WO2022052809A1 - 用于控制仓库中的机器人的行驶的方法和装置 - Google Patents
用于控制仓库中的机器人的行驶的方法和装置 Download PDFInfo
- Publication number
- WO2022052809A1 WO2022052809A1 PCT/CN2021/114515 CN2021114515W WO2022052809A1 WO 2022052809 A1 WO2022052809 A1 WO 2022052809A1 CN 2021114515 W CN2021114515 W CN 2021114515W WO 2022052809 A1 WO2022052809 A1 WO 2022052809A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- robot
- robots
- warehouse
- travel
- road network
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 55
- 238000004590 computer program Methods 0.000 claims description 10
- 241000282412 Homo Species 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0223—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0276—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
Definitions
- the present invention relates to the field of robots, and in particular, to a method and device for controlling the running of a robot in a warehouse.
- robots that can move are usually used to carry goods.
- the robot travels along the navigation route in the middle of the road in the warehouse to reach the target location.
- the number of robots set up in the warehouse also increases, in this case, each robot in the warehouse navigates along the Congestion or collisions are prone to occur during the course of the route.
- An object of the present invention is to provide a method and apparatus for controlling the running of a robot in a warehouse.
- a method for controlling the driving of a robot in a warehouse comprising: acquiring map information and road network information of the warehouse; position and target position, determine the driving route of the robot; make the robot travel along the driving route.
- the driving route is a driving route along a predetermined lane in the road network corresponding to the road network information, wherein the predetermined lane is a lane determined according to a predetermined traffic rule.
- the method further includes: periodically sending the current position information of the robot to all other robots in the warehouse, and periodically receiving the current position information of all other robots from all other robots in the warehouse; wherein, According to the map information and road network information and the current position and target position of the robot, the step of determining the driving route of the robot includes: The target position, the fastest or shortest route to the target position is determined as the travel route.
- the method further includes: periodically sending the current position information of the robot to the server, and periodically receiving the current position information of all robots in the warehouse sent by the server from the server, wherein, according to the map information and road network information and the current position and target position of the robot, the step of determining the driving route of the robot includes: according to the map information and road network information and the current position information of all robots in the warehouse and the target position of the robot, the robot will arrive The fastest or shortest route to the target location is determined as the travel route.
- the method further includes: displaying the map and the road network according to the map information and the road network information, and whenever the current position information of the robot and/or other robots in the warehouse is obtained, according to the obtained current position
- the information displays the current location of the robot and/or other robots in the warehouse on a map.
- the method further includes: during the driving of the robot, detecting whether there is an obstacle on the driving route; in the case of detecting an obstacle, at a first predetermined distance from the obstacle, make the The robot deviates from the predetermined lane to bypass the obstacle, and when the robot passes the obstacle a second predetermined distance, the robot returns to the predetermined lane to continue driving along the driving route.
- the method further includes: during the driving of the robot, detecting whether there are other robots and/or people driving in front of the robot; if it is detected that the other robots and/or people exist , determine whether the driving speed of the other robots and/or people is lower than the current driving speed of the robot; in the case that the driving speed of the other robots and/or people is determined to be lower than the current driving speed of the robot, adjust all the current travel speed of the robot to avoid collision of the robot with the other robots and/or people.
- the step of adjusting the current travel speed of the robot includes causing the robot to travel at a speed equal to or less than the travel speed of the other robots and/or people.
- the step of adjusting the current travel speed of the robot includes: making the robot travel at a higher speed than the other robots and/or people, and at a third predetermined distance from the other robots and/or people. where the robot deviates from the predetermined lane to bypass the other robots and/or people, and when the robot passes the other robots and/or people a fourth predetermined distance, returns the robot to the the predetermined lane to continue driving along the travel route.
- the obstacles include other robots, objects and/or people that are stopped on the travel route.
- the predetermined traffic rule is a left driving rule or a right driving rule.
- the road network corresponding to the road network information includes a plurality of lanes.
- an apparatus for controlling the traveling of a robot in a warehouse comprising: an information acquisition unit configured to acquire map information and road network information of the warehouse; a route determination unit, It is configured to be able to determine the driving route of the robot according to map information and road network information and the current position and target position of the robot; a driving control unit is configured to enable the robot to travel along the driving route .
- a computer-readable recording medium storing a computer program, wherein the computer program is configured, when executed by a processor, to implement the method for controlling a robot in a warehouse according to the present invention method of driving.
- a system for controlling the travel of a robot in a warehouse comprising: a processor; a memory storing a computer program that, when executed by the processor, implements A method for controlling the travel of a robot in a warehouse according to the present invention.
- the running route of the robot can be accurately determined according to the map information and road network information of the warehouse, thereby improving the running efficiency of the robot in the warehouse.
- FIG. 1 shows a flowchart of a method for controlling the travel of a robot in a warehouse according to an exemplary embodiment of the present invention.
- FIG. 2 shows a schematic diagram of an example of a driving lane according to an exemplary embodiment of the present invention.
- FIG. 3 shows a schematic diagram of an example of a robot avoiding obstacles according to an exemplary embodiment of the present invention.
- Fig. 4 shows a block diagram of an apparatus for controlling the travel of a robot in a warehouse according to an exemplary embodiment of the present invention.
- FIG. 1 shows a flowchart of a method for controlling the travel of a robot in a warehouse according to an exemplary embodiment of the present invention.
- step S1 map information and road network information of the warehouse are acquired.
- the map information and road network information of the warehouse may be stored in the robot in the warehouse, or may be stored in a server (eg, an integrated dispatch system), in which case, the map information and road network information may be acquired from the robot or the server.
- road network information e.g., an integrated dispatch system
- the map information and the road network information may be stored separately, or the map information and the road network information may be superimposed together in advance, that is, the road network may be laid on the map in advance.
- the map information and road network information may be updated according to changes in the layout in the warehouse, and the map information and road network information acquired in step S1 are the latest updated map information and road network information.
- the road network corresponding to the road network information includes a plurality of lanes.
- a road in a warehouse may include left and right lanes, such as one left and one right lane, or two or more left and two or more right lanes, furthermore, the lanes may be divided into Main and auxiliary roads.
- step S2 the driving route of the robot is determined according to the map information and road network information as well as the current position and target position of the robot.
- the driving route may be a driving route along a predetermined lane in the road network corresponding to the road network information, wherein the predetermined lane may be a lane determined according to a predetermined traffic rule.
- the predetermined traffic rule may be a left-hand driving rule or a right-hand driving rule.
- the driving route may be selected to be either a left lane or a right lane route according to the left-hand drive rule or the right-hand drive rule.
- the driving route may be selected to be along the left lane or the right lane according to the preset priority order of the lanes The route of the lanes selected according to the priority of the lanes.
- step S3 the robot is made to travel along the travel route.
- the robot can be made to drive in the lane indicated by the driving route.
- FIG. 2 shows a schematic diagram of an example of a driving lane according to an exemplary embodiment of the present invention.
- Fig. 2 shows a section of road in the warehouse.
- the longer bar graphs on the upper and lower sides of Fig. 2 represent the shelves or goods in the warehouse.
- the middle of the two bar graphs is the road that the robot can travel.
- the road in Fig. 2 is divided For the upper and lower lanes (i.e., the left and right lanes), the four rectangles in the middle of Figure 2 represent the robot, the arrows indicate the driving direction of the robot, and the robots in Figure 2 drive to the right along their respective lanes.
- the driving route to a driving route along a predetermined lane, and making the robot travel along the lane indicated by the driving route, the traffic jam of the robot in the warehouse can be largely avoided.
- the current position of all robots in the warehouse can also be considered to determine the driving route. under these circumstances:
- the method for controlling the driving of a robot in a warehouse may further include the following steps: periodically sending the current position information of the robot to all other robots in the warehouse, and periodically sending the current position information of the robot to all other robots in the warehouse, All other robots on receive the current location information of all other robots.
- the period for the robot to send the current position and the period for the robot to receive the current position of other robots from other robots can be set according to actual usage needs.
- the cycle at which the robot sends the current position may be the same as or different from the cycle at which the robot receives the current position of other robots from other robots.
- the method for controlling the running of a robot in a warehouse may further include the steps of: periodically sending the current position information of the robot to a server, and periodically receiving from the server the warehouse sent by the server The current location information of all robots within.
- the period for the robot to send the current position and the period for the robot to receive the current positions of all the robots from the server can be set according to actual usage needs.
- the cycle at which the robot sends the current position can be the same or different from the cycle at which the robot receives the current position of all robots from the server.
- step S2 may include: determining the fastest or shortest route to the target position as the driving route.
- determining the fastest or shortest route to the target position as the driving route is only an example, and the optimal route under the usage requirement may be determined as the driving route according to any other usage requirement.
- a map and a road network (or a map on which the road network is laid) can also be displayed.
- the method for controlling the driving of a robot in a warehouse may further include the steps of: displaying a map and a road network according to map information and road network information, and whenever the robot and/or the warehouse is acquired When the current position information of other robots is obtained, the current positions of the robot and/or other robots in the warehouse are displayed on the map according to the obtained current position information.
- the method for controlling the driving of a robot in a warehouse may further include the following steps: during the driving process of the robot, detecting whether there is an obstacle on the driving route; when an obstacle is detected At a first predetermined distance from the obstacle, the robot is driven to deviate from the predetermined lane to bypass the obstacle, and when the robot passes the obstacle at a second predetermined distance, the robot is caused to return to the A lane is reserved to continue traveling along the travel route.
- the obstacles include other robots, objects and/or people that are stopped on the travel route.
- a stop can mean that the speed is zero, or it can mean that the speed is less than a predetermined threshold.
- FIG. 3 shows a schematic diagram of an example of a robot avoiding obstacles according to an exemplary embodiment of the present invention.
- Fig. 3 shows a section of road in the warehouse.
- the longer bar graphs on the upper and lower sides of Fig. 3 represent the shelves or goods in the warehouse.
- the middle of the two bar graphs is the road that the robot can travel.
- the road in Fig. 3 is divided For the upper and lower lanes (ie, the left lane and the right lane), the rectangle in the middle of Figure 3 represents the robot, the triangle represents the obstacle, and the robot's driving lane is the lower lane, that is, the right lane. Referring to the arrows in FIG.
- the robot in the case of detecting an obstacle, at a first predetermined distance from the obstacle, the robot deviates from the original lane to drive around the obstacle, and when the robot drives over the obstacle at a second predetermined distance, Return to the original lane to continue on the travel route.
- Fig. 3 shows that the robot deviates to the left lane when bypassing the obstacle, this is only an example, and the lane to which the robot deviates when bypassing the obstacle can be set according to the actual usage. For example, the robot can deviate from the obstacle. Go to another right lane or side road, etc.
- the robot can also be controlled to drive at the default speed, the speed set by the user, or the speed determined according to traffic conditions or other usage requirements.
- the driving speed of the robot can also be adjusted during the driving process of the robot.
- the method for controlling the running of a robot in a warehouse may further include the following steps: during the running of the robot, detecting whether there are other running robots and/or people in front of the robot; In the case of detecting the existence of the other robots and/or people, determine whether the driving speed of the other robots and/or people is lower than the current driving speed of the robot; after determining the driving speed of the other robots and/or people If it is smaller than the current travel speed of the robot, adjust the current travel speed of the robot to avoid collision of the robot with the other robots and/or people.
- the step of adjusting the current travel speed of the robot may include causing the robot to travel at a speed equal to or less than the travel speed of the other robots and/or people.
- the step of adjusting the current travel speed of the robot may include causing the robot to travel at a greater speed than the other robots and/or people, and at a third distance from the other robots and/or people at a predetermined distance, causing the robot to deviate from the predetermined lane to bypass the other robots and/or people, causing the robot to travel a fourth predetermined distance from the other robots and/or people Return to the predetermined lane to continue traveling along the travel route.
- the robot may be caused to continue to travel along the travel route, bypassing other robots and/or people traveling at a lower speed, as shown in FIG. 3 .
- first distance, second distance, third distance and fourth distance can be set according to actual use requirements, and one of the first distance, second distance, third distance and fourth distance can be set as Multiple settings are the same and/or different.
- the running route of the robot can be accurately determined according to the map information and road network information of the warehouse, thereby improving the running efficiency of the robot in the warehouse.
- FIG. 4 shows a block diagram of an apparatus for controlling travel of a robot in a warehouse according to an exemplary embodiment of the present invention.
- an apparatus for controlling travel of a robot in a warehouse includes an information acquisition unit 1 , a route determination unit 2 and a travel control unit 3 .
- the information acquisition unit 1 is configured to be able to acquire map information and road network information of the warehouse.
- the route determination unit 2 is configured to be able to determine the travel route of the robot according to the map information and road network information as well as the current position and the target position of the robot.
- the travel control unit 3 is configured to enable the robot to travel along the travel route.
- map information the road network information, the determination of the driving route, and the driving manner of the robot along the driving route have been described in detail with reference to FIGS. 1 to 3 , and will not be repeated here.
- the running route of the robot can be accurately determined according to the map information and road network information of the warehouse, thereby improving the running efficiency of the robot in the warehouse.
- Exemplary embodiments according to the present invention also provide a system for controlling travel of a robot in a warehouse.
- the system for controlling travel of a robot in a warehouse includes a processor and a memory.
- the memory is configured to be able to store computer programs.
- the computer program can be executed by a processor to implement the method according to the invention for controlling the travel of a robot in a warehouse.
- Exemplary embodiments according to the present invention also provide a computer-readable recording medium storing a computer program, wherein the computer program, when executed by a processor, implements the method for controlling a robot in a warehouse according to the present invention. method of driving.
- the computer-readable recording medium is any data storage device that can store data read by a computer system. Examples of the computer-readable recording medium include read-only memory, random-access memory, optical disks, magnetic tapes, floppy disks, optical data storage devices, and carrier waves (such as data transmission through the Internet via wired or wireless transmission paths).
- the computer-readable recording medium can also be distributed over network coupled computer systems so that the computer-readable code is stored and executed in a distributed fashion.
- functional programs, codes and code segments for accomplishing the present invention can be easily construed by programmers of ordinary skill in the art to which the present invention pertains within the scope of the present invention.
- respective units in the above-described apparatuses and devices according to exemplary embodiments of the present invention may be implemented as hardware components or software modules.
- those skilled in the art can implement each unit by using, for example, a Field Programmable Gate Array (FPGA), an Application Specific Integrated Circuit (ASIC), or a processor according to the processes performed by the defined individual units.
- FPGA Field Programmable Gate Array
- ASIC Application Specific Integrated Circuit
- S1 obtains the map information and road network information of the warehouse
- S2 determines the driving route of the robot according to the map information and road network information as well as the current position and target position of the robot
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
一种用于控制仓库中的机器人的行驶的方法和装置。方法包括:获取仓库的地图信息和路网信息(S1);根据地图信息和路网信息以及机器人的当前位置和目标位置,确定机器人的行驶路线(S2);使机器人沿行驶路线行驶(S3)。通过本用于控制仓库中的机器人的行驶的方法和装置,能够根据仓库的地图信息和路网信息来精确地确定机器人的行驶路线,从而提高了仓库内的机器人的行驶效率。
Description
本发明涉及机器人领域,特别地,涉及一种用于控制仓库中的机器人的行驶的方法和装置。
随着科技的发展,目前在存放了较多货物的仓库中,为了节省人力并提高货物搬运效率,通常使用能够行驶的机器人来搬运货物。
通常,机器人沿导航路线在仓库中的道路中央行驶以到达目标位置。然而,随着仓库中货物的增多或者随着对搬运效率的要求越来越高,仓库中设置的机器人的数量也越来越多,在这种情况下,在仓库中的每个机器人沿导航路线行驶的过程中很容易出现拥堵或碰撞等情况。
因此,现有的仓库中的机器人的行驶方式不能满足用户的需求。
发明内容
本发明的目的在于提供一种用于控制仓库中的机器人的行驶的方法和装置。
根据本发明的一方面,提供一种用于控制仓库中的机器人的行驶的方法,所述方法包括:获取仓库的地图信息和路网信息;根据地图信息和路网信息以及所述机器人的当前位置和目标位置,确定所述机器人的行驶路线;使所述机器人沿所述行驶路线行驶。
可选地,所述行驶路线为沿与路网信息对应的路网中的预定车道的行驶路线,其中,所述预定车道为根据预定交通规则而确定的车道。
可选地,所述方法还包括:周期性将所述机器人的当前位置信息发送到仓库内的所有其他机器人,并周期性从仓库内的所有其他机器人接收所有其他机器人的当前位置信息;其中,根据地图信息和路网信息以及所述机器人的当前位置和目标位置,确定所述机器人的行驶路线的步骤包括: 根据地图信息和路网信息以及仓库内所有机器人的当前位置信息和所述机器人的目标位置,将到达目标位置的最快或最短路线确定为所述行驶路线。
可选地,所述方法还包括:周期性将所述机器人的当前位置信息发送到服务器,并周期性从服务器接收服务器发送的仓库内的所有机器人的当前位置信息,其中,根据地图信息和路网信息以及所述机器人的当前位置和目标位置,确定所述机器人的行驶路线的步骤包括:根据地图信息和路网信息以及仓库内所有机器人的当前位置信息和所述机器人的目标位置,将到达目标位置的最快或最短路线确定为所述行驶路线。
可选地,所述方法还包括:根据地图信息和路网信息显示地图和路网,并且每当获取到所述机器人和/或仓库内的其他机器人的当前位置信息时,根据获取的当前位置信息将所述机器人和/或仓库内的其他机器人的当前位置显示在地图上。
可选地,所述方法还包括:在所述机器人行驶过程中,检测所述行驶路线上是否存在障碍物;在检测到障碍物的情况下,在距障碍物第一预定距离处,使所述机器人偏离所述预定车道行驶以绕过障碍物,并在所述机器人驶过障碍物第二预定距离时,使所述机器人返回所述预定车道以继续沿所述行驶路线行驶。
可选地,所述方法还包括:在所述机器人行驶过程中,检测所述机器人前方是否存在正在行驶的其他机器人和/或人;在检测到存在所述其他机器人和/或人的情况下,确定所述其他机器人和/或人的行驶速度是否小于所述机器人的当前行驶速度;在确定所述其他机器人和/或人的行驶速度小于所述机器人的当前行驶速度的情况下,调整所述机器人的当前行驶速度,以避免所述机器人与所述其他机器人和/或人碰撞。
可选地,调整所述机器人的当前行驶速度的步骤包括:使所述机器人以等于或小于所述其他机器人和/或人的行驶速度的速度行驶。
可选地,调整所述机器人的当前行驶速度的步骤包括:使所述机器人以大于所述其他机器人和/或人的行驶速度行驶,并在距所述其他机器人和/或人第三预定距离处,使所述机器人偏离所述预定车道行驶以绕过所述其他机器人和/或人,在所述机器人驶过所述其他机器人和/或人第四预定距离时,使所述机器人返回所述预定车道以继续沿所述行驶路线行驶。
可选地,所述障碍物包括所述行驶路线上的停止的其他机器人、物品和/或人。
可选地,所述预定交通规则为靠左行驶规则或靠右行驶规则。
可选地,与路网信息对应的路网包括多条车道。
根据本发明的一方面,提供一种用于控制仓库中的机器人的行驶的装置,所述装置包括:信息获取单元,其被配置为能够获取仓库的地图信息和路网信息;路线确定单元,其被配置为能够根据地图信息和路网信息以及所述机器人的当前位置和目标位置,确定所述机器人的行驶路线;行驶控制单元,其被配置为能够使所述机器人沿所述行驶路线行驶。
根据本发明的另一方面,提供一种存储有计算机程序的计算机可读记录介质,其中,所述计算机程序被配置为当被处理器执行时实施根据本发明的用于控制仓库中的机器人的行驶的方法。
根据本发明的另一方面,提供一种用于控制仓库中的机器人的行驶的系统,所述系统包括:处理器;存储器,存储有计算机程序,当所述计算机程序被处理器执行时,实施根据本发明的用于控制仓库中的机器人的行驶的方法。
通过根据本发明的用于控制仓库中的机器人的行驶的方法和装置,能够根据仓库的地图信息和路网信息来精确地确定机器人的行驶路线,从而提高了仓库内的机器人的行驶效率。
通过以下结合附图所作的详细描述,将更全面地理解本发明的前述和其他方面,附图包括:
图1示出了根据本发明的一个示例性实施例的用于控制仓库中的机器人的行驶的方法的流程图。
图2示出了根据本发明的一个示例性实施例的行驶车道的示例的示意图。
图3示出了根据本发明的一个示例性实施例的机器人避开障碍物的示例的示意图。
图4示出了根据本发明的一个示例性实施例的用于控制仓库中的机器 人的行驶的装置的框图。
下面,将参照附图更为详细地描述本发明的一些示例性实施例,以便更好地理解本发明的基本思想和优点。
图1示出了根据本发明的一个示例性实施例的用于控制仓库中的机器人的行驶的方法的流程图。
参照图1,在步骤S1,获取仓库的地图信息和路网信息。
这里,仓库的地图信息和路网信息可被存储在仓库中的机器人中,或者可被存储在服务器(例如,集成调度系统)中,在这种情况下,可从机器人或服务器获取地图信息和路网信息。此外,地图信息和路网信息可分开存储,或者地图信息和路网信息可预先叠加在一起、即预先在地图上铺设路网。
作为示例,地图信息和路网信息可根据仓库内的布局的变化而被更新,并且在步骤S1中获取的地图信息和路网信息为最新更新的地图信息和路网信息。
作为示例,与路网信息对应的路网包括多条车道。例如,仓库中的道路可包括左车道和右车道、例如一个左车道和一个右车道或者两个或更多个左车道以及两个或更多个右车道,此外,这些车道还可被划分为主道和辅道。
在步骤S2,根据地图信息和路网信息以及所述机器人的当前位置和目标位置,确定所述机器人的行驶路线。
作为示例,所述行驶路线可以为沿与路网信息对应的路网中的预定车道的行驶路线,其中,所述预定车道可以为根据预定交通规则而确定的车道。
作为示例,所述预定交通规则可以为靠左行驶规则或靠右行驶规则。
例如,在路网中包括一个左车道和一个右车道的情况下,可根据靠左行驶规则或靠右行驶规则,而将行驶路线选择为沿左车道或沿右车道的路线。在路网中的车道包括两个或更多个左车道和两个或更多个右车道的情况下,可根据预先设置的车道的优先级顺序,而将行驶路线选择为沿左车 道或右车道中的根据优先级选择的车道的路线。
在步骤S3,使所述机器人沿所述行驶路线行驶。
这里,可使机器人在行驶路线指示的车道上行驶。
图2示出了根据本发明的一个示例性实施例的行驶车道的示例的示意图。
图2示出了仓库中的一段道路,图2上下两侧的较长的条状图形表示仓库中的货架或货物,两个条状图形中间为机器人可行驶的道路,图2中的道路划分为上下两条车道(即,左车道和右车道),图2中间的四个矩形图形表示机器人,箭头指示机器人的行驶方向,图2中的机器人沿各自的车道靠右行驶。
这里,通过将行驶路线设置为沿预定车道的行驶路线,并使机器人沿着行驶路线所指示的车道行驶,可大幅度避免仓库中的机器人的交通拥堵情况。
此外,为了更加合理、优化地设置行驶路线,还可考虑仓库中的所有机器人的当前位置,来确定行驶路线。在这种情况下:
作为一个示例,根据本发明的用于控制仓库中的机器人的行驶的方法还可包括以下步骤:周期性将所述机器人的当前位置信息发送到仓库内的所有其他机器人,并周期性从仓库内的所有其他机器人接收所有其他机器人的当前位置信息。
这里,可根据实际使用需要来设置机器人发送当前位置的周期以及机器人从其他机器人接收其他机器人的当前位置的周期。并且机器人发送当前位置的周期可与机器人从其他机器人接收其他机器人的当前位置的周期相同或不同。
作为另一示例,根据本发明的用于控制仓库中的机器人的行驶的方法还可包括以下步骤:周期性将所述机器人的当前位置信息发送到服务器,并周期性从服务器接收服务器发送的仓库内的所有机器人的当前位置信息。
这里,可根据实际使用需要来设置机器人发送当前位置的周期以及机器人从服务器接收所有机器人的当前位置的周期。并且机器人发送当前位置的周期可与机器人从服务器接收所有机器人的当前位置的周期相同或不 同。
在这两种情况下,步骤S2可包括:根据地图信息和路网信息以及仓库内所有机器人的当前位置信息和所述机器人的目标位置,将到达目标位置的最快或最短路线确定为所述行驶路线。
应该理解,这里将到达目标位置的最快或最短路线确定为所述行驶路线仅为示例,可根据任意其他使用需求而将该使用需求下的最优路线确定为行驶路线。
此外,为了更直观地获取仓库内的机器人的分布信息,还可将地图和路网(或者铺设了路网的地图)进行显示。
作为示例,根据本发明的用于控制仓库中的机器人的行驶的方法还可包括以下步骤:根据地图信息和路网信息显示地图和路网,并且每当获取到所述机器人和/或仓库内的其他机器人的当前位置信息时,根据获取的当前位置信息将所述机器人和/或仓库内的其他机器人的当前位置显示在地图上。
这里,通过显示地图信息和路网信息,可以更方便、直观地获知仓库内的机器人的分布情况。
此外,在机器人的行驶过程中,还可以实时检测行驶路线上是否存在障碍物,并且在检测到障碍物的情况下使机器人避开障碍物。作为示例,根据本发明的用于控制仓库中的机器人的行驶的方法还可包括以下步骤:在所述机器人行驶过程中,检测所述行驶路线上是否存在障碍物;在检测到障碍物的情况下,在距障碍物第一预定距离处,使所述机器人偏离所述预定车道行驶以绕过障碍物,并在所述机器人驶过障碍物第二预定距离时,使所述机器人返回所述预定车道以继续沿所述行驶路线行驶。
作为示例,所述障碍物包括所述行驶路线上的停止的其他机器人、物品和/或人。
例如,停止可以指速度为0,或者也可以指速度小于预定阈值。
图3示出了根据本发明的一个示例性实施例的机器人避开障碍物的示例的示意图。
图3示出了仓库中的一段道路,图3上下两侧的较长的条状图形表示仓库中的货架或货物,两个条状图形中间为机器人可行驶的道路,图3中 的道路划分为上下两条车道(即,左车道和右车道),图3中间的矩形图形表示机器人,三角形表示障碍物,机器人的行驶车道为下方车道、即右车道。参照图3箭头指示的,在检测到障碍物的情况下,在距障碍物第一预定距离处,机器人偏离原车道行驶以绕过障碍物,并在机器人驶过障碍物第二预定距离时,返回原车道以继续沿所述行驶路线行驶。
虽然图3中示出机器人在绕过障碍物时偏离到左车道行驶,但这仅是示例,可根据实际使用情况来设置机器人绕过障碍物时所偏离到的车道,例如,可使机器人偏离到另一右车道或辅道行驶等。
此外,在机器人的行驶过程中,还可控制机器人按照默认速度、用户设置的速度或根据交通情况或其他使用需求而确定的速度行驶。并且,为了避免碰撞,还可以在机器人的行驶过程中调整机器人的行驶速度。
作为示例,根据本发明的用于控制仓库中的机器人的行驶的方法还可包括以下步骤:在所述机器人行驶过程中,检测所述机器人前方是否存在正在行驶的其他机器人和/或人;在检测到存在所述其他机器人和/或人的情况下,确定所述其他机器人和/或人的行驶速度是否小于所述机器人的当前行驶速度;在确定所述其他机器人和/或人的行驶速度小于所述机器人的当前行驶速度的情况下,调整所述机器人的当前行驶速度,以避免所述机器人与所述其他机器人和/或人碰撞。
作为一个示例,调整所述机器人的当前行驶速度的步骤可包括:使所述机器人以等于或小于所述其他机器人和/或人的行驶速度的速度行驶。
作为另一示例,调整所述机器人的当前行驶速度的步骤可包括:使所述机器人以大于所述其他机器人和/或人的行驶速度行驶,并在距所述其他机器人和/或人第三预定距离处,使所述机器人偏离所述预定车道行驶以绕过所述其他机器人和/或人,在所述机器人驶过所述其他机器人和/或人第四预定距离时,使所述机器人返回所述预定车道以继续沿所述行驶路线行驶。在该示例的情况下,例如,可以使机器人类似图3所示地绕过行驶速度较低的其他机器人和/或人而继续沿行驶路线行驶。
应该理解,可根据实际使用需要来设置上述的第一距离、第二距离、第三距离和第四距离,并且可将第一距离、第二距离、第三距离和第四距离中的一个或多个设置为相同和/或不同。
这里,通过根据周围机器人和/或人的行驶速度来调整当前机器人的行驶速度,可灵活、有效地避免仓库内的机器人之间或机器人与人之间的碰撞问题。
通过根据本发明的用于控制仓库中的机器人的行驶的方法,能够根据仓库的地图信息和路网信息来精确地确定机器人的行驶路线,从而提高了仓库内的机器人的行驶效率。
图4示出了根据本发明的一个示例性实施例的用于控制仓库中的机器人的行驶的装置的框图。
参照图4,根据本发明的一个示例性实施例的用于控制仓库中的机器人的行驶的装置包括:信息获取单元1、路线确定单元2和行驶控制单元3。
信息获取单元1被配置为能够获取仓库的地图信息和路网信息。
路线确定单元2被配置为能够根据地图信息和路网信息以及所述机器人的当前位置和目标位置,确定所述机器人的行驶路线。
行驶控制单元3被配置为能够使所述机器人沿所述行驶路线行驶。
这里,已经参照图1至图3对地图信息、路网信息、行驶路线的确定以及机器人沿行驶路线的行驶方式进行了详细描述,这里不再赘述。
通过根据本发明的用于控制仓库中的机器人的行驶的装置,能够根据仓库的地图信息和路网信息来精确地确定机器人的行驶路线,从而提高了仓库内的机器人的行驶效率。
根据本发明的示例性实施例还提供一种用于控制仓库中的机器人的行驶的系统。所述用于控制仓库中的机器人的行驶的系统包括处理器和存储器。存储器被配置为能够存储计算机程序。所述计算机程序能够被处理器执行,以实施根据本发明的用于控制仓库中的机器人的行驶的方法。
根据本发明的示例性实施例还提供一种存储有计算机程序的计算机可读记录介质,其中,所述计算机程序配置为当被处理器执行时实施根据本发明的用于控制仓库中的机器人的行驶的方法。该计算机可读记录介质是可存储由计算机系统读出的数据的任意数据存储装置。计算机可读记录介质的示例包括:只读存储器、随机存取存储器、只读光盘、磁带、软盘、光数据存储装置和载波(诸如经有线或无线传输路径通过互联网的数据传输)。计算机可读记录介质也可分布于连接网络的计算机系统,从而计算机 可读代码以分布式存储和执行。此外,完成本发明的功能程序、代码和代码段可容易地被与本发明相关的领域的普通程序员在本发明的范围之内解释。
此外,根据本发明的示例性实施例的上述装置和设备中的各个单元可被实现为硬件组件或软件模块。此外,本领域技术人员可根据限定的各个单元所执行的处理,通过例如使用现场可编程门阵列(FPGA)、专用集成电路(ASIC)或处理器来实现各个单元。
尽管这里参考特定实施例说明和描述了本发明,但是本发明并不限于所示的细节。而是,可以在本发明的范围内对这些细节进行各种修改。
附图标记列表
S1获取仓库的地图信息和路网信息
S2根据地图信息和路网信息以及所述机器人的当前位置和目标位置,确定所述机器人的行驶路线
S3使所述机器人沿所述行驶路线行驶
1信息获取单元
2路线确定单元
3行驶控制单元
Claims (15)
- 一种用于控制仓库中的机器人的行驶的方法,所述方法包括:获取仓库的地图信息和路网信息;根据地图信息和路网信息以及所述机器人的当前位置和目标位置,确定所述机器人的行驶路线;使所述机器人沿所述行驶路线行驶。
- 根据权利要求1所述的方法,其中,所述行驶路线为沿与路网信息对应的路网中的预定车道的行驶路线,其中,所述预定车道为根据预定交通规则而确定的车道。
- 根据权利要求2所述的方法,其中,所述方法还包括:周期性将所述机器人的当前位置信息发送到仓库内的所有其他机器人,并周期性从仓库内的所有其他机器人接收所有其他机器人的当前位置信息;其中,根据地图信息和路网信息以及所述机器人的当前位置和目标位置,确定所述机器人的行驶路线的步骤包括:根据地图信息和路网信息以及仓库内所有机器人的当前位置信息和所述机器人的目标位置,将到达目标位置的最快或最短路线确定为所述行驶路线。
- 根据权利要求2所述的方法,其中,所述方法还包括:周期性将所述机器人的当前位置信息发送到服务器,并周期性从服务器接收服务器发送的仓库内的所有机器人的当前位置信息,其中,根据地图信息和路网信息以及所述机器人的当前位置和目标位置,确定所述机器人的行驶路线的步骤包括:根据地图信息和路网信息以及仓库内所有机器人的当前位置信息和所述机器人的目标位置,将到达目标位置的最快或最短路线确定为所述行驶路线。
- 根据权利要求3或4所述的方法,其中,所述方法还包括:根据地图信息和路网信息显示地图和路网,并且每当获取到所述机器人和/或仓库内的其他机器人的当前位置信息时,根据获取的当前位置信息将所述机器人和/或仓库内的其他机器人的当前位置显示在地图上。
- 根据权利要求2至4中的任意一项所述的方法,其中,所述方法还包括:在所述机器人行驶过程中,检测所述行驶路线上是否存在障碍物;在检测到障碍物的情况下,在距障碍物第一预定距离处,使所述机器人偏离所述预定车道行驶以绕过障碍物,并在所述机器人驶过障碍物第二预定距离时,使所述机器人返回所述预定车道以继续沿所述行驶路线行驶。
- 根据权利要求2至4中的任意一项所述的方法,其中,所述方法还包括:在所述机器人行驶过程中,检测所述机器人前方是否存在正在行驶的其他机器人和/或人;在检测到存在所述其他机器人和/或人的情况下,确定所述其他机器人和/或人的行驶速度是否小于所述机器人的当前行驶速度;在确定所述其他机器人和/或人的行驶速度小于所述机器人的当前行驶速度的情况下,调整所述机器人的当前行驶速度,以避免所述机器人与所述其他机器人和/或人碰撞。
- 根据权利要求7所述的方法,其中,调整所述机器人的当前行驶速度的步骤包括:使所述机器人以等于或小于所述其他机器人和/或人的行驶速度的速度行驶。
- 根据权利要求7所述的方法,其中,调整所述机器人的当前行驶速度的步骤包括:使所述机器人以大于所述其他机器人和/或人的行驶速度行驶,并在距所述其他机器人和/或人第三预定距离处,使所述机器人偏离所 述预定车道行驶以绕过所述其他机器人和/或人,在所述机器人驶过所述其他机器人和/或人第四预定距离时,使所述机器人返回所述预定车道以继续沿所述行驶路线行驶。
- 根据权利要求6所述的方法,其中,所述障碍物包括所述行驶路线上的停止的其他机器人、物品和/或人。
- 根据权利要求2至4中的任意一项所述的方法,其中,所述预定交通规则为靠左行驶规则或靠右行驶规则。
- 根据权利要求1至4中的任意一项所述的方法,其中,与路网信息对应的路网包括多条车道。
- 一种用于控制仓库中的机器人的行驶的装置,所述装置包括:信息获取单元,其被配置为能够获取仓库的地图信息和路网信息;路线确定单元,其被配置为能够根据地图信息和路网信息以及所述机器人的当前位置和目标位置,确定所述机器人的行驶路线;行驶控制单元,其被配置为能够使所述机器人沿所述行驶路线行驶。
- 一种存储有计算机程序的计算机可读记录介质,其中,所述计算机程序被配置为当被处理器执行时实施权利要求1至12中的任意一项所述的方法。
- 一种用于控制仓库中的机器人的行驶的系统,所述系统包括:处理器;存储器,存储有计算机程序,当所述计算机程序被处理器执行时,实施权利要求1至12中的任意一项所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010957837.0A CN112000110A (zh) | 2020-09-11 | 2020-09-11 | 用于控制仓库中的机器人的行驶的方法和装置 |
CN202010957837.0 | 2020-09-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022052809A1 true WO2022052809A1 (zh) | 2022-03-17 |
Family
ID=73469200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/114515 WO2022052809A1 (zh) | 2020-09-11 | 2021-08-25 | 用于控制仓库中的机器人的行驶的方法和装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112000110A (zh) |
WO (1) | WO2022052809A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112000110A (zh) * | 2020-09-11 | 2020-11-27 | 灵动科技(北京)有限公司 | 用于控制仓库中的机器人的行驶的方法和装置 |
CN112757252B (zh) * | 2021-01-21 | 2022-12-30 | 深圳市普渡科技有限公司 | 机器人运动意图显示方法、机器人以及存储介质 |
CN113878577B (zh) * | 2021-09-28 | 2023-05-30 | 深圳市海柔创新科技有限公司 | 机器人的控制方法、机器人、控制终端和控制系统 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104809606A (zh) * | 2015-04-29 | 2015-07-29 | 上海交通大学 | 具有多导引车调度分配功能的仓库管理系统 |
US10394244B2 (en) * | 2016-05-26 | 2019-08-27 | Korea University Research And Business Foundation | Method for controlling mobile robot based on Bayesian network learning |
CN110827572A (zh) * | 2019-01-25 | 2020-02-21 | 长城汽车股份有限公司 | 用于代客泊车的路径规划方法及装置 |
CN110989570A (zh) * | 2019-10-15 | 2020-04-10 | 浙江工业大学 | 一种多agv防碰撞协同路径规划方法 |
WO2020139392A1 (en) * | 2018-12-28 | 2020-07-02 | Didi Research America, Llc | Vehicle-based road obstacle identification system |
CN111376253A (zh) * | 2018-12-29 | 2020-07-07 | 深圳市优必选科技有限公司 | 一种机器人路线规划方法、装置、机器人及安全管理 |
CN111397631A (zh) * | 2020-04-10 | 2020-07-10 | 上海安吉星信息服务有限公司 | 一种导航路径的规划方法、装置和导航设备 |
CN112000110A (zh) * | 2020-09-11 | 2020-11-27 | 灵动科技(北京)有限公司 | 用于控制仓库中的机器人的行驶的方法和装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6394497B2 (ja) * | 2015-05-25 | 2018-09-26 | トヨタ自動車株式会社 | 車両の自動運転システム |
CN106527452B (zh) * | 2016-12-30 | 2019-11-05 | 广州汽车集团股份有限公司 | 一种无人驾驶汽车遇障时运动路径规划方法及系统 |
CN107544514B (zh) * | 2017-09-29 | 2022-01-07 | 广州唯品会研究院有限公司 | 机器人障碍物避让方法、装置、存储介质及机器人 |
DE102018108276A1 (de) * | 2018-04-09 | 2019-10-10 | Valeo Schalter Und Sensoren Gmbh | Fahrunterstützungssystem mit Spurwechselvorschlag |
CN110609549A (zh) * | 2019-08-24 | 2019-12-24 | 深圳市奥芯博电子科技有限公司 | 基于车辆的智能避障方法及系统、存储介质 |
CN110794841B (zh) * | 2019-11-12 | 2022-07-12 | 深圳创维数字技术有限公司 | 路径导航方法、装置及计算机可读存储介质 |
-
2020
- 2020-09-11 CN CN202010957837.0A patent/CN112000110A/zh active Pending
-
2021
- 2021-08-25 WO PCT/CN2021/114515 patent/WO2022052809A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104809606A (zh) * | 2015-04-29 | 2015-07-29 | 上海交通大学 | 具有多导引车调度分配功能的仓库管理系统 |
US10394244B2 (en) * | 2016-05-26 | 2019-08-27 | Korea University Research And Business Foundation | Method for controlling mobile robot based on Bayesian network learning |
WO2020139392A1 (en) * | 2018-12-28 | 2020-07-02 | Didi Research America, Llc | Vehicle-based road obstacle identification system |
CN111376253A (zh) * | 2018-12-29 | 2020-07-07 | 深圳市优必选科技有限公司 | 一种机器人路线规划方法、装置、机器人及安全管理 |
CN110827572A (zh) * | 2019-01-25 | 2020-02-21 | 长城汽车股份有限公司 | 用于代客泊车的路径规划方法及装置 |
CN110989570A (zh) * | 2019-10-15 | 2020-04-10 | 浙江工业大学 | 一种多agv防碰撞协同路径规划方法 |
CN111397631A (zh) * | 2020-04-10 | 2020-07-10 | 上海安吉星信息服务有限公司 | 一种导航路径的规划方法、装置和导航设备 |
CN112000110A (zh) * | 2020-09-11 | 2020-11-27 | 灵动科技(北京)有限公司 | 用于控制仓库中的机器人的行驶的方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
CN112000110A (zh) | 2020-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022052809A1 (zh) | 用于控制仓库中的机器人的行驶的方法和装置 | |
US11561107B2 (en) | Vehicle routing evaluation based on predicted network performance | |
CN105182981B (zh) | 机器人的行进方法、控制方法、控制系统和服务器 | |
EP3702230B1 (en) | Method and apparatus for planning travelling path, and vehicle | |
US10852745B2 (en) | Autonomous driving robot apparatus and method for autonomously driving the robot apparatus | |
WO2020215901A1 (zh) | 路径规划方法、电子设备、机器人及计算机可读存储介质 | |
US8838292B2 (en) | Collision avoiding method and associated system | |
US10126747B1 (en) | Coordination of mobile drive units | |
CN111426326A (zh) | 一种导航方法、装置、设备、系统及存储介质 | |
WO2021093419A1 (zh) | 路径导航方法、装置及计算机可读存储介质 | |
CN110223508B (zh) | 信息处理装置以及记录介质 | |
JP7204631B2 (ja) | 走行制御装置、方法及びコンピュータプログラム | |
US20210048825A1 (en) | Predictive and reactive field-of-view-based planning for autonomous driving | |
JP2020091826A (ja) | スクーターの配車方法、装置、記憶媒体及び電子装置 | |
US20210123766A1 (en) | Travel control apparatus, mobile body, and operation system | |
GB2564930A (en) | Vehicle route navigation | |
KR20240141674A (ko) | 강화 학습 기반의 알고리즘과 경로 계획 기반의 알고리즘을 사용하여 로봇을 제어하는 방법 및 시스템과, 로봇이 배치되는 건물 | |
Kala et al. | Multi-vehicle planning using RRT-connect | |
CN112346446A (zh) | 自动导引运输车脱码恢复方法、装置及电子设备 | |
US20230280164A1 (en) | Information processing device, information processing method, and program | |
JP2021039450A (ja) | 設計支援システム、設計支援方法、及びプログラム | |
CN114153211B (zh) | 多机器人过窄通道的调度方法、装置、设备及存储介质 | |
US20210033410A1 (en) | Pick-up/drop-off zone tracking system | |
CN113928334A (zh) | 用于自主车辆的基于随机位移的路径定心系统 | |
US11999344B2 (en) | System and method for selecting an intermediate parking goal in autonomous delivery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21865865 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21865865 Country of ref document: EP Kind code of ref document: A1 |