WO2022057408A1 - 环境监测系统及基于环境监测系统的监测方法 - Google Patents

环境监测系统及基于环境监测系统的监测方法 Download PDF

Info

Publication number
WO2022057408A1
WO2022057408A1 PCT/CN2021/105332 CN2021105332W WO2022057408A1 WO 2022057408 A1 WO2022057408 A1 WO 2022057408A1 CN 2021105332 W CN2021105332 W CN 2021105332W WO 2022057408 A1 WO2022057408 A1 WO 2022057408A1
Authority
WO
WIPO (PCT)
Prior art keywords
sampling
pipeline
humidification
gas
line
Prior art date
Application number
PCT/CN2021/105332
Other languages
English (en)
French (fr)
Inventor
王须宝
丁云霄
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Priority to US17/504,586 priority Critical patent/US20220082476A1/en
Publication of WO2022057408A1 publication Critical patent/WO2022057408A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/027Cleaning the internal surfaces; Removal of blockages
    • B08B9/032Cleaning the internal surfaces; Removal of blockages by the mechanical action of a moving fluid, e.g. by flushing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/24Suction devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers

Definitions

  • the present disclosure relates to the field of semiconductors, and in particular, to an environmental monitoring system and a monitoring method based on the environmental monitoring system.
  • the embodiments of the present disclosure provide an environmental monitoring system and a monitoring method based on the environmental monitoring system, which are beneficial to control the ratio of the residual pollutant time in the sampling pipeline of the cleaning system to the sampling time of the sampling device to be 1:5.
  • the change of the proportion of the gas is small, which improves the stability of the gas environment in the process area.
  • an embodiment of the present disclosure provides a monitoring method based on an environmental monitoring system, which is used for monitoring the concentration of air pollutants in multiple process areas in a clean room, wherein the environmental monitoring system includes: a sampling device, For collecting environmental samples in the process area, the sampling device includes a system sampling pipeline, and the environmental sample includes air; an analysis device, communicated with the output end of the system sampling pipeline, is used to analyze the collected samples.
  • a gas supply device communicated with the system sampling pipeline, the gas supply device is used to provide a purging gas, and use the purging gas to purge the system sampling pipeline; during a single sampling period , the ratio of the time for controlling the air supply device to purge the sampling pipeline of the system to the time for sampling by the sampling device is 1:5.
  • Embodiments of the present disclosure also provide an environmental monitoring system for monitoring the concentration of air pollutants in multiple process areas in a clean room.
  • the system includes an air supply device, a sampling device, an analysis device, and a control device, wherein:
  • the air supply device is communicated with the system sampling pipeline, and the air supply device is used for supplying purging gas, and using the purging gas to purge the system sampling pipeline;
  • the sampling device includes the system sampling pipeline for collecting an environmental sample in the process area, and the environmental sample includes air;
  • the analysis device communicated with the output end of the sampling pipeline of the system, and used for analyzing the collected environmental samples;
  • the control device is configured to, during a single sampling period, control the ratio of the time between the air supply device to purge the sampling pipeline of the system and the sampling time of the sampling device to be 1:5.
  • the ratio of the time for controlling the air supply device to purge the sampling pipe of the system to the sampling time of the sampling device is 1:5, and it is determined that in each sampling cycle, the air supply device purges the sampling pipe of the system.
  • the sampling time ratio of the pipeline and the sampling device is the same, so in each sampling cycle, the cleaning degree of the system sampling pipeline is the same, and the sampling degree of the gas in the process area is also the same.
  • the analysis error occurs due to different sampling cycles, which is beneficial to ensure that the proportion of various gases in the process area changes little after each sampling cycle, and improves the stability of the gas environment in the process area.
  • FIG. 1 is a schematic structural diagram of an environmental monitoring system provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic partial structure diagram of an environmental monitoring system provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a monitoring method based on an environmental monitoring system provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic partial structure diagram of an environmental monitoring system provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of another environment monitoring system provided by an embodiment of the present disclosure.
  • the ratio of the time for cleaning the sampling pipeline of the environmental monitoring system to the sampling time of the sampling device is uncertain, the time of each sampling cycle is different, and the proportion of various gases in the process area after each sampling cycle is different, resulting in the inconsistency of the gas environment in the process area. Stability issues, which in turn affect product yield.
  • embodiments of the present disclosure provide an environmental monitoring system and a monitoring method based on the environmental monitoring system.
  • FIG. 1 is a schematic structural diagram of an environment monitoring system provided by an embodiment of the present disclosure.
  • a monitoring method based on an environmental monitoring system is used to monitor the concentration of air pollutants in a process area 10 in a clean room, including: a clean room with multiple process areas 10 ; a sampling device (not shown) for collecting process areas
  • the sampling device includes the system sampling pipeline 114, and the environmental samples include air
  • the analysis device 12 is communicated with the output end of the system sampling pipeline 114 for analyzing the collected environmental samples
  • the air supply device 13 is connected to the
  • the system sampling line 114 is communicated for supplying purging gas, and the system sampling line 114 is purged with the purging gas; during a single sampling period, the time at which the gas supply device 13 purges the system sampling line 114 is controlled and the sampling device
  • the sampling time scale is 1:5.
  • the sampling device includes a sampling pump 111.
  • the sampling pump 111 is located between the system sampling pipeline 114 and the analysis device 12. During sampling, the sampling pump 111 is operated to extract environmental samples in the process area 10, and the collected environmental samples are collected. transmitted to the analysis device 12 .
  • the environmental monitoring system further includes: a control device, configured to control the ratio of the time for purging the sampling pipeline of the gas supply device to the sampling time of the sampling device to be 1:5, and the control system is further configured to: During sampling, the sampling pump is controlled to operate.
  • the sampling device further includes a buffer box (not shown), which pre-mixes and stabilizes the environmental samples collected by the sampling pump 111 to ensure that the air pressure of the environmental samples used for analysis is within a preset range to avoid sampling The pressure fluctuation caused by the intermittent sampling of the pump 111 is avoided, and the data analysis of the analysis device 12 is prevented from being affected by the pressure fluctuation, so as to ensure the accuracy of the air pollutant concentration data obtained by the analysis device 12 .
  • a buffer box not shown
  • the analysis device 12 can perform data analysis when the pressure in the buffer tank is within a preset range, and the buffer tank can have a pressure calculation function; in addition, the buffer tank can have a pressure relief port, so that the pressure in the buffer tank suddenly increases before it can be carried out. Part of the pressure is released during data analysis to ensure high accuracy of the concentration data obtained by analysis.
  • the type of the sampling pump 111 includes a diaphragm pump.
  • the conveying pipeline of conveying gas is separated from the live column by the diaphragm, so as to prevent the surface contaminants of the live column from contaminating the conveyed gas, thereby ensuring the accuracy of the concentration data obtained by the analysis device 12 .
  • the analysis device 12 is also used to analyze the gas purged from the system sampling line 114 to the analysis device 12.
  • the analysis device 12 includes a plurality of analysis modules, and each analysis module is used to analyze the concentration of a corresponding type of air pollutants , and multiple analysis modules can synchronously analyze the environmental samples collected by the sampling device at a time. In this way, the concentrations of different types of air pollutants can be obtained at the same time, without the need for successive analysis, which is beneficial to shorten the overall analysis time of air pollutant concentrations; in addition, the sampling times of environmental samples can be reduced, thereby further shortening the monitoring time of air pollutant concentrations. , which is conducive to the rapid monitoring and rapid treatment of air pollutant concentrations.
  • the analysis device 12 includes an acid analysis module, an ammonia analysis module, a sulfur analysis module, and an organic substance analysis module, which are respectively used for monitoring the acid gas concentration, ammonia gas concentration, sulfur dioxide concentration, and organic substance concentration in the process area 10 .
  • the analysis device may also include analysis modules for other air pollutants. It should be noted that any gas that may affect the process or product yield can be regarded as air pollutants, and the types of air pollutants may vary in different process areas.
  • the sampling device further includes a plurality of single sampling pipelines 113 , each process area 10 is communicated with a single sampling pipeline 113 , and the single sampling pipelines 113 connected to different process areas 10 are different.
  • the pipeline 114 can be communicated with any single sampling pipeline 113, and the output end of the system sampling pipeline 114 is communicated with the analysis device 12; the sampling device further includes: a sampling valve 115, which is used to connect or block the single sampling pipeline 113 and system sampling line 114.
  • the system sampling line 114 is a continuous channel. On the extension path of the system sampling line 114 , the system sampling Lines 114 may communicate with each single sampling line 113 through a sampling valve 115 .
  • the sampling valve 115 blocks the single sampling line 113 and the system sampling line 114, the gas in the process area 10 can only enter the single sampling line 113, but cannot reach the system sampling line 114; when the sampling valve 115 conducts the single sampling line 113
  • the sampling pipeline 113 and the system sampling pipeline 114 are connected, the gas in the process area 10 can reach the system sampling pipeline 114 through the single sampling pipeline 113 .
  • the monitoring method of this embodiment further includes: during sampling, controlling the sampling valve 115 to connect a single sampling pipeline 113 corresponding to the target process area with the system sampling pipeline 114 , and block other single sampling pipelines 113 from the system sampling pipeline 114 , the analysis device 12 analyzes the environmental samples collected from the target process area.
  • the analysis device 12 can be used to analyze a single process area 10 .
  • a plurality of sampling valves 115 are fixed on the valve disc 16a.
  • the sampling valve 115 can be set at the end of the single sampling line 113 facing the system sampling line 114, so as to ensure that the single sampling line 113 has a higher cleanliness, and the sampling valve 115 itself can be cleaned to a certain extent.
  • the gas supply device 13 is communicated with the system sampling pipeline 114, and the gas supply device 13 is used for supplying purging gas, and using the purging gas to purge the system sampling pipeline 114, and sending the purged gas into the Analysis device 12 .
  • the control device can control the air supply device 13 to stop purging and perform the next sampling, so as to ensure the environment of the system sampling pipeline 114 during the next sampling.
  • the preset requirements are met, so as to prevent the environment of the system sampling pipeline 114 from interfering with the analysis of the concentration of air pollutants in the process area 10 and ensure the accuracy of the detection results.
  • the purging of the system sampling pipeline 114 by the air supply device 13 will also affect the adsorption properties of the inner wall of the system sampling pipeline 114 .
  • the dirtier the inner wall, the more air pollutants on the inner wall of the system sampling pipeline 114 will affect the detection result, that is, the detection value of the air pollutants is high. That is, when cleaning the system sampling line 114, the cleaning time needs to be controlled so that the inner wall of the system sampling line 114 is at a preset clean level.
  • the environmental monitoring system further includes a control device (not marked) for controlling the sampling device to collect environmental samples in the preset process area 10 , and the control device is also used for controlling the valve state of the sampling valve 115 , that is, the control device passes the The valve state of the sampling valve 115 is controlled to switch the sampling object of the process area 10 , so as to obtain the air pollutant concentration data of the specific process area 10 .
  • control device is also used to set the concentration threshold of at least one process area 10 ;
  • the environmental monitoring system further includes: a warning device (not shown), used for the concentration threshold of any process area 10 exceeding the concentration threshold of the process area 10 .
  • a warning message is issued when the concentration threshold is preset. In this way, it is beneficial to quickly clean the specific process area where the air pollutants exceed the standard.
  • the ratio of the time for controlling the air supply device 13 to purge the sampling pipeline 114 of the system to the time for sampling by the sampling device is 1:5.
  • the air supply device 13 purges the sampling pipeline 114 of the system in the same proportion as the sampling device sampling, so in each sampling cycle, the cleaning degree of the system sampling pipeline 114 is the same.
  • the sampling degree of the gas is also the same, and the analysis of the gas environment components in the process area 10 will not cause analysis errors due to different sampling cycles. The stability of the gas environment in the process area 10 is improved.
  • control the supply is 10 minutes to 15 minutes, specifically 12 minutes, 13 minutes or 14 minutes, and the sampling time of the control sampling device is 50 minutes to 75 minutes, specifically 55 minutes, 60 minutes or 65 minutes.
  • the environmental monitoring system further includes: a cleaning pipeline 16 , a first end of the cleaning pipeline 16 is used for introducing clean gas (Clean Dry Air, CDA), and a second end of the cleaning pipeline 16 It can be communicated with a single sampling line 113, and the sampling valve 115 is used to control the communication between the single sampling line 113 and the system sampling line 114 or the cleaning line 16; The first end is in communication, and the other end of the air inlet pipeline 17 is used for introducing clean gas.
  • CDA Clean Air
  • the sampling valve 115 blocks the single sampling line 113 and the system sampling line 114 , and the system sampling line 114 has a The gas cannot pass into the single sampling pipeline 113 or the corresponding process area 10 .
  • the single sampling pipeline 113 can be cleaned through the cleaning pipeline 16 . In this way, the single sampling pipeline 113 can be guaranteed to have a high degree of cleanliness, thereby preventing the air pollutants in the single sampling pipeline 113 from interfering with the analysis results of the air pollutant concentration in the process area 10 .
  • the monitoring method includes: during a single sampling period, the ratio of the time when the air inlet pipeline 17 passes the clean gas to the time when the sampling device is sampled is 1:5.
  • the control device is further configured to, during a single sampling period, control the ratio of the time during which the air inlet pipeline passes the cleaning gas to the time during which the sampling device samples to be 1:5.
  • the cleanliness of the single sampling pipeline 113 is the same, and the sampling degree of the gas in the process area 10 is also the same, so that the analysis of the gas environment components in the process area 10 will not occur because of the difference in each sampling cycle.
  • the error is beneficial to ensure that the proportion of various gases in the process area 10 changes little after each sampling cycle, and improves the stability of the gas environment in the process area 10 .
  • the monitoring method further includes: during a single sampling period, controlling the gas supply device 13 to purge the system sampling line 114 and the intake line 17 to introduce clean gas to start and stop at the same time.
  • the control device is further configured to: during a single sampling period, control the purging of the system sampling line and the introduction of the clean gas in the intake line to start and stop simultaneously. In this way, in each sampling cycle, the air supply device 13 cleans the sampling line 114 of the system and the cleaning gas cleans the single sampling line 113 at the same time, and the time used is the same.
  • the ratio of the cleaning time of the entire environmental monitoring system to the sampling time of the sampling device is 1:5, the ratio of system cleaning to sampling time will not change due to multiple cleaning routes, which further ensures the stability of the gas environment in the process area 10.
  • the air supply device 13 Before sampling the process area 10 again, it is necessary to use the air supply device 13 to purge the system sampling line 114 to remove the air pollutants left in the system sampling line 114 during the last sampling of the process area 10 and avoid the system
  • the air pollutants in the sampling line 114 affect the analysis results of the analysis device 12; in addition, since a small amount of air pollutants cannot be purged and removed by the air supply device 13, clean gas can be introduced for backflushing, thereby sampling the second time
  • the single sampling valve 113 corresponding to the process area 10 of the 1000C is further cleaned, and since there are less residual air pollutants, the impact of backflushing on the analysis results is small.
  • the environmental monitoring system further includes a humidification device 14, which is used to provide water mist, and the humidification device 14 is connected between the air supply device 13 and the system sampling pipeline 114, and the humidification device 14 is used to generate water mist to After mixing the purge gas with the water mist, it enters the system sampling line 114 .
  • a humidification device 14 which is used to provide water mist
  • the humidification device 14 is connected between the air supply device 13 and the system sampling pipeline 114, and the humidification device 14 is used to generate water mist to After mixing the purge gas with the water mist, it enters the system sampling line 114 .
  • the purging gas contains water mist, because some residual pollutants in the system sampling line 114 are easily soluble in water, so the system can be quickly cleaned
  • the residual contaminants in the sampling pipeline 114 can shorten the cleaning time, thereby increasing the sampling frequency; and after one sampling and before sampling again, the residual contaminants in the sampling pipeline 114 of the system are more thoroughly cleaned by the humidification device 14 to ensure that every time Sampling is not disturbed by the air pollutants in the process area sampled last time, which helps to ensure that the air pollutant data in the process area obtained by each sampling and analysis has higher accuracy.
  • the humidifying device 14 is further communicated between the intake line 17 and the cleaning line 16, so that the sampling valve 115 and the single sampling line 113 are cleaned after the cleaning gas is mixed with the water mist.
  • the clean gas humidified by the water mist in the intake line 17 can be used to clean the single sampling line 113 through the cleaning line 16. Because some residual pollutants in the single sampling line 113 are easily soluble in water, the single sampling line 113 can be quickly cleaned. Residual contaminants in the sampling pipeline 113 shorten the cleaning time, thereby increasing the sampling frequency.
  • the residual pollutants in the pipeline can be ammonia gas.
  • the humidification device 14 in this embodiment includes: a humidification pipeline 14a, which is connected between the system sampling pipeline 114 and the gas supply device 13 (not shown), and controls the purging gas and the water mist to mix and pass through the
  • the humidification pipeline 14a is transmitted to the system sampling pipeline 114;
  • the water storage tank 14e the water storage tank 14e includes a water storage area 14f and a gas circulation area 14g communicating with the water storage area 14f, and the humidification pipeline 14a is communicated with the gas circulation area 14g;
  • the oscillator 14i which is located in the water storage area 14f, is used to oscillate the water in the water storage area 14f to generate water mist.
  • control device is further configured to control the mixing of the purging gas and the water mist to be transmitted to the system sampling line via the humidification line.
  • the humidifying device 14 further includes a drying pipeline 14b, the drying pipeline 14b and the humidifying pipeline 14a are independent of each other, and the drying pipeline 14b is connected between the air supply device 13 (not shown) and the system sampling pipe Between the lines 114, the drying line 14b is used to transmit the purge gas to the system sampling line 114; the switching valve 14c is used to switch between the humidification line 14a and the drying line 14b and the system sampling line 114 The other one is connected to the system sampling pipeline 114, and the other one is cut off. In this way, the humidification device 14 can be reasonably adjusted to use different pipelines according to different situations.
  • the humidification pipeline 14a is used
  • the drying pipeline 14b is used.
  • the switching valve 14c may be a solenoid valve.
  • the humidifying device 14 further includes a timing module 14d.
  • the timing module 14d is used to set the time during which the humidification pipeline 14a is connected to the system sampling pipeline 114.
  • the timing module 14d is also used to set the drying time. The time during which the line 14b is connected to the system sampling line 114.
  • the environmental monitoring system of this embodiment further includes a first processing module 15, and the first processing module 15 controls the switching valve 14c to switch one of the drying pipeline 14b and the humidifying pipeline 14a based on the analysis result of the analysis device 12.
  • One is communicated with the system sampling pipeline 114 , and the other is blocked from the system sampling pipeline 114 .
  • the gas supply device 13 purges the gas in the sampling pipeline 114 of the system through the drying pipeline 14b of the humidification device 14 to the analysis device 12, and the analysis device 12 finds that the gas contains gas pollutants that are more soluble in water
  • the first A processing module 15 controls the switching valve 14c to switch the drying pipeline 14b to the humidifying pipeline 14a, and continues to purge the sampling pipeline 114 of the system.
  • the drying line 14b of the humidification device 14 is switched to the humidification line 14a, which can quickly clean the system sampling line 114. Gas contaminants, reduce cleaning time, and thus increase sampling frequency.
  • the humidification device 14 uses the humidification pipeline 14a or the drying pipeline 14b to communicate with the system sampling pipeline 114 , which can be switched by the timing module 14d or by the first processing module 15 .
  • the water storage tank 14e further includes: a mesh structure 14h, the water storage area 14f and the gas circulation area 14g are communicated through the mesh structure 14h, and the mesh structure 14h can be a metal mesh; ), the water injection port is connected to the water storage area 14f and the external water supply pipeline; the liquid level detection sensor (not marked), when the liquid level detection sensor detects that the water level of the water storage tank 14e is lower than the warning water level, the external water supply pipeline passes the injection The nozzle fills the water storage tank 14e with water.
  • the humidifying device 14 in this embodiment further includes: a circulating pump 14j, which is communicated with the water storage tank 14e, and is used to operate and keep the water in the water storage tank 14e flowing continuously to prevent the growth of bacteria.
  • a circulating pump 14j which is communicated with the water storage tank 14e, and is used to operate and keep the water in the water storage tank 14e flowing continuously to prevent the growth of bacteria.
  • the environmental monitoring system of this embodiment further includes: a humidity sensor, which is disposed at the port of the system sampling line 114 facing the humidification device 14, and is used to detect the humidity of the purge gas in the system sampling line 114; the second processing module, the first The second processing module adjusts the amount of water mist provided by the humidification device 14 according to the humidity sensor display.
  • a humidity sensor which is disposed at the port of the system sampling line 114 facing the humidification device 14, and is used to detect the humidity of the purge gas in the system sampling line 114
  • the second processing module the first The second processing module adjusts the amount of water mist provided by the humidification device 14 according to the humidity sensor display.
  • the humidity sensor 14k and the second processing module 14L may be arranged in the humidification device 14 , and the humidity sensor 14k is arranged at the port of the humidification device 14 pipeline facing the system sampling pipeline 114 .
  • the environmental monitoring system further includes: a ventilation valve 171 , an air outlet line 172 and a cleaning pump 173 , and the ventilation valve 171 is used to control one end of the cleaning line 16 and one end of the air intake line 17
  • the other end of the gas outlet pipe 172 is used to pass clean gas; or, the ventilation valve 171 is used to control one end of the cleaning pipe 16 to communicate with one end of the gas outlet pipe 172, and the other end of the gas outlet pipe 172 is connected to the cleaning pump 173 is connected, and the cleaning pump 173 is used for air extraction.
  • a single sampling line 113 corresponding to other process areas 10 can be connected to the cleaning line 16, and one end of the cleaning line 16 is connected to the air outlet line 172, and the cleaning pump 173 is pumped through the air Make the gas in the single sampling line 113 the same as the ambient gas in the corresponding process area 10, which is convenient for the next sampling; and keep the gas in the single sampling line 113 in a flowing state, so as to avoid the air in the single sampling line 113
  • the pollutants are adsorbed on the inner wall of the single sampling pipeline 113 due to the static gas, thereby ensuring that the single sampling pipeline 113 has high cleanliness, which is beneficial to improve the accuracy of the detection results.
  • air extraction cleaning may extract different air pollutants in the process area 10 in equal or non-proportional proportions, thereby causing inaccurate detection results.
  • the ratio of the extracted air pollutants to the total air pollutants is different from the ratio of the extracted carrier gas (gases other than air pollutants) to the total carrier gas, the concentration of air pollutants in the process area 10 will increase.
  • the concentration comparison relationship of different types of air pollutants in the process area 10 will change.
  • the backflushing cleaning scheme can eliminate the influence of clean gas on the analysis of air pollutant concentration through calculation, and then accurately obtain the analysis results of air pollutants.
  • the analysis results include the types of air pollutants, the concentration of air pollutants and the concentration ratio of different air pollutants.
  • the ratio of the time for purging the sampling pipeline of the air supply device to the sampling time of the sampling device is controlled to be 1:5, and the sampling pipeline of the cleaning system of the air supply device and the cleaning gas cleaning single A sampling pipeline starts at the same time and takes the same time. It is determined that in each sampling cycle, the cleaning time of the system is the same as the sampling time of the sampling device. Therefore, in each sampling cycle, the cleaning degree of the pipeline used for sampling is the same.
  • the sampling degree of the gas is also the same, and the analysis of the gas environment components in the process area will not cause analysis errors due to different sampling cycles, which is beneficial to ensure that the proportion of various gases in the process area changes after each sampling cycle. Stability of the regional gas environment.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种环境监测系统及基于环境监测系统的监测方法,其中,基于环境监测系统的监测方法,用于监测无尘室内多个制程区域(10)的空气污染物浓度,环境监测系统包括:采样装置,用于采集制程区域(10)的环境样品,采样装置包括系统采样管路(114),环境样品包括空气;分析装置(12),与系统采样管路(114)的输出端连通,用于分析采集到的环境样品;供气装置(13),与系统采样管路(114)连通,用于提供吹扫气体,并利用吹扫气体吹扫系统采样管路(114);在单次采样期间,控制供气装置(13)吹扫系统采样管路(114)的时间与采样装置采样的时间比例为1:5。

Description

环境监测系统及基于环境监测系统的监测方法
相关申请的交叉引用
本公开基于申请号为202010973476.9、申请日为2020年09月16日、申请名称为“基于环境监测系统的监测方法”的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以全文引入的方式引入本公开。
技术领域
本公开涉及半导体领域,特别涉及一种环境监测系统及基于环境监测系统的监测方法。
背景技术
随着半导体工业工序复杂性的增加和产品特征尺寸的微缩,制程区域气体环境的稳定性对产品的影响成为无尘室环境控制的重点关注问题。
发明内容
本公开实施例提供一种环境监测系统及基于环境监测系统的监测方法,有利于控制清洁系统采样管路残留污染物时间与采样装置采样时间比例为1:5,每次采样循环后制程区域各种气体比例变化较小,提高了制程区域气体环境的稳定性。
为解决上述问题,本公开实施例提供一种基于环境监测系统的监测方法,用于监测无尘室内多个制程区域的空气污染物浓度,其特征在于,所述环境监测系统包括:采样装置,用于采集所述制程区域的环境样品,所述采样装置包括系统采样管路,所述环境样品包括空气;分析装置,与所述系统采样管路的输出端连通,用于分析采集到的所述环境样品;供气装置,与所述系统采样管路连通,所述供气装置用于提供吹扫气体,并利用所述吹扫气体吹扫所述系统采样管路;在单次采样期间,控制所述供气装置吹扫所述系统采样管路的时间与所述采样装置采样的时间比例为1:5。
本公开实施例还提供一种环境监测系统,用于监测无尘室内多个制程区域的空气污染物浓度,所述系统包括供气装置、采样装置、分析装置和控制装置,其中:
所述供气装置,与系统采样管路连通,所述供气装置用于提供吹扫气体,并利用所述吹扫气体吹扫所述系统采样管路;
所述采样装置包括所述系统采样管路,用于采集所述制程区域的环境样品,所述环境样品包括空气;
所述分析装置,与所述系统采样管路的输出端连通,用于分析采集到的所述环境样品;
所述控制装置,用于在单次采样期间,控制所述供气装置吹扫所述系统采样管路的时间与所述采样装置采样的时间比例为1:5。
与相关技术相比,本公开实施例提供的技术方案具有以下优点:
上述技术方案中,在单次采样期间,控制供气装置吹扫系统采样管路的时间与采样装置采样的时间比例为1:5,确定每次采样循环中,供气装置吹扫系统采样管路与采样装置采样的时间比例相同,所以每次采样循环中,系统采样管路的清洁程度相同,对制程区域气体的采样程度也相同,进而对制程区域的气体环境成分分析不会因为每次采样循环不同而出现分析误差,有利于保证每次采样循环后制程区域各种气体比例变化较小,提高了制程区域气体环境的稳定性。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本公开实施例提供的环境监测系统的结构示意图;
图2为本公开实施例提供的环境监测系统的局部结构示意图;
图3为本公开实施例提供的基于环境监测系统的监测方法示意图;
图4为本公开实施例提供的环境监测系统的局部结构示意图;
图5为本公开实施例提供的另一种环境监测系统的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合附图对本公开的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本公开各实施例中,为了使读者更好地理解本公开而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本公开所要求保护的技术方案。
相关技术中环境监测系统清洁采样管路的时间与采样装置采样的时间比例不确定,每次采样循环时间不同,每次采样循环后制程区域的各种气体比例不同,导致制程区域的气体环境不稳定的问题,进而影响产品良率。为了解决该问题,本公开实施例提供一种环境监测系统及基于环境监测系统的监测方法。
图1为本公开实施例提供的环境监测系统的结构示意图。
参考图1,基于环境监测系统的监测方法,用于监测无尘室内制程区域10的空气污染物浓度,包括:无尘室内具有多个制程区域10;采样装置(未标示),用于采集制程区域10的环境样品,采样装置包括系统采样管路114,环境样品包括空气;分析装置12,与系统采样管路114的输出端连通,用于分析采集到的环境样品;供气装置13,与系统采样管路114连通,用于提供吹扫气体,并利用吹扫气体吹扫系统采样管路114;在单次采样期间,控制供气装置13吹扫系统采样管路114的时间与采样装置采样的时间比例为1:5。
本实施例中,采样装置包括采样泵111,采样泵111位于系统采样管路114与分析装置12之间,采样时,运行采样泵111以抽取制程区域10的环境样品,并将采集的环境样品传输至分析装置12。
在一些例子中,所述环境监测系统还包括:控制装置,用于控制供气装置吹扫系统采样管路的时间与采样装置采样的时间比例为1:5,所述控制系统还用于在采样时,控制所述采样泵运行。
在另一个例子中,采样装置还包括缓冲箱(未标示),缓冲箱对采样泵111采集到的环境样品进行预混合稳定,保证用于分析的环境样品的气压处于预设范围内,避免采样泵111间断式采样所带来的压力波动,且避免分析装置12的数据分析受到压力波动的影响,保证分析装置12获取到的空气污染物浓度数据的准确性。
其中,分析装置12可在缓冲箱内的压力处于预设范围内时进行数据分析,缓冲箱可具有压力计算功能;此外,缓冲箱可具有泄压口,在缓冲箱内部压力骤然增加而来不及进行数据分析时泄除部分压力,保证分析得到的浓度数据具有较高的准确性。
本实施例中,采样泵111的类型包括隔膜泵。通过隔膜将输送气体的输送管路和活柱隔开,从而避免活柱的表面污染物污染被输送气体,进而保证分析装置12获取到的浓度数据的准确性。
在一个例子中,分析装置12还用于分析从系统采样管路114吹扫到分析装置12的气体,分析装置12包括多个分析模块,每一分析模块用于分析对应类型的空气污染物浓度,多个分析模块可同步分析采样装置单次采集的环境样品。如此,可同时获取不同类型的空气污染物浓度,无需进行逐次分析,有利于缩短空气污染物浓度的整体分析时间;此外,能够减少环境样品的采样次数,从而进一步缩短空气污染物浓度的监测时间,有利于实现空气污染物浓度的快速监测以及快速处理。
在另一个例子中,分析装置12包括酸分析模块、氨分析模块、硫分析模块以及有 机物质分析模块,分别用于监测制程区域10内的酸性气体浓度、氨气浓度、二氧化硫浓度以及有机物质浓度,避免酸性气体以及氨气影响金属导线的形成,避免酸性气体与氨气反应生成的盐类影响产品良率,避免二氧化硫与氨结合而导致光罩表面形成雾化,进而避免雾化导致的产品良率下降以及重工率升高。
在其他实施例中,分析装置还可以包括针对其他空气污染物的分析模块。需要说明的是,只要是可能会影响工艺制程或产品良率的气体都可以被视为空气污染物,空气污染物的类型在不同制程区域内可能不同。
本实施例中,参考图1,采样装置还包括多个单一采样管路113,每一制程区域10与一单一采样管路113连通,不同制程区域10连通的单一采样管路113不同,系统采样管路114可与任一单一采样管路113连通,系统采样管路114的输出端与分析装置12连通;采样装置还包括:采样阀115,采样阀115用于连通或阻断单一采样管路113和系统采样管路114。
关于单一采样管路113、系统采样管路114以及采样阀115三者的位置关系,可参考图2,系统采样管路114为一连续通道,在系统采样管路114的延伸路径上,系统采样管路114可通过采样阀115与每一单一采样管路113连通。当采样阀115阻断单一采样管路113与系统采样管路114时,制程区域10内的气体只能进入单一采样管路113,而无法到达系统采样管路114;当采样阀115导通单一采样管路113与系统采样管路114时,制程区域10内的气体可通过单一采样管路113到达系统采样管路114。
本实施例的监测方法还包括:采样时,控制采样阀115使与目标制程区域对应的单一采样管路113与系统采样管路114连通,其他单一采样管路113与系统采样管路114阻断,分析装置12分析从目标制程区域采集到的环境样品。
需要说明的是,在同一时刻,也可以有多个采样阀115处于导通单一采样管路113与系统采样管路114的状态,也就是说,分析装置12既可以用于分析单一制程区域10的空气污染物浓度,也可以用于分析多个制程区域10的平均空气污染物浓度。
参考图1,多个采样阀115固定在阀件盘16a上。
由于系统采样管路114是共用的,为避免前一次采样过程的空气污染物残留影响下一次的采样,需要在两次采集之间,对系统采样管路114进行清洁,为避免清洁过程中空气污染物堆积在单一采样管路113内而无法被有效去除,可将采样阀115设置在单一采样管路113朝向系统采样管路114的一端,如此,有利于保证单一采样管路113具有较高的洁净度,以及可对采样阀115本身进行一定的清洁。
本实施例中,供气装置13与系统采样管路114连通,供气装置13用于提供吹扫气体,并利用吹扫气体吹扫系统采样管路114,并将吹扫后的气体送入分析装置12。如此,在分析装置12确认系统采样管路114的环境满足采样需求时,控制装置可控制供气装置13停止吹扫并进行下一次采样,保证在进行下一次采样时系统采样管路114的环境满足预设要求,从而避免系统采样管路114的环境对制程区域10的空气污染物浓度分析造成干扰,保证检测结果的准确性。
需要说明的是,供气装置13对系统采样管路114的吹扫还会对系统采样管路114内壁的吸附性造成影响。具体地,吹扫时间越长,系统采样管路114内壁越干净,内壁吸附空气污染物的能力增强,空气污染物的检测值偏低;相应地,吹扫时间越短,系统采样管路114内壁越脏,系统采样管路114内壁的空气污染物会对检测结果造成影响,即空气污染物的检测值偏高。也就是说,在进行系统采样管路114的清洁,需要控制清洁时间,使得系统采样管路114的内壁处于预设的洁净水平。
本实施例中,环境监测系统还包括控制装置(未标记),用于控制采样装置采集预设的制程区域10的环境样品,控制装置还用于控制采样阀115的阀门状态,即控制装置通过控制采样阀115的阀门状态,实现制程区域10采集对象的切换,从而获取特定制程区域10的空气污染物浓度数据。
本实施例中,控制装置还用于设定至少一制程区域10的浓度阈值;环境监测系统还包括:警示装置(未图示),用于在任一制程区域10的浓度阈值超出制程区域10的预设浓度阈值时发出警示信息。如此,有利于对空气污染物超标的特定制程区域进行快速清洁。
参考图3,本实施例中,在单次采样期间,控制供气装置13吹扫系统采样管路114的时间与采样装置采样的时间比例为1:5。如此,确定每次采样循环中,供气装置13吹扫系统采样管路114与采样装置采样的时间比例相同,所以每次采样循环中,系统采样管路114的清洁程度相同,对制程区域10气体的采样程度也相同,进而对制程区域10的气体环境成分分析不会因为每次采样循环不同而出现分析误差,有利于保证每次采样循环后制程区域10各种气体比例变化较小,提高了制程区域10气体环境的稳定性。
需要说明的是,为节约整个采样循环过程的时间成本,同时又能保障系统采样管路114的内壁处于预设的洁净水平的前提下,在本实施例中,在单次采样期间,控制供气装置13吹扫系统采样管路114的时间为10分钟至15分钟,具体可以为12分钟、13分钟或14分钟,控制采样装置采样的时间为50分钟至75分钟,具体可以为55分钟、 60分钟或65分钟。
参考图1,本实施例中,环境监测系统还包括:清洁管路16,清洁管路16的第一端用于通入清洁气体(Clean Dry Air,CDA),清洁管路16的第二端可与单一采样管路113连通,采样阀115用于控制单一采样管路113与系统采样管路114或清洁管路16连通;进气管路17,进气管路17的一端与清洁管路16的第一端连通,进气管路17的另一端用于通入清洁气体。
在一个例子中,参考图2,当单一采样管路113与清洁管路16(未标示)连通时,采样阀115阻隔单一采样管路113与系统采样管路114,系统采样管路114内的气体无法通入单一采样管路113或对应的制程区域10内,此时,可通过清洁管路16对单一采样管路113进行清洁。如此,可保证单一采样管路113具有较高的清洁度,从而避免单一采样管路113内的空气污染物对制程区域10的空气污染物浓度分析结果造成干扰。
参考图3,本实施例中,监测方法包括:在单次采样期间,进气管路17通入清洁气体的时间与采样装置采样的时间比例为1:5。在一些例子中,控制装置还用于在单次采样期间,控制所述进气管路通入所述清洁气体的时间与所述采样装置采样的时间比例为1:5。如此,每次循环采样中,单一采样管路113的清洁程度相同,对制程区域10气体的采样程度也相同,进而对制程区域10的气体环境成分分析不会因为每次采样循环不同而出现分析误差,有利于保证每次采样循环后制程区域10各种气体比例变化较小,提高了制程区域10气体环境的稳定性。
参考图3,在一个例子中,监测方法还包括:单次采样期间,控制供气装置13吹扫系统采样管路114与进气管路17通入清洁气体同时开始并且同时停止。在一些例子中,控制装置还用于:在单次采样期间,控制吹扫所述系统采样管路与所述进气管路通入所述清洁气体同时开始并且同时停止。如此,在每次采样循环中,供气装置13清洁系统采样管路114与清洁气体清洁单一次采样管路113同时开始,并且所用时间相同,整个环境监测系统清洁时间与采样装置采样时间比例为1:5,不会因为多个清洗路线而导致系统清洗与采样时间比例发生变化,进一步保证了制程区域10气体环境的稳定性。
在进行一制程区域10的采样过程中,由于系统采样管路114与每一采样阀115接触,因此每一采样阀115的被系统采样管路114暴露的表面都会沉积有空气污染物,同时,由于空气污染物分子较小且容易发生漂移,因此会有少量空气污染物转移至采样阀的其他位置。当再次进行制程区域10的采样之前,需要采用供气装置13吹扫系统采样管路114,以去除对上一次制程区域10进行采样时留在系统采样管路114内的空气污染 物,避免系统采样管路114内的空气污染物影响分析装置12的分析结果;此外,由于少量空气污染物无法被供气装置13吹扫去除,因此可通入清洁气体进行逆吹,从而对第二次采样的制程区域10对应的单一采样阀113进行进一步地清洁,而由于残余的空气污染物较少,因此逆吹对分析结果的影响较小。
需要说明的是,由于供气装置13用于吹扫的气体最后通入缓冲箱,因此可采用惰性气体或氮气进行吹扫,而由于逆吹时的气体最后通入无尘室的制程区域10,而无尘室内可能有工作人员,因此可以采用可呼吸的干燥空气,从而保证工作人员的生命安全。
本实施例中,环境监测系统还包括加湿装置14,加湿装置14用于提供水雾,加湿装置14连通在供气装置13与系统采样管路114之间,利用加湿装置14产生水雾,以使吹扫气体与水雾混合后进入系统采样管路114。如此,供气装置13提供的吹扫气体经过加湿装置14提供的水雾加湿后,吹扫气体含有水雾,因为系统采样管路114中部分残留污染物易溶于水,所以可以快速清洁系统采样管路114的残留污染物,缩短清洁时间,从而提高采样频率;并且在一次采样之后,再一次采样之前,通过加湿装置14更彻底的清洁系统采样管路114残留的污染物,保证每一次采样不被上一次采样的制程区域的空气污染物所干扰,有利于保证每一次采样分析得到的制程区域的空气污染物数据具有更高的准确性。
本公开实施例中,加湿装置14还连通在进气管路17与清洁管路16之间,使清洁气体与水雾混合后清洁采样阀115和单一采样管路113。如此,进气管路17含有水雾加湿的清洁气体可通过清洁管路16对单一采样管路113进行清洁,因为单一采样管路113中部分残留污染物易溶于水,所以可以快速清洁的单一采样管路113的残留污染物,缩短清洁时间,从而提高采样频率。
管路残留污染物可为氨气。
参考图4,本实施例加湿装置14包括:加湿管路14a,加湿管路14a连通在系统采样管路114与供气装置13(未标示)之间,控制吹扫气体和水雾混合后经由加湿管路14a传输至系统采样管路114;蓄水槽14e,蓄水槽14e包括蓄水区14f以及与蓄水区14f连通的气体流通区域14g,且加湿管路14a与气体流通区域14g相连通;振荡器14i,振荡器14i位于蓄水区14f内,用于振荡蓄水区14f内的水以产生水雾。
在一些例子中,控制装置还用于控制所述吹扫气体和所述水雾混合后经由所述加湿管路传输至所述系统采样管路。
在一个例子中,参考图4,加湿装置14还包括干燥管路14b,干燥管路14b与加湿 管路14a相互独立,且干燥管路14b连通在供气装置13(未标示)与系统采样管路114之间,干燥管路14b用于将吹扫气体传输至系统采样管路114;切换阀14c,用于切换加湿管路14a与干燥管路14b中任一者与系统采样管路114之间连通,另一者与系统采样管路114之间截止。如此,加湿装置14可根据不同情况合理调节采用不同的管路,当系统采样管路114中含有易溶于水的残留气体污染物时,采用加湿管路14a;当系统采样管路114中没有易溶于水的残留气体污染物时,采用干燥管路14b。
其中,切换阀14c可以为电磁阀。
在另一个例子中,参考图4,加湿装置14还包括定时模块14d,定时模块14d用于设定加湿管路14a与系统采样管路114导通的时间,定时模块14d还用于设定干燥管路14b与系统采样管路114导通的时间。
参考图1和图4,本实施例环境监测系统还包括第一处理模块15,第一处理模块15基于分析装置12的分析结果,控制切换阀14c切换干燥管路14b与加湿管路14a中一者与系统采样管路114之间连通,另一者与系统采样管路114之间截止。当供气装置13通过加湿装置14的干燥管路14b吹扫系统采样管路114内的气体到分析装置12,分析装置12分析得到该气体内含有较易溶于水的气体污染物时,第一处理模块15控制切换阀14c将干燥管路14b切换到加湿管路14a,继续吹扫系统采样管路114。如此,当分析装置12分析得到系统采样管路114含有较易溶于水的气体污染物时,将加湿装置14的干燥管路14b切换到加湿管路14a,可以快速清洁系统采样管路114的气体污染物,缩短清洁时间,从而提高采样频率。
综上可知,加湿装置14采用加湿管路14a或干燥管路14b与系统采样管路114连通可由定时模块14d切换或者通过第一处理模块15切换。
参考图4,本实施例中,蓄水槽14e还包括:网状结构14h,蓄水区14f与气体流通区域14g通过网状结构14h连通,网状结构14h可为金属网;注水口(未标记),注水口连通蓄水区14f与外界供水管路;液位侦测传感器(未标记),当液位侦测传感器侦测到蓄水槽14e水位低于警戒水位时,外界供水管路通过注水口向蓄水槽14e注水。
本实施例加湿装置14还包括:循环泵14j,循环泵14j与蓄水槽14e连通,用于运行保持蓄水槽14e内的水持续流动,防止细菌滋生。
本实施例环境监测系统,还包括:湿度传感器,湿度传感器设置在系统采样管路114朝向加湿装置14的端口,用于检测系统采样管路114的吹扫气体的湿度;第二处理模块,第二处理模块根据湿度传感器显示湿度调节加湿装置14提供的水雾的量。
参考图4,在一个例子中,湿度传感器14k和第二处理模块14L可以设置在加湿装置14中,湿度传感器14k设置在加湿装置14的管路朝向系统采样管路114的端口。
参考图5,在另一个例子中,环境监测系统还包括:换气阀171、出气管路172以及清洁泵173,换气阀171用于控制清洁管路16的一端与进气管路17的一端连通,出气管路172的另一端用于通入清洁气体;或者,换气阀171用于控制清洁管路16的一端与出气管路172的一端连通,出气管路172的另一端与清洁泵173连通,清洁泵173用于抽气。
在对一制程区域10进行采样时,可将其他制程区域10对应的单一采样管路113连通至清洁管路16,且清洁管路16的一端连通至出气管路172,清洁泵173通过抽气使得单一采样管路113内的气体与对应的制程区域10内的环境气体相同,便于下次采样;以及使得单一采样管路113内的气体保持流动状态,从而避免单一采样管路113内的空气污染物因气体静止而吸附在单一采样管路113内壁,进而保证单一采样管路113具有较高的清洁度,有利于提高检测结果的准确性。
相对于进行逆吹清洁,抽气清洁可能等比例或非等比例地抽离制程区域10内的不同空气污染物,进而造成检测结果不准确。当抽离的空气污染物占全部空气污染物的比例与抽离的载气(除空气污染物以外的气体)占全部载气的比例不同时,制程区域10内的空气污染物浓度就会增大或减小;当抽离的不同类空气污染物占该类空气污染物总量的比例不同时,制程区域10内不同类空气污染物的浓度对比关系会发生改变。
由于进行逆吹时通入的清洁气体总量是可以计算的,因此采用逆吹清洁方案,能够通过计算消除清洁气体对空气污染物浓度分析造成的影响,进而准确获取空气污染物的分析结果。分析结果包括空气污染物的类型,空气污染物的浓度以及不同空气污染物的浓度比值。
本实施例中,通过在单次采样期间,控制供气装置吹扫系统采样管路的时间与采样装置采样的时间比例为1:5,且供气装置清洁系统采样管路与清洁气体清洁单一次采样管路同时开始,并且所用时间相同,确定每次采样循环中,系统清洁时间与采样装置采样的时间比例相同,所以每次采样循环中,采样所用管路的清洁程度相同,对制程区域气体的采样程度也相同,进而对制程区域的气体环境成分分析不会因为每次采样循环不同而出现分析误差,有利于保证每次采样循环后制程区域各种气体比例变化较小,提高了制程区域气体环境的稳定性。
本领域的普通技术人员可以理解,上述各实施方式是实现本公开的示例性的实施例, 而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本公开实施例的精神和范围。任何本领域技术人员,在不脱离本公开实施例的精神和范围内,均可作各自更动与修改,因此本公开实施例的保护范围应当以权利要求限定的范围为准。

Claims (20)

  1. 一种基于环境监测系统的监测方法,用于监测无尘室内多个制程区域的空气污染物浓度,所述环境监测系统包括:
    采样装置,用于采集所述制程区域的环境样品,所述采样装置包括系统采样管路,所述环境样品包括空气;分析装置,与所述系统采样管路的输出端连通,用于分析采集到的所述环境样品;供气装置,与所述系统采样管路连通,所述供气装置用于提供吹扫气体,并利用所述吹扫气体吹扫所述系统采样管路;
    在单次采样期间,控制所述供气装置吹扫所述系统采样管路的时间与所述采样装置采样的时间比例为1:5。
  2. 根据权利要求1所述的监测方法,其中,所述采样装置还包括:多个单一采样管路,每一所述制程区域与对应一所述单一采样管路连通,不同所述制程区域对应连通的所述单一采样管路不同;所述采样装置还包括:采样阀,所述采样阀用于连通或阻断所述单一采样管路与所述系统采样管路;
    所述监测方法还包括:控制所述采样阀使与目标所述制程区域对应的所述单一采样管路与所述系统采样管路连通,其他所述单一采样管路与所述系统采样管路阻断,所述分析装置分析从目标所述制程区域采集到的所述环境样品。
  3. 根据权利要求2所述的监测方法,其中,所述环境监测系统还包括:清洁管路,所述清洁管路的第一端用于通入清洁气体,所述清洁管路的第二端与所述单一采样管路连通,所述采样阀还用于控制所述单一采样管路与所述清洁管路连通;进气管路,所述进气管路的一端与所述清洁管路的第一端连通,所述进气管路的另一端用于通入所述清洁气体;
    所述监测方法包括:在单次采样期间,所述进气管路通入所述清洁气体的时间与所述采样装置采样的时间比例为1:5。
  4. 根据权利要求3所述的监测方法,其中,还包括:在所述单次采样期间,控制所述供气装置吹扫所述系统采样管路与所述进气管路通入所述清洁气体同时开始并且同时停止。
  5. 根据权利要求3所述的监测方法,其中,所述环境监测系统还包括:加湿装置,用于提供水雾,所述加湿装置连通在所述供气装置与所述系统采样管路之间;所述加湿装置还连通在所述进气管路与所述清洁管路之间;
    所述监测方法还包括:利用所述加湿装置产生所述水雾,以使所述吹扫气体与所述水雾混合后进入所述系统采样管路,且使所述清洁气体与所述水雾混合后清洁所述采样阀和所述单一采样管路。
  6. 根据权利要求5所述的监测方法,其中,所述加湿装置包括:加湿管路,所述加湿管路连通在所述系统采样管路与所述供气装置之间;
    所述监测方法还包括:控制所述吹扫气体和所述水雾混合后经由所述加湿管路传输至所述系统采样管路。
  7. 根据权利要求6所述的监测方法,其中,所述加湿装置还包括:
    干燥管路,所述干燥管路与所述加湿管路相互独立,且所述干燥管路连通在所述供气装置与所述系统采样管路之间,所述干燥管路用于将所述吹扫气体传输至所述系统采样管路;切换阀,设置在所述加湿管路以及所述干燥管路上;
    所述监测方法还包括:利用所述切换阀,切换所述加湿管路与所述干燥管路中一者与所述系统采样管路之间连通,另一者与所述系统采样管路之间截止。
  8. 根据权利要求7所述的监测方法,其中,所述分析装置还用于分析从所述系统采样管路吹扫到所述分析装置的气体;
    所述监测方法还包括:基于所述分析装置的分析结果,控制所述切换阀切换所述干燥管路与所述加湿管路中一者与所述系统采样管路之间连通,另一者与所述系统采样管路之间截止。
  9. 根据权利要求7所述的监测方法,其中,还包括:设定所述加湿管路与所述系统采样管路导通的时间,且设定所述干燥管路与所述系统采样管路导通的时间。
  10. 根据权利要求1所述的监测方法,其中,所述采样装置包括采样泵,所述采样泵位于所述系统采样管路与所述分析装置之间;
    所述监测方法还包括:采样时,运行所述采样泵以抽取所述制程区域的所述环境样品,并将采集的所述环境样品传输至所述分析装置。
  11. 一种环境监测系统,用于监测无尘室内多个制程区域的空气污染物浓度,所述系统包括供气装置、采样装置、分析装置和控制装置,其中:
    所述供气装置,与系统采样管路连通,所述供气装置用于提供吹扫气体,并利用所述吹扫气体吹扫所述系统采样管路;
    所述采样装置包括所述系统采样管路,用于采集所述制程区域的环境样品,所述环境样品包括空气;
    所述分析装置,与所述系统采样管路的输出端连通,用于分析采集到的所述环境样品;
    所述控制装置,用于在单次采样期间,控制所述供气装置吹扫所述系统采样管路的时间与所述采样装置采样的时间比例为1:5。
  12. 根据权利要求11所述的系统,其中,所述采样装置还包括:多个单一采样管路,每一所述制程区域与对应一所述单一采样管路连通,不同所述制程区域对应连通的所述单一采样管路不同;所述采样装置还包括:采样阀,所述采样阀用于连通或阻断所述单一采样管路与所述系统采样管路;
    所述控制装置还用于:控制所述采样阀使与目标所述制程区域对应的所述单一采样管路与所述系统采样管路连通,其他所述单一采样管路与所述系统采样管路阻断;
    所述分析装置,还用于分析从目标所述制程区域采集到的所述环境样品。
  13. 根据权利要求12所述的系统,其中,所述系统还包括:
    清洁管路,所述清洁管路的第一端用于通入清洁气体,所述清洁管路的第二端与所述单一采样管路连通,所述采样阀还用于控制所述单一采样管路与所述清洁管路连通;
    进气管路,所述进气管路的一端与所述清洁管路的第一端连通,所述进气管路的另一端用于通入所述清洁气体;
    所述控制装置,还用于在单次采样期间,控制所述进气管路通入所述清洁气体的时间与所述采样装置采样的时间比例为1:5。
  14. 根据权利要求13所述的系统,其中,所述控制装置还用于:在单次采样期间,控制吹扫所述系统采样管路与所述进气管路通入所述清洁气体同时开始并且同时停止。
  15. 根据权利要求14所述的系统,其中,所述系统还包括:加湿装置,用于提供水雾,所述加湿装置连通在所述供气装置与所述系统采样管路之间;所述加湿装置还连通在所述进气管路与所述清洁管路之间。
  16. 根据权利要求15所述的系统,其中,所述加湿装置包括:加湿管路,所述加湿管路连通在所述系统采样管路与所述供气装置之间;
    所述控制装置,还用于控制所述吹扫气体和所述水雾混合后经由所述加湿管路传输至所述系统采样管路。
  17. 根据权利要求16所述的系统,其中,所述加湿装置还包括:干燥管路和切换阀,其中,所述干燥管路与所述加湿管路相互独立,且所述干燥管路连通在所述供气装置与所述系统采样管路之间,所述干燥管路用于将所述吹扫气体传输至所述系统采样管路; 所述切换阀设置在所述加湿管路以及所述干燥管路上;
    所述分析装置,还用于分析从所述系统采样管路吹扫到所述分析装置的气体;
    所述系统还包括:第一处理模块,用于:基于所述分析装置的分析结果,控制所述切换阀切换所述干燥管路与所述加湿管路中一者与所述系统采样管路之间连通,另一者与所述系统采样管路之间截止。
  18. 根据权利要求17所述的系统,其中,所述加湿装置还包括:定时模块,所述定时模块,用于设定所述加湿管路与所述系统采样管路导通的时间,且设定所述干燥管路与所述系统采样管路导通的时间。
  19. 根据权利要求18所述的系统,其中,所述采样装置还包括采样泵,所述采样泵位于所述系统采样管路与所述分析装置之间,用于抽取所述制程区域的所述环境样品,并将采集的所述环境样品传输至所述分析装置;
    所述控制装置,用于在采样时,控制所述采样泵运行。
  20. 根据权利要求19所述的系统,其中,所述系统还包括:湿度传感器和第二处理模块,其中,所述湿度传感器设置在所述系统采样管路朝向所述加湿装置的端口,用于检测所述系统采样管路的所述吹扫气体的湿度;
    所述第二处理模块,用于根据所述湿度传感器显示湿度调节所述加湿装置提供的所述水雾的量。
PCT/CN2021/105332 2020-09-16 2021-07-08 环境监测系统及基于环境监测系统的监测方法 WO2022057408A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/504,586 US20220082476A1 (en) 2020-09-16 2021-10-19 System for monitoring environment and monitoring method based on system for monitoring environment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010973476.9 2020-09-16
CN202010973476.9A CN114264523A (zh) 2020-09-16 2020-09-16 基于环境监测系统的监测方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/504,586 Continuation US20220082476A1 (en) 2020-09-16 2021-10-19 System for monitoring environment and monitoring method based on system for monitoring environment

Publications (1)

Publication Number Publication Date
WO2022057408A1 true WO2022057408A1 (zh) 2022-03-24

Family

ID=80775834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105332 WO2022057408A1 (zh) 2020-09-16 2021-07-08 环境监测系统及基于环境监测系统的监测方法

Country Status (2)

Country Link
CN (1) CN114264523A (zh)
WO (1) WO2022057408A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117590788A (zh) * 2023-12-18 2024-02-23 广州市广味源食品有限公司 一种基于杀菌管控的酱油生产车间环境监测系统
CN117590788B (zh) * 2023-12-18 2024-05-31 广州市广味源食品有限公司 一种基于杀菌管控的酱油生产车间环境监测系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009100184A1 (en) * 2008-02-07 2009-08-13 Veltek Associates, Inc. System and method for air sampling in controlled environments
CN102081017A (zh) * 2011-01-18 2011-06-01 北京雪迪龙科技股份有限公司 一种气体在线监测系统
CN102375041A (zh) * 2011-09-16 2012-03-14 武汉市天虹仪表有限责任公司 一种在线挥发性有机物分析仪及其使用方法
CN204462111U (zh) * 2015-02-06 2015-07-08 北京市劳动保护科学研究所 一种有机污染物一体化测试装置
CN105043818A (zh) * 2015-06-11 2015-11-11 总装备部工程设计研究总院 一种时序控制的多路流体采样系统及其方法
CN106290688A (zh) * 2016-09-23 2017-01-04 清华大学 一种颗粒物有机化学组分在线测量系统及方法
US20200150002A1 (en) * 2015-02-17 2020-05-14 Chrintec, Llc Gas Sampling And Management System

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156314A (ja) * 2000-11-21 2002-05-31 Daido Steel Co Ltd サンプリング装置の洗浄方法
FR3040528B1 (fr) * 2015-09-02 2017-09-15 Pfeiffer Vacuum Sas Procede et station de mesure de la contamination d'une boite de transport pour le convoyage et le stockage atmospherique de substrats
CN206208858U (zh) * 2016-10-31 2017-05-31 江苏科华智能控制设备有限公司 多通道快速换气的双泵式气体检测装置
CN109541141A (zh) * 2018-11-27 2019-03-29 汇众翔环保科技股份有限公司 一种小型空气质量监测系统及分析方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009100184A1 (en) * 2008-02-07 2009-08-13 Veltek Associates, Inc. System and method for air sampling in controlled environments
CN102081017A (zh) * 2011-01-18 2011-06-01 北京雪迪龙科技股份有限公司 一种气体在线监测系统
CN102375041A (zh) * 2011-09-16 2012-03-14 武汉市天虹仪表有限责任公司 一种在线挥发性有机物分析仪及其使用方法
CN204462111U (zh) * 2015-02-06 2015-07-08 北京市劳动保护科学研究所 一种有机污染物一体化测试装置
US20200150002A1 (en) * 2015-02-17 2020-05-14 Chrintec, Llc Gas Sampling And Management System
CN105043818A (zh) * 2015-06-11 2015-11-11 总装备部工程设计研究总院 一种时序控制的多路流体采样系统及其方法
CN106290688A (zh) * 2016-09-23 2017-01-04 清华大学 一种颗粒物有机化学组分在线测量系统及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117590788A (zh) * 2023-12-18 2024-02-23 广州市广味源食品有限公司 一种基于杀菌管控的酱油生产车间环境监测系统
CN117590788B (zh) * 2023-12-18 2024-05-31 广州市广味源食品有限公司 一种基于杀菌管控的酱油生产车间环境监测系统

Also Published As

Publication number Publication date
CN114264523A (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
US20220084852A1 (en) Environmental monitoring system
WO2022057386A1 (zh) 环境监测系统
US20220082476A1 (en) System for monitoring environment and monitoring method based on system for monitoring environment
US20060108221A1 (en) Method and apparatus for improving measuring accuracy in gas monitoring systems
KR101271181B1 (ko) 운송 인클로저 오염도 측정장치 및 이를 이용한 오염도 측정방법
US7850901B2 (en) Conditioning system and method for use in the measurement of mercury in gaseous emissions
WO2022057383A1 (zh) 环境监测系统
CN108352345A (zh) 测量用于基片的气氛输送和存储的运输箱的污染物的方法和系统
WO2022057408A1 (zh) 环境监测系统及基于环境监测系统的监测方法
KR102233080B1 (ko) 무액체 샘플 트랩 및 극미량의 산성 및 염기성 amc 측정을 위한 분석 방법
KR101027645B1 (ko) 샘플링 포트 클리닝 수단을 구비한 가스 모니터링 시스템
CN100431674C (zh) 处理流体的方法和装置
KR100993504B1 (ko) 일산화질소 분석장치
CN102042925A (zh) 从含有挥发性有机碳的样品中去除氯化物的方法和装置
KR100265284B1 (ko) 반도체장치 제조용 청정실의 대기중의 수용성 오염물질 분석방법 및 분석장치
US11854845B2 (en) System for monitoring environment
CN113865647B (zh) 一种基于cems的碳排放监测系统
CN212255228U (zh) 一种多种气态污染物净化材料性能测试平台
CN213689118U (zh) 一种真空回流式烟气预处理设备及包含其的烟气连续排放监测系统
JP4515903B2 (ja) ガス中水銀の測定装置の自動洗浄
CN110215937B (zh) 一种大气模拟设备
KR101547167B1 (ko) 가스 시료의 메탈에 대한 온라인 모니터링 시스템
JP2012194042A (ja) ガス分析計用前処理装置
KR20000002427A (ko) 가스크로마토그래피를 이용한 디클로로실란가스 분석장치
JPH01291142A (ja) クリーンルームの汚染監視装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21868237

Country of ref document: EP

Kind code of ref document: A1