所述横梁呈悬空设置,以供所述车辆在所述横梁下方移动;两个相机组件,两个所述相机组件分设于所述横梁的两端;轮标靶,用于安装于所述车辆的车轮,所述轮标靶的数量为至少两个,至少两个所述轮标靶分别安装于所述车辆的两侧的车轮,所述轮标靶包括标靶面,所述标靶面上设置有预设图案,所述轮标靶安装于所述车轮上时,所述标靶面朝向所述天花板,两个所述相机组件的视野范围分别覆盖所述车辆的两侧的车轮上的轮标靶的标靶面;处理器,分别与两个所述相机组件连接,所述处理器用于根据所述相机组件所采集的所述轮标靶的图像,对所述车辆的车轮进行定位运算。
在一种可选的方式中,所述四轮定位系统包括两个第一夹持装置、两个支撑架和两个限位装置;一所述第一夹持装置夹持于所述车辆一侧的车轮,一所述支撑架与一所述第一夹持装置转动连接,一所述轮标靶安装于一支撑架,一所述限位装置用于对一所述支撑架进行限位,以使所述车轮转动时,所述支撑架保持不动,从而使所述轮标靶的标靶面保持朝向天花板。
在一种可选的方式中,所述限位装置包括连杆、吸盘和抽气装置;
所述连杆的一端与所述支撑架背离所述轮标靶的一表面固定,所述连杆的 另一端与所述吸盘固定,所述抽气装置与所述吸盘连接,所述抽气装置用于抽取所述吸盘内的气体,所述吸盘用于吸附于车辆或者地面,以使所述车轮转动时,所述支撑架保持不动。
在一种可选的方式中,所述四轮定位系统还包括两个第二夹持装置;一个所述第二夹持装置用于夹持于所述车辆一侧的车轮,一所述轮标靶固定于一所述第二夹持装置。
在一种可选的方式中,所述相机组件包括两个相机,所述两个相机相邻设置,每一所述相机组件中的一相机的视野范围覆盖车辆一侧的一个车轮上的轮标靶的标靶面。
在一种可选的方式中,所述相机组件包括一个相机,每一相机组件中的所述一个相机的视野范围覆盖车辆同一侧的所有车轮上的轮标靶的标靶面。
在一种可选的方式中,所述四轮定位系统还包括第一角度调节装置和第二角度调节装置,所述第一角度调节装置和第二角度调节装置固定于所述横梁,并且所述第一角度调节装置和第二角度调节装置与所述处理器连接;所述第一角度调节装置连接一相机组件,所述第一角度调节装置用于调节所述一相机组件的俯仰角,所述第二角度调节装置连接另一相机组件,所述第二角度调节装置用于调节所述另一相机组件的俯仰角。
在一种可选的方式中,所述吊杆的数量为两根,一所述吊杆与横梁的一端固定,另一所述吊杆与横梁的另一端固定。
在一种可选的方式中,所述吊杆为可伸缩梁。
在一种可选的方式中,所述四轮定位系统还包括显示器,所述显示器与所述处理器连接,用于显示所述处理器输出的定位参数。
本发明实施例的有益效果是:区别于现有技术的情况,本发明实施例,通过吊杆将横梁固定于天花板下方,两个相机组件分设于横梁的两端,至少两个轮标靶安装于车辆两侧的车轮,两个相机组件的视野范围分别覆盖车辆两侧车轮上的轮标靶的标靶面,用户只需将车辆驶过横梁下方,横梁两端的两个相机组件对安装在车轮上的轮标靶的图像进行采集,最后通过处理器对车辆车轮进行定位运算,整个对车辆车轮定位过程,非常方便,效率较高。
附图说明
为了更清楚地说明本发明具体实施例或现有技术中的技术方案,下面将对具体实施例或现有技术描述中所需要使用的附图作简单地介绍。在所有附图中,类似的元件或部分一般由类似的附图标记标识。附图中,各元件或部分并不一定按照实际的比例绘制。
图1是本发明实施例一种四轮定位系统的整体结构示意图;
图2是本发明实施例一种四轮定位系统的处理器与其他部件连接框图;
图3是本发明实施例一种四轮定位系统的工作状态右视图;
图4是本发明实施例一种四轮定位系统的一工作状态正视图;
图5是本发明实施例一种四轮定位系统的一工作状态固定轮标靶组件结构示意图;
图6是本发明实施例一种四轮定位系统的另一工作状态俯视图;
图7是本发明实施例一种四轮定位系统的另一工作状态固定轮标靶组件结构示意图。
附图标记:10、吊杆;20、横梁;30、两个相机组件;40、至少两个轮标靶;401、标靶面;50、处理器;60、两个角度调节装置;70、显示器;80、两个第一夹持装置;90、两个支撑架;100、两个限位装置;1001、连杆;1002、吸盘;1003、抽气装置;110、两个第二夹持装置。
具体实施方式
为了便于理解本发明,下面结合附图和具体实施例,对本发明进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本说明书中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1和图2,四轮定位系统01包括:吊杆10、横梁20、两个相机组件30、至少两个轮标靶40、处理器50(图未示)、两个角度调节装置60以及显示器70(图未示)。至少两个轮标靶40分别安装于车辆两侧的车轮上。吊杆10固定于天花板,横梁20与吊杆10固定,两个角度调节装置60设置于横梁20,一角度调节装置60连接一相机组件30,以使得两个相机组件30呈悬空设置,并且角度调节装置60可以调整对应相机组件30的俯仰角和偏转角。处理器50分别与角度调节装置60和显示器70连接。处理器50用于在车辆从相机组件30下方通时,控制相机组件30采集轮标靶40的图像,并且根据图像,对车辆车轮进行定位,无需要用户手动推动四轮定位系统01,非常方便,并且效率高。
本申请实施例中,天花板是指容置车辆的空间的顶端。
对于上述吊杆10,请参阅图1,吊杆10的一端与天花板固定,另一端与横梁20固定,吊杆10的数量可以为一个或者多个,其强度足以支撑横梁20即可。其中,吊杆10和横梁20之间的固定方式可以为螺接固定、焊接固定等等。可选地,吊杆10可伸缩,以使横梁20能够实现升降,即调整横梁20相对于车辆支撑面的距离。
在一些场景中,若吊杆10的数量为多个,可利用机构实现多个吊杆10的伸缩程度相同,以保证横梁20平行于天花板,或者横梁20平行于车辆支撑面。吊杆10的伸缩可受控于处理器50。本申请实施例中,车辆支撑面是指与车辆中至少三个车轮相接触的面,其可为容置车辆空间中的地面,或者调节车辆高度的举升架与车轮的接触面。
对于上述横梁20,请参阅图1,横梁20呈长条形,横梁20长度大于或等于车辆宽度,其中,车辆宽度能够覆盖多种车型的车辆宽度。在一些场景中,横梁20可为中空设置,其中空腔可用于容置处理器50、处理器50与相机组件30之间的连线等电子元件。横梁20大致垂直于车辆的中轴面设置,车辆的中轴面经过车辆的车头和车尾,车辆的两侧相对于车辆的中轴面对称。横梁20悬空设置是指横梁20与车辆支撑面之间存在一定空间距离,从而能够容置待测车辆,进一步地,还可以供车辆在横梁20下方移动。车辆在横梁20下方可以在一定范围内做往复移动,或者,做单向移动,在移动过程中,能够使相机组件30捕捉到轮标靶40的图像即可。其中,本实施例中,横梁通过吊杆固定于天花板下方,但在一些实施例中,根据实际需要,例如:四轮定位系统不限于针对从同一个方向进入横梁下方的车辆进行四轮定位,横梁也可以相对于吊杆转动。
对于上述两个相机组件,如图1和图3所示,两个相机组件30可以分设于横梁20的两端,其视野范围可以覆盖车轮同一侧的前后两个标靶,一相机组件30安装于一角度调节装置60,从而使得两个相机组件30呈悬空设置,以供车辆在下方移动。两个相机组件30和两个角度调节装置60均与处理器50连接,处理器50用于在安装有轮标靶40的车辆从相机下方经过,先根据相机组件30采集到的图像,调节相机组件30的角度,以使两个所述相机组件30的视野范围分别覆盖所述车辆的两侧的车轮上的轮标靶40的标靶面401,然后控制相机组件30采集轮标靶40的标靶面401的图像,最后根据标靶面401的图像对所述车辆的车轮进行定位运算。
在一些场景中,可以将车辆驾驶到相机组件30的下方,然后静止并且保持标靶面401朝向天花板,相机组件30可根据采集的车辆在静态时的轮标靶40的图像,处理器50根据标靶面401的图像对所述车辆的车轮进行定位运算。
在一些实施例中,相机组件30中可包括两个相机,两个相机之间的相对位置关系固定,两个相机分别用于拍摄车辆同一侧的前轮上安装的轮标靶40以及后轮上安装的轮标靶40。
在一些实施例中,相机组件30也可以包括一个相机,该相机的视野范围可以覆盖前轮标靶40和后轮标靶40的其中之一,或者,该相机的视野范围可以同时覆盖前轮标靶40和后轮标靶40。
其中,车辆在横梁20下,可以分为静态测量和动态测量两种方式,对于静态测量,是指车辆在测量过程中不移动,系统便能够测量得到轮相关参数,对于动态测量,是指车辆在测量过程中移动,系统通过车辆的移动测量得到轮 相关参数。
在一些实施例中,角度调节装置60可以使相机组件30相对于横梁20转动。一种情形下,角度调节装置60可以使相机组件30绕平行于横梁20长度方向的轴转动,即相机组件30可调节沿车辆的车身长度方向的视野,使其视野范围可覆盖轮标靶40。也可以理解为角度调节装置60用于调节相机组件30的俯仰角;另一种情形下,角度调节装置60可以是相机组件30绕垂直于横梁20的长度方向,且与车辆承载面大致平行的轴转动,即相机组件30可调节沿车辆的宽度方向的视野,使其视野可覆盖安装于不同宽度的车辆的轮标靶40。也可以理解为角度调节装置60用于调节相机组件30的偏转角。
在一些实施例中,四轮定位系统01包括两个角度调节装置60,两个角度调节装置60固定于横梁20的两端,一角度调节装置60与一相机组件30连接,用于调节一相机组件30角度。两个角度调节装置60之间可实现通信,或者受控于同一控制器,以实现两端相机组件30的同步角度调节。
在另一些实施例中,吊杆10与横梁20之间也可设置角度调节装置30,以用于实现横梁20相对于吊杆10转动。具体地,横梁20可绕平行于横梁20长度方向的轴转动,即横梁20相对于吊杆10调节俯仰角,在此种情形下,相机组件30与横梁20可固定连接,通过调节横梁20相对于吊杆10的转动角度,进而实现调节相机组件30的俯仰角,从而调整相机组件30的视野范围。
其中,角度调节装置60可以调节相机组件30的俯仰角,也可以同时调节相机组件30的俯仰角和/或偏转角,例如:角度调节装置60包括一个电机,电机的外壳固定于横梁20上,电机的输出轴与相机组件30固定,电机的输出轴用于调节相机组件30的俯仰角,实现相机组件30的一轴调节,又或者,角度调节装置60包括两个电机,一个电机的外壳固定于横梁20,并且输出轴与另一个电机的外壳固定,另一个电机的输出轴与相机组件30固定,该一个电机用于调节相机组件30的偏转角,另一个电机用于调节相机组件30的俯仰角,实现相机组件30的两轴调节。
可以理解的是:在另一些实施例中,也可以不设置角度调节装置60,直接将两个相机组件30分设于横梁20的两端,两个相机组件30的视野范围朝下,以采集经过相机组件30下方的车辆的图像。
对于上述至少两个轮标靶40,如图1所示,至少两个轮标靶40分别安装于车辆两侧的车轮上。轮标靶40包括标靶面401,标靶面401上设置有预设图案(图未示),预设图案用于对车辆进行四轮定位。
在一些场景中,轮标靶40的数量为两个或者四个,若轮标靶40的数量为两个,两个轮标靶40安装于车辆的两侧的前轮或者后轮。若轮标靶40的数量为四个,四个轮标靶40分别安装于车辆的四轮。相机组件30采集预设图案的图像,根据图案布设的几何关系,可以确定轮标靶40相对于相机组件30的位置关系。通过两侧轮标靶40分别相对于横梁20两端的相机组件30的位置关系,以及横梁20两端的相机组件30的位置关系,确定两侧车轮之间的位置关 系,进而获取轮的定位参数。
其中,对于设置有预设图案的标靶面401,由于相机组件30设置于车辆上方,为了相机组件30能够采集到标靶面401上预设图案的图像,轮标靶40安装在车轮上时,标靶面401可朝向天花板。当然,在其他实施例中,轮标靶40安装在车轮上时,标靶面401无需朝向天花板,标靶面401通过车轮转动,或者轮标靶40中标靶面401与车轮之间的角度调节机构,在需要进行相机组件30的图像采集时,标靶面401大致朝向天花板,使相机组件30的视野范围覆盖标靶面401即可。本申请实施例中,标靶面401可以为平面或者曲面。
对于静态测量的情形,一种实现方式中,轮标靶40安装在车轮时,标靶面401相对于车轮固定,标靶面401朝向天花板且在相机组件30的视野范围内。本申请实施例中,轮标靶40面朝向天花板是指轮标靶40面大致平行于天花板,且设置有预设图案的一面朝上。为了降低用户对轮标靶40的安装难度,轮标靶40面可相对于天花板存在一定角度,该角度可以利用补偿算法对图像运算结果进行补偿,在此不予限定。另一种实现方式中,轮标靶40安装在车轮时,标靶面401相对于车轮可调节角度,可以通过对标靶面401的角度调节,使标靶面401朝向天花板。
对于动态测量的情形,一种实现方式中,轮标靶40安装在车轮时,标靶面401相对于车轮固定,标靶面401随着车轮的转动而转动,处理器50根据运算程序获取标靶面401朝上时预设图案的图像。另一种实现方式中,轮标靶40安装在车轮时,通过特定机构保持轮标靶40的朝向,即轮标靶40的朝向不随车轮的转动而改变。
对于上述处理器50,处理器50可以包括处理单元和存储单元,处理单元和存储单元的数量可以分别为一个或多个,多个处理单元或者多个存储单元可以分布式或集成式设计。存储单元可以集成于处理单元中,或者存储单元独立于处理单元存在。存储单元用于存储数据和可执行程序,处理单元通过运行可执行程序,能够根据相机组件30采集的轮标靶40的图像,计算车轮的定位参数,即对车轮进行定位运算,判断车轮的方向是否需要校准等。处理器50还可以包括控制单元,控制单元用于控制相机组件30相对于横梁20的转动方向和转动角度。控制单元还可以用于控制系统内其他部件的机动变化,如控制吊杆10的伸缩等。
下面介绍处理器50执行的运算程序、相机组件30对轮标靶40的图像进行采集的几种配合方式。可以理解地,几种配合方式可以独立实现,或者相互融合实现。
第一种,处理器50通过运算程序实现静态测量。具体地,处理器50控制相机组件30采集轮标靶40的图像,轮标靶40的图像中包括预设图案。处理器50利用采集的轮标靶40的图像,确定轮的定位参数。一种实现方式中,车辆在测量过程中,需要在不同位置呈现静态,处理器50控制相机组件30在车辆位于不同位置时,分别采集轮标靶40的图像,以形成一组图像,处理器50 利用该组图像,确定轮的定位参数。
第二种,处理器50通过运算程序实现动态测量。一种实现方式中,处理器50需要控制相机组件30实时采集轮标靶40的图像,并从轮标靶40的图像中筛选出目标图像,根据目标图像确定轮的定位参数。例如,对于轮标靶40随着车轮的转动而转动的情况,处理器50从采集的轮标靶40图像中筛选出包括预设图案的目标图像,进而利用该目标图像确定轮的定位参数。或者,对于轮标靶40的朝向不随着车轮的转动而改变的情况,处理器50控制相机组件30实时采集轮标靶40的图像,并从采集的轮标靶40图像中根据预设筛选条件从轮标靶40图像中筛选出目标图像,进而利用该目标图像确定轮的定位参数等。预设筛选条件可以包括获取的图像质量达到预设标准,或者,车辆在预设位置时获取的图像等。另一种实现方式中,处理器50控制相机组件30在某一些触发时刻,或者满足某一些触发条件时采集轮标靶40的图像,并根据采集的图像确定轮的定位参数。进一步地,处理器50也可以从采集的图像中筛选出目标图像,并根据目标图像确定轮的定位参数。
处理器50执行上述任一种实现方式,不同实现方式可以由不同的运算程序实现,处理器50可以根据不同的应用场景调用任意一种运算程序实现测量。
对于车辆单向移动的动态测量的过程中,处理器50可以控制相机组件30在车辆移动的过程中实时采集轮标靶40的图像,例如,相机组件30可绕平行于横梁20的轴转动,以实现视野范围跟随轮标靶40的移动而移动,进而根据采集的图像确定轮的定位参数。或者,处理器50可以控制相机组件30在车辆移动的过程中在某一些触发时刻或者满足某一些触发条件时采集轮标靶40的图像,并根据采集的图像确定轮的定位参数。处理器50可以控制相机组件30转动至某一角度或转动至某一位置,进而实现对轮标靶40的图像采集。
对于车辆往复移动的动态测量的过程中,可以将车辆的往复移动分成多个移动阶段,相邻两个移动阶段的移动方向相反,处理器50可以控制相机组件30在每个移动阶段采集一组轮标靶40的图像,该组轮标靶40的图像的数量为一个或多个,并根据多个移动阶段分别采集的多组轮标靶40的图像,确定轮的定位参数。处理器50在每个移动阶段采集轮标靶40的图像的方式可以参见上述实现方式,如控制相机组件30实时采集,或者控制相机组件30在某一些触发时刻或者某一些触发条件采集。
无论静态测量阶段还是动态测量阶段,在测量初始阶段,处理器50可以控制相机组件30的视野范围适应待测车辆的宽度,如调节相机组件30绕垂直横梁20且平行于承载面的轴的角度。
可选地,本申请实施例中所描述的四轮定位系统01还可以包括显示器70,该显示器70可以设置于横梁20上,其与处理器50电连接,用于显示处理器50计算得到的轮定位参数,或者显示相机组件30采集的图像等等。
在一些场景中,显示器70可以设置为手持显示器70,手持显示器70与处理器50之间通过无线通信模块进行通信连接。进一步地,手持显示器70 还可以包括用户输入装置,如触控装置等,用于接收用户的指令,并将用户指令通过无线通信模块发送给处理器50,以使处理器50执行该指令。用户指令可以包括控制相机组件30的角度调节、控制相机组件30的拍摄时刻、控制吊杆10伸缩等。
在一些实施例中,如图4和图5所示,四轮定位系统01包括两个第一夹持装置80、两个支撑架90和两个限位装置100。一第一夹持装置80夹持于车辆一侧的车轮,一支撑架90与一第一夹持装置80转动连接,一轮标靶40安装于一支撑架90,一限位装置100用于对一支撑架90进行限位,以使在第一夹持装置80夹持到车轮上时,即使车轮转动,轮标靶40仍然保持朝向天花板。
在一些实施例中,限位装置100包括连杆1001、吸盘1002以及抽气装置1003,其中连杆1001的一端与支撑架90背离轮标靶40的一表面固定,连杆1001的另一端与吸盘1002固定,抽气装置1003与吸盘1002连接,抽气装置1003用于抽取吸盘1002内的气体,吸盘1002用于吸附于车辆或者地面,以使车轮转动时,支撑架90保持不动,从而使轮标靶40的标靶面401保持朝向天花板。
可以理解的是,限位装置100不限于上述结构,也可以为其他结构,只要限位装置100可使得在车轮转动时,轮标靶40的标靶面401始终朝向天花板即可。
在一些实施例中,如图6和图7所示,四轮定位系统01包括两个第二夹持装置110,一第二夹持装置110用于夹持于车辆一侧的车轮,一轮标靶40固定于一第二夹持装置110,第二夹持装置110将轮标靶40固定于车轮上,并随着车轮的转动而转动,相机组件30采集轮标靶40转动时的图像,并将采集的图像通过处理器50处理完成车轮定位。
本发明实施例中,通过吊杆10将横梁20固定于天花板下方,两个相机组件30分设于横梁20的两端,至少两个轮标靶40安装于车辆两侧的车轮,两个相机组件30的视野范围分别覆盖车辆两侧车轮上的轮标靶40的标靶面401,用户只需将车辆驶过横梁下方或停在横梁下方,横梁20两端的两个相机组件30对安装在车轮上的轮标靶40的图像进行采集,最后通过处理器50对车辆车轮进行定位运算,整个对车辆车轮定位过程,非常方便,效率较高。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种四轮定位系统,应用于车辆,其特征在于,包括:
    吊杆,其一端用于与天花板固定;
    横梁,与所述吊杆的另一端固定,其中,所述横梁呈悬空设置,以供所述车辆在所述横梁下方移动;
    两个相机组件,两个所述相机组件分设于所述横梁的两端;
    轮标靶,用于安装于所述车辆的车轮,所述轮标靶的数量为至少两个,至少两个所述轮标靶分别安装于所述车辆的两侧的车轮,所述轮标靶包括标靶面,所述标靶面上设置有预设图案,所述轮标靶安装于所述车轮上时,所述标靶面朝向所述天花板,两个所述相机组件的视野范围分别覆盖所述车辆的两侧的车轮上的轮标靶的标靶面;
    处理器,分别与两个所述相机组件连接,所述处理器用于根据所述相机组件所采集的所述轮标靶的图像,对所述车辆的车轮进行定位运算。
  2. 根据权利要求1所述的四轮定位系统,其特征在于,包括两个第一夹持装置、两个支撑架和两个限位装置;
    一所述第一夹持装置夹持于所述车辆一侧的车轮,一所述支撑架与一所述第一夹持装置转动连接,一所述轮标靶安装于一支撑架,一所述限位装置用于对一所述支撑架进行限位,以使所述车轮转动时,所述支撑架保持不动,从而使所述轮标靶的标靶面保持朝向所述天花板。
  3. 根据权利要求2所述的四轮定位系统,其特征在于,所述限位装置包括连杆、吸盘和抽气装置;
    所述连杆的一端与所述支撑架背离所述轮标靶的一表面固定,所述连杆的另一端与所述吸盘固定,所述抽气装置与所述吸盘连接,所述抽气装置用于抽取所述吸盘内的气体,所述吸盘用于吸附于车辆或者地面,以使所述车轮转动时,所述支撑架保持不动。
  4. 根据权利要求1所述的四轮定位系统,其特征在于,还包括两个第二夹持装置;
    一个所述第二夹持装置用于夹持于所述车辆一侧的车轮,一所述轮标靶固定于一所述第二夹持装置。
  5. 根据权利要求1所述的四轮定位系统,其特征在于,
    所述相机组件包括两个相机,所述两个相机相邻设置,每一所述相机组件中的一相机的视野范围覆盖车辆一侧的一个车轮上的轮标靶的标靶面。
  6. 根据权利要求1所述的四轮定位系统,其特征在于,
    所述相机组件包括一个相机,每一相机组件中的所述一个相机的视野范围覆盖车辆同一侧的所有车轮上的轮标靶的标靶面。
  7. 根据权利要求1所述的四轮定位系统,其特征在于,还包括两个角度调节装置,两个所述角度调节装置固定于所述横梁,一所述角度调节装置连接一相机组件,用于调节所述一相机组件的角度;
    两个所述角度调节装置均与所述处理器连接。
  8. 根据权利要求1所述的四轮定位系统,其特征在于,所述吊杆的数量为两根,一所述吊杆与横梁的一端固定,另一所述吊杆与横梁的另一端固定。
  9. 根据权利要求1-7中任意一项所述的四轮定位系统,其特征在于,所述吊杆为可伸缩梁。
  10. 根据权利要求1的四轮定位系统,其特征在于,
    所述四轮定位系统还包括显示器,所述显示器与所述处理器连接,用于显示所述处理器输出的定位参数。
PCT/CN2021/116925 2020-09-21 2021-09-07 一种四轮定位系统 WO2022057681A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010997774.1A CN111998806A (zh) 2020-09-21 2020-09-21 一种四轮定位系统
CN202010997774.1 2020-09-21

Publications (1)

Publication Number Publication Date
WO2022057681A1 true WO2022057681A1 (zh) 2022-03-24

Family

ID=73475554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116925 WO2022057681A1 (zh) 2020-09-21 2021-09-07 一种四轮定位系统

Country Status (2)

Country Link
CN (1) CN111998806A (zh)
WO (1) WO2022057681A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111998806A (zh) * 2020-09-21 2020-11-27 深圳市道通科技股份有限公司 一种四轮定位系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2541585A1 (de) * 1975-09-18 1977-03-31 Bosch Gmbh Robert Achsmessgeraet fuer kraftfahrzeuge
CN102749209A (zh) * 2012-07-02 2012-10-24 麦苗 通道式汽车车轮定位仪及其检测方法
CN203858117U (zh) * 2013-12-24 2014-10-01 潘斌 一种无需推车的多镜头独立成像的v3d汽车四轮定位仪
CN204116058U (zh) * 2014-08-04 2015-01-21 李开文 三相机四轮定位仪
CN108139193A (zh) * 2015-10-06 2018-06-08 实耐宝公司 具有高级诊断和不停止定位的车轮对准器
CN111998806A (zh) * 2020-09-21 2020-11-27 深圳市道通科技股份有限公司 一种四轮定位系统
CN212692811U (zh) * 2020-09-21 2021-03-12 深圳市道通科技股份有限公司 一种四轮定位系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2541585A1 (de) * 1975-09-18 1977-03-31 Bosch Gmbh Robert Achsmessgeraet fuer kraftfahrzeuge
GB1562205A (en) * 1975-09-18 1980-03-05 Bosch Gmbh Robert Apparatus for measuring the angles of motor vehicle axles
CN102749209A (zh) * 2012-07-02 2012-10-24 麦苗 通道式汽车车轮定位仪及其检测方法
CN203858117U (zh) * 2013-12-24 2014-10-01 潘斌 一种无需推车的多镜头独立成像的v3d汽车四轮定位仪
CN204116058U (zh) * 2014-08-04 2015-01-21 李开文 三相机四轮定位仪
CN108139193A (zh) * 2015-10-06 2018-06-08 实耐宝公司 具有高级诊断和不停止定位的车轮对准器
CN111998806A (zh) * 2020-09-21 2020-11-27 深圳市道通科技股份有限公司 一种四轮定位系统
CN212692811U (zh) * 2020-09-21 2021-03-12 深圳市道通科技股份有限公司 一种四轮定位系统

Also Published As

Publication number Publication date
CN111998806A (zh) 2020-11-27

Similar Documents

Publication Publication Date Title
CN202017854U (zh) 一种摄像辅助系统
WO2022057681A1 (zh) 一种四轮定位系统
CN110542376B (zh) 一种用于定位adas标定目标板放置位置的装置和定位方法
CN205870516U (zh) 一种面板安装桁架机械手
KR102506372B1 (ko) 캡슐 내시경 제어 장치
WO2022033387A1 (zh) 一种轮图像采集组件、轮定位设备及车轮定位系统
CN201522281U (zh) 用于汽车仪表视觉检测的装夹器具
CN208014274U (zh) 一种曲面元件的贴合装置
CN111112981A (zh) 一种机器人自动安装车牌设备及其方法
CN212692811U (zh) 一种四轮定位系统
CN208849866U (zh) 一种多场景抓拍摄像机
JP2000118288A (ja) 内装用施工機械
CN108886341A (zh) 光伏组件的el检测设备及无人机
CN207261986U (zh) 一种遥控移动装置
CN207297543U (zh) 一种用于贴装的贴头机构
CN108630104A (zh) 一种曲面元件的贴合装置
CN213274143U (zh) 一种轮图像采集组件、轮定位设备及车轮定位系统
CN102591367A (zh) 二维球-面系统控制装置及方法
CN219320793U (zh) 一种用于舵类结构件表面缺陷的视觉检测装置
CN219761123U (zh) 一种用于相机的检测定参装置
CN220626237U (zh) 一种外观检测装置
CN2462415Y (zh) 一种三维激光扫描仪
CN216718047U (zh) 一种基于曲率调节的真空加载检测装置
CN219651400U (zh) 一种可停靠图像采集的无人机
WO2021013224A1 (zh) 一种标定设备、标定系统以及标定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21868506

Country of ref document: EP

Kind code of ref document: A1