WO2022057165A1 - 一种具有超高阻隔及屏蔽性的重防腐、防污涂料及其制备方法 - Google Patents

一种具有超高阻隔及屏蔽性的重防腐、防污涂料及其制备方法 Download PDF

Info

Publication number
WO2022057165A1
WO2022057165A1 PCT/CN2021/070077 CN2021070077W WO2022057165A1 WO 2022057165 A1 WO2022057165 A1 WO 2022057165A1 CN 2021070077 W CN2021070077 W CN 2021070077W WO 2022057165 A1 WO2022057165 A1 WO 2022057165A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
coating
magnetic
resin
magnetic field
Prior art date
Application number
PCT/CN2021/070077
Other languages
English (en)
French (fr)
Inventor
慕雷
Original Assignee
北京慕成防火绝热特种材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京慕成防火绝热特种材料有限公司 filed Critical 北京慕成防火绝热特种材料有限公司
Publication of WO2022057165A1 publication Critical patent/WO2022057165A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/08Polyesters modified with higher fatty oils or their acids, or with natural resins or resin acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1656Antifouling paints; Underwater paints characterised by the film-forming substance
    • C09D5/1662Synthetic film-forming substance
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1687Use of special additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/328Phosphates of heavy metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the invention relates to a coating, in particular to a coating used in extreme environments.
  • Graphene and MXene are two-dimensional nanoscale sheets, and their excellent mechanical, electrical, electrochemical, and thermodynamic properties have been used in various products. ), uncontrollable and non-directional, so more efficient barrier properties and shielding cannot be achieved, so the performance in weather resistance still cannot meet the requirements of extreme environments.
  • the present invention provides a heavy-duty anti-corrosion and anti-fouling coating of ultra-high barrier and shielding magneto-guided graphene and a preparation method thereof.
  • a heavy-duty anti-corrosion and anti-fouling coating with ultra-high barrier and shielding properties is characterized in that the coating is a two-component system of A and B, and the A component includes resin, reactive diluent, composite magnetic two-dimensional graphite guided by magnetic field magnetization olefin nanosheets, anti-corrosion pigments, wetting agents, defoaming agents, dispersing agents, the mass ratio of each component is: 10-30: 10-20: 5-10: 5-10: 1-2: 1-2: 1 -2, component B is a curing agent, the composite magnetic two-dimensional graphene nanosheet is a composite material of OMMT montmorillonite nanomaterials and graphene, wherein the mass fraction of the graphene is 0.08%-0.12%, The mass fraction of the OMMT montmorillonite nanomaterial is 99.92%-99.88, and the ratio of components A and B is 1.8-2.2:1.
  • the graphene adopts RGO.
  • Preferred said resins are (bisphenol A) epoxy resins, alkyd resins, polyurethane and/or acrylic resins.
  • a further preferred resin is a solvent-free (bisphenol A) epoxy resin.
  • reactive diluents are monofunctional or multifunctional amine or glycerol ether organic molecular reactive diluents.
  • the composite magnetic two-dimensional graphene nanosheets are functionalized graphene composites guided in a magnetic field via iron ion intercalation.
  • said functionalization is activation with surfactants KH-550, 560, Tween 80, Triton-100 and/or SDBS.
  • Further preferred curing agents include one or more of aliphatic polyamines, alicyclic polyamines, low molecular weight polyamides, polyether polyols and modified aromatic amines.
  • the anti-corrosion pigment is one or more of zinc phosphate, phosphoric acid white, iron red, zinc oxide, mica iron oxide, and zinc powder.
  • the preparation method of the aforementioned coating is characterized by first preparing a magnetically oriented and functionalized composite magnetic two-dimensional graphene nanosheet, using an iron ion solution to intercalate iron ions into the graphene, and realizing the magnetically induced orientation by magnetic field induction, and then adding Surfactant activated graphene, then mixed with OMMT;
  • the resin, resin, reactive diluent, composite magnetic two-dimensional graphene nanosheet guided by magnetic field magnetization, anti-corrosion pigment, wetting agent, defoaming agent and dispersing agent are mixed uniformly;
  • the present invention adopts the functionalized graphene after being magnetized by the magnetic field of the magnetic substance, and the material is guided by the magnetic field on the molecular scale. Due to the realization of sheet graphene guidance, the characteristics of graphene barrier and shielding can be realized, which can provide the function of labyrinth effect, and can be fully applied to various kinds of "anti”, “protective”, “screen”, “block” and “block”. In order to meet the application environment of the product requirements of "shielding", the material added to the magnetic graphene has greatly improved the barrier and shielding of water vapor, moisture environment harsh factors, and microbial bacteria. Supplemented with functional filler OMMT activated montmorillonite, it is a nanosheet material that can play a labyrinth role.
  • the magnetic graphene (direction) and OMMT (random direction) are shared in the coating, which can achieve the labyrinth effect of high barrier and high shielding, further improve the anti-corrosion effect, and at the same time as the matrix to ensure the stability and dispersion of the system, under the ratio of the present invention
  • the agglomeration of graphene can be prevented. After selection, the system of RGO reduction of graphene oxide is the most stable and the best effect.
  • magnetized graphene sheets to add anti-corrosion coatings, its own electrical conductivity and the barrier properties of the labyrinth formed by the same guide, greatly improve the anti-corrosion effect of materials.
  • the added reactive diluent can dilute the coating system and adjust the consistency.
  • the original organic small molecules also participate in the curing reaction to increase the degree of cross-linking.
  • Fig. 1 is the contrast diagram of sheet graphene sheet before and after guiding
  • Figure 2 shows the polarization curves of graphene composite coatings with different contents in 3.5% NaCl solution
  • Figure 3 shows the AC impedance curves of graphene composite coatings with different contents in 3.5% NaCl solution.
  • the magnetically oriented and functionalized graphene was prepared, and the RGO graphene was intercalated with iron ions by using ferric chloride, etc., and the magnetically induced orientation was induced by a magnetic field. Then, the surfactant KH-550 was added to activate the graphene. Before and after the magnetic field orientation is shown in Figure 1, the maximum magnetic field is 30 mTSA, which is perpendicular to the permeation direction, and then mixed with OMMT.
  • the above-mentioned AB components are mixed and cured at 2:1 mass fraction at room temperature to obtain a product, which has excellent anti-corrosion and anti-biological pollution benefits.
  • the above-mentioned AB components are mixed and cured at 2:1 mass fraction at room temperature to obtain a product, which has excellent anti-corrosion and anti-biological pollution benefits.
  • the difference is that the graphene in the composite magnetic two-dimensional graphene nanosheet guided by the magnetic field is 0, 0.05%, 0.15%, 0, 2%.
  • the corrosion resistance test was carried out using the above-mentioned examples and comparative examples.
  • the comparative example with the addition amount of graphene was 0.05%, and the coating corrosion was the most serious. layer is more serious. It shows that when a small amount of graphene is added, the graphene is not enough to form a physical isolation layer in the coating, and the corrosion is more serious, which can even accelerate the corrosion of the substrate.
  • Adding 0.1% of the coating of the example the coating also has corrosion phenomenon, but the degree of corrosion is relatively light, the degree of corrosion expansion at the crevice is small, and the coating is not lifted or bubbling as a whole.
  • Figure 2 shows the Tafel polarization curves obtained by immersing 1cm 2 thermally reduced graphene composite coatings in 3.5% NaCl solution at 27°C ⁇ 2°C.
  • Table 1 shows the calculation results of polarization curves of graphene composite coatings with different contents. It can be seen from Figure 2 that, compared with the composite coating before graphene modification, the corrosion resistance of the coating after graphene addition is enhanced. The corrosion potential of the composite coating without adding graphene is -1.50V. After adding graphene, the corrosion potential of the composite coating gradually increases. When 0.1% of RGO is added, the self-corrosion potential of the composite coating is -0.90V, which is similar to that of the composite coating.
  • the self-corrosion potential of the coating is increased by 0.60V, and when RGO-0% is used, the self-corrosion current of the composite coating is 0.79 ⁇ A/cm2, and when 0.1% RGO is added, the self-corrosion current of the composite coating is The corrosion current density decreased to 0.07 ⁇ A/cm2, and the corrosion current density decreased by nearly 12 times compared with the coating without graphene. It can be seen that adding a small amount of graphene can greatly improve the corrosion resistance of the coating. When the addition amount of graphene reaches 0.15%, although the self-corrosion potential of the coating changes little compared with RGO-0.1%, at this time, the corrosion current density of the coating changes greatly, and the corrosion resistance of the coating decreases. . It can be seen that when the graphene content in the composite coating is 0.1%, the corrosion resistance is the best.
  • FIG. 3 shows the sample with an area of 1 cm 2 immersed in NaCl with a concentration of 3.5%, using the sample as the working electrode, the platinum electrode as the auxiliary electrode, and the saturated calomel electrode as the reference electrode, the measured AC impedance of the sample picture.
  • each coating presents a single capacitive reactance arc, which can characterize the electrode process in the system.
  • the coating In the initial stage, the coating is in a dry state, and the water absorption rate is very large, so the capacitance increases Strong, after that, the coating reaches saturation, and the capacitance change is relatively gentle.
  • the semicircle diameter of curve (c) in the figure is the largest, indicating that when the addition amount of graphene is 0.1%, the corrosion resistance of the composite coating is the largest. Adding graphene to the composite coating within a certain range can greatly improve the corrosion resistance of the coating. When the amount of graphene added is less than 0.1%, the corrosion resistance of the composite coating increases with the graphene content. However, when the amount of graphene added is 0.15%, the corrosion resistance of the composite coating is greatly reduced, which may be due to the agglomeration of graphene, which makes the coating surface defect, corrosive ions can quickly reach the substrate, and the metal surface occurs. corrosion. It can be seen that the results of the AC impedance spectrum are consistent with the results obtained from the Tafel polarization curve.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)

Abstract

一种具有超高阻隔及屏蔽性的重防腐、防污涂料及其制备方法,该涂料为A、B双组分体系,A组分包括树脂、活性稀释剂、经磁场磁化导向的复合磁性二维石墨烯纳米片材、防腐颜料、润湿剂、消泡剂、分散剂,各成分质量比为:10-30:10-20:5-10:5-10:1-2:1-2:1-2,B组分为固化剂,A、B组分之比为1.8-2.2:1。采用被磁性物质的磁场磁化后的石墨烯,材料在分子尺度上被磁场赋予导向。由于片状石墨烯导向的实现,使得石墨烯阻隔屏蔽的特性能够得以实现,可提供迷宫效应的功能,可充分运用到各种具有"防""护""屏""隔""阻""蔽"的产品需求的应用环境,加入该复合磁性二维石墨烯纳米片材的材料对于水气、湿气环境恶劣因子、微生物细菌的阻隔屏蔽均大幅提升。

Description

一种具有超高阻隔及屏蔽性的重防腐、防污涂料及其制备方法 技术领域
本发明涉及一种涂料,具体的涉及一种极端环境下使用的涂料。
背景技术
目前全球在特种环境、极端环境下对材料的防腐及除污(生物)的需求越来越高,另外对于极速、特深的器具设备材料的耐磨,耐候保护的需求也极高。
石墨烯及MXene是二维纳米尺度片材,目前其优异的力学、电学、电化学、热力学特性已经用于各种产品,由于其与材料结合后,在分子尺寸内的分布是随机的(Random)、不可控无方向性的,因而更高效的阻隔性和屏蔽型无法实现,因此在耐候性上的表现仍然达不到极端环境的要求。
发明内容
为了解决涂料在极端环境下的使用问题,本发明提供一种超高阻隔屏蔽性磁致导向石墨烯的重防腐、防污涂料及其制备方法。
本发明技术方案如下:
一种具有超高阻隔及屏蔽性的重防腐、防污涂料,其特征在于涂料为A、B双组分体系,A组分包括树脂、活性稀释剂、经磁场磁化导向的复合磁性二维石墨烯纳米片材、防腐颜料、润湿剂、消泡剂、分散剂,各成分质量比为:10-30:10-20:5-10:5-10:1-2:1-2:1-2,B组分为固化剂,所述复合磁性二维石墨烯纳米片材为OMMT蒙脱土纳米材料和石墨烯的复合材料,其中所述石墨烯的质量分数为0.08%-0.12%,所述OMMT蒙脱土纳米材料的质量分数为99.92%-99.88,A、B组分之比为1.8-2.2:1。
优选的所述石墨烯采用RGO。
优选的所述树脂为(双酚A)环氧树脂、醇酸树脂、聚氨酯和/或丙烯酸树脂。
进一步优选的所述树脂为无溶剂(双酚A)环氧树脂。
进一步优选的所述活性稀释剂为单官能团或多官能团胺类或甘油醚类有机分子活性稀释剂。
优选的所述复合磁性二维石墨烯纳米片材是经由铁离子插层,在磁场导向的功能化的石墨烯复合材料。
进一步优选的所述功能化为使用表面活性剂KH-550、560,吐温80,曲拉通-100和/或SDBS 活化。
进一步优选的所述固化剂包括脂肪族多胺、脂环族多胺、低分子量聚酰胺、聚醚多元醇和改性芳胺中的一种或几种。
优选的所述防腐颜料为磷酸锌、磷酸白、铁红、氧化锌、云母氧化铁、锌粉中的一种或几种。
前述涂料的制备方法,其特征在于首先制备磁致取向和功能化的复合磁性二维石墨烯纳米片材,利用铁离子溶液对石墨烯插层铁离子,通过磁场诱导实现磁致取向,然后加入表面活性剂活化石墨烯,再与OMMT混合;
然后将树脂、树脂、活性稀释剂、经磁场磁化导向的复合磁性二维石墨烯纳米片材、防腐颜料、润湿剂、消泡剂、分散剂混合均匀;
将AB组分常温下混合固化。
本发明的技术效果如下:
本发明采用被磁性物质的磁场磁化后的功能化的石墨烯,材料在分子尺度上被磁场赋予导向。由于片状石墨烯导向的实现,使得石墨烯阻隔屏蔽的特性能够得以实现,可提供迷宫效应的功能,可充分运用到各种具有“防”“护”“屏”“隔”“阻”“蔽”的产品需求的应用环境,加入该磁性石墨烯的材料对于水气、湿气环境恶劣因子、微生物细菌的阻隔屏蔽均大幅提升。辅以功能填料OMMT活性蒙脱土,它是纳米片层材料,可以起到迷宫作用。把磁性石墨烯(方向性)与OMMT(随意方向)共用在涂料中,可达到高阻隔、高屏蔽的迷宫效果,进一步提升防腐效果,同时作为基体保证体系的稳定和分散,在本发明比例下可以防止石墨烯的团聚。经选择,RGO还原氧化石墨烯的体系最稳定且效果最佳。
此外,采用已磁化的石墨烯薄片加入防腐涂料,其本身的导电性以及同导向而形成的迷宫的阻隔性,对于材料防腐的作用更有大幅提升。
加入的活性稀释剂可以是稀释涂料体系,调节浓稠度。
另外,其原有机类小分子亦参与固化反应,增进交联度。
附图说明
图1为片状石墨烯薄片导向前后的对比图;
图2为不同含量石墨烯复合涂层在3.5%NaCl溶液中的极化曲线;
图3为不同含量石墨烯复合涂层在3.5%NaCl溶液中的交流阻抗曲线。
实施例
为了更好的理解本发明,下面结合具体实施方式对本发明进行进一步的解释。
实施例1
A组份制备
首先制备磁致取向和功能化的石墨烯,利用氯化铁等对RGO石墨烯插层铁离子,通过磁场诱导实现磁致取向,然后加入表面活性剂KH-550活化石墨烯。磁场导向前后如图1所示,最大磁场30mTSA,垂直于渗透方向,然后与OMMT混合。
然后将双酚A环氧树脂25份,活性稀释剂醇酸缩水甘油醚12份,经磁场磁化导向的复合磁性二维石墨烯纳米片材10份(石墨烯:OMMT,石墨烯0.1%,OMMT99.9%),防腐颜料氧化锌10份,消泡、润湿、分散助剂共5份,分批双浆混合机予以混合均匀。分散剂、润湿剂、消泡剂均为一般市售涂料使用材料。
B组份
低分子量聚酰胺。
上述AB组份以2:1质量分数常温下混合固化得到产品,具有优异的防腐及防生物污染的效益。
实施例2
A组份制备
制备磁致取向和功能化的石墨烯的步骤类似实施例1。
MDI 25份,活性稀释剂醇酸缩水甘油醚18份,经磁场磁化导向的复合磁性二维石墨烯纳米片材(石墨烯:OMMT,石墨烯0.1%,OMMT为99.9%)8份,防腐颜料磷酸锌10份,消泡剂2份,润湿剂1份,消泡剂2份,分批投入予以均匀混合。分散剂、润湿剂、消泡剂均为一般市售涂料使用材料。
B组份
聚醚多元醇PEG-400。
上述AB组份以2:1质量分数常温下混合固化得到产品,具有优异的防腐及防生物污染的效益。
对比例
同上述方法,区别在于经磁场磁化导向的复合磁性二维石墨烯纳米片材中石墨烯为0、0.05%、0.15%、0、2%。
采用上述实施例和对比例进行耐腐蚀测试,石墨烯添加量为0.05%的对比例,涂层腐蚀最为严重,在划痕处有大量的锈蚀痕迹,且锈蚀程度比石墨烯改性前的涂层更为严重。说明加入少量石墨烯时,石墨烯在涂层中不足以形成物理隔绝层,腐蚀较为严重,甚至可加速底材的腐蚀。添加0.1%的实施例的涂层,涂层也存在腐蚀现象,但腐蚀程度较轻,缝隙处腐蚀扩展程度较小,而且涂层整体没有翘起或鼓泡。可能是因为此时石墨烯含量增加,使得其在涂层中起到的物理阻隔作用增大,形成了有效的物理阻隔层,减缓了腐蚀的发生。添加0.15%和0.2%的对比例的涂层,在划痕处,腐蚀向周围扩展面积较大,划痕处还有锈蚀斑点,而且涂层发生翘起,说明石墨烯加入量过高,导致涂层较粘稠,石墨烯容易在涂料中分散不开,导致漆膜部分区域力学性能降低,涂层与底材的附着力降低,腐蚀扩展较为严重。
图2为1cm 2不同含量热还原石墨烯复合涂层在27℃±2℃下,浸泡在3.5%NaCl溶液中测试得到的塔菲尔极化曲线。表1是不同含量石墨烯复合涂层极化曲线计算结果。由图2可知,相比于石墨烯改性前的复合涂层,石墨烯添加后涂料的耐腐蚀性能增强。未添加石墨烯的复合涂层的腐蚀电位-1.50V,添加石墨烯后,复合涂层的腐蚀电位逐渐升高,当RGO添加0.1%时,复合涂层的自腐蚀电位为-0.90V,与未添加石墨烯涂层相比,涂层的自腐蚀电位提高了0.60V,而且RGO-0%时,复合涂层的自腐蚀电流为0.79μA/cm2,添加0.1%RGO时,复合涂层的腐蚀电流密度下降到0.07μA/cm2,腐蚀电流密度与未添加石墨烯涂层相比降低了近12倍,可见,添加微量的石墨烯就能大大提高涂层的耐腐蚀性。当石墨烯添加量到0.15%时,涂层的自腐蚀电位虽然与RGO-0.1%相比变化不大,但此时,涂层的腐蚀电流密度发生很大变化,涂层的耐腐蚀性降低。可见复合涂料中石墨烯含量为0.1%时,耐腐蚀性能最优。
表1不同含量石墨烯复合涂层极化曲线计算结果
Figure PCTCN2021070077-appb-000001
图3是面积为1cm 2的试样浸泡在浓度为3.5%的NaCl中,以试样为工作电极,铂电极为辅助电极,饱和甘汞电极为参比电极,测得的试样的交流阻抗图。从图中可以看出,每种涂层均呈现出单一的容抗弧,容抗弧可表征体系中电极进行过程,在初始阶段,涂层呈干燥状态,吸水速率很大,因此电容增加幅度较强,此后涂层达到饱和,电容变化较平缓。图中曲 线(c)的半圆直径最大,表明当石墨烯添加量为0.1%时,复合涂层的耐腐蚀性能最大。一定范围内向复合涂层中添加石墨烯,能很大程度的提高涂层的耐腐蚀性能,当石墨烯添加量低于0.1%时,复合涂层的耐腐蚀性能随着石墨烯含量的增大而提高,但当石墨烯添加量为0.15%时,复合涂层的耐腐蚀性能大大降低,这可能是由于石墨烯团聚,使得涂层表面存在缺陷,腐蚀性离子可以快速到达基底,金属表面发生腐蚀。可见,交流阻抗谱图结果与塔菲儿极化曲线得到的结果一致。
在此指明,以上叙述有助于本领域技术人员理解本发明的内容,但并非限制本发明的保护范围。任何没有脱离本发明实质内容的对以上叙述的等同替换、修饰改进和/或删繁从简而进行的实施,均落入本发明的保护范围。

Claims (10)

  1. 一种具有超高阻隔及屏蔽性的重防腐、防污涂料,其特征在于为A、B双组分体系,A组分包括树脂、活性稀释剂、经磁场磁化导向的复合磁性二维石墨烯纳米片材、防腐颜料、润湿剂、消泡剂、分散剂,各成分质量比为:10-30:10-20:5-10:5-10:1-2:1-2:1-2,B组分为固化剂,所述复合磁性二维石墨烯纳米片材为OMMT蒙脱土纳米材料和石墨烯的复合材料,其中所述石墨烯的质量分数为0.08%-0.12%,所述OMMT蒙脱土纳米材料的质量分数为99.92%-99.88,A、B组分之比为1.8-2.2:1。
  2. 根据权利要求1所述的涂料,其特征在于所述树脂为双酚A环氧树脂、醇酸树脂、聚氨酯和/或丙烯酸树脂。
  3. 根据权利要求2所述的涂料,其特征在于所述树脂为无溶剂双酚A环氧树脂。
  4. 根据权利要求1所述的涂料,其特征在于所述活性稀释剂为单官能团或多官能团胺类,或甘油醚类有机分子活性稀释剂。
  5. 根据权利要求1所述的涂料,其特征在于所述复合磁性二维石墨烯纳米片材是经由铁离子插层,在磁场导向的功能化的石墨烯复合材料。
  6. 根据权利要求5所述的涂料,其特征在于所述功能化为使用表面活性剂KH-550、560,吐温80,曲拉通-100和/或SDBS活化。
  7. 根据权利要求1所述的涂料,其特征在于所述固化剂包括脂肪族多胺、脂环族多胺、低分子量聚酰胺、聚醚多元醇和改性芳胺中的一种或几种。
  8. 根据权利要求1所述的涂料,其特征在于所述防腐颜料为磷酸锌、磷酸白、铁红、氧化锌、云母氧化铁、锌粉中的一种或几种。
  9. 根据权利要求1所述的涂料,其特征在于所述石墨烯采用RGO。
  10. 权利要求1-9任一所述的涂料的制备方法,其特征在于首先制备磁致取向和功能化的复合磁性二维石墨烯纳米片材,利用铁离子溶液对石墨烯插层铁离子,通过磁场诱导实现磁致取向,然后加入表面活性剂活化石墨烯,再与OMMT混合;
    然后将树脂、树脂、活性稀释剂、经磁场磁化导向的复合磁性二维石墨烯纳米片材、防腐颜料、润湿剂、消泡剂、分散剂混合均匀;
    将AB组分常温下混合固化。
PCT/CN2021/070077 2020-09-18 2021-01-04 一种具有超高阻隔及屏蔽性的重防腐、防污涂料及其制备方法 WO2022057165A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010983755.3A CN112080190A (zh) 2020-09-18 2020-09-18 一种具有超高阻隔及屏蔽性的重防腐、防污涂料及其制备方法
CN202010983755.3 2020-09-18

Publications (1)

Publication Number Publication Date
WO2022057165A1 true WO2022057165A1 (zh) 2022-03-24

Family

ID=73737324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070077 WO2022057165A1 (zh) 2020-09-18 2021-01-04 一种具有超高阻隔及屏蔽性的重防腐、防污涂料及其制备方法

Country Status (2)

Country Link
CN (1) CN112080190A (zh)
WO (1) WO2022057165A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115558152A (zh) * 2022-10-14 2023-01-03 南京农业大学 一种双重干燥可降解纳米纤维素复合抗菌气凝胶及其制备方法与应用
CN115819793A (zh) * 2022-12-20 2023-03-21 闽江学院 一种防腐抑制剂、制备方法以及水性防腐涂料及其制备方法
CN117384503A (zh) * 2023-10-13 2024-01-12 青岛恩泽化工有限公司 一种高效缓释防闪锈剂的制备方法及其应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112080190A (zh) * 2020-09-18 2020-12-15 北京慕成防火绝热特种材料有限公司 一种具有超高阻隔及屏蔽性的重防腐、防污涂料及其制备方法
CN115368801A (zh) * 2021-05-18 2022-11-22 江苏科辉环境科技有限公司 一种磁化石墨烯涂料及其制备方法
CN114539902B (zh) * 2022-03-01 2022-12-20 刘志强 一种用于越野车使用的汽车底盘用涂料
CN114773959B (zh) * 2022-05-31 2023-03-03 复旦大学 一种高性能透明防腐涂层材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104119595A (zh) * 2014-06-30 2014-10-29 上海工程技术大学 含有取向排列的磁性氧化石墨烯片的聚合物及其制备方法
US20160115324A1 (en) * 2014-03-25 2016-04-28 Kaneka Corporation Coating compositions and coating products made therefrom
CN105733189A (zh) * 2016-03-06 2016-07-06 北京化工大学 基于二维纳米填料磁致取向的高阻隔复合材料及制备方法
CN109913062A (zh) * 2019-01-15 2019-06-21 上海宝庆通用电工有限公司 电机定子用石墨烯/蒙脱土杂化水性浸渍绝缘漆及其制备
CN110643266A (zh) * 2019-10-30 2020-01-03 中科广化(重庆)新材料研究院有限公司 一种蒙脱土/氧化石墨烯复合纳米片层材料改性环氧树脂防腐涂料及其制备方法与应用
CN110964403A (zh) * 2018-09-30 2020-04-07 山东欧铂新材料有限公司 一种导静电防腐涂料的漆膜、高固含量石墨烯导静电防腐涂料及其制备方法
CN111393950A (zh) * 2020-04-22 2020-07-10 中国科学院山西煤炭化学研究所 一种海洋环境下换热器用石墨烯防腐底漆及其制备方法
CN112080190A (zh) * 2020-09-18 2020-12-15 北京慕成防火绝热特种材料有限公司 一种具有超高阻隔及屏蔽性的重防腐、防污涂料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160115324A1 (en) * 2014-03-25 2016-04-28 Kaneka Corporation Coating compositions and coating products made therefrom
CN104119595A (zh) * 2014-06-30 2014-10-29 上海工程技术大学 含有取向排列的磁性氧化石墨烯片的聚合物及其制备方法
CN105733189A (zh) * 2016-03-06 2016-07-06 北京化工大学 基于二维纳米填料磁致取向的高阻隔复合材料及制备方法
CN110964403A (zh) * 2018-09-30 2020-04-07 山东欧铂新材料有限公司 一种导静电防腐涂料的漆膜、高固含量石墨烯导静电防腐涂料及其制备方法
CN109913062A (zh) * 2019-01-15 2019-06-21 上海宝庆通用电工有限公司 电机定子用石墨烯/蒙脱土杂化水性浸渍绝缘漆及其制备
CN110643266A (zh) * 2019-10-30 2020-01-03 中科广化(重庆)新材料研究院有限公司 一种蒙脱土/氧化石墨烯复合纳米片层材料改性环氧树脂防腐涂料及其制备方法与应用
CN111393950A (zh) * 2020-04-22 2020-07-10 中国科学院山西煤炭化学研究所 一种海洋环境下换热器用石墨烯防腐底漆及其制备方法
CN112080190A (zh) * 2020-09-18 2020-12-15 北京慕成防火绝热特种材料有限公司 一种具有超高阻隔及屏蔽性的重防腐、防污涂料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DING RUI, CHEN SI, LV JING, GUI TAI-JIANG, WANG XIAO, ZHAO XIAO-DONG, LIU JIE, LI BING-JUN, SONG LI-YING, LI WEI-HUA: "Review of Theoretical and Applied Research of Graphene in Anti-corrosion Film and Organic Anti-corrosion Coatings", ACTA CHIMICA SINICA, ZHONGGUO KEXUEYUAN SHANGHAI YOUJI HUAXUE YANJIUSUO, CN, vol. 77, no. 11, 1 January 2019 (2019-01-01), CN , pages 1140, XP055912949, ISSN: 0567-7351, DOI: 10.6023/A19050174 *
DING RUI, CHEN SI;LV JING;ZHAO XIAODONG;LIU JIE;LI WEIHUA;WANG XIAO;GUI TAIJIANG;LI BINGJUN;TANG YONGZHENG: "Research on Dispersibility, Orientation, Functionalization and Conductivity of Graphene in Organic Anti-Corrosion Coatings and Practical Problems", PAINT & COATINGS INDUSTRY, HUAGONGBU TULIAO GONGYE YANJIUSUO, NANJING, CN, vol. 49, no. 9, 30 September 2019 (2019-09-30), CN , pages 66 - 80, XP055912910, ISSN: 0253-4312, DOI: 10.12020/j.issn.0253-4312.2019.9.66 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115558152A (zh) * 2022-10-14 2023-01-03 南京农业大学 一种双重干燥可降解纳米纤维素复合抗菌气凝胶及其制备方法与应用
CN115819793A (zh) * 2022-12-20 2023-03-21 闽江学院 一种防腐抑制剂、制备方法以及水性防腐涂料及其制备方法
CN115819793B (zh) * 2022-12-20 2023-09-15 闽江学院 一种防腐抑制剂、制备方法以及水性防腐涂料及其制备方法
CN117384503A (zh) * 2023-10-13 2024-01-12 青岛恩泽化工有限公司 一种高效缓释防闪锈剂的制备方法及其应用
CN117384503B (zh) * 2023-10-13 2024-05-10 青岛恩泽化工有限公司 一种高效缓释防闪锈剂的制备方法及其应用

Also Published As

Publication number Publication date
CN112080190A (zh) 2020-12-15

Similar Documents

Publication Publication Date Title
WO2022057165A1 (zh) 一种具有超高阻隔及屏蔽性的重防腐、防污涂料及其制备方法
Ye et al. Study on self-healing and corrosion resistance behaviors of functionalized carbon dot-intercalated graphene-based waterborne epoxy coating
Ziat et al. Epoxy coating modified with graphene: A promising composite against corrosion behavior of copper surface in marine media
Sheng et al. Anticorrosive and UV-blocking waterborne polyurethane composite coating containing novel two-dimensional Ti3C2 MXene nanosheets
Li et al. Reinforcement of graphene and its derivatives on the anticorrosive properties of waterborne polyurethane coatings
Yu et al. RGO modified ZnAl-LDH as epoxy nanostructure filler: A novel synthetic approach to anticorrosive waterborne coating
CN106433258B (zh) 一种金属重防腐用电子束辐射固化涂料
CN105623473A (zh) 一种基于石墨烯分散体的含锌石墨烯防腐底漆及其制备方法
CN109468017A (zh) 一种水性石墨烯防腐涂料
Lu et al. Polypyrrole-functionalized boron nitride nanosheets for high-performance anti-corrosion composite coating
Wu et al. Enhanced corrosion resistance of waterborne polyurethane containing sulfonated graphene/zinc phosphate composites
Rui et al. The synthesis and corrosion protection mechanisms of PANI/CNT nanocomposite doped with organic phosphoric acid
CN105349017B (zh) 一种添加石墨烯复合材料的防腐涂料及制备方法
Amirazodi et al. Polypyrrole doped graphene oxide reinforced epoxy nanocomposite with advanced properties for coatings of mild steel
CN105482645A (zh) 一种聚苯胺/碳化硅/石墨烯复合防腐涂料及其制备方法
CN106833271A (zh) 一种石墨烯型水性环氧富锌防腐涂料及其制备方法
Fu et al. Corrosive inhibition behavior of well-dispersible aniline/p-phenylenediamine copolymers
Wang et al. Nacre-like graphene oxide/waterborne styrene butadiene rubber composite and its reusable anti-corrosion behavior on Al-2024
CN107964097A (zh) 还原氧化石墨烯、四氧化三铁和聚苯胺的三元纳米复合材料制备方法及应用
CN107828309B (zh) 一种石墨烯防腐涂料使用的分散体及其制备方法
Sun et al. Electrodeposition of polypyrrole coatings doped by benzenesulfonic acid-modified graphene oxide on metallic bipolar plates
Jadhav et al. Mica/polypyrrole (doped) composite containing coatings for the corrosion protection of cold rolled steel
CN111171703A (zh) 基于MXene二维材料电磁屏蔽涂层的制备及应用
CN107760205B (zh) 一种基于聚吡咯/石墨烯复合材料的水性碳钢表面处理剂
CN106634437A (zh) 石墨烯改性水性环氧富锌涂料及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/08/2023).

122 Ep: pct application non-entry in european phase

Ref document number: 21868006

Country of ref document: EP

Kind code of ref document: A1