WO2022052541A1 - 一种光模块 - Google Patents

一种光模块 Download PDF

Info

Publication number
WO2022052541A1
WO2022052541A1 PCT/CN2021/099791 CN2021099791W WO2022052541A1 WO 2022052541 A1 WO2022052541 A1 WO 2022052541A1 CN 2021099791 W CN2021099791 W CN 2021099791W WO 2022052541 A1 WO2022052541 A1 WO 2022052541A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
accommodating cavity
lens
optical
assembly
Prior art date
Application number
PCT/CN2021/099791
Other languages
English (en)
French (fr)
Inventor
刘旭霞
马晓磊
杨思更
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010936547.8A external-priority patent/CN114153036A/zh
Priority claimed from CN202010935481.0A external-priority patent/CN114153035A/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2022052541A1 publication Critical patent/WO2022052541A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present disclosure relates to the technical field of optical communication, and in particular, to an optical module.
  • the optical module is a tool for realizing the mutual conversion of photoelectric signals, and it is one of the key components in the optical communication equipment.
  • the transmission rate of the optical module continues to increase.
  • an optical module provided by the present application includes: a circuit board; a light emitting chip assembly, including a plurality of light emitting chips, arranged on the circuit board, for emitting multiple beams of signal light with different wavelengths; a first lens The assembly is covered on the light-emitting chip assembly, and transmits and changes the propagation direction of the signal light emitted by the light-emitting chip assembly; wherein, the first lens assembly includes a first accommodating cavity set at the top and a second accommodating cavity set at the bottom, The bottom of the first accommodating cavity is provided with a first reflective surface, the second accommodating cavity covers and accommodates the light emitting chip assembly, the projection of the first reflective surface in the direction of the second accommodating cavity covers the light emitting chip in the light emitting chip assembly, and the first reflective surface
  • the second lens group including a plurality of lenses, is used to reflect the multiple beams of signal light of different wavelengths emitted by the light emitting chip assembly, and is arranged in the first accommodating cavity for collimating the multiple beams of
  • an optical module provided by the present application includes: a circuit board; a light-receiving chip assembly, including a plurality of light-receiving chips, arranged on the circuit board, for receiving signal light of different wavelengths from outside the optical module;
  • the wave-optic demultiplexing component is used to split a signal light with different wavelengths from the outside of the optical module into multiple signal lights;
  • the second lens component is covered on the light-receiving chip component and is used to transmit and change the light from the light.
  • the fifth lens group includes a plurality of lenses for respectively focusing the multiple beams of signal light beamed by the demultiplexing light demultiplexing assembly; wherein, the second lens assembly includes a No.
  • the bottom of the third accommodating cavity is provided with a second reflective surface
  • the fourth accommodating cavity covers and accommodates the light-receiving chip assembly
  • the projection of the second reflective surface in the direction of the fourth accommodating cavity covers the light
  • the light receiving chip in the receiving chip assembly, the demultiplexing light demultiplexing assembly and the fifth lens group are arranged in the third accommodating cavity, and the second reflecting surface is used for reflecting multiple beams of signal light to the corresponding light receiving in the light receiving chip assembly chip.
  • an optical module provided by the present application includes: a circuit board; a light emitting chip assembly, including a plurality of light emitting chips, arranged on the circuit board, for emitting multiple beams of signal light with different wavelengths; a first lens The assembly is covered on the light-emitting chip assembly, and transmits and changes the propagation direction of the signal light emitted by the light-emitting chip assembly; wherein, the first lens assembly includes a first accommodating cavity and a first reflective surface disposed at the top, and a lens disposed at the bottom.
  • the second accommodating cavity the bottom of the first accommodating cavity is provided with a first bearing surface, the second accommodating cavity covers and accommodates the light emitting chip assembly, and the projection of the first reflecting surface in the second accommodating cavity covers the light emitting chip in the light emitting chip assembly
  • the first reflective surface is inclined to the first bearing surface, and the first reflective surface is used to reflect multiple beams of signal light of different wavelengths emitted by the light emitting chip assembly
  • the first accommodating cavity further includes a first transmission surface facing the first reflective surface, and The first transmission surface is arranged in parallel with the second transmission surface; the first transmission surface is used to transmit the light from the first reflection surface; the multiplexing light multiplexing component is arranged on the first bearing surface and is used to transmit the light from the first transmission surface. Multiple beams of signal light with different wavelengths are combined into one signal light; the second transmission surface is used for transmitting the light from the combined-wave light multiplexing component.
  • an optical module provided by the present application includes: a circuit board; a light-receiving chip assembly, including a plurality of light-receiving chips, arranged on the circuit board, for receiving signal light of different wavelengths from outside the optical module;
  • the wave-optic multiplexing component is used to split a signal light including different wavelengths from the outside of the optical module into multiple signal lights;
  • the second lens component is covered on the light-receiving chip component for transmitting and changing the signal light from the optical module.
  • the second lens assembly includes a third accommodating cavity and a second reflective surface arranged at the top, a fourth accommodating cavity arranged at the bottom, and the fourth accommodating cavity covers and accommodates the light-receiving chip assembly;
  • the projection of the two reflective surfaces in the fourth accommodating cavity covers the light-receiving chip in the light-receiving chip assembly, the light demultiplexing component is arranged in the third accommodating cavity, and the second reflective surface is used to reflect multiple beams of signal light to the light-receiving cavity the corresponding light-receiving chip in the chip assembly;
  • the third accommodating cavity further includes a third transmission surface facing the second reflection surface, and a fourth transmission surface arranged in parallel with the third transmission surface; the fourth transmission surface is used for demultiplexing light multiplexing
  • the component transmits light; the third transmission surface is used for transmitting light from the demultiplexed light multiplexing component.
  • Fig. 1 is a schematic diagram of the connection relationship of optical communication terminals
  • Fig. 2 is a schematic diagram of the structure of an optical network unit
  • FIG. 3 is a schematic structural diagram of an optical module provided in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an exploded structure of an optical module provided in an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of an internal structure of an optical module according to an embodiment of the present disclosure.
  • FIG. 6 is a perspective view 1 of a first lens assembly according to an embodiment of the present disclosure.
  • FIG. 7 is a second perspective view of a first lens assembly according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a first lens assembly carrying other optical devices according to an embodiment of the present disclosure
  • Fig. 9 is the sectional view of Fig. 8.
  • FIG. 10 is a cross-sectional view 1 of a first lens assembly according to an embodiment of the present disclosure.
  • FIG. 11 is a second cross-sectional view of a first lens assembly according to an embodiment of the present disclosure.
  • FIG. 12 is a cross-sectional view of a first lens assembly disposed on a circuit board according to an embodiment of the present disclosure
  • FIG. 13 is a use state diagram of a first lens assembly according to an embodiment of the present disclosure.
  • FIG. 14 is a working principle diagram of a multiplexing optical multiplexing component provided by an embodiment of the present disclosure.
  • FIG. 15 is a cross-sectional view of a second lens assembly disposed on a circuit board according to an embodiment of the present disclosure
  • 16 is a use state diagram of a second lens assembly according to an embodiment of the present disclosure.
  • FIG. 17 is a working principle diagram of a demultiplexing optical demultiplexing component provided by an embodiment of the present disclosure.
  • FIG. 18 is a schematic diagram of an exploded structure of an optical module according to another embodiment of the present disclosure.
  • FIG. 19 is a schematic diagram of the internal structure of an optical module according to another embodiment of the present disclosure.
  • FIG. 20 is a third perspective view of a first lens assembly according to another embodiment of the present disclosure.
  • FIG. 21 is a cross-sectional view of the first lens assembly in FIG. 19 disposed on the circuit board;
  • FIG. 22 is a schematic diagram of an optical path of a first lens assembly disposed on a circuit board according to another embodiment of the present disclosure
  • FIG. 23 is a cross-sectional view of a second lens assembly disposed on a circuit board according to another embodiment of the present disclosure.
  • 24 is a schematic diagram of an optical path of a second lens assembly disposed on a circuit board according to another embodiment of the present disclosure.
  • One of the core links of optical fiber communication is the mutual conversion of optical and electrical signals.
  • Optical fiber communication uses information-carrying optical signals to transmit in information transmission equipment such as optical fibers/optical waveguides.
  • the passive transmission characteristics of light in optical fibers/optical waveguides can realize low-cost, low-loss information transmission; while computers and other information processing equipment Electrical signals are used.
  • the optical module realizes the mutual conversion function of the above-mentioned optical and electrical signals in the technical field of optical fiber communication, and the mutual conversion of the optical signal and the electrical signal is the core function of the optical module.
  • the optical module realizes the electrical connection with the external host computer through the gold finger on its internal circuit board.
  • the main electrical connections include power supply, I2C signal, data signal and grounding, etc.
  • the electrical connection method realized by the gold finger has become the optical module.
  • the mainstream connection method of the industry based on this, the definition of pins on the gold finger has formed a variety of industry protocols/norms.
  • FIG. 1 is a schematic diagram of a connection relationship of an optical communication terminal.
  • the connection of the optical communication terminal mainly includes the interconnection between the optical network unit 100 , the optical module 200 , the optical fiber 101 and the network cable 103 .
  • One end of the optical fiber 101 is connected to the remote server, and one end of the network cable 103 is connected to the local information processing device.
  • the connection between the local information processing device and the remote server is completed by the connection between the optical fiber 101 and the network cable 103; and the connection between the optical fiber 101 and the network cable 103 is completed by The optical network unit 100 with the optical module 200 is completed.
  • the optical port of the optical module 200 is externally connected to the optical fiber 101, and a two-way optical signal connection is established with the optical fiber 101;
  • the electrical port of the optical module 200 is externally connected to the optical network terminal 100, and a two-way electrical signal connection is established with the optical network terminal 100;
  • the optical module realizes mutual conversion between optical signals and electrical signals, so as to establish an information connection between the optical fiber and the optical network terminal; in some embodiments of the present disclosure, the optical signal from the optical fiber is converted into an electrical signal by the optical module and then input.
  • the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module and input into the optical fiber.
  • the optical network terminal has an optical module interface 102, which is used to access the optical module 200 and establish a two-way electrical signal connection with the optical module 200; Signal connection; a connection is established between the optical module 200 and the network cable 103 through the optical network terminal 100.
  • the optical network terminal transmits the signal from the optical module to the network cable, and transmits the signal from the network cable to the optical module.
  • the optical network terminal is used as the host computer of the optical module to monitor the work of the optical module.
  • the remote server has established a bidirectional signal transmission channel with the local information processing device through the optical fiber 101 , the optical module 200 , the optical network unit 100 and the network cable 103 .
  • Common information processing equipment includes routers, switches, electronic computers, etc.; the optical network unit 100 is the host computer of the optical module 200, provides data signals to the optical module 200, and receives data signals from the optical module 200.
  • the common optical module 200 is on the host computer. There are also optical line terminals and so on.
  • FIG. 2 is a schematic structural diagram of an optical network unit.
  • the optical network unit 100 has a circuit board 105, and a cage 106 is provided on the surface of the circuit board 105; an electrical connector is provided in the cage 106, which is used to connect to the electrical port of an optical module such as a gold finger;
  • the cage 106 is provided with a radiator 107, and the radiator 107 has a raised structure such as fins to increase the heat dissipation area.
  • the optical module 200 is inserted into the optical network unit, specifically, the electrical port of the optical module is inserted into the electrical connector in the cage 106 , and the optical port of the optical module 200 is connected to the optical fiber 101 .
  • the cage 106 is located on the circuit board, and the electrical connectors on the circuit board are wrapped in the cage; the optical module 200 is inserted into the cage, the optical module 200 is fixed by the cage, and the heat generated by the optical module 200 is conducted to the cage through the optical module housing, and finally Diffusion takes place through heat sinks 107 on the cage.
  • FIG. 3 is a schematic structural diagram of an optical module 200 according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of an exploded optical module 200 according to an embodiment of the present disclosure.
  • the optical module 200 provided by the embodiment of the present disclosure includes an upper casing 201 , a lower casing 202 , an unlocking part 203 , and a circuit board 300 .
  • the upper casing 201 is covered with the lower casing 202 to form a wrapping cavity with two openings, and the outer contour of the wrapping cavity generally presents a square shape.
  • the lower case 202 includes a main board and two side plates located on both sides of the main board and perpendicular to the main board;
  • the upper case 201 includes a cover plate, which covers two sides of the upper case 201 .
  • the upper casing 201 may also include two side walls located on both sides of the cover plate and perpendicular to the cover plate, and the two side walls are combined with the two side plates to realize the upper
  • the casing 201 is covered with the lower casing 202 .
  • One of the two openings is the electrical port 204, the gold fingers of the circuit board 300 extend from the electrical port 204 and are inserted into the host computer such as the optical network unit, and the other opening is the optical port 205, which is used for external optical fiber access to connect
  • the optical transceivers inside the optical module 200, the circuit board 300, the optical transceivers and other optoelectronic devices are located in the package cavity.
  • the combination of the upper casing 201 and the lower casing 202 is adopted to facilitate the installation of components such as the circuit board 300 into the casing, and the upper casing 201 and the lower casing 202 form the outermost packaging protection casing of the optical module.
  • the upper casing 201 and the lower casing 202 are generally made of metal materials, which are conducive to electromagnetic shielding and heat dissipation; generally, the casing of the optical module 200 is not made into an integrated structure, so that when assembling circuit boards and other devices, positioning components, heat dissipation and The electromagnetic shielding structure cannot be installed and is not conducive to production automation.
  • the unlocking part 203 is located on the outer wall of the enclosing cavity/lower casing 202, and is used to realize the fixed connection between the optical module and the upper computer, or to release the fixed connection between the optical module and the upper computer.
  • the unlocking part 203 has an engaging structure matched with the cage of the upper computer; the end of the unlocking part 203 can be pulled to relatively move the unlocking part 203 on the surface of the outer wall; Fix the optical module in the cage of the host computer; by pulling the unlocking part 203, the engaging structure of the unlocking part 203 moves with it, thereby changing the connection relationship between the engaging structure and the host computer to release the optical module and the host computer. relationship, so that the optical module can be pulled out from the cage of the host computer.
  • the circuit board 300 is provided with a light-emitting chip, a driving chip for the light-emitting chip, a light-receiving chip, a transimpedance amplifying chip, a limiting amplifying chip, a microprocessor chip, etc., wherein the light-emitting chip and the light-receiving chip are directly mounted on the light-emitting chip.
  • this form is called COB package in the industry.
  • the circuit board 300 connects the electrical components in the optical module according to the circuit design through circuit wiring, so as to realize the electrical functions such as power supply, electrical signal transmission and grounding; at the same time, the circuit board 300 also has the functions of various components carried, such as circuit
  • the board carries the lens assembly.
  • the circuit board is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the bearing function. For example, the rigid circuit board can carry the chip smoothly; the rigid circuit board can also be inserted into the electrical connector in the upper computer cage. In some embodiments of the present disclosure, metal pins/gold fingers are formed on one end surface of the rigid circuit board for connecting with the electrical connector.
  • the optical module further includes a lens assembly, and the lens assembly is disposed on the circuit board 300 .
  • the lens assembly and the circuit board 300 form a cavity that wraps the light-emitting chip assembly or the light-receiving chip assembly, and the light-emitting chip assembly or the light-receiving chip assembly is located in the cavity.
  • the lens assembly is used to transmit the light beam and change the direction of the beam transmission during the transmission process.
  • the light emitted by the optical chip in the light emitting chip assembly is transmitted and reflected into the optical fiber through the lens assembly; or, the light from the optical fiber enters the light receiving chip after being reflected by the lens assembly, and the lens assembly not only acts to seal the optical chip It also establishes the optical connection between the optical chip and the optical fiber.
  • the lens assembly is also covered above the light emitting chip assembly or the light receiving chip assembly, which facilitates changing the propagation direction of the signal light emitted by the light emitting chip or the signal light from outside the optical module by using fewer components.
  • the light emitting chip assembly is covered by the lens assembly, or the light receiving chip assembly is covered by the lens assembly, or the light emission chip assembly and the light receiving chip assembly can be covered by the lens assembly respectively.
  • the number of lens components may be one, or two, or the like.
  • the lens assembly may not only be disposed at one end of the circuit board 300 close to the optical port, but also may be disposed in the middle of the circuit board 300, which may be selected according to the actual needs of the optical module.
  • FIG. 5 is a schematic diagram of the internal structure of an optical module according to an embodiment of the present disclosure, and FIG. 5 shows a schematic diagram of the structure of a lens assembly disposed at one end of the circuit board 300 close to the optical port.
  • the lens assembly is disposed above the light-emitting chip assembly or the light-receiving chip assembly in a cover-up manner; wherein: the light-emitting chip assembly includes a plurality of light-emitting chips, and each light-emitting chip is usually used for The signal light of one wavelength is emitted, and then the light-emitting chip assembly is used to emit multiple beams of signal light of different wavelengths; the light-receiving chip assembly includes several light-receiving chips, usually each light-receiving chip is used to receive a signal light of one wavelength , and then the light receiving chip assembly is used for receiving multiple beams of signal light with different wavelengths.
  • the light emitting chip assembly may include 2, 3, 4, etc. light emitting chips
  • the light receiving chip assembly may include 2, 3, 4, etc. light receiving chips.
  • the optical module includes two lens assemblies.
  • the lens assembly covered on the light emitting chip assembly is called the first lens assembly
  • the lens assembly covered on the light receiving chip assembly is called as the first lens assembly.
  • the two lens assemblies include a first lens assembly 400 and a second lens assembly 500, but the relative positions of the first lens assembly 400 and the second lens assembly 500 in FIG. A specific definition of where the lens assembly is located is disclosed.
  • High-speed data transmission requires close proximity between the optical chip and its driver/matching chip in the light-emitting chip assembly or the light-receiving assembly to shorten the connection between the chips and reduce the signal loss caused by the connection.
  • the lens assembly When positioned above the optical chip, the lens assembly generally covers the optical chip and its driver/matching chip at the same time. Therefore, in the light-emitting chip assembly, the light-emitting chip and the driving chip of the light-emitting chip are arranged in close proximity, and the lens assembly covers the light-emitting chip and the driving chip of the light-emitting chip; The lens assembly covers the light receiving chip and the transimpedance amplifying chip.
  • the optical module further includes other optical devices and a lens assembly.
  • the optical module further includes other optical devices and a lens assembly. The following is a detailed description in conjunction with the specific use of the lens assembly.
  • FIG. 6 is a first perspective view of a first lens assembly according to an embodiment of the present disclosure
  • FIG. 7 is a second perspective view of a first lens assembly according to an embodiment of the present disclosure.
  • the top of the first lens assembly 400 is provided with a first accommodating cavity 410
  • the bottom of the first lens assembly 400 is provided with a second accommodating cavity 420 .
  • the first accommodating cavity 410 includes a first reflecting surface 411, and the first accommodating cavity 410 is used for arranging optical devices, such as a lens, a multiplexing light multiplexing component and other optical devices.
  • the first reflection surface 411 is an inclined surface for reflecting signal light incident thereon.
  • the bottom of the first accommodating cavity 410 is provided with a first bearing surface 412 , and the first bearing surface 412 is convenient for the installation of optical devices such as lenses and multiplexing light multiplexing components; the first bearing surface 412 is located at the first reflection On one side of the surface 411 , the first bearing surface 412 is closer to the light exit position of the first lens assembly 400 than the first reflecting surface 411 .
  • the second accommodating cavity 420 is used for the first lens assembly 400 to accommodate and cover the light emitting chip assembly, so as to facilitate the installation and fixation of the first lens assembly 400 on the circuit board 300 and the projection of the second accommodating cavity 420 in the direction of the first accommodating cavity 410 Covers the first reflective surface 411 .
  • the top surface of the first lens assembly 400 is sunk to form the first accommodating cavity 410 , and the bottom of the first accommodating cavity 410 forms the first reflecting surface 411 and the first bearing surface 412 ;
  • a second accommodating cavity 420 is formed on the bottom surface.
  • the top surface of the second accommodating cavity 420 is generally parallel to the circuit board 300 .
  • the first lens assembly 400 is usually a transparent plastic part, which is generally injection-molded in one piece.
  • a first lens group 421 is disposed on the top surface of the second accommodating cavity 420 , and the first lens group 421 includes several lenses for collimating the signal light of the light-emitting chip assembly.
  • the number of lenses in the first lens group 421 mainly depends on the number of light emitting chips in the light emitting chip assembly. Generally, the number of lenses in the first lens group 421 is equal to the number of light emitting chips in the light emitting chip assembly.
  • the lenses in the first lens group 421 may be protrusions formed by the downward protrusion of the top surface of the second accommodating cavity 420 .
  • the projection of the first reflection surface 411 in the direction of the top surface of the second accommodating cavity 420 covers the first lens group 421 , and then all the signal light collimated by the first lens group 421 is transmitted to the first reflection surface 411 .
  • FIG. 8 is a schematic structural diagram of a first lens assembly carrying other optical devices according to an embodiment of the present disclosure.
  • the optical module provided by the embodiment of the present disclosure further includes a multiplexing optical multiplexing component 206 , and the multiplexing optical multiplexing component 206 is disposed on the first bearing surface 412 of the first accommodating cavity 410 .
  • the combined signal light is transmitted out of the first lens assembly 400 through its right side, and then the combined wave light multiplexing assembly 206 is arranged at the right position of the first accommodating cavity 410 , and then The first reflection surface 411 is inclined to the right and the first bearing surface 412 is disposed on the right side of the first reflection surface 411 .
  • the disclosed optical module further includes a second lens group 207 , and the second lens group 207 is disposed on the first bearing surface 412 of the first accommodating cavity 410 .
  • the second lens group 207 includes several lenses.
  • the number of lenses in the second lens group 207 mainly depends on the number of light emitting chips in the light emitting chip assembly. Generally, the number of lenses in the second lens group 207 is equal to the number of light emitting chips in the light emitting chip assembly.
  • the lenses in the second lens group 207 may be glass lenses for collimating the signal light reflected by the first reflecting surface 411 .
  • the second lens group 207 is disposed between the first reflection surface 411 and the multiplexed light multiplexing component 206 , and the signal light emitted by the first reflection surface 411 is collimated by the second lens group 207 and transmitted to the multiplexed light multiplexer components.
  • FIG. 9 is a cross-sectional view of FIG. 8 .
  • FIG. 9 shows that the first reflecting surface 411 is inclined to the right, the first bearing surface 412 is disposed on the right side of the first reflecting surface 411 , and the multiplexing optical multiplexing component 206 is located on the first reflecting surface 411 on the right.
  • the right side of the first lens assembly 400 provided by the embodiment of the present disclosure further includes a first optical fiber adapter 430, and the first optical fiber adapter 430 is used for connecting the optical fiber, such as an external optical fiber, to the first lens assembly 400, so as to facilitate the bundling The signal light is then coupled to the optical fiber.
  • the outer side of the first fiber adapter 430 is provided with a protrusion 431, and the inner side is provided with an optical port 432.
  • the protrusion 431 is used for limiting and fixing when connecting optical fibers, and the optical port 432 is used for transmitting the combined signal light.
  • an optical fiber ferrule is inserted into the optical port 432, and the combined signal light is transmitted to the optical fiber ferrule, and then transmitted to the optical fiber through the optical fiber ferrule, thereby facilitating the coupling of the signal light into the optical fiber.
  • FIG. 10 is a first cross-sectional view of a first lens assembly according to an embodiment of the present disclosure
  • FIG. 11 is a second cross-sectional view of a first lens assembly according to an embodiment of the present disclosure.
  • the first bearing surface 412 includes a first sub-bearing surface 412-1 and a second sub-bearing surface 412-2, and the first sub-bearing surface 412-1 is used to carry the multiplexing optical multiplexing component 206.
  • the second sub-carrying surface 412 - 2 is used for carrying the second lens group 207 .
  • the first bearing surface 412 includes a first sub-bearing surface 412 - 1 and a second sub-bearing surface 412 - 2 , which facilitates the installation and positioning of the multiplexed light multiplexing component 206 and the second lens group 207 .
  • the formation of the first stepped surface 412-3 between the first sub-bearing surface 412-1 and the second sub-bearing surface 412-2 further facilitates the connection between the multiplexing light multiplexing component 206 and the second lens group 207 Install and position and adjust the relative position of the optical axis of the multiplexed light multiplexing component 206 and the optical axis of the second lens group 207 .
  • a third lens 433 is disposed at the inner end of the first optical fiber adapter 430 , and the third lens 433 is used to focus the combined signal light and transmit it to the first optical fiber adapter 430 . in the optical port 432 of the fiber optic adapter 430 .
  • the focal point of the third lens 433 is located in the optical port 432 .
  • the optical axis of the third lens 433 is collinear with the central axis of the optical port 432, which helps to improve the coupling precision of the signal light to the optical fiber after the beam combination.
  • the third lens 433 may be a protruding structure formed inside the optical port 432 of the first fiber adapter 430 .
  • the first accommodating cavity 410 includes a first transmission surface 413 , and the signal light reflected by the first reflection surface 411 transmits the first transmission surface 413 .
  • the projection of the first transmission surface 413 on the first reflection surface 411 covers the first reflection surface 411 .
  • the first transmission surface 413 can be coated with a transmission film, or the first transmission surface 413 can be a vertical surface, and the normal of the first transmission surface 413 is perpendicular to the optical axis of the light emitting chip. .
  • the first accommodating cavity 410 further includes a second transmission surface 414, and the signal light after being combined by the multiplexing light multiplexing component transmits the second transmission surface 414.
  • the second transmissive surface 414 may be coated with transmissive film, or the second transmissive surface 414 may be perpendicular to the optical axis of the light outlet of the multiplexed light multiplexing component 206 .
  • the second transmission surface 414 is perpendicular to the first sub-bearing surface 412 - 1
  • the second transmission surface 414 is perpendicular to the optical axis of the third lens 433 .
  • FIG. 12 is a cross-sectional view of a first lens assembly disposed on a circuit board according to an embodiment of the present disclosure.
  • the first lens assembly 400 is disposed on the circuit board 300, the first lens assembly 400 is covered on the light emitting chip assembly 310, and the light emitting chip assembly 310 is located in the second accommodating cavity 420; the second accommodating cavity
  • the top surface of 420 is provided with a first lens group 421, and the lens in the first lens group 421 is located above the light emitting chip in the light emitting chip assembly 310, that is, the lens in the first lens group 421 is projected on the circuit board 300 to cover the light emitting chip assembly.
  • the first transmission surface 413, the right side of the first transmission surface 413 is the second lens group 207 and the multiplexing light multiplexing component 206 in sequence; the right side of the multiplexing light multiplexing component 206 is the second transmission surface 414;
  • the right side is the first optical fiber adapter 430 , and the inner end of the optical port 432 of the first optical fiber adapter 430 is provided with a third lens 433 .
  • the included angle between the first reflective surface 411 and the optical axis of the light emitting chip in the light emitting chip assembly 310 is approximately 45°, and the first reflective surface 411 can further reflect the signal light emitted by the light emitting chip.
  • the transmission direction is changed by 90°.
  • An emissive film may be coated on the first reflective surface 411 to increase the reflectivity of the first reflective surface 411 .
  • the first reflection surface 411 is a total reflection surface with an included angle of 45° with the optical axis of the light emission chip, and the signal light emitted by the light emission chip is transmitted to the first reflection surface 411 for total reflection.
  • the signal light emitted by the light emitting chip in the light emitting chip assembly 310 is transmitted upward and is transmitted to the lens in the first lens group 421.
  • the signal light emitted by the light emitting chip is divergent light and is collimated by the lens as Parallel light; the signal light collimated by the first lens group 421 is transmitted to the first reflection surface 411 and fully emitted at the first reflection surface 411, changing the transmission direction of the upwardly transmitted signal light to the right transmission; rightward
  • the transmitted signal light transmits through the first transmission surface 413, enters the lens of the second lens group 207, is collimated by the second lens group 207, and further adjusts the parallelism of the signal light transmitted to the right;
  • the signal light transmitted to the right is incident on the multiplexed light multiplexing component 206 .
  • FIG. 13 is a use state diagram of a first lens assembly provided by an embodiment of the present disclosure.
  • FIG. 13 shows a working state of the first lens assembly when the light emitting chip assembly emits four signal lights of different wavelengths, and the light emitting chip assembly In 310, the light emitting chips are arranged in rows along the width direction of the circuit board 300 (the width direction of the first lens assembly 400).
  • the second lens group 207 disposed in the first accommodating cavity 410 of the first lens assembly 400 includes four lenses, and the four lenses are arranged in rows along the width direction of the first lens assembly 400 .
  • the second lens group 207 can be used for the collimation of four beams of signal light.
  • the four beams of signal light collimated by the second lens group 207 enter the multiplexed optical multiplexing component 206 from the left side of the multiplexed optical multiplexing component 206, and the multiplexed optical multiplexing component 206 will After the four beams of signal light are combined, a beam of signal light is output through the right side of the combined-wave optical multiplexing component 206 , and the beam of signal light includes signal light of different wavelengths.
  • the multiplexed light multiplexing component 206 utilizes different film layers arranged on both sides and at different positions to transmit and reflect the signal light of different wavelengths to combine multiple signal lights of different wavelengths into one light.
  • the multiplexing light multiplexing component 206 coordinately selects the number of reflections of each beam according to the number of beams of the combined beams.
  • FIG. 14 is a working principle diagram of a multiplexing optical multiplexing unit (MUX) according to an embodiment of the present disclosure.
  • MUX multiplexing optical multiplexing unit
  • the ⁇ 1 signal light passes through six different positions of the multiplexing optical multiplexing component 206 and undergoes six different reflections to reach the light outlet, and the ⁇ 2 signal light passes through four different positions of the multiplexing optical multiplexing component 206.
  • the ⁇ 3 signal light passes through two different positions of the multiplexed optical multiplexing component 206 for two different reflections to reach the optical exit, and the ⁇ 4 signal light is incident on the multiplexed optical multiplexing component 206 and then transmitted directly.
  • signal lights of different wavelengths enter the multiplexed light multiplexing component 206 through different light entrance ports, and are output from the multiplexed light multiplexing component 206 through the same light exit port. In this way, 4 beams of signal light with different wavelengths are combined into one beam at the optical outlet, and then the combined signal beam is transmitted to the optical fiber through the optical outlet. Signal light of multiple wavelengths is transmitted simultaneously in the fiber.
  • the structure of the second lens assembly 500 is similar to or the same as that of the first lens assembly 400 .
  • 15 is a cross-sectional view of a second lens assembly disposed on a circuit board according to an embodiment of the present disclosure. As shown in FIG. 15 , the top of the second lens assembly 500 is provided with a third accommodating cavity 510 , and the bottom of the second lens assembly 500 is provided with a fourth accommodating cavity 520 .
  • the third accommodating cavity 510 includes a second reflective surface 511, and the third accommodating cavity 510 is used for arranging optical devices, such as lenses, optical demultiplexing components and other optical devices.
  • the second reflection surface 511 is an inclined surface for reflecting signal light incident thereon.
  • a bearing surface 512 is provided at the bottom of the third accommodating cavity 510 , and the first bearing surface 412 is convenient for the installation of optical devices such as lenses and multiplexing light multiplexing components; the bearing surface 512 is located on one side of the second reflecting surface 511 , the bearing surface 512 is closer to the light incident position of the second lens assembly 500 than the second reflecting surface 511 .
  • the second reflective surface 511 is an inclined surface for reflecting the signal light incident thereon; the bearing surface 512 is used to carry other optical devices, which is convenient for setting other optical devices.
  • the fourth accommodating cavity 520 is used for the second lens assembly 500 to accommodate and cover the light-receiving chip assembly 320 , so as to facilitate the installation and fixation of the second lens assembly 500 on the circuit board 300 .
  • the projection covers the second reflecting surface 511 .
  • the demultiplexing optical demultiplexing component 208 is disposed on the bearing surface 512 of the third accommodating cavity 510 .
  • the demultiplexing light demultiplexing component 208 is used for dividing a beam of signal light including light of different wavelengths from outside the optical module into multiple beams of signal light.
  • a beam of signal light including light of different wavelengths from the outside of the optical module is input to the second lens assembly 500 through the right side of the second lens assembly 500, and the demultiplexing light demultiplexing assembly 208 is arranged at the right position of the third accommodating cavity 510, and comes from the second lens assembly 500.
  • the combined signal light outside the optical module is input through the light entrance port on the right side of the demultiplexing optical demultiplexing component 208 , and after being split by the demultiplexing optical demultiplexing component 208 , passes through the corresponding light output on the left side of the demultiplexing optical demultiplexing component 208 .
  • the port is output, and then transmitted to the second reflective surface 511 to reflect and change the direction and transmit to the light receiving chip assembly 320 .
  • the optical module provided by the embodiment of the present disclosure further includes a fifth lens group 209 , and the fifth lens group 209 is disposed on the bearing surface 512 of the third accommodating cavity 510 .
  • the fifth lens group 209 includes several lenses. The number of lenses in the fifth lens group 209 mainly depends on the number of light-receiving chips in the light-receiving chip assembly 320 .
  • the lenses in the fifth lens group 209 can be glass lenses, and are used for focusing each beam split by the demultiplexing light demultiplexing component 208 to the second reflecting surface 511 correspondingly.
  • the fifth lens group 209 is disposed between the second reflecting surface 511 and the demultiplexing light demultiplexing component 208 , and the signal light split by the demultiplexing light demultiplexing component 208 is focused and transmitted to the second reflecting surface through the fifth lens group 209 . 511.
  • a fourth lens group 521 is disposed on the top surface of the fourth accommodating cavity 520 , and the fourth lens group 521 includes a plurality of lenses for focusing the signal light reflected by the second reflecting surface 511 to the light receiving chip component 320.
  • the number of lenses in the fourth lens group 521 mainly depends on the number of light receiving chips in the light receiving sheet assembly 320 .
  • the number of lenses in the fourth lens group 521 is equal to the number of light receiving chips in the light receiving chip assembly 320 .
  • the lenses in the fourth lens group 521 may be protrusions formed by the downward protrusion of the top surface of the fourth accommodating cavity 520 .
  • the projection of the second reflective surface 511 in the direction of the top surface of the fourth accommodating cavity 520 covers the fourth lens group 521 , and the signal light reflected by the second reflective surface 511 is focused to the corresponding light by the lenses in the fourth lens group 521 receive chip.
  • the focal points of the lenses in the fourth lens group 521 are located on the corresponding light receiving chips, so as to increase the signal light receiving rate.
  • the right side of the second lens assembly 500 further includes a second optical fiber adapter 530.
  • the second optical fiber adapter 530 is used to connect the second lens assembly 500 to optical fibers, such as external optical fibers, thereby facilitating the coupling of signal light in the external optical fibers. to the second lens assembly 500 .
  • the second optical fiber adapter 530 is provided with a protrusion 531 on the outer side, and an optical port 532 on the inner side.
  • the protrusion 531 is used for limiting and fixing when connecting optical fibers, and the optical port 532 is used for transmitting the combined signal light.
  • the optical fiber ferrule is inserted into the optical port 532, and the signal light transmitted in the optical fiber is coupled to the optical fiber ferrule, and is transmitted to the second lens assembly 500 through the optical fiber ferrule.
  • the inner end of the second optical fiber adapter 530 is provided with a sixth lens 533 , and the sixth lens 533 is used for collimating and transmitting the signal light coupled to the optical port 532 to the demultiplexing optical demultiplexing component 208 the light entrance.
  • the third lens 433 may be a protruding structure formed inside the optical port 432 of the first fiber adapter 430 .
  • the bearing surface 512 may include a third bearing surface and a fourth bearing surface, and the detailed structure can be found in the first bearing surface 412 ; correspondingly, the third accommodating cavity 510 further includes a third transmission surface 513 and a
  • the third transmission surface 513 and the fourth transmission surface 514 please refer to the first transmission surface 413 and the second transmission surface 414 .
  • FIG. 16 is a use state diagram of a second lens assembly provided by an embodiment of the present disclosure.
  • FIG. 16 shows the working state of the second lens assembly when the light-receiving chip assembly receives four signal lights of different wavelengths.
  • the light-receiving chip assembly 320 The medium light emitting chips are arranged in rows along the width direction of the circuit board 300 (the width direction of the second lens assembly 500 ).
  • the fifth lens group 209 disposed in the third accommodating cavity 510 of the second lens assembly 500 includes four lenses, and the four lenses are arranged in a row along the width direction of the second lens assembly 500.
  • the fifth lens group 209 can be used for four beams of signals Separate focusing of light.
  • a beam of signal light including four different wavelengths of light is transmitted to the second lens assembly 500, coupled into the light entrance of the demultiplexing light demultiplexing assembly 208, and the signal light is passed through the demultiplexing light demultiplexing assembly 208 according to the signal light.
  • the wavelength of the signal light is divided into four beams of signal light and output from the corresponding light exit ports of the demultiplexing light demultiplexing component 208 respectively, and then focused and transmitted to the second reflecting surface 511 by the lenses in the corresponding fifth lens group 209, and finally passed through the second reflecting surface 511.
  • the transmission direction is changed to transmit to the light-receiving chip assembly, so that the light-receiving chip assembly can receive a beam of light including four wavelengths from outside the optical module.
  • the demultiplexing optical demultiplexing component 208 transmits and reflects the signal light of different wavelengths by setting different film layers on its two sides and different positions to split a signal light including different wavelengths into multiple beams Light.
  • the demultiplexing component 208 selects the number of reflections of each wavelength of the signal light in coordination according to the wavelength type and the number of the divided beams.
  • FIG. 17 is a working principle diagram of a demultiplexing optical demultiplexing component (DEMUX) provided by an embodiment of the present disclosure.
  • DEMUX demultiplexing optical demultiplexing component
  • the right side of the demultiplexing optical demultiplexing component 208 includes a light entrance port for incident signal light of multiple wavelengths
  • the left side includes a plurality of light exit ports for exiting light, and each light exit port is used for exiting light.
  • a wavelength of signal light is used for exiting light.
  • the signal light enters the demultiplexing light demultiplexing assembly 208 through the incident light port of the demultiplexing light demultiplexing assembly 208, and the ⁇ 1 signal
  • the light passes through six different positions of the demultiplexing optical demultiplexing component 208 and reaches its light outlet through six different reflections.
  • the ⁇ 3 signal light passes through two different positions of the demultiplexing optical demultiplexing component 208 and undergoes two different reflections to reach its light outlet.
  • the light exit port so that the signal light of different wavelengths enters the demultiplexing light demultiplexing component 208 through the same light entrance port, and is output through different light exit ports.
  • FIG. 18 is a schematic diagram of an exploded structure of an optical module provided by another embodiment of the present disclosure
  • FIG. 19 is a schematic diagram of the internal structure of an optical module provided by another embodiment of the present application.
  • an optical module 200 provided by another embodiment of the present application includes an upper casing 201 , a lower casing 202 , an unlocking part 203 , a circuit board 300 , and a lens assembly.
  • FIG. 20 is a third perspective view of a first lens assembly provided by another embodiment of the application.
  • the top of the first lens assembly 400 is provided with a first accommodating cavity 410 , a first reflection surface 411 and a first transmission On the surface 400A, the bottom of the first lens assembly 400 is provided with a second accommodating cavity 420 .
  • the first accommodating cavity 410 includes a first bearing surface 412.
  • the first bearing surface 412 is located on one side of the first transmission surface 400A.
  • the first bearing surface 412 is closer to the light exit position of the first lens assembly 400 than the first transmission surface 400A.
  • the first reflective surface 411 is disposed on one side of the first transmissive surface 400A, and the first reflective surface 411 is farther from the light-emitting position of the first lens assembly 400 than the first transmissive surface 400A; the first reflective surface 411 is an inclined surface for reflecting The signal light incident thereon; the first bearing surface 412 is used to carry other optical devices, which is convenient for setting other optical devices.
  • the second accommodating cavity 420 is used for the first lens assembly 400 to accommodate and cover the light emitting chip assembly, so as to facilitate the installation and fixation of the first lens assembly 400 on the circuit board 300 and the projection of the second accommodating cavity 420 in the direction of the first accommodating cavity 410 Covers the first reflective surface 411 .
  • FIG. 21 is a cross-sectional view of the first lens assembly in FIG. 19 disposed on the circuit board.
  • the first lens assembly 400 is disposed on the circuit board 300, the first lens assembly 400 is covered on the light emitting chip assembly 310, and the light emitting chip assembly 310 is located in the second accommodating cavity 420; the second accommodating cavity
  • the top surface of 420 is provided with a first lens group 421, and the lens in the first lens group 421 is located above the light emitting chip in the light emitting chip assembly 310, that is, the lens in the first lens group 421 is projected on the circuit board 300 to cover the light emitting chip assembly.
  • the first transmission surface 400A, the right side of the first transmission surface 400A is the multiplexing optical multiplexing component 206; the right side of the multiplexing optical multiplexing component 206 is the second transmission surface 414; the right side of the second transmission surface 414 is the first optical fiber
  • a third lens 433 is provided at the inner end of the optical port 432 of the first optical fiber adapter 430 , and the first optical fiber adapter 430 is the light exit position of the first lens assembly 400 .
  • the included angle between the first reflective surface 411 and the optical axis of the light emitting chip in the light emitting chip assembly 310 is 45°, that is, the first reflective surface faces toward the circuit board surface relative to the circuit board surface.
  • the direction of the first accommodating cavity 410 is inclined by 45°, and the first reflective surface 411 can change the transmission direction of the signal light emitted by the light emitting chip by 90°.
  • An emissive film may be coated on the first reflective surface 411 to increase the reflectivity of the first reflective surface 411 .
  • the first reflection surface 411 is a total reflection surface with an included angle of 45° to the optical axis of the light emitting chip, and the signal light emitted by the light emission chip is transmitted to the first reflection surface 411 for total reflection.
  • FIG. 22 is a schematic diagram of an optical path of a first lens assembly disposed on a circuit board according to another embodiment of the present disclosure. As shown in FIG. 22 , the signal light emitted by the light emitting chip in the light emitting chip assembly 310 is transmitted upward and is transmitted to the lens in the first lens group 421.
  • the signal light emitted by the light emitting chip is divergent light and is collimated by the lens as Parallel light; the signal light collimated by the first lens group 421 is transmitted to the first reflection surface 411 and fully emitted at the first reflection surface 411, changing the transmission direction of the upwardly transmitted signal light to the right transmission; rightward
  • the transmitted signal light transmits through the first transmission surface 400A, and then the signal light that continues to transmit to the right is incident on the multiplexed light multiplexing component 206 .
  • the light emitting chip assembly 310 includes a plurality of light emitting chips, the first lens group 421 includes a plurality of first lenses, and the optical paths between the light emitting chips and the first lenses are the same, with one light emitting chip and one first lens.
  • the first lens converges the divergent light emitted by the light emitting chip into a collimated parallel light, the parallel light is reflected at the first reflection surface 411 towards the first transmission surface 400A, and the light passing through the first transmission surface 400A enters the multiplexed light multiplexing In the component 206 , the light emitted from the multiplexed light multiplexing component 206 is incident on the second transmission surface 414 , and then collected by the third lens 433 and then taken into the optical port 432 .
  • the first reflection surface 411, the first transmission surface 400A and the second transmission surface 414 cooperate with each other to complete the construction of the light transmission path.
  • the two transmission surfaces are parallel to each other; the angles of the first reflection surface 411 , the first transmission surface 400A and the second transmission surface 414 can be relatively adjusted. According to the principle of optical propagation, there are two cases:
  • the first reflection surface is 45°; the first transmission surface 400A and the second transmission surface 414 are respectively perpendicular to the incident light path, that is, the light is perpendicular to the first transmission surface 400A and the second transmission surface 414;
  • the first reflection surface is not 45°; the first transmission surface 400A and the second transmission surface 414 are respectively inclined to the incident light path, that is, the light is obliquely incident on the first transmission surface 400A and the second transmission surface 414:
  • the angle of the first reflection surface relative to the vertical direction is ⁇ 1 ⁇ 45°
  • the first transmission surface 400A is inclined by ⁇ 2 towards the first reflection surface 411
  • the second transmission surface 414 is inclined towards the optical port 432.
  • FIG. 23 is a cross-sectional view of a second lens assembly disposed on a circuit board according to another embodiment of the present disclosure. As shown in FIG. 23 , the top of the second lens assembly 500 is provided with a third accommodating cavity 510 , a second reflection surface 511 and a third transmission surface 400B, and the bottom of the second lens assembly 500 is provided with a fourth accommodating cavity 520 .
  • the third accommodating cavity 510 includes a second bearing surface 512, the second bearing surface 512 is located on one side of the third transmission surface 400B, and the second bearing surface 512 is closer to the light incident position of the second lens assembly 500 than the third transmission surface 400B
  • the second reflective surface 511 is located on one side of the third transmissive surface 400B, and the second reflective surface 511 is farther from the light incident position of the second lens assembly 500 than the third transmissive surface 400B; the second reflective surface 511 is an inclined surface for The signal light incident thereon is reflected; the second carrying surface 512 is used to carry other optical devices, which is convenient for setting other optical devices.
  • the fourth accommodating cavity 520 is used for the second lens assembly 500 to accommodate and cover the light-receiving chip assembly 320 , so as to facilitate the installation and fixation of the second lens assembly 500 on the circuit board 300 .
  • the projection covers the second reflecting surface 511 .
  • the demultiplexing optical demultiplexing component 208 is disposed on the second bearing surface 512 of the third accommodating cavity 510 .
  • the splitting light demultiplexing component 208 is used for splitting a beam of signal light including light of different wavelengths from outside the optical module into multiple beams of signal light.
  • a beam of signal light including light of different wavelengths from outside the optical module is input to the second lens assembly 500 through the right side of the second lens assembly 500, and then the demultiplexing light demultiplexing assembly 208 is arranged at the right position of the third accommodating cavity 510,
  • the combined signal light from the outside of the optical module is input through the optical input port on the right side of the demultiplexing optical demultiplexing component 208 , and then demultiplexed by the demultiplexing optical demultiplexing component 208 , and then passes through the corresponding beam on the left side of the demultiplexing optical demultiplexing component 208 .
  • the light output port is output, and then transmitted to the second reflecting surface 511 to reflect and change the direction to transmit to the light receiving chip assembly 320 .
  • a fourth lens group 521 is disposed on the top surface of the fourth accommodating cavity 520 , and the fourth lens group 521 includes a plurality of lenses for focusing the signal light reflected by the second reflecting surface 511 to the light receiving chip component 320.
  • the number of lenses in the fourth lens group 521 mainly depends on the number of light-receiving chips in the light-emitting-receiving sheet assembly 320 .
  • the lenses in the fourth lens group 521 may be protrusions formed by the downward protrusion of the top surface of the fourth accommodating cavity 520 .
  • the projection of the second reflective surface 511 in the direction of the top surface of the fourth accommodating cavity 520 covers the fourth lens group 521 , and the signal light reflected by the second reflective surface 511 is focused to the corresponding light by the lenses in the fourth lens group 521 receive chip.
  • the focal points of the lenses in the fourth lens group 521 are located on the corresponding light receiving chips, so that the signal light receiving rate is increased.
  • the right side of the second lens assembly 500 further includes a second optical fiber adapter 530.
  • the second optical fiber adapter 530 is used to connect the second lens assembly 500 to optical fibers, such as external optical fibers, thereby facilitating the coupling of signal light in the external optical fibers.
  • the second optical fiber adapter 530 is the light incident position of the second lens assembly 500 .
  • the second optical fiber adapter 530 is provided with a protrusion 531 on the outer side, and an optical port 532 on the inner side.
  • the protrusion 531 is used for limiting and fixing when connecting optical fibers, and the optical port 532 is used for transmitting the combined signal light.
  • the optical fiber ferrule is inserted into the optical port 532, and the signal light transmitted in the optical fiber is coupled to the optical fiber ferrule, and is transmitted to the second lens assembly 500 through the optical fiber ferrule.
  • the light receiving part is similar to the light emitting part; the light receiving chip assembly 320 includes a plurality of light receiving chips, the fourth lens group 521 includes a plurality of fourth lenses, and the light path between the light receiving chips and the fourth lenses The same is described by taking one of the light receiving chips and one fourth lens as an example.
  • the light from the optical port enters the fourth transmission surface through the sixth lens 533, then enters the third transmission surface 400B through the wave multiplexing light multiplexing component 208, and then enters the third transmission surface 400B through the third transmission surface 400B.
  • Two reflective surfaces 511 the light from the second reflective surface 511 is condensed by the fourth lens 521 and incident on the light receiving chip.
  • the second reflection surface 511, the third transmission surface 400B and the fourth transmission surface 514 cooperate with each other to complete the construction of the light transmission path.
  • the four transmission surfaces are parallel to each other; the angles of the second reflection surface 511, the third transmission surface 400B and the fourth transmission surface 514 can be relatively adjusted. According to the optical propagation principle, there are two cases:
  • the second reflection surface 511 is 45°; the third transmission surface 400B and the fourth transmission surface 514 are respectively perpendicular to the incident light path, that is, the light is perpendicular to the third transmission surface 400B and the fourth transmission surface 514;
  • the second reflection surface 511 is not 45°; the third transmission surface 400B and the fourth transmission surface 514 are respectively inclined to the incident light path, that is, the light enters the third transmission surface 400B and the fourth transmission surface 514 obliquely: for matching
  • the angle of the second reflection surface relative to the vertical direction is ⁇ 4 ⁇ 45°
  • the first transmission surface 400A is inclined by ⁇ 5 towards the direction of the first reflection surface 411
  • the second transmission surface 414 is inclined by ⁇ 6 towards the direction of the optical port 432, for example

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

光模块(200),包括:电路板(105);光发射芯片组件(310),用于发射多束不同波长的信号光;第一透镜组件(400),罩设在光发射芯片组件(310)上,传输并改变信号光的传播方向;第一透镜组件(400)包括第一容纳腔(410)和第二容纳腔(420),第一容纳腔(410)的底部设置第一反射面(411),第二容纳腔(420)覆盖容纳光发射芯片组件(310),第一反射面(411)在第二容纳腔(420)方向的投影覆盖光发射芯片组件(310)中的光发射芯片,第一反射面(411)用于反射光发射芯片组件(310)发射的多束不同波长的信号光;第二透镜组(207),设置在第一容纳腔(410),准直第一反射面(411)反射的多束不同波长的信号光;合波光复用组件(206),设置在第一容纳腔(410),将第二透镜组(207)准直后的多束不同波长的信号光合波成一束信号光。

Description

一种光模块
本公开要求在2020年09月08日提交中国专利局、申请号为202010935481.0、专利名称为“一种光模块”,在2020年09月08日提交中国专利局、申请号为202010936547.8、专利名称为“一种光模块”的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光通信技术领域,尤其涉及一种光模块。
背景技术
随着云计算、移动互联网、视频等新型业务和应用模式发展,光通信技术的发展进步变的愈加重要。而在光通信技术中,光模块是实现光电信号相互转换的工具,是光通信设备中的关键器件之一,并且随着光通信技术发展的需求光模块的传输速率不断提高。
发明内容
第一方面,本申请提供的一种光模块,包括:电路板;光发射芯片组件,包括多个光发射芯片,设置在电路板上,用于发射多束不同波长的信号光;第一透镜组件,罩设在光发射芯片组件上,传输并改变光发射芯片组件发射信号光的传播方向;其中,第一透镜组件包括设置在顶部的第一容纳腔和设置在底部的第二容纳腔,第一容纳腔的底部设置第一反射面,第二容纳腔覆盖容纳光发射芯片组件,第一反射面在第二容纳腔方向的投影覆盖光发射芯片组件中的光发射芯片,第一反射面用于反射光发射芯片组件发射的多束不同波长的信号光;第二透镜组,包括多个透镜,设置在第一容纳腔,用于准直第一反射面反射的多束不同波长的信号光;合波光复用组件,设置在第一容纳腔,用于将第二透镜组准直后的多束不同波长的信号光合波成一束信号光。
第二方面,本申请提供的一种光模块,包括:电路板;光接收芯片组件,包括多个光接收芯片,设置在电路板上,用于接收来自光模块外部不同波长的信号光;分波光解复用组件,用于将来自光模块外部包括不同波长的一束信号光分束成多束信号光;第二透镜组件,罩设在光接收芯片组件上,用于传输并改变来自光模块外部的信号光的传播方向;第五透镜组,包括多个透镜,用于分别聚焦分波光解复用组件分束的多束的信号光;其中,第二透镜组件包括设置在顶部的第三容纳腔和设置在底部的第四容纳腔,第三容纳腔的底部设置第二反射面,第四容纳腔覆盖容纳光接收芯片组件,第二反射面在第四容纳腔方向的投影覆盖光接收芯片组件中的光接收芯片,分波光解复用组件和第五透镜组设置在第三容纳腔内,第二反射面用于反射多束的信号光至光接收芯片组件中相应的光接收芯片。
第三方面,本申请提供的一种光模块,包括:电路板;光发射芯片组件,包括多个光发射芯片,设置在电路板上,用于发射多束不同波长的信号光;第一透镜组件,罩设在光发射芯片组件上,传输并改变光发射芯片组件发射信号光的传播方向;其中,第一透镜组件包括设置在顶部的第一容纳腔及第一反射面、设置在底部的第二容纳腔;第一容纳腔的 底部设置第一承载面,第二容纳腔覆盖容纳光发射芯片组件,第一反射面在第二容纳腔内的投影覆盖光发射芯片组件中的光发射芯片且第一反射面向第一承载面倾斜,第一反射面用于反射光发射芯片组件发射的多束不同波长的信号光;第一容纳腔还包括朝向第一反射面的第一透射面、与第一透射面平行设置的第二透射面;第一透射面用于透射来自第一反射面的光;合波光复用组件,设置在第一承载面上,用于将来自第一透射面的多束不同波长的信号光合波成一束信号光;第二透射面用于透射来自合波光复用组件的光。
第四方面,本申请提供的一种光模块,包括:电路板;光接收芯片组件,包括多个光接收芯片,设置在电路板上,用于接收来自光模块外部不同波长的信号光;分波光复用组件,用于将来自光模块外部包括不同波长的一束信号光分束成多束信号光;第二透镜组件,罩设在光接收芯片组件上,用于传输并改变来自光模块外部的信号光的传播方向;其中,第二透镜组件包括设置在顶部的第三容纳腔及第二反射面、设置在底部的第四容纳腔,第四容纳腔覆盖容纳光接收芯片组件,第二反射面在第四容纳腔内的投影覆盖光接收芯片组件中的光接收芯片,光解复用组件设置在第三容纳腔内,第二反射面用于反射多束的信号光至光接收芯片组件中相应的光接收芯片;第三容纳腔还包括朝向第二反射面的第三透射面、与第三透射面平行设置的第四透射面;第四透射面用于向分波光复用组件透射光;第三透射面用于透射来自分波光复用组件的光。
附图说明
为了更清楚地说明本公开的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为光通信终端连接关系示意图;
图2为光网络单元结构示意图;
图3为本申请实施例中提供的一种光模块的结构示意图;
图4为本公开实施例中提供的一种光模块的分解结构示意图;
图5为本公开实施例提供的一种光模块的内部结构示意图;
图6为本公开实施例提供的一种第一透镜组件的立体图一;
图7为本公开实施例提供的一种第一透镜组件的立体图二;
图8为本公开实施例提供的一种第一透镜组件承载其他光器件的结构示意图;
图9为图8的剖视图;
图10为本公开实施例提供的一种第一透镜组件的剖视图一;
图11为本公开实施例提供的一种第一透镜组件的剖视图二;
图12为本公开实施例提供的一种第一透镜组件设置在电路板上的剖视图;
图13为本公开实施例提供的一种第一透镜组件的使用状态图;
图14为本公开实施例提供的一种合波光复用组件的工作原理图;
图15为本公开实施例提供的一种第二透镜组件设置在电路板上的剖视图;
图16为本公开实施例提供的一种第二透镜组件的使用状态图;
图17为本公开实施例提供的一种分波光解复用组件的工作原理图;
图18为本公开另一实施例提供光模块的分解结构示意图;
图19为本公开另一实施例提供的一种光模块的内部结构示意图;
图20为本公开另一实施例提供的一种第一透镜组件的立体图三;
图21为图19中第一透镜组件设置在电路板上的剖视图;
图22为本公开另一实施例提供的一种第一透镜组件设置在电路板上的光路示意图;
图23为本公开另一实施例提供的一种第二透镜组件设置在电路板上的剖视图;
图24为本公开另一实施例提供的一种第二透镜组件设置在电路板上的光路示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
光纤通信的核心环节之一是光、电信号的相互转换。光纤通信使用携带信息的光信号在光纤/光波导等信息传输设备中传输,利用光在光纤/光波导中的无源传输特性可以实现低成本、低损耗的信息传输;而计算机等信息处理设备使用的是电信号,为了在光纤/光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,就需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光、电信号的相互转换功能,光信号与电信号的相互转换是光模块的核心功能。光模块通过其内部电路板上的金手指实现与外部上位机之间的电连接,主要的电连接包括供电、I2C信号、数据信号以及接地等;采用金手指实现的电连接方式已经成为光模块行业的主流连接方式,以此为基础,金手指上引脚的定义形成了多种行业协议/规范。
图1为光通信终端连接关系示意图。如图1所示,光通信终端的连接主要包括光网络单元100、光模块200、光纤101及网线103之间的相互连接。
光纤的101一端连接远端服务器,网线103的一端连接本地信息处理设备,本地信息处理设备与远端服务器的连接由光纤101与网线103的连接完成;而光纤101与网线103之间的连接由具有光模块200的光网络单元100完成。
光模块200的光口对外接入光纤101,与光纤101建立双向的光信号连接;光模块200的电口对外接入光网络终端100中,与光网络终端100建立双向的电信号连接;在光模块内部实现光信号与电信号的相互转换,从而实现在光纤与光网络终端之间建立信息连接;在本公开某一些实施例中,来自光纤的光信号由光模块转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块转换为光信号输入至光纤中。
光网络终端具有光模块接口102,用于接入光模块200,与光模块200建立双向的电信号连接;光网络终端具有网线接口104,用于接入网线103,与网线103建立双向的电信号连接;光模块200与网线103之间通过光网络终端100建立连接,在本公开某一些实 施例中,光网络终端将来自光模块的信号传递给网线,将来自网线的信号传递给光模块,光网络终端作为光模块的上位机监控光模块的工作。
至此,远端服务器通过光纤101、光模块200、光网络单元100及网线103,与本地信息处理设备之间建立双向的信号传递通道。
常见的信息处理设备包括路由器、交换机、电子计算机等;光网络单元100是光模块200的上位机,向光模块200提供数据信号,并接收来自光模块200的数据信号,常见的光模块200上位机还有光线路终端等。
图2为光网络单元结构示意图。如图2所示,在光网络单元100中具有电路板105,在电路板105的表面设置笼子106;在笼子106中设置有电连接器,用于接入金手指等光模块电口;在笼子106上设置有散热器107,散热器107具有增大散热面积的翅片等凸起结构。
光模块200插入光网络单元中,具体为光模块的电口插入笼子106中的电连接器,光模块200的光口与光纤101连接。
笼子106位于电路板上,将电路板上的电连接器包裹在笼子中;光模块200插入笼子中,由笼子固定光模块200,光模块200产生的热量通过光模块壳体传导给笼子,最终通过笼子上的散热器107进行扩散。
图3为本公开实施例提供的一种光模块200的结构示意图,图4为本公开实施例提供光模块200的分解结构示意图。如图3和图4所示,本公开实施例提供的光模块200包括上壳体201、下壳体202、解锁部件203及电路板300。
上壳体201盖合在下壳体202上,以形成具有两个开口的包裹腔体,包裹腔体的外轮廓一般呈现为方形体形状。在本公开某一些实施例中,下壳体202包括主板以及位于主板两侧、与主板垂直设置的两个侧板;上壳体201包括盖板,盖板盖合在上壳体201的两个侧板上,以形成包裹腔体;上壳体201还可以包括位于盖板两侧、与盖板垂直设置的两个侧壁,由两个侧壁与两个侧板结合,以实现上壳体201盖合在下壳体202上。
两个开口的其中一个开口为电口204,电路板300的金手指从电口204伸出,插入光网络单元等上位机中,另一个开口为光口205,用于外部光纤接入以连接光模块200内部的光收发器件,电路板300、光收发器件等光电器件位于包裹腔体中。
采用上壳体201、下壳体202结合的装配方式,便于将电路板300等器件安装到壳体中,由上壳体201、下壳体202形成光模块最外层的封装保护壳体。上壳体201及下壳体202一般采用金属材料,利于实现电磁屏蔽以及散热;一般不会将光模块200的壳体做成一体结构,这样在装配电路板等器件时,定位部件、散热以及电磁屏蔽结构无法安装,也不利于生产自动化。
解锁部件203位于包裹腔体/下壳体202的外壁,用于实现光模块与上位机之间的固定连接,或解除光模块与上位机之间的固定连接。
解锁部件203具有与上位机笼子匹配的卡合结构;拉动解锁部件203的末端可以在使解锁部件203在外壁的表面相对移动;光模块插入上位机的笼子里,由解锁部件203的卡合结构将光模块固定在上位机的笼子里;通过拉动解锁部件203,解锁部件203的卡合结 构随之移动,进而改变卡合结构与上位机的连接关系,以解除光模块与上位机的卡合关系,从而可以将光模块从上位机的笼子里抽出。
电路板300上设置有光发射芯片、光发射芯片的驱动芯片、光接收芯片、跨阻放大芯片、限幅放大芯片及微处理器芯片等,其中光发射芯片与光接收芯片直接贴装在光模块的电路板上,此种形态业内称为COB封装。
电路板300通过电路走线将光模块中的用电器件按照电路设计连接在一起,以实现供电、电信号传输及接地等电功能;同时电路板300还有承载的各器件的功能,如电路板承载透镜组件。
电路板一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳的承载芯片;硬性电路板还可以插入上位机笼子中的电连接器中,在本公开某一些实施例中,在硬性电路板的一侧末端表面形成金属引脚/金手指,用于与电连接器连接。
在本公开实施例中,光模块还包括透镜组件,透镜组件设置电路板300上。在本申请某一些实施例中,透镜组件与电路板300形成包裹光发射芯片组件或光接收芯片组件的腔体,光发射芯片组件或光接收芯片组件位于该腔体中。透镜组件用于传输光束并在传输过程中改变光束传输方向。在使用中:光发射芯片组件中光芯片发出的光经透镜组件传输并反射后进入光纤中;或者,来自光纤的光经透镜组件反射后进入光接收芯片中,透镜组件不仅起到密封光芯片的作用,同时也建立了光芯片与光纤之间的光连接。透镜组件同时罩设在光发射芯片组件或光接收芯片组件上方,便于利用较少器件实现改变光发射芯片发射的信号光或来自光模块外部的信号光的传播方向。在本公开实施例中,光发射芯片组件通过透镜组件罩设,或光接收芯片组件通过透镜组件罩设,还可以光发射芯片组件和光接收芯片组件分别通过透镜组件罩设。进而在本公开实施例中,透镜组件的数量可以为1个,还可以为2个等。
在本公开实施例中,透镜组件不仅可以设置在电路板300靠近光口的一端,还可以设置在电路板300的中部,具体可根据光模块的实际需要进行选择。图5为本公开实施例提供的一种光模块的内部结构示意图,图5示出了一种透镜组件设置在电路板300靠近光口的一端的结构示意图。在本公开实施例中,透镜组件采用罩设式的方式设置在光发射芯片组件或光接收芯片组件的上方;其中:光发射芯片组件中包括若干光发射芯片,通常每一光发射芯片用于发射一种波长的信号光,进而光发射芯片组件用于发射多束不同波长的信号光;光接收芯片组件中包括若干光接收芯片,通常每一光接收芯片用于接收一种波长的信号光,进而光接收芯片组件用于接收多束不同波长的信号光。在可能的实施方式中,光发射芯片组件中可以包括2个、3个、4个等光发射芯片,光接收芯片组件中可以包括2个、3个、4个等光接收芯片。
如图5所示,光模块包括两个透镜组件,为便于描述将将罩设在光发射芯片组件上的透镜组件称为第一透镜组件,将罩设在光接收芯片组件上的透镜组件称为第二透镜组件。如图5所示,两个透镜组件包括第一透镜组件400和第二透镜组件500,但图5中第一透镜组件400和第二透镜组件500的相对位置仅是一个示例,但不构成对本公开透镜组件设 置位置的具体限定。
高速率数据传输要求光发射芯片组件或光接收组件中光芯片及其驱动/匹配芯片之间近距离设置,以缩短芯片之间的连线、减小连线造成的信号损失,而透镜组罩设在光芯片的上方时,透镜组件一般将光芯片及其驱动/匹配芯片同时罩住。所以光发射芯片组件中光发射芯片与光发射芯片的驱动芯片近距离设置,透镜组件罩设光发射芯片与光发射芯片的驱动芯片;光接收芯片组件中光接收芯片与跨阻放大芯片近距离设置,透镜组件罩设光接收芯片与跨阻放大芯片。
为便于实现光发射芯片组件发射出的多束不同波长信号光的传输以及实现光接收芯片组件接收不同波长信号光,在一些公开实施例中光模块还包括其他光器件配合透镜组件。下面结合透镜组件的具体使用进行详细描述。
图6为本公开实施例提供的一种第一透镜组件的立体图一,图7为本公开实施例提供的一种第一透镜组件的立体图二。如图6和7所示,第一透镜组件400的顶部设置第一容纳腔410,第一透镜组件400的底部设置第二容纳腔420。第一容纳腔410内包括第一反射面411,第一容纳腔410内用于设置光学器件,如透镜、合波光复用组件等光学器件。第一反射面411为倾斜面,用于反射入射至其上的信号光。在本公开某一些实施例中,第一容纳腔410的底部设置第一承载面412,第一承载面412便于透镜、合波光复用组件等光学器件设置;第一承载面412位于第一反射面411的一侧,第一承载面412较第一反射面411更靠近第一透镜组件400的出光位置。第二容纳腔420用于第一透镜组件400容纳罩设光发射芯片组件,便于第一透镜组件400在电路板300上的安装固定,同时第二容纳腔420在第一容纳腔410方向的投影覆盖第一反射面411。
在本公开实施例中,第一透镜组件400的顶面下沉形成第一容纳腔410,第一容纳腔410的底部形成第一反射面411和第一承载面412;第一透镜组件400的底面上沉形成第二容纳腔420,当第一透镜组件400装配固定至电路板300上时第二容纳腔420的顶面通常平行于电路板300。第一透镜组件400通常为透明塑料件,一般采用一体注塑成型。
在本公开某一些实施例中,第二容纳腔420的顶面设置第一透镜组421,第一透镜组421包括若干透镜,用于准直光发射芯片组件的信号光。第一透镜组421中透镜的数量主要取决于光发射芯片组件中光发射芯片的数量,通常第一透镜组421中透镜的数量等于光发射芯片组件中光发射芯片的数量。第一透镜组421中透镜可为第二容纳腔420的顶面下凸形成的一个个凸起。第一反射面411在第二容纳腔420的顶面方向上的投影覆盖第一透镜组421,进而经过第一透镜组421准直的信号光全部传输至第一反射面411。
图8为本公开实施例提供的一种第一透镜组件承载其他光器件的结构示意图。如图8所示,本公开实施例提供的光模块中,还包括合波光复用组件206,合波光复用组件206设置在第一容纳腔410的第一承载面412上。图8所示的第一透镜组件400,合束后的信号光通过其右侧传输出第一透镜组件400,进而合波光复用组件206设置在第一容纳腔410的较右的位置,进而第一反射面411向右倾斜以及第一承载面412设置在第一反射面411的右侧。
在本公开某一些实施例中,公开光模块还包括第二透镜组207,第二透镜组207设置 在第一容纳腔410的第一承载面412上。第二透镜组207包括若干透镜。第二透镜组207中透镜的数量主要取决于光发射芯片组件中光发射芯片的数量,通常第二透镜组207中透镜的数量等于光发射芯片组件中光发射芯片的数量。第二透镜组207中透镜可为玻璃透镜,用于准直经第一反射面411反射至其的信号光。第二透镜组207设置在第一反射面411与合波光复用组件206之间,进而第一反射面411发射的信号光经第二透镜组207准直后的信号光传输至合波光复用组件。
图9为图8的剖视图,图9示出了第一反射面411向右倾斜、第一承载面412设置在第一反射面411的右侧以及合波光复用组件206位于第一反射面411的右侧。如图9所示,本公开实施例提供的第一透镜组件400右侧还包括第一光纤适配器430,第一光纤适配器430用于第一透镜组件400连接光纤,如外部光纤,进而便于合束后的信号光耦合至光纤。第一光纤适配器430的外侧设置凸起431、内侧设置光口432,凸起431用于连接光纤时的限位固定,光口432用于传输合束后的信号光。通常光口432内插入光纤插芯,合束后的信号光传输至光纤插芯,经光纤插芯传输至光纤,进而便于信号光耦合进入光纤。
图10为本公开实施例提供的一种第一透镜组件的剖视图一,图11为本公开实施例提供的一种第一透镜组件的剖视图二。如图10和11所示,第一承载面412包括第一子承载面412-1和第二子承载面412-2,第一子承载面412-1用于承载合波光复用组件206,第二子承载面412-2用于承载第二透镜组207。第一承载面412包括第一子承载面412-1和第二子承载面412-2,便于实现合波光复用组件206和第二透镜组207的安装定位。在本公开一些实施例中,第一子承载面412-1和第二子承载面412-2之间形成第一台阶面412-3进一步便于合波光复用组件206和第二透镜组207的安装定位以及调整合波光复用组件206光轴和第二透镜组207光轴的相对位置。
在本公开某一些实施例中,如图10和11所示,第一光纤适配器430的内侧端部设置第三透镜433,第三透镜433用于将合束后的信号光聚焦传输至第一光纤适配器430的光口432中。在本公开一些实施例中,第三透镜433的焦点位于光口432中。在本公开一些实施例中,第三透镜433的光轴与光口432的中轴共线,有助于提高合束后信号光到光纤的耦合精度。第三透镜433可为第一光纤适配器430的光口432内侧形成的凸起结构。
在本公开实施例中,第一容纳腔410内包括第一透射面413,经第一反射面411反射的信号光透射第一透射面413。第一透射面413在第一反射面411的投影覆盖第一反射面411。为增加第一透射面413的透光率,第一透射面413可镀覆透射膜,或使第一透射面413为垂直面,第一透射面413的法线与光发射芯片的光轴垂直。
在本公开实施例中,第一容纳腔410内还包括第二透射面414,经合波光复用组件合束后的信号光透射第二透射面414。为增加第二透射面414的透光率,第二透射面414可镀覆透射膜,或第二透射面414垂直于合波光复用组件206出光口的光轴。在本公开一些实施例中,第二透射面414垂直于第一子承载面412-1,且第二透射面414垂直于第三透镜433的光轴。
图12为本公开实施例提供的一种第一透镜组件设置在电路板上的剖视图。如图12所示,第一透镜组件400设置在电路板300上,第一透镜组件400罩设在光发射芯片组件310 上,光发射芯片组件310位于第二容纳腔420中;第二容纳腔420的顶面设置第一透镜组421,第一透镜组421中透镜位于光发射芯片组件310中光发射芯片的上方,即第一透镜组421中透镜在电路板300上投影覆盖光发射芯片组件310中光发射芯片;第一反射面411位于第一透镜组421的上方,第一反射面411在第二容纳腔420方向的投影覆盖第一透镜组421;第一反射面411的右侧设置第一透射面413,第一透射面413的右侧依次为第二透镜组207和合波光复用组件206;合波光复用组件206的右侧为第二透射面414;第二透射面414的右侧为第一光纤适配器430,第一光纤适配器430的光口432内侧端部设置第三透镜433。在本公开一些实施例中公开,第一反射面411与光发射芯片组件310中光发射芯片的光轴的夹角近似45°,进而第一反射面411可将光发射芯片发射的信号光的传输方向改变90°。第一反射面411上可涂覆发射膜,用于增加第一反射面411的反射率。在本公开一些实施例中,第一反射面411为与光发射芯片的光轴的夹角45°的全反射面,光发射芯片发射的信号光传输至第一反射面411发生全反射。
如图12所示,光发射芯片组件310中光发射芯片发射的信号光向上传输,传输至第一透镜组421中的透镜上,光发射芯片发射的信号光为发散光经该透镜准直为平行光;经第一透镜组421准直后的信号光传输至第一反射面411并在第一反射面411发生全发射,将向上传输的信号光的传输方向改变为向右传输;向右传输的信号光透射第一透射面413,进入第二透镜组207的透镜中,经第二透镜组207准直,进一步调整向右传输的信号光平行度;经第二透镜组207准直后的向右传输的信号光入射至合波光复用组件206。
图13为本公开实施例提供的一种第一透镜组件的使用状态图,图13示出的是光发射芯片组件发射四束不同波长信号光时第一透镜组件的工作状态,光发射芯片组件310中光发射芯片沿电路板300宽度方向(第一透镜组件400宽度方向)成排的排列。如图13所示,第一透镜组件400的第一容纳腔410中设置的第二透镜组207包括四个透镜,四个透镜沿第一透镜组件400宽度方向成排的排列,第二透镜组207可用于四束信号光的准直,经第二透镜组207准直后的四束信号光自合波光复用组件206的左侧进入合波光复用组件206,合波光复用组件206将四束信号光合束后通过合波光复用组件206的右侧输出一束信号光,该一束信号光包括不同波长的信号光。
在本公开实施例中,合波光复用组件206利用其两侧以及不同位置设置不同的膜层对不同波长信号光进行透过和反射将多束不同波长的信号光合束成一束光。合波光复用组件206根据被合束光的光束数量协调选择每束光的反射次数。
图14为本公开实施例提供的一种合波光复用组件(MUX)的工作原理图。如图14所示,合波光复用组件206左侧包括用于不同波长光束入射进入合波光复用组件206的入光口,但仅有一个用于出射合成光束的出光口。假设其中有4束波长为λ1、λ2、λ3以及λ4的信号光需要合束成一束信号光,4束需要被合束的光信号通过合波光复用组件206的左侧不同的入光口入射至合波光复用组件206,λ1信号光经过合波光复用组件206的六个不同位置进行了六次不同的反射到达出光口,λ2信号光经过合波光复用组件206的四个不同位置进行了四次不同的反射到达出光口,λ3信号光经过合波光复用组件206的二个不同位置进行了二次不同的反射到达出光口,λ4信号光入射至合波光复用组件206 后直接传输到达至出光口,进而不同波长的信号光经不同的入光口进入合波光复用组件206、通过同一出光口从合波光复用组件206输出。如此4束不同的波长的信号光在出光口处合成一束,然后合成一束的信号光通过出光口传输至光纤,4束不同的波长的信号光可共用一根光纤传输出光模块,实现单光纤中多个波长的信号光同时传输。
在本公开实施例中,第二透镜组件500的结构与第一透镜组件400的结构相似或相同。图15为本公开实施例提供的一种第二透镜组件设置在电路板上的剖视图。如图15所示,第二透镜组件500的顶部设置第三容纳腔510,第二透镜组件500的底部设置第四容纳腔520。第三容纳腔510内包括第二反射面511,第三容纳腔510用于设置光学器件,如透镜、分波光解复用组件等光学器件。第二反射面511为倾斜面,用于反射入射至其上的信号光。在本公开一些实施例中,第三容纳腔510的底部设置承载面512,第一承载面412便于透镜、合波光复用组件等光学器件设置;承载面512位于第二反射面511的一侧,承载面512较第二反射面511更靠近第二透镜组件500的入光位置。第二反射面511为倾斜面,用于反射入射至其上的信号光;承载面512用承载其他光器件,方便设置其他光器件。第四容纳腔520用于第二透镜组件500容纳罩设光接收芯片组件320,便于第二透镜组件500在电路板300上的安装固定,同时第四容纳腔520在第三容纳腔510方向的投影覆盖第二反射面511。
本公开实施例提供的光模块中,第三容纳腔510的承载面512上设置有分波光解复用组件208。分波光解复用组件208用于将来自光模块外部包括不同波长光的一束信号光分成多束信号光。来自光模块外部包括不同波长光的一束信号光通过第二透镜组件500的右侧输入至第二透镜组件500,分波光解复用组件208设置在第三容纳腔510的较右位置,来自光模块外部的合成一束的信号光经分波光解复用组件208右侧的入光口输入、经分波光解复用组件208分束后通过分波光解复用组件208左侧相应的出光口输出,然后传输至第二反射面511反射改变方向传输至光接收芯片组件320。
本公开实施例提供的光模块中,还包括第五透镜组209,第五透镜组209设置在第三容纳腔510的承载面512上。第五透镜组209包括若干透镜。第五透镜组209中透镜的数量主要取决于光接收芯片组件320中光接收芯片的数量,通常第五透镜组209中透镜的数量等于光接收芯片组件320中光接收芯片的数量。第五透镜组209中透镜可为玻璃透镜,用于将分波光解复用组件208分束后的各束光对应聚焦至第二反射面511。第五透镜组209设置在第二反射面511与分波光解复用组件208之间,进而分波光解复用组件208分束成的信号光经第五透镜组209聚焦传输至第二反射面511。
在本公开某一些实施例中,第四容纳腔520的顶面设置第四透镜组521,第四透镜组521包括若干透镜,用于将第二反射面511反射的信号光聚焦至光接收芯片组件320。第四透镜组521中透镜的数量主要取决于光接收片组件320中光接收芯片的数量,通常第四透镜组521中透镜的数量等于光接收芯片组件320中光接收芯片的数量。第四透镜组521中透镜可为第四容纳腔520的顶面下凸形成的一个个凸起。第二反射面511在第四容纳腔520的顶面方向上的投影覆盖第四透镜组521,进而经第二反射面511反射的信号光通过第四透镜组521中的透镜聚焦至相应的光接收芯片。在本公开某一些实施例中,第四透镜组521 中的透镜焦点位于相应的光接收芯片上,调高信号光接收率。
在本公开实施例中,第二透镜组件500右侧还包括第二光纤适配器530,第二光纤适配器530用于第二透镜组件500连接光纤,如外部光纤,进而便于外部光纤中的信号光耦合至第二透镜组件500。第二光纤适配器530的外侧设置凸起531、内侧设置光口532,凸起531用于连接光纤时的限位固定,光口532用于传输合束后的信号光。通常光口532内插入光纤插芯,光纤中传输的信号光耦合至光纤插芯,经光纤插芯传输至第二透镜组件500。
在本公开某一些实施例中,第二光纤适配器530的内侧端部设置第六透镜533,第六透镜533用于将耦合至光口532的信号光准直传输至分波光解复用组件208的入光口。第三透镜433可为第一光纤适配器430的光口432内侧形成的凸起结构。
在本公开实施例中,承载面512可包括第三承载面和第四承载面,详细结构可参见第一承载面412;相应的,第三容纳腔510内还包括第三透射面513和第四透射面514,第三透射面513和第四透射面514的结构设计可参见第一透射面413和第二透射面414。
图16为本公开实施例提供的一种第二透镜组件的使用状态图,图16展示的是光接收芯片组件接收四束不同波长信号光时第二透镜组件的工作状态,光接收片组件320中光发射芯片沿电路板300宽度方向(第二透镜组件500宽度方向)成排的排列。第二透镜组件500的第三容纳腔510中设置的第五透镜组209包括四个透镜,四个透镜沿第二透镜组件500宽度方向成排的排列,第五透镜组209可用于四束信号光的分别聚焦。
如图16所示,一束包括四种不同波长光的信号光传输至第二透镜组件500,耦合进入分波光解复用组件208的入光口,经分波光解复用组件208按信号光的波长分为四束信号光并分别从分波光解复用组件208对应的出光口输出,经相应的第五透镜组209中透镜聚焦传输至第二反射面511,最后经第二反射面511改变传输方向传输至光接收芯片组件,进而实现光接收芯片组件对来自光模块外部的一束包括四种波长光的分束接收。
在本公开实施例中,分波光解复用组件208利用其两侧以及不同位置设置不同的膜层对不同波长信号光进行透过和反射将一束包括不同波长的信号光分束成多束光。分波光解复用组件208根据被分束光的波长种类以及分束数量协调选择每一波长信号光的反射次数。
图17为本公开实施例提供的一种分波光解复用组件(DEMUX)的工作原理图。如图17所示,分波光解复用组件208右侧包括一个用于入射多种波长信号光的入光口,左侧包括多个用于出射光的出光口,每一出光口用于出射一种波长的信号光。假设第二透镜组件500入射一束包括λ1、λ2、λ3以及λ4四种波长光的信号光,信号光通过分波光解复用组件208的入射光口进入分波光解复用组件208,λ1信号光经过分波光解复用组件208的六个不同位置进行了六次不同的反射到达其出光口,λ2信号光经过分波光解复用组件208的四个不同位置进行了四次不同的反射到达其出光口,λ3信号光经过分波光解复用组件208的二个不同位置进行了二次不同的反射到达其出光口,λ4信号光入射至分波光解复用组件208后直接传输到达至其出光口,进而实现不同波长的信号光经同一入光口进入分波光解复用组件208、经不同的出光口输出。
在本公开实施例中关于第二透镜组件500详细结构未尽之处可参见第一透镜组件400。
图18为本公开另一实施例提供光模块的分解结构示意图,图19为本申请另一实施例 提供的一种光模块的内部结构示意图。如图18、图19所示,本申请另一实施例提供的光模块200包括上壳体201、下壳体202、解锁部件203、电路板300及透镜组件。
图20为本申请另一实施例提供的一种第一透镜组件的立体图三,如图20所示,第一透镜组件400的顶部设置第一容纳腔410、第一反射面411及第一透射面400A,第一透镜组件400的底部设置第二容纳腔420。第一容纳腔410内包括第一承载面412,第一承载面412位于第一透射面400A的一侧,第一承载面412较第一透射面400A更靠近第一透镜组件400的出光位置。第一反射面411设置在第一透射面400A的一侧,第一反射面411较第一透射面400A更远离第一透镜组件400的出光位置;第一反射面411为倾斜面,用于反射入射至其上的信号光;第一承载面412用承载其他光器件,方便设置其他光器件。第二容纳腔420用于第一透镜组件400容纳罩设光发射芯片组件,便于第一透镜组件400在电路板300上的安装固定,同时第二容纳腔420在第一容纳腔410方向的投影覆盖第一反射面411。
图21为图19中第一透镜组件设置在电路板上的剖视图。如图21所示,第一透镜组件400设置在电路板300上,第一透镜组件400罩设在光发射芯片组件310上,光发射芯片组件310位于第二容纳腔420中;第二容纳腔420的顶面设置第一透镜组421,第一透镜组421中透镜位于光发射芯片组件310中光发射芯片的上方,即第一透镜组421中透镜在电路板300上投影覆盖光发射芯片组件310中光发射芯片;第一反射面411位于第一透镜组421的上方,第一反射面411在第二容纳腔420方向的投影覆盖第一透镜组421;第一反射面411的右侧设置第一透射面400A,第一透射面400A的右侧为合波光复用组件206;合波光复用组件206的右侧为第二透射面414;第二透射面414的右侧为第一光纤适配器430,第一光纤适配器430的光口432内侧端部设置第三透镜433,第一光纤适配器430为第一透镜组件400的出光位置。在本公开某一些实施例中在本公开实施例中,第一反射面411与光发射芯片组件310中光发射芯片的光轴的夹角为45°,即第一反射面相对电路板表面向第一容纳腔410方向倾斜45°,进而第一反射面411可将光发射芯片发射的信号光的传输方向改变90°。第一反射面411上可涂覆发射膜,用于增加第一反射面411的反射率。在本公开某一些实施例中,第一反射面411为与光发射芯片的光轴的夹角45°的全反射面,光发射芯片发射的信号光传输至第一反射面411发生全反射。
图22为本公开另一实施例提供的一种第一透镜组件设置在电路板上的光路示意图。如图22所示,光发射芯片组件310中光发射芯片发射的信号光向上传输,传输至第一透镜组421中的透镜上,光发射芯片发射的信号光为发散光经该透镜准直为平行光;经第一透镜组421准直后的信号光传输至第一反射面411并在第一反射面411发生全发射,将向上传输的信号光的传输方向改变为向右传输;向右传输的信号光透射第一透射面400A,后继续向右传输的信号光入射至合波光复用组件206。
光发射芯片组件310中包括多个光发射芯片,第一透镜组421中包括多个第一透镜,光发射芯片与第一透镜之间的光路相同,以其中一个光发射芯片及一个第一透镜举例描述。第一透镜将光发射芯片发出的发散光汇聚为准直的平行光,平行光在第一反射面411处被反射向第一透射面400A,经过第一透射面400A的光进入合波光复用组件206中,从合波 光复用组件206中射出的光射入第二透射面414中,然后经第三透镜433汇聚后摄入光口432中。上述建立在光发射芯片与光口之间的光传播路径中,第一反射面411、第一透射面400A及第二透射面414相互协作完成光传播路径的搭建,其中第一透射面与第二透射面相互平行;第一反射面411、第一透射面400A及第二透射面414的角度可以相对调整,根据光学传播原理,有两种情况:
1.第一反射面为45°;第一透射面400A及第二透射面414分别垂直于入射光路,即光垂直入射第一透射面400A及第二透射面414;
2.如图22所示,第一反射面为非45°;第一透射面400A及第二透射面414分别倾斜于入射光路,即光倾斜入射第一透射面400A及第二透射面414:为配合脱模设计,一般情况下第一反射面相对垂直方向的角度为α1<45°,第一透射面400A向第一反射面411方向倾斜α2,第二透射面414向光口432方向倾斜α3,例如α2和α3为4°时,为配合最终到达会聚透镜的光束是沿水平方向的,那么α1=43.44。
图23为本公开另一实施例提供的一种第二透镜组件设置在电路板上的剖视图。如图23所示,第二透镜组件500的顶部设置第三容纳腔510、第二反射面511及第三透射面400B,第二透镜组件500的底部设置第四容纳腔520。第三容纳腔510内包括第二承载面512,第二承载面512位于第三透射面400B的一侧,第二承载面512较第三透射面400B更靠近第二透镜组件500的入光位置;第二反射面511位于第三透射面400B的一侧,第二反射面511较第三透射面400B更远离第二透镜组件500的入光位置;第二反射面511为倾斜面,用于反射入射至其上的信号光;第二承载面512用承载其他光器件,方便设置其他光器件。第四容纳腔520用于第二透镜组件500容纳罩设光接收芯片组件320,便于第二透镜组件500在电路板300上的安装固定,同时第四容纳腔520在第三容纳腔510方向的投影覆盖第二反射面511。
本公开实施例提供的光模块中,第三容纳腔510的第二承载面512上设置分波光解复用组件208。分波光解复用组件208用于将来自光模块外部包括不同波长光的一束信号光分束成多束信号光。来自光模块外部包括不同波长光的一束信号光通过第二透镜组件500的右侧输入至第二透镜组件500,进而分波光解复用组件208设置在第三容纳腔510的右侧位置,自光模块外部的合成一束的信号光经分波光解复用组件208右侧的入光口输入、经分波光解复用组件208分束后通过分波光解复用组件208左侧相应的出光口输出,然后传输至第二反射面511反射改变方向传输至光接收芯片组件320。
在本公开某一些实施例中,第四容纳腔520的顶面设置第四透镜组521,第四透镜组521包括若干透镜,用于将第二反射面511反射的信号光聚焦至光接收芯片组件320。第四透镜组521中透镜的数量主要取决于光发接收片组件320中光接收芯片的数量,通常第四透镜组521中透镜的数量等于光接收芯片组件320中光接收芯片的数量。第四透镜组521中透镜可为第四容纳腔520的顶面下凸形成的一个个凸起。第二反射面511在第四容纳腔520的顶面方向上的投影覆盖第四透镜组521,进而经第二反射面511反射的信号光通过第四透镜组521中的透镜聚焦至相应的光接收芯片。在本公开某一些实施例中,第四透镜组521中的透镜焦点位于相应的光接收芯片上,调高信号光接收率。
在本公开实施例中,第二透镜组件500右侧还包括第二光纤适配器530,第二光纤适配器530用于第二透镜组件500连接光纤,如外部光纤,进而便于外部光纤中的信号光耦合至第二透镜组件500,第二光纤适配器530为第二透镜组件500的入光位置。第二光纤适配器530的外侧设置凸起531、内侧设置光口532,凸起531用于连接光纤时的限位固定,光口532用于传输合束后的信号光。通常光口532内插入光纤插芯,光纤中传输的信号光耦合至光纤插芯,经光纤插芯传输至第二透镜组件500。
图24为本公开另一实施例提供的一种第二透镜组件设置在电路板上的光路示意图。由于光路可逆,光接收部分与光发射部分相似;光接收芯片组件320中包括多个光接收芯片,第四透镜组521中包括多个第四透镜,光接收芯片与第四透镜之间的光路相同,以其中一个光接收芯片及一个第四透镜举例描述。如图24所示,来自光口的光经第六透镜533之后射入第四透射面,然后经波合波光复用组件208射入第三透射面400B,经第三透射面400B射向第二反射面511;来自第二反射面511的光经第四透镜521汇聚射入光接收芯片。上述建立在光口与光接收芯片之间的光传播路径中,第二反射面511、第三透射面400B及第四透射面514相互协作完成光传播路径的搭建,其中第三透射面与第四透射面相互平行;第二反射面511、第三透射面400B及第四透射面514的角度可以相对调整,根据光学传播原理,有两种情况:
1.第二反射面511为45°;第三透射面400B及第四透射面514的分别垂直于入射光路,即光垂直入射第三透射面400B及第四透射面514;
2.第二反射面511为非45°;第三透射面400B及第四透射面514的分别倾斜于入射光路,即光倾斜入第三透射面400B及第四透射面514的:为配合脱模设计,一般情况下第二反射面相对垂直方向的角度为α4<45°,第一透射面400A向第一反射面411方向倾斜α5,第二透射面414向光口432方向倾斜α6,例如α5和α6为4°时,为配合最终到达会聚透镜的光束是沿水平方向的,那么α3=43.44。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (18)

  1. 一种光模块,其特征在于,包括:
    电路板;
    光发射芯片组件,包括多个光发射芯片,设置在所述电路板上,用于发射多束不同波长的信号光;
    第一透镜组件,罩设在所述光发射芯片组件上,传输并改变所述光发射芯片组件发射信号光的传播方向;
    其中,所述第一透镜组件包括设置在顶部的第一容纳腔和设置在底部的第二容纳腔,所述第一容纳腔的底部设置第一反射面,所述第二容纳腔覆盖容纳所述光发射芯片组件,所述第一反射面在所述第二容纳腔方向的投影覆盖所述光发射芯片组件中的光发射芯片,所述第一反射面用于反射所述光发射芯片组件发射的多束不同波长的信号光;
    所述光模块还包括:
    第二透镜组,包括多个透镜,设置在所述第一容纳腔,用于准直所述第一反射面反射的多束不同波长的信号光;
    合波光复用组件,设置在所述第一容纳腔,用于将所述第二透镜组准直后的多束不同波长的信号光合波成一束信号光。
  2. 根据权利要求1所述的光模块,其特征在于,所述第二容纳腔的顶面设置第一透镜组,所述第一透镜组在所述电路板方向的投影覆盖所述光发射芯片组件中的光发射芯片。
  3. 根据权利要求1所述的光模块,其特征在于,所述第一透镜组件还包括设置在侧边的第一光纤适配器,所述第一光纤适配器的内侧端部设置第三透镜,所述第三透镜的光轴与所述第一光纤适配器的光口中轴共线,所述合波光复用组件合波成一束的信号光经所述第三透镜聚焦至所述第一光纤适配器的光口。
  4. 根据权利要求3所述的光模块,其特征在于,所述第一容纳腔内还包括第一透射面和第二透射面;所述第一透射面在所述第一反射面的投影覆盖所述第一反射面,所述第一反射面反射的信号光透过所述第一透射面;
    所述第一容纳腔内包括第二透射面,所述第二透射面在所述第三透镜的投影覆盖所述第三透镜,经所述合波光复用组件合波成一束的信号光透过所述第二透射面到达所述第三透镜。
  5. 根据权利要求1所述的光模块,其特征在于,所述第一容纳腔内的底部设置包括第一承载面和第二承载面,所述第一承载面与所述第二承载面之间形成第一台阶面;所述第一承载面上设置所述合波光复用组件,所述第二承载面上设置所述第二透镜组。
  6. 一种光模块,其特征在于,包括:
    电路板;
    光接收芯片组件,包括多个光接收芯片,设置在所述电路板上,用于接收来自光模块外部不同波长的信号光;
    分波光解复用组件,用于将来自光模块外部包括不同波长的一束信号光分束成多束信 号光;
    第二透镜组件,罩设在所述光接收芯片组件上,用于传输并改变来自光模块外部的信号光的传播方向;
    第五透镜组,包括多个透镜,用于分别聚焦所述分波光解复用组件分束的多束的信号光;
    其中,所述第二透镜组件包括设置在顶部的第三容纳腔和设置在底部的第四容纳腔,所述第三容纳腔的底部设置第二反射面,所述第四容纳腔覆盖容纳所述光接收芯片组件,所述第二反射面在所述第四容纳腔方向的投影覆盖所述光接收芯片组件中的光接收芯片,所述分波光解复用组件和所述第五透镜组设置在所述第三容纳腔内,所述第二反射面用于反射多束的信号光至所述光接收芯片组件中相应的光接收芯片。
  7. 根据权利要求6所述的光模块,其特征在于,所述第四容纳腔的顶面设置第四透镜组,所述第四透镜组在所述电路板方向的投影覆盖所述光接收芯片组件中的光接收芯片。
  8. 根据权利要求6所述的光模块,其特征在于,所述第二透镜组件还包括设置在侧边的第二光纤适配器,所述第二光纤适配器的内侧端部设置第六透镜,所述第六透镜的光轴与所述第二光纤适配器的光口中轴共线,所述第六透镜准直所述第二光纤适配器的光口接收的信号光并传输至所述分波光解复用组件。
  9. 根据权利要求8所述的光模块,其特征在于,所述第三容纳腔内还包括第三透射面和第四透射面;所述第三透射面在所述第二反射面的投影覆盖所述第二反射面,所述第二反射面反射的信号光透过所述第三透射面;
    所述第三容纳腔内包括第四透射面,所述第三透射面在所述第六透镜的投影覆盖所述第六透镜,所述第六透镜准直所述第二光纤适配器的光口接收的信号光透过所述第四透射面到达所述分波光解复用组件。
  10. 根据权利要求6所述的光模块,其特征在于,所述第三容纳腔内的底部设置包括第三承载面和第四承载面,所述第三承载面与所述第四承载面之间形成第二台阶面;所述第三承载面上设置所述分波光解复用组件,所述第四承载面上设置所述第五透镜组。
  11. 一种光模块,其特征在于,包括:
    电路板;
    光发射芯片组件,包括多个光发射芯片,设置在所述电路板上,用于发射多束不同波长的信号光;
    第一透镜组件,罩设在所述光发射芯片组件上,传输并改变所述光发射芯片组件发射信号光的传播方向;
    其中,所述第一透镜组件包括设置在顶部的第一容纳腔及第一反射面、设置在底部的第二容纳腔;所述第一容纳腔的底部设置第一承载面,所述第二容纳腔覆盖容纳所述光发射芯片组件,所述第一反射面在所述第二容纳腔内的投影覆盖所述光发射芯片组件中的光发射芯片且所述第一反射面向所述第一承载面倾斜,所述第一反射面用于反射所述光发射芯片组件发射的多束不同波长的信号光;
    所述第一容纳腔还包括朝向所述第一反射面的第一透射面、与所述第一透射面平行设 置的第二透射面;所述第一透射面用于透射来自所述第一反射面的光;
    合波光复用组件,设置在所述第一承载面上,用于将来自所述第一透射面的多束不同波长的信号光合波成一束信号光;
    所述第二透射面用于透射来自所述合波光复用组件的光。
  12. 根据权利要求11所述的光模块,其特征在于,所述第二容纳腔的顶面设置第一透镜组,所述第一透镜组在所述电路板方向的投影覆盖所述光发射芯片组件中的光发射芯片。
  13. 根据权利要求11所述的光模块,其特征在于,所述第一透镜组件还包括设置在侧边的第一光纤适配器,所述第一光纤适配器的内侧端部设置第三透镜,所述第三透镜的光轴与所述第一光纤适配器的光口中轴共线,所述合波光复用组件合波成一束的信号光经所述第三透镜聚焦至所述第一光纤适配器的光口。
  14. 根据权利要求11所述的光模块,其特征在于,所述第一反射面与垂直方向的夹角为45°,所述第一透射面与所述第二透射面分别与所述水平面垂直;
    所述第一反射面与垂直方向的夹角为非45°,所述第一透射面与所述第二透射面分别与所述水平面倾斜。
  15. 一种光模块,其特征在于,包括:
    电路板;
    光接收芯片组件,包括多个光接收芯片,设置在所述电路板上,用于接收来自光模块外部不同波长的信号光;
    分波光解复用组件,用于将来自光模块外部包括不同波长的一束信号光分束成多束信号光;
    第二透镜组件,罩设在所述光接收芯片组件上,用于传输并改变来自光模块外部的信号光的传播方向;
    其中,所述第二透镜组件包括设置在顶部的第三容纳腔及第二反射面、设置在底部的第四容纳腔,所述第四容纳腔覆盖容纳所述光接收芯片组件,所述第二反射面在所述第四容纳腔内的投影覆盖所述光接收芯片组件中的光接收芯片,所述分波光解复用组件设置在所述第三容纳腔内,所述第二反射面用于反射多束的信号光至所述光接收芯片组件中相应的光接收芯片;所述第三容纳腔还包括朝向所述第二反射面的第三透射面、与所述第三透射面平行设置的第四透射面;所述第四透射面用于向所述分波光解复用组件透射光;所述第三透射面用于透射来自所述分波光解复用组件的光。
  16. 根据权利要求15所述的光模块,其特征在于,所述第四容纳腔的顶面设置第四透镜组,所述第四透镜组在所述电路板方向的投影覆盖所述光接收芯片组件中的光接收芯片。
  17. 根据权利要求15所述的光模块,其特征在于,所述第二透镜组件还包括设置在侧边的第二光纤适配器,所述第二光纤适配器的内侧端部设置第六透镜,所述第六透镜的光轴与所述第二光纤适配器的光口中轴共线,所述第六透镜准直所述第二光纤适配器的光口接收的信号光并传输至所述第四透射面。
  18. 根据权利要求15所述的光模块,其特征在于,所述第二反射面与垂直方向的夹角为45°,所述第三透射面与所述第四透射面分别与所述水平面垂直;
    所述第二反射面与垂直方向的夹角为非45°,所述第三透射面与所述第四透射面分别与所述水平面倾斜。
PCT/CN2021/099791 2020-09-08 2021-06-11 一种光模块 WO2022052541A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010936547.8A CN114153036A (zh) 2020-09-08 2020-09-08 一种光模块
CN202010935481.0 2020-09-08
CN202010936547.8 2020-09-08
CN202010935481.0A CN114153035A (zh) 2020-09-08 2020-09-08 一种光模块

Publications (1)

Publication Number Publication Date
WO2022052541A1 true WO2022052541A1 (zh) 2022-03-17

Family

ID=80632041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099791 WO2022052541A1 (zh) 2020-09-08 2021-06-11 一种光模块

Country Status (1)

Country Link
WO (1) WO2022052541A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150131946A1 (en) * 2008-11-28 2015-05-14 Us Conec, Ltd. Unitary Fiber Optic Ferrule and Adapter Therefor
CN108776373A (zh) * 2018-06-21 2018-11-09 青岛海信宽带多媒体技术有限公司 光模块
CN108885311A (zh) * 2016-07-13 2018-11-23 华为技术有限公司 具有光学调节灵活性的波分复用器/解复用器
CN110531472A (zh) * 2019-09-24 2019-12-03 武汉光迅科技股份有限公司 一种光发射器件、光接收器件及光模块
CN110618504A (zh) * 2019-09-24 2019-12-27 武汉光迅科技股份有限公司 一种光模块
CN111007601A (zh) * 2019-12-10 2020-04-14 青岛海信宽带多媒体技术有限公司 光模块
CN111239930A (zh) * 2020-03-12 2020-06-05 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150131946A1 (en) * 2008-11-28 2015-05-14 Us Conec, Ltd. Unitary Fiber Optic Ferrule and Adapter Therefor
CN108885311A (zh) * 2016-07-13 2018-11-23 华为技术有限公司 具有光学调节灵活性的波分复用器/解复用器
CN108776373A (zh) * 2018-06-21 2018-11-09 青岛海信宽带多媒体技术有限公司 光模块
CN110531472A (zh) * 2019-09-24 2019-12-03 武汉光迅科技股份有限公司 一种光发射器件、光接收器件及光模块
CN110618504A (zh) * 2019-09-24 2019-12-27 武汉光迅科技股份有限公司 一种光模块
CN111007601A (zh) * 2019-12-10 2020-04-14 青岛海信宽带多媒体技术有限公司 光模块
CN111239930A (zh) * 2020-03-12 2020-06-05 青岛海信宽带多媒体技术有限公司 一种光模块

Similar Documents

Publication Publication Date Title
WO2021227317A1 (zh) 一种光模块
JP2009251375A (ja) 光伝送モジュール及び光伝送システム
CN111007601A (zh) 光模块
CN214174689U (zh) 一种光模块
CN215895036U (zh) 一种光模块
CN113721331A (zh) 一种光模块
WO2022057621A1 (zh) 一种光模块
CN216013740U (zh) 一种光模块
WO2022127059A1 (zh) 一种光模块
CN215895035U (zh) 一种光模块
WO2022057113A1 (zh) 一种光模块
WO2021109776A1 (zh) 一种光模块
WO2021103958A1 (zh) 一种光模块
CN113484960A (zh) 一种光模块
WO2022083041A1 (zh) 一种光模块
WO2022083040A1 (zh) 一种光模块
WO2022052541A1 (zh) 一种光模块
CN115016074B (zh) 一种光模块
WO2023035711A1 (zh) 光模块
WO2021232862A1 (zh) 一种光模块
WO2022057100A1 (zh) 一种光模块
WO2021218462A1 (zh) 一种光模块
CN114371536A (zh) 一种光模块
CN114384644A (zh) 一种光模块
CN114384642A (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21865600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21865600

Country of ref document: EP

Kind code of ref document: A1