WO2022057186A1 - 一种基于二氧化锡传输层的光伏器件的制备方法和应用 - Google Patents
一种基于二氧化锡传输层的光伏器件的制备方法和应用 Download PDFInfo
- Publication number
- WO2022057186A1 WO2022057186A1 PCT/CN2021/073526 CN2021073526W WO2022057186A1 WO 2022057186 A1 WO2022057186 A1 WO 2022057186A1 CN 2021073526 W CN2021073526 W CN 2021073526W WO 2022057186 A1 WO2022057186 A1 WO 2022057186A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transport layer
- tin dioxide
- solution
- spin
- annealing
- Prior art date
Links
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 title claims abstract description 100
- 238000002360 preparation method Methods 0.000 title claims abstract description 36
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims abstract description 50
- 230000005525 hole transport Effects 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 16
- 239000010409 thin film Substances 0.000 claims abstract description 16
- 230000031700 light absorption Effects 0.000 claims abstract description 4
- 239000000243 solution Substances 0.000 claims description 44
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 33
- 238000000137 annealing Methods 0.000 claims description 23
- 238000004528 spin coating Methods 0.000 claims description 22
- 239000002243 precursor Substances 0.000 claims description 20
- -1 hydrogen peroxide modified tin dioxide Chemical class 0.000 claims description 19
- 239000010408 film Substances 0.000 claims description 18
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 14
- 239000000758 substrate Substances 0.000 claims description 12
- 239000011521 glass Substances 0.000 claims description 11
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-dimethylformamide Substances CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 10
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 claims description 10
- 238000003756 stirring Methods 0.000 claims description 10
- 239000008367 deionised water Substances 0.000 claims description 9
- 229910021641 deionized water Inorganic materials 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 150000003863 ammonium salts Chemical class 0.000 claims description 8
- XDXWNHPWWKGTKO-UHFFFAOYSA-N 207739-72-8 Chemical compound C1=CC(OC)=CC=C1N(C=1C=C2C3(C4=CC(=CC=C4C2=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC(=CC=C1C1=CC=C(C=C13)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC=C(OC)C=C1 XDXWNHPWWKGTKO-UHFFFAOYSA-N 0.000 claims description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 6
- 239000003960 organic solvent Substances 0.000 claims description 4
- UUIMDJFBHNDZOW-UHFFFAOYSA-N 2-tert-butylpyridine Chemical compound CC(C)(C)C1=CC=CC=N1 UUIMDJFBHNDZOW-UHFFFAOYSA-N 0.000 claims description 3
- YSHMQTRICHYLGF-UHFFFAOYSA-N 4-tert-butylpyridine Chemical compound CC(C)(C)C1=CC=NC=C1 YSHMQTRICHYLGF-UHFFFAOYSA-N 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 239000012266 salt solution Substances 0.000 claims description 3
- 238000004090 dissolution Methods 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000012046 mixed solvent Substances 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims 1
- HNCXPJFPCAYUGJ-UHFFFAOYSA-N dilithium bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].[Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F.FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F HNCXPJFPCAYUGJ-UHFFFAOYSA-N 0.000 claims 1
- 229910052744 lithium Inorganic materials 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 11
- 230000007547 defect Effects 0.000 abstract description 8
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 238000011161 development Methods 0.000 abstract description 2
- 238000012986 modification Methods 0.000 abstract description 2
- 230000004048 modification Effects 0.000 abstract description 2
- 239000002994 raw material Substances 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 4
- 239000000084 colloidal system Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 101100059544 Arabidopsis thaliana CDC5 gene Proteins 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 101150115300 MAC1 gene Proteins 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- XOJVVFBFDXDTEG-UHFFFAOYSA-N Norphytane Natural products CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/10—Transparent electrodes, e.g. using graphene
- H10K2102/101—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
- H10K2102/102—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising tin oxides, e.g. fluorine-doped SnO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the invention belongs to the field of optoelectronic materials and devices, and particularly relates to a preparation method of an electron transport layer modified with hydrogen peroxide and its application to photovoltaic devices.
- Organic-inorganic hybrid perovskite solar cells have caused an unprecedented research upsurge at home and abroad due to their high photoelectric conversion efficiency and low material preparation cost, and many research results have been achieved.
- Perovskite light-absorbing materials have high carrier mobility, tunable band gap, solution method preparation, and high absorption coefficient, so perovskite cells can obtain high short-circuit cells, open-circuit voltages, and fill factors.
- Planar perovskite solar cells based on tin dioxide electron transport layers have also made great progress, but there is still room for improvement in performance, including photoelectric conversion efficiency, uniformity, and repeatability.
- the surface of the pristine tin dioxide film has many defect states, such as oxygen vacancies and other kinds of defects. These defects can seriously impair the performance and stability of perovskite solar cells. Therefore, improving the electrical properties of tin dioxide is of great significance for obtaining photovoltaic devices with high efficiency and good repeatability that can be used in planar perovskite solar cells. There is an urgent need to develop a photovoltaic device based on a tin dioxide thin film transport layer with excellent comprehensive properties.
- the present invention provides a preparation method and application of a photovoltaic device based on a hydrogen peroxide modified tin dioxide electron transport layer.
- the invention adopts the cheap and green oxidizing material hydrogen peroxide, directly adds the tin dioxide precursor solution, and can realize the improvement of the electrical properties of the tin dioxide through spin coating and annealing processes, and effectively reduce the surface defect state density of the film.
- hydrogen peroxide also improves the photoelectric conversion efficiency, uniformity, and repeatability of tin dioxide-based photovoltaic devices, which is beneficial for further commercial production and applications.
- the invention proves for the first time that hydrogen peroxide is used as an additive and as a passivator in metal oxide tin dioxide, which effectively reduces the defect state density of the electron transport layer, increases the proportion of lattice oxygen atoms, and effectively improves the tin dioxide electron transport layer.
- the perovskite solar cells prepared by using it can effectively improve the photoelectric conversion efficiency, uniformity and repeatability of perovskite solar cells.
- a method for preparing a photovoltaic device based on a tin dioxide transport layer comprising the following steps:
- a top electrode is evaporated on the hole transport layer.
- the tin dioxide precursor solution in the step 1.1 was obtained by stirring at room temperature for 24 h.
- the volume ratio of tin dioxide solution, deionized water and hydrogen peroxide is 1:3:1.
- the spin coating speed is 6000rpm
- the spin coating time is 30s
- the annealing temperature is 150°C
- the annealing time is 30min.
- the organic solvent in step 2.1 is a mixed solvent of DMF and DMSO, and the volume ratio of the two is 19:1; the dissolution temperature is 60° C., and the stirring time is 24h.
- the annealing temperature of the Pbl 2 solution in the step 2.3 is 70°C; the ammonium salt includes FAI, MACl and MABr; the atmospheric humidity during annealing is about 35%, the annealing temperature is 150°C, and the annealing time is 12min.
- the mass ratio of FAI, MAC1 and MABr is 60:6:6.
- step 3.2 2,2',7,7'-tetra[N,N-bis(4-methoxyphenyl)amino]-9,9'-spirobifluorene, chlorobenzene, 4-
- the dosage ratio of the acetonitrile solution of t-butylpyridine and lithium bis-trifluoromethanesulfonic acid imide is 72.3 mg: 1 ml: 28.8 ⁇ L: 17.5 ⁇ L;
- the ratio of lithium triflate to acetonitrile was 520 mg:1 ml.
- the vapor-deposited top electrode is a gold electrode.
- the rest including perovskite, hole transport layer and top electrode were carried out in an atmosphere of inert gas protection .
- the hole transport layer needs to be oxidized in a drying cabinet for 48 hours before the preparation of the top electrode.
- the photovoltaic device includes a bottom-to-top ITO glass substrate, a tin dioxide transport layer, a perovskite light-absorbing layer film, a hole transport layer and a top electrode Floor.
- the thickness of the tin dioxide transport layer is 30 nm
- the thickness of the perovskite light absorption layer is 700 nm
- the thickness of the hole transport layer is 80 nm
- the thickness of the top electrode layer is 80 nm.
- the perovskite light absorption layer film is an organic-inorganic hybrid perovskite (FAPbI 3 ) 0.97 (MAPbBr 3 ) 0.03 .
- the present invention also provides the application of the above photovoltaic device in solar cells.
- the preparation method provided by the present invention is simple, has good repeatability, improves uniformity, is prepared at low temperature, has easily available raw materials, and has low cost, which is conducive to reducing the preparation cost;
- the hydrogen peroxide modified tin dioxide electron transport layer prepared by the present invention has less defect state density and more matched energy band structure than the unmodified case, and also has good substrate coverage and good stability. And better repeatability and other characteristics; and hydrogen peroxide is a green, environment-friendly oxidant, which will not cause environmental pollution and is conducive to environmental protection;
- the photovoltaic device based on the hydrogen peroxide modified tin dioxide electron transport layer provided by the present invention effectively improves the photoelectric conversion efficiency of the perovskite solar cell, which is as high as 22.15%, which is mainly reflected in the improvement of the filling factor and the open circuit voltage. Great potential for application development.
- Figure 1 is the device structure diagram of the planar perovskite thin film solar cell, in which 1-ITO, 2-tin dioxide transport layer, 3-perovskite light-absorbing layer film, 4-hole transport layer Spiro-OMeTAD, 5-top electrode;
- Fig. 2 is the performance statistics diagram of the perovskite thin film solar cell obtained in Example 1;
- Fig. 3 is the performance statistics diagram of the perovskite thin film solar cell obtained in Example 2;
- Fig. 4 is the performance statistics diagram of the perovskite thin film solar cell obtained in Example 3.
- FIG. 5 is a performance statistic diagram of the perovskite thin film solar cell prepared in Comparative Example 1.
- the tin dioxide colloidal solution was purchased from Alfa Aesar, and the hydrogen peroxide concentration was 30wt%, purchased from Sinopharm Reagent Company.
- FIG. 1 The schematic diagram of the structure of the photovoltaic device based on the tin dioxide electron transport layer in this embodiment is shown in Figure 1. From bottom to top, the conductive glass ITO is the substrate, the hydrogen peroxide modified tin dioxide electron transport layer, and the perovskite light absorbing layer. , hole transport layer and top electrode, the specific preparation method is as follows:
- the ITO conductive glass substrate should be cleaned and dried first. Clean conductive glass of suitable size with detergent and then rinse with deionized water. Then, it was placed in an ultrasonic cleaner and ultrasonically cleaned with acetone, ethanol, and deionized water in sequence, and finally dried with nitrogen to obtain a substrate with a clean surface required for the experiment.
- tin dioxide transport layer mix tin dioxide colloid solution, deionized water, and hydrogen peroxide in a ratio of 1:3.5:0.5 to prepare a precursor solution; then stir at room temperature for 24 hours to obtain a hydrogen peroxide modified tin dioxide precursor solution; spin-coat the hydrogen peroxide-modified tin dioxide precursor solution on an ITO glass substrate at a rotational speed of 6000 rpm and a spin-coating time of 30 s, and then place it on a hot stage at 150° C. for 30 min of annealing.
- the tin dioxide film modified with hydrogen peroxide can be obtained, and the film is used as an electron transport layer.
- the electron transport layer thickness is about 30 nm.
- the prepared ammonium salt solution is spin-coated on the lead iodide, and then annealed at 150° C. for 12 minutes in an atmospheric environment with a humidity of about 35%.
- the composition of (FAPbI 3 ) 0.97 (MAPbBr 3 ) 0.03 perovskite light-absorbing layer film can be obtained.
- the thickness of the perovskite light-absorbing layer is about 700 nm.
- hole transport layer 2,2',7,7'-tetra[N,N-bis(4-methoxyphenyl)amino]-9 was prepared on the perovskite light-absorbing layer film ,9'-spirobifluorene (Spiro-OMeTAD) was used as the hole transport layer, and the preparation method was as follows: first, 520 mg of lithium bis-trifluoromethanesulfonic acid imide (Li-TFSI) was dissolved in 1 ml of acetonitrile, stirred for 3 min, Then 72.3 mg of 2,2',7,7'-tetrakis[N,N-bis(4-methoxyphenyl)amino]-9,9'-spirobifluorene (Spiro-OMeTAD) was dissolved in 1 ml In chlorobenzene, 28.8 ⁇ L of 4-tert-butylpyridine (TBP) and 17.5 ⁇ L of Li-TFSI
- TBP 4-
- the prepared solution was spin-coated on the perovskite thin film, the spin-coating speed was 3000 rpm, and the spin-coating time was 20 s.
- the resulting thin film is the hole transport layer.
- the thickness of the hole transport layer is about 80 nm;
- the top electrode Evaporating the Au electrode on the hole transport layer as the top electrode, the thickness of the top electrode is about 80 nm, and the photovoltaic device based on the tin dioxide electron transport layer can be obtained;
- Test The battery was tested under the conditions of AM1.5 and the active layer effective area of 0.05cm 2 .
- the obtained photoelectric conversion efficiency parameter statistical graph is shown in Figure 2.
- the statistical distribution of efficiencies based on three batches of 17 devices ranged from 20.78 ⁇ 0.53.
- the preparation method is as follows:
- the tin dioxide colloid solution, deionized water and 30% hydrogen peroxide are prepared according to the volume ratio of 1:3:1 to prepare the precursor solution; then stirred at room temperature for 24h to obtain hydrogen peroxide modified dioxide Tin precursor solution; spin-coating the hydrogen peroxide modified tin dioxide precursor solution on an ITO glass substrate at a rotational speed of 6000 rpm and a spin-coating time of 30 s, and then placed on a hot stage at 150° C. for annealing for 30 min.
- the tin dioxide film modified with hydrogen peroxide can be obtained, and the film is used as an electron transport layer.
- the electron transport layer thickness is about 30 nm.
- the preparation method is as follows:
- the tin dioxide colloid solution, deionized water and 30% hydrogen peroxide are prepared as a precursor solution according to the volume ratio of 1:2:2; then stirred at room temperature for 24h to obtain hydrogen peroxide modified dioxide Tin precursor solution; spin-coat the hydrogen peroxide-modified tin dioxide precursor solution on an ITO glass substrate at a rotational speed of 6000 rpm and a spin-coating time of 30 s, and then place it in the air for annealing on a hot stage at 150 °C 30min.
- the tin dioxide film modified with hydrogen peroxide can be obtained, and the film is used as an electron transport layer.
- the electron transport layer thickness is about 30 nm.
- Test The battery was tested under the conditions of AM1.5 and the active layer effective area of 0.05cm 2 .
- the obtained photoelectric conversion efficiency parameter statistical graph is shown in Figure 4.
- the statistical distribution of efficiencies based on three batches of 15 devices ranged from 21.25 ⁇ 0.6.
- the preparation method is as follows:
- Preparation of electron transport layer prepare a precursor solution with tin dioxide colloid solution, deionized water and 30% hydrogen peroxide according to a volume ratio of 1:4:0; then stir at room temperature for 24 hours to obtain a tin dioxide precursor solution; spin-coat the tin dioxide precursor solution on an ITO glass substrate with a rotation speed of 6000 rpm and a spin-coating time of 30 s, and then place it in the air on a hot stage at 150° C. for 30 min for annealing.
- a tin dioxide thin film can be obtained, and the thin film serves as an electron transport layer.
- the electron transport layer thickness is about 30 nm.
- Test The battery was tested under the conditions of AM1.5 and the active layer effective area of 0.05cm 2 .
- the obtained photoelectric conversion efficiency parameter statistical graph is shown in Figure 5.
- the statistical distribution of efficiencies based on 33 devices in five batches ranged from 19.65 ⁇ 1.5. has a large standard deviation.
- the preparation method provided by the invention has a simple process, can effectively improve the photoelectric conversion efficiency (up to two percentage points), uniformity and repeatability of the device, and reduces the production time and cost.
- the photovoltaic devices prepared by the invention are applied in perovskite photovoltaic cells, and have achieved good results and have great application potential.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明公开了一种基于二氧化锡传输层的光伏器件的制备方法和应用。该方法包括:(1)制备改性二氧化锡传输层;(2)制备钙钛矿吸光层薄膜;(3)制备空穴传输层;(4)制备顶电极。本发明提供的制备方法工艺简单、均匀性好、重复性好,原料易得,成本低廉,利于降低制备成本。本发明制备的双氧水修饰的二氧化锡电子传输层,能够有效改善二氧化锡的电学性能,使其具有更合适的能带结构和更少的缺陷态密度。本发明将上述改性二氧化锡传输层薄膜用于制备太阳能电池,能够有效提升太阳能电池性能,转化效率高达22.15%,且均匀性、重复性更好,提升制造产能,降低生产成本。本发明对太阳能电池的产业化发展有积极的推动作用,具有较大的应用潜力。
Description
本发明属于光电子材料与器件领域,具体涉及一种双氧水修饰的电子传输层的制备方法及其光伏器件的应用。
有机无机杂化钙钛矿太阳能电池由于具有很高的光电转化效率且材料制备成本低,在国内外引起了空前巨大的研究热潮,并且已经取得了很多的研究成果。钙钛矿吸光材料具有高的载流子迁移率、带隙可调、溶液法制备以及高的吸收系数,所以钙钛矿电池可以获得高的短路电池、开路电压和填充因子。基于二氧化锡电子传输层的平面钙钛矿太阳能电池也已经取得了很大的进展,但是在性能上还有提升的空间,包括光电转化效率、均匀性和重复性。
原始的二氧化锡薄膜表面具有较多的缺陷态,比如氧缺位和其它种类的缺陷。这些缺陷会严重损害钙钛矿太阳能电池的性能和稳定性。因而改进二氧化锡的电学性能对于获得效率高、重复性佳的,可用于平面钙钛矿太阳能电池的光伏器件具有重要意义。亟需开发一种综合性能优良的基于二氧化锡薄膜传输层的光伏器件。
发明内容
针对目前二氧化锡电子传输层电学性能不够完美和缺陷态多的问题,本发明的提供一种基于双氧水修饰的二氧化锡电子传输层的光伏器件的制备方法及其应用。本发明采用廉价、绿色的氧化性材料双氧水,直接加入二氧化锡前驱体溶液,经过旋涂和退火工艺能够实现对二氧化锡的电学性能的改良,并且有效降低薄膜表面缺陷态密度。除了对二氧化锡的电学性能的修饰作用之外,双氧水还提高了基于二氧化锡光伏器件的光电转化效率、均匀性和重复性,利于进一步的商业化生产和应用。
本发明首次证实了双氧水作为添加剂,在金属氧化物二氧化锡中作为钝化剂,有效降低了电子传输层的缺陷态密度,提升了晶格氧原子比例,有效改善了二氧化锡电子传输层的电荷传输和抽取能力,再利用其制备的钙钛矿太阳能电池,能够有效提升钙钛矿太阳能电池的光电转化效率、均匀性和重复性。
本发明提供的技术方案如下:
一种基于二氧化锡传输层的光伏器件的制备方法,包括以下步骤:
(1)制备二氧化锡传输层;
(1.1)将二氧化锡胶体溶液、去离子水、双氧水混合,经搅拌得到双氧水修饰的二氧化锡前驱体溶液;
(1.2)将双氧水修饰的二氧化锡前驱体溶液旋涂于ITO玻璃衬底上,经退火即得二氧化锡传输层;
(2)制备钙钛矿吸光层薄膜;
(2.1)将Pbl
2溶解于有机溶剂中;
(2.2)将铵盐溶解于异丙醇中;
(2.3)将Pbl
2溶液旋涂于二氧化锡传输层上,退火至室温后,在Pbl
2上层旋涂铵盐溶液,然后经大气环境退火得钙钛矿吸光层薄膜;
(3)制备空穴传输层;
(3.1)将双三氟甲基磺酸亚酰胺锂溶解于乙腈中;
(3.2)将2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴溶解于氯苯中,添加4-叔丁基吡啶和双三氟甲基磺酸亚酰胺锂的乙腈溶液,加热搅拌反应,得到空穴传输层溶液;优选的,加热温度为40℃,搅拌时间为24h;
(3.3)将空穴传输层溶液旋涂于钙钛矿吸光层薄膜上,即得空穴传输层;优选的,旋涂转速为3000rpm,旋涂时间为20s;
(4)制备顶电极;
在空穴传输层上蒸镀一层顶电极。
进一步,所述步骤1.1中二氧化锡前驱体溶液在室温下搅拌24h得到。优选的,二氧化锡溶液、去离子水、双氧水的体积比为1:3:1。
进一步,所述步骤1.2中旋涂速度为6000rpm,旋涂时间为30s;退火温度为150℃,退火时间为30min。
进一步,步骤2.1中有机溶剂为DMF和DMSO的混合溶剂,两者体积比为19:1;溶解温度为60℃,搅拌时间为24h。
进一步,所述步骤2.3中Pbl
2溶液的退火温度为70℃;铵盐包括FAI、MACl和MABr;退火时大气环境湿度约为35%,退火温度为150℃,退火时间为12min。优选的,FAI、MACl和MABr的质量比为60:6:6。
进一步,所述步骤3.2中2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴、氯苯、4-叔丁基吡啶和双三氟甲基磺酸亚酰胺锂的乙腈溶液的用量比例为72.3mg:1ml:28.8μL:17.5μL; 所述双三氟甲基磺酸亚酰胺锂的乙腈溶液中双三氟甲基磺酸亚酰胺锂与乙腈的比例为520mg:1ml。
进一步,所述步骤4中,蒸镀的顶电极为金电极。
在制备过程中,除了双氧水修饰的二氧化锡电子传输层是在开放空气条件下进行之外,其余的包括钙钛矿、空穴传输层和顶电极都是在惰性气体保护的氛围下进行的。此外,空穴传输层制备好之后,需要将其放置在干燥柜中氧化48h再进行顶电极的制备。
本发明的另一目的在于提供利用上述方法制备的光伏器件,该光伏器件包括由下到上的ITO玻璃衬底、二氧化锡传输层、钙钛矿吸光层薄膜、空穴传输层和顶电极层。优选的,二氧化锡传输层厚度为30nm,钙钛矿吸光层薄膜厚度为700nm,空穴传输层厚度为80nm,顶电极层厚度为80nm。
进一步,所述钙钛矿吸光层薄膜为有机无机杂化钙钛矿(FAPbI
3)
0.97(MAPbBr
3)
0.03。
本发明还提供了上述光伏器件在太阳能电池中的应用。
本发明的有益效果:
1、本发明提供的制备方法简单,重复性好,均匀性提高,低温制备,原料易得,成本低廉,利于降低制备成本;
2、本发明所制备的双氧水修饰的二氧化锡电子传输层,相较于未修饰的情形具有更少的缺陷态密度、更匹配的能带结构,还具有衬底覆盖性佳、稳定性好以及更优良的重复性能等特性;且双氧水为绿色、环境友好型氧化剂,不会造成环境污染,利于环保;
3、本发明提供的基于双氧水修饰的二氧化锡电子传输层的光伏器件,有效提升了钙钛矿太阳能电池的光电转化效率,高达22.15%,主要体现在填充因子和开路电压的提高,有极大的应用发展潜力。
图1是平面钙钛矿薄膜太阳能电池的器件结构图,其中1-ITO,2–二氧化锡传输层,3–钙钛矿吸光层薄膜,4-空穴传输层Spiro-OMeTAD,5-顶电极;
图2是实施例1制得的钙钛矿薄膜太阳能电池的性能统计图;
图3是实施例2制得的钙钛矿薄膜太阳能电池的性能统计图;
图4是实施例3制得的钙钛矿薄膜太阳能电池的性能统计图;
图5是对比实施例1制得的钙钛矿薄膜太阳能电池的性能统计图。
下面结合实施例对本发明进一步描述,该描述只是为了更好的说明本发明而不是对其进行限制。本发明并不限于这里所描述的特殊实例和实施方案。任何本领域中的技术人员很容易在不脱离本发明精神和范围的情况下进行进一步的改进和完善,都落入本发明的保护范围。
下述实施例中,二氧化锡胶体溶液购于Alfa Aesar,双氧水浓度为30wt%,购于国药试剂公司。
实施例1
本实施例中基于二氧化锡电子传输层光伏器件的结构示意图如图1所示,从下到上依次为导电玻璃ITO为衬底、双氧水修饰的二氧化锡电子传输层、钙钛矿吸光层、空穴传输层和顶电极,具体制备方法如下:
1、清洗:试验中要先对ITO导电玻璃衬底进行清洗、吹干。将尺寸大小合适的导电玻璃用清洁剂先清洗干净,再用去离子水冲洗。然后将其放在超声波清洗器中依次用丙酮、乙醇、去离子水超声清洗,最后再用氮气吹干即可得到实验需要的表面干净的衬底。
2、二氧化锡传输层制备:将二氧化锡胶体溶液、去离子水、双氧水以1:3.5:0.5的比例配好前体溶液;然后室温下搅拌24h,得到双氧水修饰的二氧化锡前驱体溶液;在ITO玻璃衬底上旋涂所述的双氧水修饰的二氧化锡前驱体溶液,旋转速度为6000rpm,旋涂时间为30s,随后放置于150℃的热台上退火30min。即可得到双氧水修饰的二氧化锡薄膜,该薄膜作为电子传输层。电子传输层厚度约为30nm。
3、钙钛矿吸光层制备:将Pbl
2按摩尔浓度1.3M溶解在体积比为DMF:DMSO=19:1的复合溶剂中,60摄氏度下搅拌24h,其中DMF和DMSO分别表示N,N-二甲基甲酰胺和二甲基亚砜;将铵盐按照一定质量比(FAI:MACl:MABr=60:6:6)溶解在1ml异丙醇中,常温下搅拌24h。用甩胶机将配好前驱体碘化铅溶液均匀的旋涂在所述电子传输层上;然后70℃退火1min。待碘化铅冷却到室温后,将配好的铵盐溶液旋涂到碘化铅上,然后在湿度约为35%的大气环境中150℃退火12min。即可得到组分为(FAPbI
3)
0.97(MAPbBr
3)
0.03钙钛矿吸光层薄膜。钙钛矿吸光层的厚度约为700nm。
4、空穴传输层制备:在所述的钙钛矿吸光层薄膜上制备2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴(Spiro-OMeTAD)作为空穴传输层,制备方法为:先将520mg的双三氟甲基磺酸亚酰胺锂(Li-TFSI)溶解在1ml乙腈中,搅拌3min,然后将72.3mg的2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴(Spiro-OMeTAD)溶解在1ml氯苯中,添加28.8μL的 4-叔丁基吡啶(TBP)和17.5μL的Li-TFSI乙腈溶液,40℃下搅拌24h。将配置好的溶液旋涂在所述的钙钛矿薄膜上,旋涂转数为3000rpm,旋涂时间为20s。所得到的薄膜即为空穴传输层。空穴传输层厚度约为80nm;
5、顶电极制备:在所述的空穴传输层上蒸发Au电极作为顶电极,顶电极厚度约为80nm,即可得到基于二氧化锡电子传输层的光伏器件;
6、测试:在AM1.5,活性层有效面积为0.05cm
2的条件下对电池进行测试。获得的光电转换效率参数统计图如图2所示。基于三个批次的17个器件的效率统计分布范围为20.78±0.53。
实施例2
制备方法如下:
1、清洗:同实例1。
2、电子传输层制备:将二氧化锡胶体溶液、去离子水和30%的双氧水按照体积比1:3:1的比例配好前体溶液;然后室温下搅拌24h,得到双氧水修饰的二氧化锡前驱体溶液;在ITO玻璃衬底上旋涂所述的双氧水修饰的二氧化锡前驱体溶液,旋转速度为6000rpm,旋涂时间为30s,随后放置于150℃的热台上退火30min。即可得到双氧水修饰的二氧化锡薄膜,该薄膜作为电子传输层。电子传输层厚度约为30nm。
3、钙钛矿吸光层制备:同实例1。
4、空穴传输层制备:同实例1。
5、顶电极制备:同实例1。
6、测试:在AM1.5,活性层有效面积为0.05cm
2的条件下对电池进行测试。获得的光电转换效率参数统计图如图3所示。基于五个批次的34个器件的效率统计分布范围为21.78±0.37。相对于对比实施例1具有较小的标准偏差。
实施例3
制备方法如下:
1、清洗:同实例1。
2、电子传输层制备:将二氧化锡胶体溶液、去离子水和30%的双氧水按照体积比1:2:2的比例配好前体溶液;然后室温下搅拌24h,得到双氧水修饰的二氧化锡前驱体溶液;在ITO玻璃衬底上旋涂所述的双氧水修饰的二氧化锡前驱体溶液,旋转速度为6000rpm,旋涂 时间为30s,随后在空气中放置于150℃的热台上退火30min。即可得到双氧水修饰的二氧化锡薄膜,该薄膜作为电子传输层。电子传输层厚度约为30nm。
3、钙钛矿吸光层制备:同实例1。
4、空穴传输层制备:同实例1。
5、顶电极制备:同实例1。
6、测试:在AM1.5,活性层有效面积为0.05cm
2的条件下对电池进行测试。获得的光电转换效率参数统计图如图4所示。基于三个批次的15个器件的效率统计分布范围为21.25±0.6。
对比实施例1
制备方法如下:
1、清洗:同实例1。
2、电子传输层制备:将二氧化锡胶体溶液、去离子水和30%的双氧水按照体积比1:4:0的比例配好前体溶液;然后室温下搅拌24h,得到二氧化锡前驱体溶液;在ITO玻璃衬底上旋涂所述的二氧化锡前驱体溶液,旋转速度为6000rpm,旋涂时间为30s,随后在空气中放置于150℃的热台上退火30min。即可得到二氧化锡薄膜,该薄膜作为电子传输层。电子传输层厚度约为30nm。
3、钙钛矿吸光层制备:同实例1。
4、空穴传输层制备:同实例1。
5、顶电极制备:同实例1。
6、测试:在AM1.5,活性层有效面积为0.05cm
2的条件下对电池进行测试。获得的光电转换效率参数统计图如图5所示。基于五个批次共33个器件的效率统计分布范围为19.65±1.5。具有较大的标准偏差。
本发明提供的制备方法工艺简单、可有效提升器件的光电转换效率(提升达到两个百分点)、均匀性和重复性,并降低了制作时间和成本。本发明制备的光伏器件应用在钙钛矿光伏电池中,均取得了良好的效果,具有较大的应用潜力。
以上所述,仅为本发明较佳的具体实施方式,但本发明保护的范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内所做的任何修改,等同替换和改进 等,均应包含在发明的保护范围之内。
Claims (10)
- 一种基于二氧化锡传输层的光伏器件的制备方法,其特征在于,包括以下步骤:(1)制备二氧化锡传输层;(1.1)将二氧化锡胶体溶液、去离子水、双氧水混合,经搅拌得到双氧水修饰的二氧化锡前驱体溶液;(1.2)将双氧水修饰的二氧化锡前驱体溶液旋涂于ITO玻璃衬底上,经退火即得二氧化锡传输层;(2)制备钙钛矿吸光层薄膜;(2.1)将Pbl 2溶解于有机溶剂中;(2.2)将铵盐溶解于异丙醇中;(2.3)将Pbl 2溶液旋涂于二氧化锡传输层上,退火至室温后,在Pbl 2上层旋涂铵盐溶液,然后经退火得钙钛矿吸光层薄膜;(3)制备空穴传输层;(3.1)将双三氟甲基磺酸亚酰胺锂溶解于乙腈中;(3.2)将2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴溶解于氯苯中,添加4-叔丁基吡啶和双三氟甲基磺酸亚酰胺锂的乙腈溶液,加热搅拌反应,得到空穴传输层溶液;(3.3)将空穴传输层溶液旋涂于钙钛矿吸光层薄膜上,即得空穴传输层;(4)制备顶电极;在空穴传输层上蒸镀一层顶电极。
- 根据权利要求1所述的方法,其特征在于:所述步骤1.1中二氧化锡前驱体溶液在室温下搅拌24h得到。
- 根据权利要求1所述的方法,其特征在于:所述步骤1.2中旋涂速度为6000rpm,旋涂时间为30s;退火温度为150℃,退火时间为30min。
- 根据权利要求1所述的方法,其特征在于:所述步骤2.1中有机溶剂为DMF和DMSO的混合溶剂,两者体积比为19:1;溶解温度为60℃,搅拌时间为24h。
- 根据权利要求1所述的方法,其特征在于:所述步骤2.3中Pbl 2溶液的退火温度为70℃;所述铵盐包括FAI、MACl和MABr;旋涂好的薄膜在湿度为35%的大气环境下退火,退火温度为150℃,退火时间为12min。
- 根据权利要求1所述的方法,其特征在于:所述步骤3.2中2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴、氯苯、4-叔丁基吡啶和双三氟甲基磺酸亚酰胺锂的乙腈溶液的用量 比例为72.3mg:1ml:28.8μL:17.5μL;所述双三氟甲基磺酸亚酰胺锂的乙腈溶液中双三氟甲基磺酸亚酰胺锂与乙腈的比例为520mg:1ml。
- 根据权利要求1所述的方法,其特征在于:所述步骤4中,蒸镀的顶电极为金电极。
- 一种基于二氧化锡传输层的光伏器件,其特征在于:采用权利要求1-7任一项的方法制备,包括由下到上的ITO玻璃衬底、二氧化锡传输层、钙钛矿吸光层薄膜、空穴传输层和顶电极层。
- 根据权利要求8所述的光伏器件,其特征在于:所述钙钛矿吸光层薄膜为有机无机杂化钙钛矿(FAPbI 3) 0.97(MAPbBr 3) 0.03。
- 权利要求8所述的光伏器件在太阳能电池中的应用。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010967596.8A CN112133831B (zh) | 2020-09-15 | 2020-09-15 | 一种基于二氧化锡传输层的光伏器件的制备方法和应用 |
CN202010967596.8 | 2020-09-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022057186A1 true WO2022057186A1 (zh) | 2022-03-24 |
Family
ID=73845979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/073526 WO2022057186A1 (zh) | 2020-09-15 | 2021-01-25 | 一种基于二氧化锡传输层的光伏器件的制备方法和应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112133831B (zh) |
WO (1) | WO2022057186A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115224203A (zh) * | 2022-07-20 | 2022-10-21 | 苏州大学 | 一种长效稳定钙钛矿光伏器件的制备方法 |
CN115331863A (zh) * | 2022-07-28 | 2022-11-11 | 西北核技术研究所 | 一种柔性钙钛矿α型核电池及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103787405A (zh) * | 2014-02-27 | 2014-05-14 | 东华大学 | 一种金红石相二氧化锡溶胶的制备方法 |
CN109148690A (zh) * | 2018-08-27 | 2019-01-04 | 领旺(上海)光伏科技有限公司 | 一种有机无机杂化钙钛矿薄膜的表面处理方法 |
CN109860403A (zh) * | 2019-04-10 | 2019-06-07 | 西南石油大学 | 获得大晶粒高质量钙钛矿薄膜的后期处理方法及其应用 |
CN111628080A (zh) * | 2019-02-28 | 2020-09-04 | 北京宏泰创新科技有限公司 | 一种钙钛矿太阳能电池及钙钛矿吸收层的制备方法 |
-
2020
- 2020-09-15 CN CN202010967596.8A patent/CN112133831B/zh not_active Expired - Fee Related
-
2021
- 2021-01-25 WO PCT/CN2021/073526 patent/WO2022057186A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103787405A (zh) * | 2014-02-27 | 2014-05-14 | 东华大学 | 一种金红石相二氧化锡溶胶的制备方法 |
CN109148690A (zh) * | 2018-08-27 | 2019-01-04 | 领旺(上海)光伏科技有限公司 | 一种有机无机杂化钙钛矿薄膜的表面处理方法 |
CN111628080A (zh) * | 2019-02-28 | 2020-09-04 | 北京宏泰创新科技有限公司 | 一种钙钛矿太阳能电池及钙钛矿吸收层的制备方法 |
CN109860403A (zh) * | 2019-04-10 | 2019-06-07 | 西南石油大学 | 获得大晶粒高质量钙钛矿薄膜的后期处理方法及其应用 |
Non-Patent Citations (1)
Title |
---|
MACALIK MICHAL, SEDLARIKOVA MARIE, VONDRAK JIRI, MOHELNIKOVA JITKA: "Role of Hydrogen Peroxide in Tin Dioxide Preparation", ECS TRANSACTIONS, vol. 25, no. 40, 31 December 2010 (2010-12-31), US , pages 83 - 87, XP009535413, ISSN: 1938-5862, DOI: 10.1149/1.3422585 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115224203A (zh) * | 2022-07-20 | 2022-10-21 | 苏州大学 | 一种长效稳定钙钛矿光伏器件的制备方法 |
CN115331863A (zh) * | 2022-07-28 | 2022-11-11 | 西北核技术研究所 | 一种柔性钙钛矿α型核电池及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112133831B (zh) | 2021-12-03 |
CN112133831A (zh) | 2020-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Guo et al. | Molecular bridge on buried interface for efficient and stable perovskite solar cells | |
CN106025085B (zh) | 基于Spiro‑OMeTAD/CuXS复合空穴传输层的钙钛矿太阳能电池及其制备方法 | |
CN108807694B (zh) | 一种超低温稳定的平板钙钛矿太阳能电池及其制备方法 | |
CN109802041B (zh) | 一种非富勒烯钙钛矿平面异质结太阳能电池及制备方法 | |
WO2022057186A1 (zh) | 一种基于二氧化锡传输层的光伏器件的制备方法和应用 | |
CN109216557A (zh) | 一种基于柠檬酸/SnO2电子传输层的钙钛矿太阳能电池及其制备方法 | |
CN113363279A (zh) | 一种高效互联层及其双结钙钛矿/有机叠层太阳能电池 | |
CN111710781B (zh) | 一种钙钛矿光伏电池及其制备方法 | |
CN113087636A (zh) | 一种碘化物及其制备方法,及基于其的全无机钙钛矿太阳电池及制备方法 | |
CN115360300A (zh) | 含有氟化铵修饰二氧化锡电子传输层的钙钛矿太阳能电池 | |
CN113066930B (zh) | 快速氧化spiro-OMeTAD的方法及太阳能电池 | |
CN114899321A (zh) | 有机电子传输层、钙钛矿太阳能电池及其制备方法和应用 | |
CN110311042B (zh) | 一种自组装单分子层和钙钛矿太阳能电池的制备方法及钙钛矿太阳能电池 | |
CN112978788B (zh) | 二氧化锡溶胶制备方法、无退火效应的二氧化锡平面结构钙钛矿光伏电池及制备方法 | |
WO2024193232A1 (zh) | 有机化合物、钙钛矿前驱体溶液、钙钛矿薄膜、钙钛矿电池和用电装置 | |
CN114716469B (zh) | 一种无掺杂有机小分子空穴传输材料及其制备方法和应用 | |
CN116507139B (zh) | 长支链烷基铵修饰的甲脒钙钛矿太阳能电池及其制备方法 | |
CN220476238U (zh) | 一种表面钝化钙钛矿太阳能电池 | |
CN115942844A (zh) | 一种基于甘氨酸盐酸盐修饰的铅锡合金钙钛矿太阳能电池的制备方法 | |
CN117545289A (zh) | 一种碳基钙钛矿太阳能电池的制备方法 | |
CN117042559A (zh) | 一种高效纯相甲脒基钙钛矿太阳能电池及其制备方法 | |
CN116744704A (zh) | 一种基于钝化剂的钙钛矿太阳能电池及其制备方法 | |
CN117915736A (zh) | 一种新型钙钛矿电池材料的前驱体溶液及制备方法、应用 | |
CN116113249A (zh) | 一种树脂酸界面修饰的钙钛矿太阳能电池及其制备方法 | |
CN117295344A (zh) | 一种三氟硼酸盐掺杂的有机-无机杂化钙钛矿太阳能电池及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21868026 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30.06.2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21868026 Country of ref document: EP Kind code of ref document: A1 |