WO2022057052A1 - 垃圾渗滤液废水处理系统及处理方法 - Google Patents

垃圾渗滤液废水处理系统及处理方法 Download PDF

Info

Publication number
WO2022057052A1
WO2022057052A1 PCT/CN2020/126187 CN2020126187W WO2022057052A1 WO 2022057052 A1 WO2022057052 A1 WO 2022057052A1 CN 2020126187 W CN2020126187 W CN 2020126187W WO 2022057052 A1 WO2022057052 A1 WO 2022057052A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
solid
landfill leachate
separation
evaporation
Prior art date
Application number
PCT/CN2020/126187
Other languages
English (en)
French (fr)
Inventor
叶伟炳
李琴
Original Assignee
广东闻扬环境科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东闻扬环境科技有限公司 filed Critical 广东闻扬环境科技有限公司
Publication of WO2022057052A1 publication Critical patent/WO2022057052A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/13Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/048Purification of waste water by evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5281Installations for water purification using chemical agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate

Definitions

  • the present application relates to the technical field of sewage treatment, and in particular, to a landfill leachate wastewater treatment system and a treatment method.
  • the landfill leachate wastewater from the garbage transfer station has the characteristics of high pollutant concentration and small water volume, and the wastewater composition is relatively complex, and the suspended solids are high.
  • landfill leachate wastewater there are two ways to treat landfill leachate wastewater.
  • One is the original landfill method, that is, infiltrating into the soil and purifying and absorbing through the soil, but this method seriously pollutes the environment; the other method is centralized treatment.
  • the leachate wastewater is collected, and after reaching a certain amount, conventional sewage treatment equipment is used for centralized treatment, but this method can only remove certain harmful substances in the wastewater, and cannot achieve complete and thorough treatment of wastewater.
  • a landfill leachate wastewater treatment system comprising a pretreatment system, a disc type reverse osmosis (DTRO) system, an evaporation system, a reverse osmosis (RO) system and a drying system; the pretreatment system, the DTRO system, the The evaporation systems are connected in sequence; the pretreatment system is used to pretreat the landfill leachate wastewater to obtain dehydrated first solids and filtrate, and the DTRO system is used to process the filtrate to obtain the first purified water and filtrate.
  • DTRO disc type reverse osmosis
  • RO reverse osmosis
  • the evaporation system is capable of evaporating and separating the concentrated liquid to obtain the second solid and distilled water;
  • the drying system is connected with the evaporation system to dry the second solid;
  • the RO system is connected to the evaporation system The system is connected to reprocess the distilled water to obtain second purified water and turbid water; wherein, the first solid and the second solid can be discharged and buried, and the first purified water and the second purified water It can be discharged outside, and the turbid water can be passed into the evaporation system for re-evaporation and separation.
  • the final discharged first solid and second solid can be disposed of by landfill, because they do not contain
  • the water will not pollute the environment, and the first purified water and the second purified water discharged have high purity and can be used normally without causing pollution to the environment, while the rest of the waste water can be used in landfill leachate wastewater
  • the solid-liquid separation is realized by continuous circulation in the treatment system. Therefore, the above-mentioned landfill leachate wastewater treatment system can realize the thorough treatment of the landfill leachate wastewater, achieve a better treatment effect, and do not pollute the environment.
  • the pretreatment system includes a regulated coagulation and sedimentation module for precipitation treatment of landfill leachate wastewater, a sludge thickening module connected with the regulated coagulation and sedimentation module, and a plate and frame dewatering module connected with the sludge thickening module. a module, an intermediate filter module connected to the adjustment coagulation and sedimentation module and the plate-and-frame dehydration module, a medicine addition module for adding medicine to the adjustment coagulation and sedimentation module and the intermediate filter module;
  • the landfill leachate wastewater treatment system includes a transfer box, and the pretreatment system, the DTRO system and the RO system are all integrated in the transfer box; the evaporation system has an integrated structure;
  • the drying system dries the second solid by means of spray drying.
  • the evaporation system includes a preheating module connected to the DTRO system, a separation module connected to the preheating module, and a circulating heating module connected to the separation module; the drying A system is connected to the separation module.
  • the separation module includes a separation chamber and a solid-liquid separator connected to the separation chamber, the preheating module and the circulating heating module are both connected to the separation chamber, and the solid-liquid separator is connected to the separation chamber.
  • a separator is connected to the drying system.
  • the circulating heating module includes a heater and a compressor, and the compressor is connected to the separation chamber, so as to compress and heat up the vapor derived from the separation chamber and then send it to the heater;
  • the heater is connected with the separation chamber to circulate and heat the concentrated liquid in the separation chamber; the heater is connected with the preheating module.
  • the preheating module includes a heat exchanger and an exhaust gas condenser connected with the heat exchanger, the heat exchanger is connected with the DTRO system, and the exhaust gas condenser is connected with the exhaust gas condenser.
  • the separation module is connected; the high-temperature distilled water generated by the circulating heating module can be sent to the heat exchanger to first heat the concentrate, and the high-temperature steam generated by the circulating heating module can be sent to the exhaust condenser , to heat the concentrate a second time.
  • a method for treating landfill leachate wastewater comprising the following steps:
  • the second solid is introduced into the drying system for drying and then discharged to landfill;
  • Distilled water is passed into the RO system for reverse osmosis filtration and separation to obtain second purified water and turbid water, wherein the second purified water is discharged outside, and the turbid water is passed into the evaporation system.
  • the landfill leachate wastewater is subjected to pretreatment, concentration treatment, DTRO treatment, evaporation treatment, drying treatment and RO treatment in sequence, so that the final discharged first solid and second solid can be directly processed. Buried, because it does not contain water, it will not pollute the environment, and the first purified water and the second purified water discharged have high purity and can be used normally without causing pollution to the environment, while the rest of the wastewater It can be continuously circulated in the landfill leachate wastewater treatment system to achieve solid-liquid separation. Therefore, the above-mentioned landfill leachate wastewater treatment method can realize the thorough treatment of landfill leachate wastewater, achieve a better treatment effect, and do not pollute the environment.
  • the step of passing the landfill leachate wastewater into the pretreatment system for pretreatment to obtain the filtrate and the first solid that can be buried further includes the following steps:
  • the control agent adding module adjusts the dosage of agent in the coagulation sedimentation module and the intermediate filter module
  • the landfill leachate wastewater is passed into the regulating coagulation and sedimentation module for mixed sedimentation to obtain mud and supernatant;
  • the slurry is introduced into the sludge thickening module for concentration to obtain a concentrated slurry
  • the concentrated mud is introduced into the plate and frame dehydration module for dehydration to obtain the first solid and the muddy water, wherein the first solid is discharged and then landfilled;
  • the muddy water and the supernatant are introduced into the intermediate filtration module for filtration to obtain a filtrate.
  • the step of obtaining the second solid and distilled water after passing the concentrated solution into the evaporation system for evaporative separation further comprises the following steps:
  • the steam is passed into the circulating heating module for heating to obtain high-temperature steam, and the high-temperature steam circulates and heats the concentrated liquid in the separation chamber;
  • the high temperature carrier discharged from the circulating heating module is passed into the preheating module to preheat the concentrate, and the high temperature carrier releases heat to form distilled water.
  • the high-temperature carrier discharged from the circulating heating module includes high-temperature steam and high-temperature distilled water
  • the high-temperature steam can be passed into the exhaust condenser to heat the concentrated liquid for the second time, and the concentrated liquid in the separation chamber can be heated for the second time.
  • the high-temperature distilled water formed by the heat exchange of the concentrated liquid in the exhaust condenser can be passed into the heat exchanger to heat the concentrated liquid for the first time, and the low-temperature distilled water can be obtained after the heat exchange.
  • FIG. 1 is a schematic structural diagram of a landfill leachate wastewater treatment system according to an embodiment of the application
  • FIG. 2 is a flowchart of a method for treating landfill leachate wastewater according to an embodiment of the present application.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plurality means at least two, such as two, three, etc., unless expressly and specifically defined otherwise.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • installed may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • a first feature "on” or “under” a second feature may be the direct contact between the first and second features, or the indirect contact between the first and second features through an intermediary touch.
  • the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • a landfill leachate wastewater treatment system 100 includes a pretreatment system 110 , a DTRO system 130 , an evaporation system 150 , an RO system 170 and a drying system 190 .
  • the pretreatment system 110, the DTRO system 130, and the evaporation system 150 are connected in sequence.
  • the pretreatment system 110 is used for preprocessing the landfill leachate wastewater to obtain dehydrated first solids and filtrate, and the DTRO system 130 is used for the filtrate.
  • the first purified water and the concentrated liquid are obtained by the treatment, and the evaporation system 150 can evaporate and separate the concentrated liquid to obtain the second solid and distilled water.
  • the drying system 190 is connected to the evaporation system 150 to dry the second solid; the RO system 170 is connected to the evaporation system 150 to reprocess the distilled water to obtain the second purified water and turbid water.
  • the first solid and the second solid can be buried after being discharged, the first purified water and the second purified water can be directly discharged, and the turbid water can be passed into the evaporation system 150 for re-evaporation and separation.
  • the first solid and the second solid finally discharged can be buried by means of burial.
  • Treatment because it does not contain water, it will not pollute the environment, and the first purified water and the second purified water discharged have high purity and can be used normally without causing pollution to the environment, while the rest of the wastewater
  • the solid-liquid separation can be realized by continuous circulation in the landfill leachate wastewater treatment system 100 . Therefore, the above-mentioned landfill leachate wastewater treatment system 100 can realize the thorough treatment of landfill leachate wastewater, achieve a better treatment effect, and do not pollute the environment.
  • the pretreatment system 110 includes a conditioning coagulation sedimentation module 111 , a sludge thickening module 113 , a plate and frame dehydration module 115 , an intermediate filtering module 117 and a chemical adding module 119 .
  • the landfill leachate wastewater is passed into the regulating coagulation and sedimentation module 111, and the regulating coagulation and sedimentation module 111 is used for sedimentation treatment of the landfill leachate wastewater.
  • the adjustment coagulation and sedimentation module 111, the sludge concentration module 113 are connected with the plate and frame dehydration module 115 in sequence, and the sludge concentration module 113 is used to concentrate the sediment produced by the adjustment coagulation and sedimentation module 111, and is further passed through the plate and frame dehydration module.
  • the first solid is obtained after the dehydration of 115, so that the first solid does not contain moisture so that it can be landfilled when discharged.
  • the adjustment coagulation and sedimentation module 111 and the plate and frame dehydration module 115 are respectively connected to the intermediate filter module 117 , and the supernatant generated by the adjustment coagulation and sedimentation module 111 and the muddy water generated by the plate and frame dehydration module 115 can be further passed into the intermediate filter module 117 for processing. Filtration treatment is performed to obtain a filtrate, and the filtrate can be passed into the DTRO system 130 for concentration treatment.
  • the adjustment coagulation sedimentation module 111 and the intermediate filter module 117 are both connected to the agent addition module 119, and the agent addition module 119 can add chemicals to the adjustment coagulation sedimentation module 111 and the intermediate filter module 117, so as to add chemicals to the wastewater in the two modules. chemical treatment.
  • the medicine adding module 119 includes a first medicine storage box, a second medicine storage box and a third medicine storage box, wherein sulfuric acid is sequentially stored in the first medicine storage box, the second medicine storage box and the third medicine storage box (H 2 SO 4 ), polyacrylamide (PAM), polyaluminum chloride (PAC).
  • the chemical addition module 119 adds polyacrylamide (PAM) and polyaluminum chloride (PAC) to the adjustment coagulation and sedimentation module 111 through pipeline dosing, so as to remove the suspended solids (SS) and part of the chemical oxygen consumption in the wastewater (COD), thereby facilitating precipitation of large particles in wastewater to obtain supernatant and slurry.
  • the chemical adding module 119 adds sulfuric acid (H 2 SO 4 ) into the intermediate filtration module 117 through pipeline dosing, so as to adjust the pH of the waste liquid in the intermediate filtration module 117 .
  • the DTRO system 130 can concentrate the filtrate to discharge the first purified water, so that the concentration of the filtrate that goes to the subsequent evaporation system 150 is reduced. The amount of liquid is reduced, thereby reducing energy consumption and saving the investment cost and operating cost of the evaporation system 150 .
  • the purity of the first purified water discharged from the DTRO system 130 is relatively high, and it will not pollute the environment when it is directly discharged, thereby realizing zero discharge of pollutants.
  • the recovery rate of the DTRO system 130 is 75%-90%. In this embodiment, the DTRO system 130 is selected to have a recovery rate of 80%.
  • the pretreatment system 110 also includes a material liquid pool 112 for collecting landfill leachate wastewater.
  • the landfill leachate wastewater can be collected in the case of a large amount of landfill leachate wastewater, so as to alleviate the Wastewater treatment pressure.
  • the landfill leachate wastewater in the feed liquid tank 112 is pumped to the adjustment coagulation sedimentation module 111 by the feed liquid pump 114 .
  • a sludge pump 116 may be provided between the adjustment coagulation and sedimentation module 111 and the sludge thickening module 113 and between the sludge thickening module 113 and the plate and frame dewatering module 115 to facilitate the flow of the mud between the modules.
  • a transfer pump 118 can also be provided between the intermediate filter module 117 and the DTRO module to provide power for the flow of the filtrate.
  • the landfill leachate wastewater treatment system 100 includes a transfer box, the pretreatment system 110 , the DTRO system 130 and the RO system 170 are all integrated in the transfer box, and the evaporation system 150 is an integrated structure.
  • each system in the transfer box, the evaporation system 150 and the drying system 190 can be independently transported, which improves the convenience of transport and circulation of the landfill leachate wastewater treatment system 100; when reaching the target position, only It is necessary to connect the pipes between the three and connect the water and electricity for use, which reduces the assembly difficulty of the landfill leachate wastewater treatment system 100 and improves the assembly efficiency; compared with the conventional wastewater treatment system, the landfill leachate of the present application Since the filtrate wastewater treatment system 100 has a high degree of integration, it has a small volume and occupies a small space, and is suitable for the narrow space of the garbage transfer station, which is further conducive to the handling and circulation of the entire system.
  • the evaporation system 150 includes a preheating module for connection with the DTRO system 130, a separation module for connection with the preheating module, and a circulation heating module for connection with the separation module.
  • the concentrated liquid introduced by the DTRO system 130 enters the separation module after being preheated by the preheating module.
  • the separation module can separate the concentrated liquid, thereby obtaining the second solid and steam.
  • the steam can enter the circulating heating module and form high-temperature steam after being heated up to exchange heat with the concentrated liquid in the separation module to realize circulating heating, and after the high-temperature steam is cooled, distilled water is finally formed to be introduced into the RO system 170 for advanced treatment.
  • the drying system 190 is connected to the separation module, and the second solids produced by the separation module can be introduced into the drying system 190 to be discharged and buried after the drying process of the drying system 190 .
  • the separation module includes a separation chamber 151 and a solid-liquid separator 152 connected to the separation chamber 151, and the solid-liquid separator 152 is connected to the drying system 190.
  • the preheating module is connected to the separation chamber 151 , and the preheating module preheats the concentrated solution, and then introduces the concentrated solution into the separation chamber 151 .
  • the circulating heating module is connected to the separation chamber 151. The circulating heating module circulates and heats the concentrated liquid in the separation chamber 151, and the moisture in the concentrated liquid in the separation chamber 151 is evaporated, and the formed steam is further introduced into the circulating heating module. Then, it further exchanges heat with the concentrated liquid in the separation chamber 151 to realize circulating heating.
  • the water in the concentrated liquid in the separation chamber 151 is continuously evaporated, so that the concentrated liquid is further concentrated, and after the centrifugal separation of the solid-liquid separator 152, solid-liquid separation is realized, thereby obtaining the second solid and the circulating liquid, wherein the second solid and the circulating liquid are obtained.
  • the solid is introduced into the drying system 190, it is discharged and buried after being dried by the drying system 190, and the circulating liquid is introduced into the separation chamber 151 again for continuous circulation.
  • the drying system 190 dries the second solid by means of spray drying, that is, the second solid is sprayed out from above, and the drying air is blown out from below to above, so as to achieve the same
  • the sufficient contact of the second solid prolongs the drying time, thereby improving the drying effect.
  • the separation chamber 151 adopts a salt leg crystallizer.
  • the concentrated liquid heated by the preheating module enters the upper flow bed of the separation chamber 151 tangentially. Since the temperature of the concentrated liquid is slightly lower than the boiling point temperature, it is in an unsaturated state, and the concentrated liquid enters the upper flow bed of the separation chamber 151 tangentially. It is mixed with the original supersaturated concentrated liquid in the separation chamber 151. Since the original supersaturated concentrated liquid contains a large number of fine crystals, the fine crystals can be eliminated after the unsaturated concentrated liquid enters, so as to avoid the participation of fine crystals in the circulating heating.
  • the pipeline is blocked in the process of circulating and heating the concentrated liquid in the separation chamber 151 by the module.
  • the circulating heating module includes a heater 153 and a compressor 154, and the compressor 154 is connected to the separation chamber 151 to compress and heat up the vapor derived from the separation chamber 151 to form high-temperature steam, which is sent to the heater 153,
  • the heater 153 is connected to the separation chamber 151, and when the concentrated liquid in the separation chamber 151 flows to the heater 153, the high-temperature steam in the heater 153 exchanges heat with the concentrated liquid, thereby increasing the temperature of the concentrated liquid. Inflow, the high-temperature steam in the heater 153 realizes circulating heating of the concentrated liquid. It should be pointed out that the heated concentrated liquid flows out from the heater 153 to the low-pressure separation chamber 151.
  • the concentrated liquid Due to the sudden drop in pressure, the concentrated liquid is flashed in the separation chamber 151, thereby being concentrated and reaching the concentration ratio required by the process. After that, the first solid and the circulating liquid can be obtained after centrifugal separation by the solid-liquid separator 152 .
  • a forced circulation pump 155 is connected between the heater 153 and the separation chamber 151 to realize forced circulation of the concentrated liquid in the separation chamber 151 .
  • the forced circulation pump 155 adopts VFD (variable frequency) control.
  • VFD variable frequency
  • TDS total dissolved solids
  • the frequency of the forced circulation pump 155 is automatically detected according to the specific gravity and the outlet pressure and is kept at 0
  • the range of ⁇ 50Hz is automatically adjusted to meet the needs of flow circulation.
  • a plurality of heat exchange tubes are connected to the inside of the heater 153 .
  • the unsaturated concentrated liquid introduced from the preheating module is mixed with the original supersaturated concentrated liquid in the separation chamber 151 , and is divided into each heat exchange tube under the forced action of the forced circulation pump 155 , so that the heat is exchanged at the heater 153
  • the heat generated by the condensation of the high-temperature steam outside the tube is heated to increase the temperature, so as to realize the heating of the concentrated liquid. It should be pointed out that when introducing into the heat exchange tube, the flow rate of the concentrate is controlled at 1.5m/s to 3.5m/s, which can reduce the probability of scaling and avoid affecting the heat exchange efficiency of the concentrate.
  • the concentrated liquid flows from the heat exchange tube at a high speed, by controlling the pressure in the heat exchange tube to be lower than the saturated vapor pressure corresponding to the temperature in the heat exchange tube, the concentrated liquid will not boil in the heat exchange tube, so that it will not be in the heat exchange tube. Evaporation to ensure that the concentrated liquid is evaporated in the separation chamber 151 .
  • a two-layer high-efficiency demisting structure is arranged in the upper part of the separation chamber 151, the lower layer adopts a folding plate type mist eliminator, and the upper layer adopts a wire mesh type mist eliminator.
  • the separation chamber 151 The steam generated by internal evaporation is pumped out by the compressor 154 after being sufficiently defogged, and is heated and raised by the compressor 154 to form high-temperature steam and introduced into the heater 153 .
  • the PLC automatic control period in the separation chamber 151 to realize regular water cleaning of the wire mesh demister, it can ensure the stability of the treated water quantity and the effluent quality for a long time.
  • the heater 153 is connected to the pre-heating module, and the high-temperature carrier discharged from the heater 153 can pass into the pre-heating module, so as to meet the heat requirement when the pre-heating module pre-heats the concentrated solution, thereby improving the utilization rate of energy .
  • the high-temperature carrier discharged from the heater 153 may be high-temperature steam, or may be high-temperature distilled water obtained by condensing the concentrated liquid in the separation chamber 151 after the high-temperature steam exchanges heat.
  • the concentrated solution at the pre-heating module can be pre-heated, and the high-temperature carrier exchanges heat with the concentrated solution to release heat to form distilled water, which is introduced into the RO system 170 for deep purification.
  • the preheating module includes a heat exchanger 156 and an exhaust condenser 157 connected to the heat exchanger 156.
  • the heat exchanger 156 is connected to the DTRO system 130, and the exhaust condenser 157 is connected to the separation module.
  • the concentrated liquid separated by the DTRO system 130 is introduced into the heat exchanger 156, and the heat exchanger 156 heats the concentrated liquid for the first time, so that the concentrated liquid can be preliminarily heated.
  • the gas condenser 157 heats the concentrated liquid for the second time, so that the concentrated liquid is further heated, and is introduced into the separation chamber 151, so that the concentrated liquid has a higher temperature when it enters the separation chamber 151, so as to facilitate the concentrated liquid to be heated. Evaporation operation.
  • the high-temperature distilled water generated by the circulating heating module can be sent to the heat exchanger 156 for the first heating of the concentrated liquid, and the high-temperature steam generated by the circulating heating module can be sent to the exhaust condenser 157 for the second heating of the concentrated liquid. heating.
  • the high-temperature steam generated by the compressor 154 is passed into the heater 153, a part of the high-temperature steam is used to circulate and heat the concentrated liquid in the separation chamber 151, and after heat exchange with the concentrated liquid in the separation chamber 151, This part of the high-temperature steam can condense the obtained high-temperature distilled water, and the high-temperature distilled water is introduced into the heat exchanger 156 to perform heat exchange with the concentrated liquid to realize the first heating of the concentrated liquid.
  • the high-temperature steam generated by the compressor 154 is passed into the heater 153 , another part of the high-temperature steam is introduced into the exhaust condenser 157 to heat the passing concentrated liquid in the exhaust condenser 157 for the second time. It should be noted that, since the heat of high-temperature steam is higher than that of high-temperature distilled water, the second heating can make the concentrated liquid reach a higher temperature than the first heating, so as to achieve step-by-step heating of the concentrated liquid.
  • the distilled water obtained by condensing the high-temperature steam passed into the exhaust condenser 157 after heat exchange with the concentrated liquid can also pass into the heat exchanger 156 for condensed water due to its high temperature.
  • the liquid is heated for the first time.
  • the evaporation system 150 includes a distilled water tank 158 .
  • the distilled water obtained by condensing the high-temperature steam fed into the exhaust condenser 157 will flow into the distilled water tank 158 after heat exchange with the concentrated liquid, and the high-temperature steam in the heater 153 will also be condensed to obtain distilled water after the heat exchange with the concentrated liquid.
  • the distilled water in the distilled water tank 158 can be passed into the heat exchanger 156 to heat the concentrated liquid for the first time due to its high temperature, and the heat exchanger 156 is in the concentrated liquid to achieve heat exchange. After that, the high-temperature distilled water further releases heat, thereby discharging the low-temperature distilled water to the RO system 170 .
  • the evaporation module further includes a concentrate pump 159 , which is arranged between the separation chamber 151 and the solid-liquid separator 152 to provide power for the flow of the concentrate to the solid-liquid separator 152 .
  • the evaporation module further includes a circulating liquid tank 161 and a circulating liquid pump 162 .
  • the circulating liquid separated by the solid-liquid separator 152 is collected in the circulating liquid tank 161 and introduced into the separation chamber 151 under the action of the circulating liquid pump 162 .
  • the sediment of the circulating liquid in the circulating liquid tank 161 can also be sent to the drying system 190 by the circulating liquid pump 162 for drying.
  • the evaporation module further includes a distilled water pump 163, and the distilled water in the distilled water tank 158 is introduced into the heat exchanger 156 under the driving action of the distilled water pump 163 to heat the concentrated liquid for the first time.
  • the RO system 170 can perform reverse osmosis filtration and separation on the distilled water, so as to obtain the second purified water with higher purity, and the second purified water can be directly discharged after collection without causing pollution to the environment.
  • the turbid water generated by the RO system 170 will be further returned to the evaporation system 150 to achieve deep purification.
  • the RO system 170 is connected to the preheating module, so that the turbid water is preheated again and then introduced into the separation module.
  • the RO system 170 is connected to the heat exchanger 156 to mix the turbid water with the concentrate produced by the DTRO system 130 for re-flow processing within the evaporation system 150 .
  • the recovery rate of the RO system 170 can be selected from 75% to 90%. Specifically, in this embodiment, the RO system 170 selects a recovery rate of 80%.
  • the evaporation system 150 further includes a steam generator 164.
  • the steam generator 164 is connected to the separation chamber 151 to provide steam for the separation chamber 151 for the initial startup of the separation chamber 151, or when the steam in the separation chamber 151 is insufficient
  • the steam generator 164 provides steam for the separation chamber 151 to ensure the smooth operation of each module in the evaporation system 150 .
  • the present application also provides a method for treating landfill leachate wastewater, which includes the following steps:
  • the landfill leachate wastewater is passed into the pretreatment system 110 for pretreatment to obtain a filtrate and a landfillable first solid.
  • the pretreatment system 110 can pretreat the landfill leachate wastewater to obtain the filtrate and the dehydrated first solid. It can be directly discharged to landfill without polluting the environment.
  • the filtrate is passed into the DTRO system 130 for reverse osmosis filtration and separation to obtain a concentrate and a first purified water that can be discharged.
  • the DTRO system 130 can concentrate the filtrate, and separate the concentrate and the first purified water that can be discharged out, so that the concentrate goes to the subsequent evaporation system 150.
  • the amount of energy is reduced, thereby reducing energy consumption and saving the investment cost and operating cost of the evaporation system 150.
  • the purity of the first purified water discharged from the DTRO system 130 is relatively high, and it will not pollute the environment when it is directly discharged, thereby realizing zero discharge of pollutants.
  • the concentrated solution produced in S200 is passed into the evaporation system 150, and the evaporation system 150 can carry out temperature-raising evaporation separation for the concentrated solution, so that distilled water and the second solid can be separated, wherein the second solid only contains a small amount of water, and the distilled water also will be collected and directed into the RO system 170 .
  • the second solid is introduced into the drying system 190 for drying and then discharged to landfill.
  • the second solid produced in S300 is introduced into the drying system 190, and the drying system 190 can evaporatively dry the second solid, so that it does not contain moisture and can be directly discharged for burial without causing environmental pollution.
  • the distilled water is passed into the RO system 170 for reverse osmosis filtration and separation to obtain second purified water and turbid water, wherein the second purified water is discharged to the outside, and the turbid water is passed into the evaporation system 150 .
  • the distilled water generated in S300 is introduced into the RO system 170, and the RO system 170 can deeply purify the distilled water, so that the distilled water can be separated to obtain the second purified water and the turbid water. It is discharged without causing pollution to the environment.
  • the turbid water is passed into the evaporation system 150 for continuous circulation and evaporation.
  • the landfill leachate wastewater is sequentially subjected to pretreatment, concentration treatment, DTRO treatment, evaporation treatment, drying treatment and RO treatment, so that the final discharged first solid and second solid can be directly processed. Buried, because it does not contain water, it will not pollute the environment, and the first purified water and the second purified water discharged have high purity and can be used normally without causing pollution to the environment, while the rest of the wastewater
  • the solid-liquid separation can be realized by continuous circulation in the landfill leachate wastewater treatment system 100 . Therefore, the above-mentioned method for treating landfill leachate wastewater can realize the thorough treatment of landfill leachate wastewater, achieve a better treatment effect, and do not pollute the environment.
  • S100 further includes the following steps:
  • the slurry is introduced into the sludge thickening module 113 for concentration to obtain a concentrated slurry
  • the concentrated mud is introduced into the plate-and-frame dewatering module 115 for dehydration to obtain first solids and muddy water, wherein the first solids are discharged and then landfilled;
  • the coagulation and sedimentation module 111 By adjusting the coagulation and sedimentation module 111 , the sludge concentration module 113 , the plate and frame dehydration module 115 , the intermediate filter module 117 and the chemical addition module 119 in the pretreatment system 110 to cooperate with each other, the large particles in the landfill leachate wastewater are precipitated. Filtration, concentration, dehydration and other operations to reduce the concentration of wastewater.
  • the first solid produced by S100 has been dehydrated, so it can be directly discharged to landfill without affecting the environment.
  • S300 further includes the following steps:
  • the high temperature carrier discharged from the circulating heating module is passed into the preheating module to preheat the concentrated solution, and the high temperature carrier releases heat to form distilled water.
  • the concentrated liquid is preheated, and then passed into the separation chamber 151. Under the cyclic heating of the circulating heating module, the concentrated liquid is evaporated in the separation chamber 151 to realize gradual concentration, and then the centrifugal force of the solid-liquid separator 152 is carried out. Separation under separation.
  • the entire evaporation treatment process is reasonably designed to form a relatively perfect treatment process, so that the final second solid can be discharged and buried after being dried by the drying system 190, and the separated distilled water can pass through the depth of the RO system 170. After the treatment, the second purified water that can be discharged out is obtained.
  • the steam separated by the separation chamber 151 is passed into the circulating heating module for reuse, and the high-temperature carrier discharged from the circulating heating module is further used in the preheating module.
  • the solid-liquid separator 152 separates the obtained steam
  • the circulating liquid is further returned to the separation chamber 151 to be further evaporated and separated.
  • the high-temperature carrier discharged from the circulating heating module includes high-temperature steam and high-temperature distilled water
  • the high-temperature steam can be passed into the exhaust condenser 157 to heat the concentrated liquid for the second time, and the concentrated liquid and the exhaust gas in the separation chamber 151 can be heated for the second time.
  • the high-temperature distilled water formed by the heat exchange of the concentrated liquid in the condenser 157 can be passed into the heat exchanger 156 to heat the concentrated liquid for the first time, and the low-temperature distilled water is obtained after the heat exchange.
  • the low-temperature distilled water can be passed into the RO system 170, and deep purification can be obtained in the RO system 170 to achieve a better purification effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

本申请涉及一种垃圾渗滤液废水处理系统及处理方法。该垃圾渗滤液废水处理系统包括预处理系统、碟管式反渗透(DTRO)系统、蒸发系统、反渗透(RO)系统及干燥系统。预处理系统、DTRO系统、蒸发系统顺次连接。预处理系统用于对垃圾渗滤液废水进行预处理而得到脱水的第一固体及过滤液,DTRO系统用于对过滤液进行处理而得到第一净水及浓缩液,蒸发系统能够对浓缩液进行蒸发分离而得到第二固体及蒸馏水。干燥系统与所述蒸发系统连接,以对第二固体进行干燥处理。RO系统与所述蒸发系统连接,以对蒸馏水进行再处理而得到第二净水及浊水。第一固体、第二固体外排掩埋,第一净水与第二净水外排,浊水通入蒸发系统进行再次蒸发分离。

Description

垃圾渗滤液废水处理系统及处理方法
相关申请的交叉引用
本申请要求于2020年9月17日提交中国专利局、申请号为2020109819610、发明名称为“垃圾渗滤液废水处理系统及处理方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及污水处理技术领域,特别是涉及一种垃圾渗滤液废水处理系统及处理方法。
技术背景
垃圾中转站的垃圾渗滤液废水具有污染物浓度高、水量小的特点,且废水成分较为复杂,悬浮物较高,废水会随着放置时间的延长而逐渐酸化,出现恶臭的情况。
目前,对垃圾渗滤液废水进行处理的方式有两种,一种是原始的填埋方式,即渗入土壤,通过土壤进行净化吸收,但该种方式严重污染了环境;另一种方式是集中处理,即将渗滤液废水进行收集,在达到一定量后采用常规污水处理设备进行集中处理,但该种方式只能去除废水中的特定几种有害物质,无法实现废水完全的、彻底的处理。
发明内容
基于此,有必要提供一种对环境无污染、且处理效果较好的垃圾渗滤液废水处理系统。另外,还提供了一种垃圾渗滤液废水处理方法。
一种垃圾渗滤液废水处理系统,包括预处理系统、碟管式反渗透(DTRO)系统、蒸发系统、反渗透(RO)系统及干燥系统;所述预处理系统、所述 DTRO系统、所述蒸发系统顺次连接;所述预处理系统用于对垃圾渗滤液废水进行预处理而得到脱水的第一固体及过滤液,所述DTRO系统用于对过滤液进行处理而得到第一净水及浓缩液,所述蒸发系统能够对浓缩液进行蒸发分离而得到第二固体及蒸馏水;所述干燥系统与所述蒸发系统连接,以对第二固体进行干燥处理;所述RO系统与所述蒸发系统连接,以对蒸馏水进行再处理而得到第二净水及浊水;其中,所述第一固体、所述第二固体可外排掩埋,所述第一净水与所述第二净水可外排,所述浊水可通入所述蒸发系统进行再次蒸发分离。
上述垃圾渗滤液废水处理系统中,通过预处理系统、DTRO系统、蒸发系统、干燥系统及RO系统的相互配合,最终排出的第一固体与第二固体可通过掩埋的方式处理,由于其不含有水分而不会对环境造成污染,而排出的第一净水与第二净水的纯净度较高,已经可以正常使用,且不会对环境造成污染,而其余的废水可在垃圾渗滤液废水处理系统中不断循环而实现固液分离。因此,上述垃圾渗滤液废水处理系统可以实现对垃圾渗滤液废水的彻底处理,达到较好的处理效果,且对环境无污染。
在其中一个实施例中,还包括下述方案中的至少一个:
所述预处理系统包括用于对垃圾渗滤液废水进行沉淀处理的调节混凝沉淀模块、与所述调节混凝沉淀模块连接的污泥浓缩模块、与所述污泥浓缩模块连接的板框脱水模块、与所述调节混凝沉淀模块及所述板框脱水模块连接的中间过滤模块、用于对所述调节混凝沉淀模块及所述中间过滤模块添加药剂的药剂添加模块;
所述垃圾渗滤液废水处理系统包括中转箱,所述预处理系统、所述DTRO系统及所述RO系统均集成于所述中转箱内;所述蒸发系统呈集成式结构;
所述干燥系统通过喷雾式干燥的方式对第二固体进行干燥处理。
在其中一个实施例中,所述蒸发系统包括用于与所述DTRO系统连接的预加热模块、与所述预加热模块连接的分离模块、与所述分离模块连接的循环加热模块;所述干燥系统与所述分离模块连接。
在其中一个实施例中,所述分离模块包括分离室及与所述分离室连接的固液分离器,所述预加热模块、所述循环加热模块均与所述分离室连接,所述固液分离器与所述干燥系统连接。
在其中一个实施例中,所述循环加热模块包括加热器及压缩机,所述压缩机与所述分离室连接,以将所述分离室导出的蒸汽压缩升温后输送至所述加热器;所述加热器与所述分离室连接,以将所述分离室内的浓缩液进行循环加热;所述加热器与所述预加热模块连接。
在其中一个实施例中,所述预加热模块包括热交换器及与所述热交换器连接的排气冷凝器,所述热交换器与所述DTRO系统连接,所述排气冷凝器与所述分离模块连接;所述循环加热模块产生的高温蒸馏水能够输送至所述热交换器,以对浓缩液进行第一加热,所述循环加热模块产生的高温蒸汽能够输送至所述排气冷凝器,以对浓缩液进行第二次加热。
一种垃圾渗滤液废水处理方法,包括以下步骤:
将垃圾渗滤液废水通入预处理系统进行预处理后得到过滤液及可掩埋的第一固体;
将过滤液通入DTRO系统进行反渗透式过滤分离后得到浓缩液及可外排的第一净水;
将浓缩液通入蒸发系统进行蒸发分离后得到第二固体及蒸馏水;
将第二固体导入干燥系统进行干燥处理后排出填埋;
将蒸馏水通入RO系统进行反渗透式过滤分离后得到第二净水及浊水,其中,第二净水外排,而浊水通入蒸发系统。
上述垃圾渗滤液废水处理方法中,通过对垃圾渗滤液废水依次进行预处理、浓缩处理、DTRO处理、蒸发处理、干燥处理及RO处理,从而使最终排出的第一固体与第二固体可直接进行掩埋,由于其不含有水分而不会对环境造成污染,而排出的第一净水与第二净水的纯净度较高,已经可以正常使用,且不会对环境造成污染,而其余的废水可在垃圾渗滤液废水处理系统中不断循环而实现固液分离。因此,上述垃圾渗滤液废水处理方法可以实现对 垃圾渗滤液废水的彻底处理,达到较好的处理效果,且对环境无污染。
在其中一个实施例中,将垃圾渗滤液废水通入预处理系统进行预处理后得到过滤液及可掩埋的第一固体的步骤还包括以下步骤:
控制药剂添加模块对调节混凝沉淀模块与中间过滤模块内投加药剂;
将垃圾渗滤液废水通入调节混凝沉淀模块进行混合沉淀后得到泥浆及上清液;
将泥浆导入污泥浓缩模块进行浓缩后得到浓缩泥浆;
将浓缩泥浆导入板框脱水模块进行脱水后得到第一固体及泥水,其中,第一固体排出后填埋;
将泥水及上清液导入中间过滤模块进行过滤后得到过滤液。
在其中一个实施例中,将浓缩液通入蒸发系统进行蒸发分离后得到第二固体及蒸馏水的步骤还包括以下步骤:
将浓缩液通入预加热模块进行预加热;
将预加热后的浓缩液通入分离室,浓缩液在分离室内蒸发分离得到蒸汽;
将浓缩液通入固液分离器进行固液分离而得到第二固体及循环液,其中,循环液通入分离室;
将蒸汽通入循环加热模块进行升温后得到高温蒸汽,高温蒸汽对分离室内的浓缩液进行循环加热;
将循环加热模块排出的高温载体通入预加热模块以对浓缩液进行预加热,而高温载体释放热量后形成蒸馏水。
在其中一个实施例中,所述循环加热模块排出的高温载体包括高温蒸汽及高温蒸馏水,所述高温蒸汽能够通入排气冷凝器对浓缩液进行第二次加热,与所述分离室内浓缩液及所述排气冷凝器内浓缩液进行热交换后形成的高温蒸馏水能够通入热交换器对浓缩液进行第一次加热,在进行热交换后得到低温蒸馏水。
附图说明
图1为本申请一实施例的垃圾渗滤液废水处理系统的结构示意图;
图2为本申请一实施例的垃圾渗滤液废水处理方法流程图。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上” 或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
如图1所示,本申请一实施例的垃圾渗滤液废水处理系统100包括预处理系统110、DTRO系统130、蒸发系统150、RO系统170及干燥系统190。预处理系统110、DTRO系统130、蒸发系统150顺次连接,预处理系统110用于对垃圾渗滤液废水进行预处理而得到脱水的第一固体及过滤液,DTRO系统130用于对过滤液进行处理而得到第一净水及浓缩液,蒸发系统150能够对浓缩液进行蒸发分离而得到第二固体及蒸馏水。干燥系统190与蒸发系统150连接,以对第二固体进行干燥处理;RO系统170与蒸发系统150连接,以对蒸馏水进行再处理而得到第二净水及浊水。如此,第一固体与第二固体可在排出后掩埋,第一净水与第二净水可直接排出,浊水可通入蒸发系统150进行再次蒸发分离。
上述垃圾渗滤液废水处理系统100中,通过预处理系统110、DTRO系统130、蒸发系统150、干燥系统190及RO系统170的相互配合,最终排出的第一固体与第二固体可通过掩埋的方式处理,由于其不含有水分而不会对环境造成污染,而排出的第一净水与第二净水的纯净度较高,已经可以正常使用,且不会对环境造成污染,而其余的废水可在垃圾渗滤液废水处理系统100中不断循环而实现固液分离。因此,上述垃圾渗滤液废水处理系统100可以实现对垃圾渗滤液废水的彻底处理,达到较好的处理效果,且对环境无污染。
在其中一实施例中,预处理系统110包括调节混凝沉淀模块111、污泥浓缩模块113、板框脱水模块115、中间过滤模块117及药剂添加模块119。其中,垃圾渗滤液废水通入调节混凝沉淀模块111中,调节混凝沉淀模块111用于对垃圾渗滤液废水进行沉淀处理。调节混凝沉淀模块111、污泥浓缩模块113与板框脱水模块115顺次连接,污泥浓缩模块113用于对调节混凝沉淀模块111产生的沉淀物进行浓缩,并进一步经板框脱水模块115的脱水后得到第一固体,从而使得第一固体内不含有水分以便在排出时填埋。而调节混凝沉淀模块111与板框脱水模块115分别与中间过滤模块117连接,调节混凝沉淀模块111产生的上清液与板框脱水模块115产生的泥水可进一步通入中间过滤模块117进行过滤处理,从而得到过滤液,过滤液可通入DTRO系统130进行浓缩处理。另外,调节混凝沉淀模块111及中间过滤模块117均与药剂添加模块119连接,药剂添加模块119能够对调节混凝沉淀模块111及中间过滤模块117进行添加药剂,以对两模块内的废水进行化学处理。
具体地,药剂添加模块119包括第一储药箱、第二储药箱及第三储药箱,其中第一储药箱、第二储药箱及第三储药箱内依次储放有硫酸(H 2SO 4)、聚丙烯酰胺(PAM)、聚合氯化铝(PAC)。药剂添加模块119通过管道投加的方式将聚丙烯酰胺(PAM)、聚合氯化铝(PAC)加入调节混凝沉淀模块111中,从而去除废水中的悬浮物(SS)、部分化学耗氧量(COD),从而有助于废水中的大颗粒物沉淀,以得到上清液和泥浆。另外,药剂添加模块119通过管道投加的方式将硫酸(H 2SO 4)加入中间过滤模块117中,从而对中间过滤模块117中废液的PH进行调节。
具体地,中间过滤模块117过滤后得到的过滤液,在导入到DTRO系统130后,DTRO系统130可对过滤液进行浓缩处理,以排出第一净水,从而使去到后续蒸发系统150的浓缩液的量减少,进而降低能耗,节省蒸发系统150投资成本及运行成本。同时,DTRO系统130排出的第一净水的纯净度较高,直接外排时不会污染环境,实现了污物零排放。进一步地,DTRO系统130的回收率为75%-90%。在本实施例中,DTRO系统130选用的是80%的回收 率。
另外,预处理系统110还包括用于收集垃圾渗滤液废水的料液池112,通过设置料液池112,可以在垃圾渗滤液废水较多的情况下,对垃圾渗滤液废水进行收集,以缓解废水处理压力。料液池112内的垃圾渗滤液废水通过料液泵114泵至调节混凝沉淀模块111中。此外,调节混凝沉淀模块111与污泥浓缩模块113之间、污泥浓缩模块113与板框脱水模块115之间均可设置排泥泵116,以促进泥浆在各模块之间的流动。另外,还可以在中间过滤模块117与DTRO模块之间设置输送泵118,以为过滤液的流动提供动力。
在本实施例中,垃圾渗滤液废水处理系统100包括中转箱,预处理系统110、DTRO系统130及RO系统170均集成于中转箱内,而且,蒸发系统150呈集成式结构。如此,通过集成化设计,可以对中转箱内的各系统、蒸发系统150及干燥系统190进行独立搬运,提高了垃圾渗滤液废水处理系统100的搬运流转的便捷性;在到达目标位置时,只需要对三者之间进行管道连接、接好水电即可进行使用,降低了垃圾渗滤液废水处理系统100的组装难度,提高了组装效率;与常规的废水处理系统相比,本申请的垃圾渗滤液废水处理系统100由于具有较高的集成度,其体积较小,占用空间也较小,适用于垃圾中转站狭窄的空间,也进一步有利于整个系统的搬运流转。
在其中一实施例中,蒸发系统150包括用于与DTRO系统130连接的预加热模块、与预加热模块连接的分离模块、与分离模块连接的循环加热模块。由DTRO系统130导入的浓缩液在经过预加热模块的预加热后进入分离模块,同时,在循环加热模块的循环加热作用下,分离模块能够对浓缩液进行分离,从而得到第二固体及蒸汽,其中,蒸汽能够进入循环加热模块,在升温后形成高温蒸汽,以与分离模块中的浓缩液进行热交换而实现循环加热,而高温蒸汽降温后最终形成蒸馏水,以导入RO系统170进行深度处理。干燥系统190与分离模块连接,分离模块产生的第二固体能够导入干燥系统190,在干燥系统190的干燥处理后以便能够排出并掩埋。
进一步地,分离模块包括分离室151及与分离室151连接的固液分离器 152,固液分离器152与干燥系统190连接。预加热模块与分离室151连接,预加热模块对浓缩液进行预加热,之后将浓缩液导入分离室151内。循环加热模块与分离室151连接,循环加热模块对分离室151内的浓缩液进行循环加热,分离室151内浓缩液中的水分实现蒸发,而形成的蒸汽又进一步导入循环加热模块,在经过升温后进一步与分离室151内的浓缩液进行热交换而实现循环加热。分离室151内浓缩液中的水分不断蒸发,从而使浓缩液得到进一步浓缩,并经固液分离器152的离心分离后,实现固液分离,从而得到第二固体及循环液,其中,第二固体导入干燥系统190后经干燥系统190的干燥处理后排出而掩埋,而循环液再次导入分离室151内进行继续循环。需要指出的是,干燥系统190通过喷雾式干燥的方式对第二固体进行干燥处理,即,将第二固体从上方以喷雾的方式喷出,而干燥的风从下方向上方吹出,以实现与第二固体的充分接触、延长干燥时间,从而提高干燥效果。
进一步地,分离室151采用盐腿结晶器。经过预加热模块加热后的浓缩液沿切向进入分离室151的上层流床,由于浓缩液的温度略低于沸点温度而呈不饱和状态,切向进入分离室151上层流床的浓缩液,与分离室151内原有的过饱和浓缩液混合在一起,由于原有的过饱和浓缩液中含有大量细小的晶体,不饱和的浓缩液进入后可消除细小的晶体,避免细小晶体参与到循环加热模块对分离室151内浓缩液的循环加热过程中而堵塞管路。
在其中一实施例中,循环加热模块包括加热器153及压缩机154,压缩机154与分离室151连接,以将分离室151导出的蒸汽压缩升温后形成高温蒸汽,并输送至加热器153,加热器153与分离室151连接,在分离室151内的浓缩液循环流动至加热器153时,加热器153内的高温蒸汽与浓缩液进行热交换,从而提高浓缩液的温度,随浓缩液不断流入,加热器153内的高温蒸汽对浓缩液实现循环加热。需要指出的是,被加热后的浓缩液从加热器153流出到低压的分离室151中,由于压力骤然降低,浓缩液在分离室151内发生闪蒸,从而得到浓缩,达到工艺要求的浓缩倍数后,经过固液分离器152的离心分离后即可得到第一固体及循环液。
进一步地,加热器153与分离室151之间连接有强制循环泵155,以对分离室151内的浓缩液实现强制循环。具体地,强制循环泵155采用VFD(变频)控制,初始启动运行时,浓缩液中的总溶解固体(TDS)低,比重小,强制循环泵155的频率根据比重以及出口压力自动检测保持在0~50Hz范围自动调节,满足流量循环需求。
另外,加热器153内连接有多个换热管。从预加热模块导入的不饱和浓缩液与分离室151内原有的过饱和浓缩液进行混合,在强制循环泵155的强制作用下分流至每一个换热管,从而在加热器153处被换热管外部高温蒸汽冷凝所产生的热量加热升温,从而实现浓缩液的升温。需要指出的是,在导入换热管内时,浓缩液的流速控制在1.5m/s~3.5m/s,能够降低结垢概率,以免影响浓缩液的换热效率。另外,当浓缩液从换热管内高速流动时,通过控制换热管内压力使其低于换热管内温度对应的饱和蒸汽压力,使浓缩液在换热管内不会沸腾,使其不在换热管内蒸发,以确保浓缩液在分离室151内实现蒸发。
具体地,分离室151内上方设置有两层高效除雾结构,下层采用折板式除雾器,上层采用丝网式除雾器,通过控制液/汽分离面积和分离高度,从而使分离室151内蒸发产生的蒸汽,经过充分除雾后被压缩机154抽出,并经压缩机154的升温升压后形成高温蒸汽导入加热器153内。另外,通过在分离室151内设置PLC自动控制期间,以对丝网式除雾器实现定期水清洗,可以保证长时期处理水量和出水水质稳定。
具体地,加热器153与预加热模块连接,加热器153排出的高温载体能够通入预处加热模块,从而满足预加热模块对浓缩液进行预加热时对热量的需要,从而提高能量的利用率。需要指出的是,加热器153排出的高温载体可以是高温蒸汽,也可以是高温蒸汽对分离室151内浓缩液发生热交换后冷凝得到的高温蒸馏水。在高温载体导入预加热模块后,可以对预加热模块处的浓缩液进行预加热,高温载体与浓缩液进行热交换而释放热量后形成蒸馏水,而蒸馏水导入RO系统170后得到深度净化。
具体在本实施例中,预加热模块包括热交换器156及与热交换器156连接的排气冷凝器157,热交换器156与DTRO系统130连接,排气冷凝器157与分离模块连接。具体地,DTRO系统130分离得到的浓缩液导入热交换器156,热交换器156对浓缩液进行第一次加热,使浓缩液实现初步升温,之后,浓缩液进一步导入排气冷凝器157,排气冷凝器157对浓缩液进行第二次加热,使浓缩液实现进一步升温,并导入分离室151内,以使得浓缩液在进入分离室151内时已经具有较高的温度,以利于浓缩液进行蒸发操作。
进一步地,循环加热模块产生的高温蒸馏水能够输送至热交换器156,以对浓缩液进行第一加热,循环加热模块产生的高温蒸汽能够输送至排气冷凝器157,以对浓缩液进行第二次加热。具体地,由压缩机154产生的高温蒸汽在通入加热器153后,一部分高温蒸汽用于对分离室151内的浓缩液进行循环加热,在与分离室151内的浓缩液发生热交换后,该部分高温蒸汽可冷凝得到的高温蒸馏水,将高温蒸馏水导入热交换器156,能够与浓缩液进行热交换而对浓缩液实现第一次加热。由压缩机154产生的高温蒸汽在通入加热器153后,另一部分高温蒸汽导入排气冷凝器157内,以在排气冷凝器157内对流经的浓缩液进行第二次加热。需要说明的是,由于高温蒸汽的热量高于高温蒸馏水,就使得第二次加热可以使浓缩液达到比第一次加热更高的温度,从而达到对浓缩液的逐级加热升温。
在其中一实施例中,通入排气冷凝器157内的高温蒸汽在与浓缩液进行热交换后冷凝得到的蒸馏水,由于其具有较高的温度,因此也可以通入热交换器156对浓缩液进行第一次加热。具体地,蒸发系统150包括蒸馏水罐158。通入排气冷凝器157内的高温蒸汽在与浓缩液进行热交换后冷凝得到的蒸馏水会流入蒸馏水罐158内,而加热器153内高温蒸汽在与浓缩液进行热交换后冷凝得到蒸馏水也会流入蒸馏水罐158内,如此,蒸馏水罐158内的蒸馏水由于具有较高的温度,即可通入热交换器156对浓缩液进行第一次加热,而在热交换器156处于浓缩液实现热交换之后,高温蒸馏水进一步释放热量,从而排出低温的蒸馏水至RO系统170。
另外,蒸发模块还包括浓缩液泵159,浓缩液泵159设于分离室151与固液分离器152之间,以为浓缩液向固液分离器152的流动提供动力。蒸发模块还包括循环液罐161及循环液泵162。固液分离器152分离出的循环液被收集只循环液罐161内,在循环液泵162的作用下导入分离室151内。另外,循环液在循环液罐161内的沉淀物,也可被循环液泵162输送至干燥系统190进行干燥。另外,蒸发模块还包括蒸馏水泵163,蒸馏水罐158内的蒸馏水在蒸馏水泵163的驱动作用下导入热交换器156对浓缩液进行第一次加热。
具体地,RO系统170可对蒸馏水进行反渗透式过滤分离,从而得到纯净度较高的第二净水,第二净水可在收集后直接排放而不会对环境造成污染。另外,RO系统170产生的浊水也会进一步返回至蒸发系统150,实现深度净化。具体地,RO系统170与预加热模块连接,以将浊水再一次进行预加热后导入分离模块。进一步地,RO系统170与热交换器156连接,从而将浊水与DTRO系统130产生的浓缩液混合,以在蒸发系统150内重新进行流转处理。需要指出的是,RO系统170回收率可选择75%-90%,具体在本实施例中,RO系统170选用的是80%的回收率。
在其中一实施例中蒸发系统150还包括蒸汽发生器164,蒸汽发生器164与分离室151连接,以为分离室151提供蒸汽,供分离室151初始启动使用,或者在分离室151内蒸汽不足而不足以提供浓缩液的预加热及循环加热所需的能量时,蒸汽发生器164为分离室151提供蒸汽,以确保蒸发系统150内各模块的顺利工作。
结合图1及图2所示,本申请还提供一种垃圾渗滤液废水处理方法,其包括以下步骤:
S100,将垃圾渗滤液废水通入预处理系统110进行预处理后得到过滤液及可掩埋的第一固体。
在将垃圾渗滤液废水通入预处理系统110后,预处理系统110能够对垃圾渗滤液废水进行预处理,从而得到过滤液及脱水的第一固体,其中,由于 第一固体已经被脱水,因此可直接排出掩埋而不会污染环境。
S200,将过滤液通入DTRO系统130进行反渗透式过滤分离后得到浓缩液及可外排的第一净水。
将S100中产生的过滤液通入DTRO系统130后,DTRO系统130可对过滤液进行浓缩处理,分离得到浓缩液及可外排的第一净水,从而使去到后续蒸发系统150的浓缩液的量减少,进而降低能耗,节省蒸发系统150投资成本及运行成本。另外,DTRO系统130排出的第一净水的纯净度较高,直接外排时不会污染环境,实现了污物零排放。
S300,将浓缩液通入蒸发系统150进行蒸发分离后得到第二固体及蒸馏水。
将S200中产生的浓缩液通入蒸发系统150,蒸发系统150可对浓缩液进行升温蒸发分离,如此就可以分离出蒸馏水及第二固体,其中,第二固体仅含有少量的水,而蒸馏水也会被收集而导入RO系统170中。
S400,将第二固体导入干燥系统190进行干燥处理后排出填埋。
将S300中产生的第二固体导入干燥系统190,干燥系统190可对第二固体进行蒸发干燥,从而使其内部不含水分而可以直接排出掩埋,且不会造成环境的污染。
S500,将蒸馏水通入RO系统170进行反渗透式过滤分离后得到第二净水及浊水,其中,第二净水外排,而浊水通入蒸发系统150。
将S300中产生的蒸馏水导入RO系统170,RO系统170可对蒸馏水进行深度净化,使蒸馏水分离得到第二净水及浊水,其中,第二净水由于其纯净度较高,其可以直接外排而不会对环境造成污染,另外,浊水则通入蒸发系统150进行继续循环蒸发。
上述垃圾渗滤液废水处理方法中,通过对垃圾渗滤液废水依次进行预处理、浓缩处理、DTRO处理、蒸发处理、干燥处理及RO处理,从而使最终排出的第一固体与第二固体可直接进行掩埋,由于其不含有水分而不会对环境造成污染,而排出的第一净水与第二净水的纯净度较高,已经可以正常使 用,且不会对环境造成污染,而其余的废水可在垃圾渗滤液废水处理系统100中不断循环而实现固液分离。因此,上述垃圾渗滤液废水处理方法可以实现对垃圾渗滤液废水的彻底处理,达到较好的处理效果,且对环境无污染。
在其中一实施例中,S100还包括以下步骤:
S110,控制药剂添加模块119对调节混凝沉淀模块111与中间过滤模块117内投加药剂;
S120,将垃圾渗滤液废水通入调节混凝沉淀模块111进行混合沉淀后得到泥浆及上清液;
S130,将泥浆导入污泥浓缩模块113进行浓缩后得到浓缩泥浆;
S140,将浓缩泥浆导入板框脱水模块115进行脱水后得到第一固体及泥水,其中,第一固体排出后填埋;
S150,将泥水及上清液导入中间过滤模块117进行过滤后得到过滤液;
通过预处理系统110中调节混凝沉淀模块111、污泥浓缩模块113、板框脱水模块115、中间过滤模块117与药剂添加模块119的相互配合,从而对垃圾渗滤液废水中的大颗粒物进行沉淀过滤、浓缩、脱水等操作,以降低废水的浓度。而S100产生的第一固体由于已经作脱水处理,因此可直接排出填埋而不会对环境造成影响。
在其中一实施例中,S300还包括以下步骤:
S310,将浓缩液通入预加热模块进行预加热;
S320,将预加热后的浓缩液通入分离室151,浓缩液在分离室151内蒸发分离得到蒸汽;
S330,将浓缩液通入固液分离器152进行固液分离而得到第二固体及循环液,其中,循环液通入分离室151;
S340,将蒸汽通入循环加热模块进行升温后得到高温蒸汽,高温蒸汽对分离室151内的浓缩液进行循环加热;
S350,将循环加热模块排出的高温载体通入预加热模块以对浓缩液进行预加热,而高温载体释放热量后形成蒸馏水。
通过将浓缩液进行预加热处理,之后通入分离室151内,在循环加热模块的循环加热作用下,使浓缩液在分离室151内实现蒸发实现逐渐浓缩,进而在固液分离器152的离心分离作用下分离。整个蒸发处理过程通过合理的设计,以形成较为完美的处理流程,从而使得最终得到的第二固体能够经过干燥系统190的干燥处理后被排出掩埋,而分离得到的蒸馏水能够经过RO系统170的深度处理后得到可外排的第二净水。而在整个蒸发处理过程中,分离室151分离得到的蒸汽通入循环加热模块中被再次利用,循环加热模块排出的高温载体又在预加热模块中被进一步利用,固液分离器152分离得到的循环液也进一步返回至分离室151内被进一步蒸发分离。如此,就使得蒸发处理过程不仅合理,以实现能量的有效利用,而且也达到了污染物的零排放,不会对环境造成污染。
具体地,在S350中,循环加热模块排出的高温载体包括高温蒸汽及高温蒸馏水,高温蒸汽能够通入排气冷凝器157对浓缩液进行第二次加热,与分离室151内浓缩液及排气冷凝器157内浓缩液进行热交换后形成的高温蒸馏水能够通入热交换器156对浓缩液进行第一次加热,在进行热交换后得到低温蒸馏水。如此,低温蒸馏水即可通入RO系统170中,在RO系统170得到深度净化,实现较好的净化效果。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种垃圾渗滤液废水处理系统,包括预处理系统、碟管式反渗透(DTRO)系统、蒸发系统、反渗透(RO)系统及干燥系统;所述预处理系统、所述DTRO系统、所述蒸发系统顺次连接;所述预处理系统用于对垃圾渗滤液废水进行预处理而得到脱水的第一固体及过滤液,所述DTRO系统用于对过滤液进行处理而得到第一净水及浓缩液,所述蒸发系统能够对浓缩液进行蒸发分离而得到第二固体及蒸馏水;所述干燥系统与所述蒸发系统连接,以对第二固体进行干燥处理;所述RO系统与所述蒸发系统连接,以对蒸馏水进行再处理而得到第二净水及浊水;其中,所述第一固体、所述第二固体外排掩埋,所述第一净水与所述第二净水外排,所述浊水通入所述蒸发系统进行再次蒸发分离。
  2. 根据权利要求1所述的垃圾渗滤液废水处理系统,其中所述预处理系统包括用于对垃圾渗滤液废水进行沉淀处理的调节混凝沉淀模块、与所述调节混凝沉淀模块连接的污泥浓缩模块、与所述污泥浓缩模块连接的板框脱水模块、与所述调节混凝沉淀模块及所述板框脱水模块连接的中间过滤模块、用于对所述调节混凝沉淀模块及所述中间过滤模块添加药剂的药剂添加模块。
  3. 根据权利要求1所述的垃圾渗滤液废水处理系统,其中所述垃圾渗滤液废水处理系统包括中转箱,所述预处理系统、所述DTRO系统及所述RO系统均集成于所述中转箱内;所述蒸发系统呈集成式结构。
  4. 根据权利要求1所述的垃圾渗滤液废水处理系统,其中所述干燥系统通过喷雾式干燥的方式对第二固体进行干燥处理。
  5. 根据权利要求1所述的垃圾渗滤液废水处理系统,其中所述蒸发系统包括用于与所述DTRO系统连接的预加热模块、与所述预加热模块连接的分离模块、与所述分离模块连接的循环加热模块;所述干燥系统与所述分离模块连接。
  6. 根据权利要求5所述的垃圾渗滤液废水处理系统,其中所述分离模块 包括分离室及与所述分离室连接的固液分离器,所述预加热模块、所述循环加热模块均与所述分离室连接,所述固液分离器与所述干燥系统连接。
  7. 根据权利要求6所述的垃圾渗滤液废水处理系统,其中所述循环加热模块包括加热器及压缩机,所述压缩机与所述分离室连接,以将所述分离室导出的蒸汽压缩升温后输送至所述加热器;所述加热器与所述分离室连接,以将所述分离室内的浓缩液进行循环加热;所述加热器与所述预加热模块连接。
  8. 根据权利要求5所述的垃圾渗滤液废水处理系统,其中所述预加热模块包括热交换器及与所述热交换器连接的排气冷凝器,所述热交换器与所述DTRO系统连接,所述排气冷凝器与所述分离模块连接;所述循环加热模块产生的高温蒸馏水能够输送至所述热交换器,以对浓缩液进行第一加热,所述循环加热模块产生的高温蒸汽能够输送至所述排气冷凝器,以对浓缩液进行第二次加热。
  9. 一种垃圾渗滤液废水处理方法,包括:
    将垃圾渗滤液废水通入预处理系统进行预处理后得到过滤液及可掩埋的第一固体;
    将过滤液通入DTRO系统进行反渗透式过滤分离后得到浓缩液及可外排的第一净水;
    将浓缩液通入蒸发系统进行蒸发分离后得到第二固体及蒸馏水;
    将第二固体导入干燥系统进行干燥处理后排出填埋;及
    将蒸馏水通入RO系统进行反渗透式过滤分离后得到第二净水及浊水,其中,第二净水外排,而浊水通入所述蒸发系统。
  10. 根据权利要求9所述的方法,其中将垃圾渗滤液废水通入预处理系统进行预处理包括:
    控制药剂添加模块对调节混凝沉淀模块与中间过滤模块内投加药剂;
    将垃圾渗滤液废水通入调节混凝沉淀模块进行混合沉淀后得到泥浆及上清液;
    将泥浆导入污泥浓缩模块进行浓缩后得到浓缩泥浆;
    将浓缩泥浆导入板框脱水模块进行脱水后得到第一固体及泥水,其中,第一固体排出后填埋;及
    将泥水及上清液导入中间过滤模块进行过滤后得到过滤液。
  11. 根据权利要求9所述的方法,其中将浓缩液通入蒸发系统进行蒸发分离包括:
    将浓缩液通入预加热模块进行预加热;
    将预加热后的浓缩液通入分离室,浓缩液在分离室内蒸发分离得到蒸汽;
    将浓缩液通入固液分离器进行固液分离而得到第二固体及循环液,其中,循环液通入分离室;
    将蒸汽通入循环加热模块进行升温后得到高温蒸汽,高温蒸汽对分离室内的浓缩液进行循环加热;及
    将循环加热模块排出的高温载体通入预加热模块以对浓缩液进行预加热,而高温载体释放热量后形成蒸馏水。
  12. 根据权利要求11所述的方法,其中所述循环加热模块排出的高温载体包括高温蒸汽及高温蒸馏水,所述高温蒸汽能够通入排气冷凝器对浓缩液进行第二次加热,与所述分离室内浓缩液及所述排气冷凝器内浓缩液进行热交换后形成的高温蒸馏水能够通入热交换器对浓缩液进行第一次加热,在进行热交换后得到低温蒸馏水。
PCT/CN2020/126187 2020-09-17 2020-11-03 垃圾渗滤液废水处理系统及处理方法 WO2022057052A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010981961.0 2020-09-17
CN202010981961.0A CN112225372B (zh) 2020-09-17 2020-09-17 垃圾渗滤液废水处理系统及处理方法

Publications (1)

Publication Number Publication Date
WO2022057052A1 true WO2022057052A1 (zh) 2022-03-24

Family

ID=74107255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126187 WO2022057052A1 (zh) 2020-09-17 2020-11-03 垃圾渗滤液废水处理系统及处理方法

Country Status (2)

Country Link
CN (1) CN112225372B (zh)
WO (1) WO2022057052A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115007605A (zh) * 2022-08-08 2022-09-06 徐州芒原智能科技有限公司 一种垃圾预处理收集装置及其使用方法
CN115166180A (zh) * 2022-07-04 2022-10-11 湖南环宏环保科技有限公司 一种垃圾渗滤液水质分析系统及方法
CN116891272A (zh) * 2023-07-11 2023-10-17 湖南生命伟业环保科技股份有限公司 一种节水型管道式循环输送直饮水供水系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010065008A (ko) * 1999-12-20 2001-07-11 홍상복 역삼투시스템 및 증발농축법을 이용한 매립장 침출수처리방법
JP3394964B2 (ja) * 2000-05-15 2003-04-07 川崎重工業株式会社 廃棄物埋立処分地浸出水の処理方法及び装置
CN102838244A (zh) * 2012-08-16 2012-12-26 广州新普利节能环保科技有限公司 一种垃圾渗滤液处理工艺和装置
CN204588901U (zh) * 2015-04-12 2015-08-26 中山中珠环保科技有限公司 一种垃圾渗滤液处理系统
CN205170588U (zh) * 2015-10-27 2016-04-20 大连广泰源环保科技有限公司 一种垃圾渗滤液的浓缩处理系统
CN106966538A (zh) * 2017-04-25 2017-07-21 大连广泰源环保科技有限公司 一种垃圾渗滤液处理设备
CN108033637A (zh) * 2017-12-19 2018-05-15 浙江博世华环保科技有限公司 一种垃圾渗滤液的处理方法
CN110240342A (zh) * 2019-06-26 2019-09-17 山东百川集大环境工程有限公司 一种干旱寒冷地区垃圾渗滤液处理装置和方法
CN210237367U (zh) * 2019-06-26 2020-04-03 山东百川集大环境工程有限公司 一种干旱寒冷地区垃圾渗滤液处理装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3909793B2 (ja) * 1999-09-07 2007-04-25 株式会社荏原製作所 高濃度の塩類を含有する有機性廃水の処理方法及びその装置
CN108147605B (zh) * 2018-01-16 2023-07-11 厦门嘉戎技术股份有限公司 一种用于高盐度可生化性差的渗滤液处理方法及系统
CN208684674U (zh) * 2018-08-27 2019-04-02 北京高能时代环境技术股份有限公司 用于垃圾渗滤浓缩液零排放的处理系统
CN210915714U (zh) * 2019-10-29 2020-07-03 卢浮恩环境科技(北京)有限公司 一种基于mvr工艺和ro装置的垃圾渗滤液处理系统
CN211419883U (zh) * 2019-11-29 2020-09-04 江苏贞一环保科技有限公司 一种危险废物填埋场废水处理系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010065008A (ko) * 1999-12-20 2001-07-11 홍상복 역삼투시스템 및 증발농축법을 이용한 매립장 침출수처리방법
JP3394964B2 (ja) * 2000-05-15 2003-04-07 川崎重工業株式会社 廃棄物埋立処分地浸出水の処理方法及び装置
CN102838244A (zh) * 2012-08-16 2012-12-26 广州新普利节能环保科技有限公司 一种垃圾渗滤液处理工艺和装置
CN204588901U (zh) * 2015-04-12 2015-08-26 中山中珠环保科技有限公司 一种垃圾渗滤液处理系统
CN205170588U (zh) * 2015-10-27 2016-04-20 大连广泰源环保科技有限公司 一种垃圾渗滤液的浓缩处理系统
CN106966538A (zh) * 2017-04-25 2017-07-21 大连广泰源环保科技有限公司 一种垃圾渗滤液处理设备
CN108033637A (zh) * 2017-12-19 2018-05-15 浙江博世华环保科技有限公司 一种垃圾渗滤液的处理方法
CN110240342A (zh) * 2019-06-26 2019-09-17 山东百川集大环境工程有限公司 一种干旱寒冷地区垃圾渗滤液处理装置和方法
CN210237367U (zh) * 2019-06-26 2020-04-03 山东百川集大环境工程有限公司 一种干旱寒冷地区垃圾渗滤液处理装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115166180A (zh) * 2022-07-04 2022-10-11 湖南环宏环保科技有限公司 一种垃圾渗滤液水质分析系统及方法
CN115007605A (zh) * 2022-08-08 2022-09-06 徐州芒原智能科技有限公司 一种垃圾预处理收集装置及其使用方法
CN116891272A (zh) * 2023-07-11 2023-10-17 湖南生命伟业环保科技股份有限公司 一种节水型管道式循环输送直饮水供水系统
CN116891272B (zh) * 2023-07-11 2024-01-09 湖南生命伟业环保科技股份有限公司 一种节水型管道式循环输送直饮水供水系统

Also Published As

Publication number Publication date
CN112225372A (zh) 2021-01-15
CN112225372B (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
WO2022057052A1 (zh) 垃圾渗滤液废水处理系统及处理方法
CN101734820B (zh) 一种高含盐废水的处理方法
CN109354292B (zh) 一种垃圾渗滤液膜滤浓缩液的减量化处理工艺
CN110759571B (zh) 飞灰渗滤液处理系统以及处理方法
CN104828887B (zh) 采用太阳能组合加热使废水蒸发净化处理的方法及系统
KR101769949B1 (ko) 에너지 소비 효율이 향상된 증발농축시스템 및 증발농축방법
JPH10323664A (ja) 排水回収処理装置
CN105859057A (zh) 一种从污水中提取物质和能量的方法及系统
CN108947079A (zh) 一种热压缩脱硫废水零排放处理方法及系统
CN202107591U (zh) 一种高浓有机和/或无机废水零排放系统
CN112125461A (zh) 一种高浓度氨氮废水的综合处理系统及方法
CN111439882A (zh) 一种利用电厂烟气余热的脱硫废水零排放系统
CN113277665A (zh) 电解蒸发协同处理高浓高盐废水的方法及装置
CN108911343A (zh) 多晶硅废水零排放方法及系统
CN204939142U (zh) 一种烟气脱硫系统排放的脱硫废水的处理设备
CN109133465A (zh) 一种废热利用真空膜蒸馏零排放处理装置及方法
CN218893487U (zh) 一种脱硫高盐废水处理装置
CN208440312U (zh) 一种脱硫废水的处理系统
CN105152405A (zh) 一种烟气脱硫系统排放的脱硫废水的处理方法及设备
CN113105052B (zh) 一种高盐废水浓缩结晶系统和方法
CN107324578A (zh) 一种页岩气采出水处理系统及方法
CN212403827U (zh) 一种利用电厂烟气余热的脱硫废水零排放系统
CN210974278U (zh) 一种利用低品位烟气处理废水的装置
CN113120984A (zh) 油水混合物废水处理方法和系统
JPS6350079B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953909

Country of ref document: EP

Kind code of ref document: A1