WO2022052362A1 - 体外诊断分析系统、光学检测装置及运动盘模块 - Google Patents

体外诊断分析系统、光学检测装置及运动盘模块 Download PDF

Info

Publication number
WO2022052362A1
WO2022052362A1 PCT/CN2020/138006 CN2020138006W WO2022052362A1 WO 2022052362 A1 WO2022052362 A1 WO 2022052362A1 CN 2020138006 W CN2020138006 W CN 2020138006W WO 2022052362 A1 WO2022052362 A1 WO 2022052362A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
lens
optical path
detection device
dichroic mirror
Prior art date
Application number
PCT/CN2020/138006
Other languages
English (en)
French (fr)
Inventor
吴娟芳
梅哲
张彤
王继华
Original Assignee
广州万孚生物技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州万孚生物技术股份有限公司 filed Critical 广州万孚生物技术股份有限公司
Publication of WO2022052362A1 publication Critical patent/WO2022052362A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells

Definitions

  • the present application relates to the technical field of in vitro diagnosis, and in particular, to an in vitro diagnosis analysis system, an optical detection device and a motion disk module.
  • PCR Polymerase Chain Reaction
  • Real-time quantitative polymerase chain reaction (Real-time Quantitative PCR Detecting System, qPCR) is to add corresponding fluorescent dyes or fluorescently labeled probes on the basis of conventional PCR, and change the fluorescent signal during the PCR reaction. The process performs real-time detection, the method of monitoring the total amount of products after each PCR cycle with fluorescent chemicals, and the method of quantitative analysis of specific DNA sequences in the sample to be tested.
  • Fluorescence quantitative PCR instrument is a reaction instrument that uses qPCR technology for real-time detection. Generally, the function of the instrument is guaranteed by a thermal cycle system and a fluorescence real-time detection system.
  • the qPCR technology of in vitro diagnosis usually requires the detection of multiple indicators (multiple target detection substances) on one or more samples in one detection.
  • the traditional optical detection device utilizes a plurality of independent optical units to realize the detection of multiple objects to be detected in the same reaction chamber or to realize the detection of the same objects in multiple reaction chambers. This will lead to complicated wiring in the optical detection device, and the overall volume will be too large, which is not conducive to the miniaturization development of the in vitro diagnostic analysis system.
  • the moving disk module is independent of the detection module and the light source module, and can move independently, thus avoiding the problem of winding.
  • the optical detection device adopts the above-mentioned moving disk module, which can independently drive the moving disk module to move, can avoid the problem of winding, and has a more flexible design, which is beneficial to the miniaturized development of the in vitro diagnostic analysis system.
  • the in vitro diagnostic analysis system uses the optical detection device, and the design is more flexible and easier to control.
  • the present application provides a motion disk module, comprising a mounting unit and a lens assembly
  • the mounting unit is provided with an optical path channel
  • the optical path channel includes a first channel, a second channel and a common channel, the first channel and the second channel are staggered, And one end of the first channel and one end of the second channel are both communicated with one end of the common channel, and form a common cavity
  • the lens assembly corresponds to the optical path channel one-to-one
  • the lens assembly includes a dichroic mirror, an excitation sheet and an emission sheet.
  • the chromatic mirror is arranged in the common cavity
  • the excitation plate is arranged in the first channel and forms a first optical path with the dichroic mirror
  • the emission plate is arranged in the second channel and forms a second optical path with the dichroic mirror.
  • An optical path including a first channel, a second channel and a common channel is formed by using the mounting unit, and then the lens assembly is integrated into the mounting unit, so that the excitation plate and the dichroic mirror form the first optical path, and the emission plate and the dichroic mirror form the first optical path. second optical path.
  • the switching of the optical path can be realized by rotating or moving the installation unit.
  • the light-emitting element and the detection element are arranged at intervals along the movement track of the installation unit, so that the optical path can be selectively connected with the light-emitting element and the detection element. Docking can realize the detection of different types of target detection objects of the target sample. In this process, the light source module and the detection element do not need to be rotated, and there is no winding problem, so there is no need to set a winding avoidance space.
  • the installation unit includes a light shield, a first plate body and a second plate body, the light shield is provided with an optical path, and at least two light shields are sandwiched between the first plate body and the second plate body at intervals.
  • the first plate body is arranged above the light shield, the first plate body is provided with a first through hole communicating with the second channel, and the second plate body is provided with a second through hole communicated with the common channel.
  • At least two light shields are sandwiched between the first plate body and the second plate body along the same circumference to form a group of installation modules, and the installation unit includes one or more than two groups of installation modules.
  • the installation unit includes at least two sets of installation modules arranged vertically stacked.
  • the lens assembly further includes a first refractive member, and the first refractive member is disposed in the first channel and disposed between the excitation plate and the dichroic mirror or between the excitation plate and the first lens; Or/and the lens assembly further includes a second refracting member, the second refracting member is disposed in the second channel and disposed between the emission sheet and the dichroic mirror or between the emission sheet and the second lens.
  • the moving disk module further includes a third lens, and the third lens is disposed between the dichroic mirror and the sample disk.
  • the lens assembly further includes a first lens, and the first lens is disposed on the first optical path and between the excitation plate and the light-emitting element; or/and the motion disk module further includes a second lens, the second lens is The lens is arranged on the second optical path, and is arranged between the emission sheet and the detection element.
  • the present application also provides an optical detection device, which includes the above-mentioned moving disk module, and also includes a light source module, a detection module and a driver.
  • a light source module e.g., a laser scanner
  • a detection module e.g., a laser scanner
  • a driver e.g., a laser scanner
  • the detection module is provided with at least two detection elements
  • a second lens is provided between the detection element and the emitting sheet
  • the driver is used to drive the installation unit to move.
  • an optical path channel including a first channel, a second channel and a common channel is formed by using an installation unit, and then the lens assembly is integrated into the installation unit, so that the excitation plate and the dichroic mirror form a first optical path, The emission sheet and the dichroic mirror form a second optical path, and the light-emitting element and the detection element are arranged at intervals along the movement track of the installation unit.
  • the driver it is only necessary to use the driver to rotate or move the installation unit to realize the switching of the optical path channel, so that the optical path channel can be selectively docked with the light-emitting element and the detection element, so as to realize the detection of different types of target detection objects of the target sample.
  • the process light source module and detection element do not need to be rotated, and there is no winding problem, so there is no need to set a winding avoidance space.
  • the optical detection device adopts the above-mentioned moving disk module, which can independently drive the moving disk module to move, can avoid the problem of winding, and has a more flexible design, which is beneficial to the miniaturized development of the in vitro diagnostic analysis system.
  • the optical detection device further includes a first integrated component, all the first lenses are fixed on the first integrated component, and the first integrated component is fixed between the mounting unit and the light-emitting component; or the optical detection device further includes Including a second integrated piece, all the second lenses are fixed on the second integrated piece, and the second integrated piece is fixed between the installation unit and the detection element.
  • the common channels of the optical path are arranged at intervals along the same circumference, and the driver is used to drive the installation unit to rotate.
  • the optical detection device further includes a third lens, and the third lens is disposed between the dichroic mirror and the sample disk.
  • the optical detection device further includes a third integrated component, the third integrated component is fixed between the mounting unit and the sample tray, and the third lens is fixed in the third integrated component.
  • the present application also provides an in vitro diagnostic analysis system, including the optical detection device in any of the above embodiments.
  • the in-vitro diagnostic analysis system applies the optical detection device, which can drive the moving disk module to move independently, avoids the problem of winding, does not need to set up avoidance space, and has a more flexible design and easier control.
  • FIG. 1 is a schematic structural diagram of an optical detection device in an embodiment
  • FIG. 2 is a schematic structural diagram of an optical detection device in an embodiment
  • FIG. 3 is a schematic diagram of the optical path shown in FIG. 2;
  • FIG. 4 is a schematic exploded schematic diagram of a partial structure of the optical detection device shown in FIG. 2;
  • Fig. 5 is the structural representation of the motion disk module shown in Fig. 4;
  • Fig. 6 is the partial structure exploded schematic diagram of the motion disk module shown in Fig. 5;
  • FIG. 7 is a schematic diagram of a PCR chip to be detected.
  • motion disk module 100, installation unit; 110, optical path; 112, first channel; 114, second channel; 116, common channel; 118, common cavity; 120, light shield; 130, first plate body; 132, first through hole; 140, second plate body; 142, second through hole; 200, lens assembly; 210, dichroic mirror; 220, excitation plate; 230, emission plate; 240, first lens; 250 260, the third lens; 30, the light source module; 32, the light-emitting part; 40, the detection module; 42, the detection element; 50, the second integrated part; 60, the third integrated part; 70, the sample tray; 72. Sample cavity.
  • an element when an element is referred to as being “fixed on”, “disposed on”, “fixed on” or “mounted on” another element, it can be directly on the other element or an intervening element may also be present .
  • an element When an element is referred to as being “connected” to another element, it can be directly connected to the other element or intervening elements may also be present.
  • one element when one element is considered to be a "fixed transmission connection” to another element, the two can be fixed in a detachable connection, or can be fixed in a non-detachable connection, as long as power transmission can be achieved, such as socket connection, snap connection. , integral molding fixing, welding, etc., can be realized in the related art, and will not be redundant here.
  • the qPCR technology of in vitro diagnosis usually requires the detection of multiple indicators (multiple target detection substances) on one or more samples in one detection.
  • the traditional optical detection device utilizes a plurality of independent optical units to realize the detection of multiple objects to be detected in the same reaction chamber or to realize the detection of the same objects in multiple reaction chambers.
  • an optical detection device which includes a motion disk module, a light source module 30 , a detection module 40 and a moving disk module, a light source module 30 , a detection module 40 , and a movable disk module that are independent of the detection module 40 and the light source module 30 and can move independently. driver.
  • the motion disk module includes a mounting unit 100 and a lens assembly 200 .
  • the mounting unit 100 is provided with an optical path 110 , and the optical path 110 includes a first channel 112 , a second channel 114 and a common channel 116 .
  • a channel 112 is staggered from the second channel 114, and one end of the first channel 112 and one end of the second channel 114 are both communicated with one end of the common channel 116 to form a common cavity 118;
  • the lens assembly 200 corresponds to the optical path channel 110 one-to-one , the lens assembly 200 includes a dichroic mirror 210, an excitation sheet 220 and an emission sheet 230, the dichroic mirror 210 is arranged in the common cavity 118, the excitation sheet 220 is arranged in the first channel 112, and forms with the dichroic mirror 210
  • the emitting sheet 230 is disposed in the second channel 114 and forms a second optical path with the dichroic mirror 210 .
  • the light source module 30 is provided with at least two light-emitting elements 32 , a first lens 240 is provided between the light-emitting element 32 and the excitation sheet 220 , and the detection module 40 is provided with at least two detection elements 42 .
  • a second lens 250 is provided between the element 42 and the emitting sheet 230, and the driver is used to drive the mounting unit 100 to move.
  • the optical path channel 110 including the first channel 112, the second channel 114 and the common channel is formed by the mounting unit 100, and then the lens assembly 200 is integrated on the mounting unit 100, so that the excitation sheet 220 is connected to the two-way channel.
  • the chromatic mirror 210 forms a first optical path
  • the emitting sheet 230 and the dichroic mirror 210 form a second optical path
  • the light-emitting element 32 and the detection element 42 are arranged at intervals along the movement track of the installation unit 100 .
  • the optical path channel 110 can be switched by simply rotating or moving the mounting unit 100 by using the driver, so that the optical path channel 110 can be selectively docked with the light-emitting element 32 and the detection element 42, so as to realize different types of target objects of the target sample.
  • the light source module 30 and the detection element 42 do not need to be rotated, and there is no problem of winding, so there is no need to provide a winding avoidance space.
  • the optical detection device adopts the above-mentioned moving disk module, which can drive the moving disk module to move alone, or drive the moving disk module and the light source module to move together, or drive the moving disk module and the detection module to move together, which can avoid the problem of winding.
  • the design is more flexible, which is conducive to the development of miniaturization of in vitro diagnostic analysis systems.
  • the light emitted by the light-emitting element 32 passes through the first lens 240 and the excitation sheet 220 and then goes to the dichroic mirror 210 , and then passes through the dichroic mirror 210 After being reflected, it is emitted to the sample cavity 72 (in this process, the third lens 260 can be used for focusing), the sample in the sample cavity 72 is excited by the light of the light-emitting element 32 to emit fluorescence, and the fluorescence will be emitted to the dichroic mirror 210, through the The dichroic mirror 210 is directed to the emitting sheet 230 , and is directed to the second lens 250 after passing through the emitting sheet 230 , and the second lens 250 focuses the fluorescence onto the detection element 42 .
  • the driver drives the mounting unit 100 to rotate, so that the optical path 110 corresponds to another light-emitting element 32 and another detection element 42
  • any kind of device capable of emitting a monochromatic or broadband electromagnetic field will be understood to be included within the term "light 32".
  • arrays of multiple light emitting elements 32 having identical or different characteristics with respect to frequency, polarization, flux, electrical input power, or technology for emitting photons will also be included within the term "light emitting elements 32".
  • LEDs Light Emitting Diodes
  • OLEDs Organic Light Emitting Diodes
  • PLEDs Polymer Light Emitting Diodes
  • Quantum Dot Based Light Emitting Devices 32 White Light Emitting Devices 32, Halogen Lamps, Lasers, Solid State Lasers, Laser Diodes, Micro Wires wire) lasers, diode solid-state lasers, vertical cavity surface emitting lasers, phosphor-coated LEDs, thin film electroluminescent devices, phosphorescent OLEDs, inorganic/organic LEDs, LEDs using quantum dot technology, LED arrays, floodlight systems using LEDs, White LEDs, incandescent lamps, arc lamps, gas lamps, and fluorescent tubes, will be included within the term "light 32".
  • LEDs Light Emitting Diodes
  • OLEDs Organic Light Emitting Diodes
  • PLEDs Polymer Light Emitting Diodes
  • Quantum Dot Based Light Emitting Devices 32 White Light Emitting Devices 32, Halogen Lamps, Laser
  • Detection element 42 In the context of this application, any device capable of detecting electromagnetic radiation is included within the term “detection element 42". For example, charge catastrophic devices (CCDs), photodiodes, photodiode arrays. Furthermore, the detection element 42 can be adapted in such a way that the detected radiation and the correspondingly generated information can be fed to a memory, computer or another control unit.
  • CCDs charge catastrophic devices
  • photodiodes photodiode arrays.
  • the detection element 42 can be adapted in such a way that the detected radiation and the correspondingly generated information can be fed to a memory, computer or another control unit.
  • the "driver” can be selected according to the required motion trajectory of the installation unit 100, including a robot manipulator, a telescopic device, a reciprocating device, a swing drive device, etc., as well as a servo motor, a rotary hydraulic cylinder, etc.
  • Equipment that directly provides rotational power also includes other equipment that provides power indirectly. All of the above can be implemented in the related art, and details are not repeated here.
  • sample In the context of this application, the term “sample” will refer to any kind of substance, including one or several components detected by optical detection, e.g., by optical excitation followed by optical reading.
  • biochemical substances can be analyzed in the context of this application.
  • the sample may be a substance used in the fields of molecular diagnostics, clinical diagnostics, gene and protein expression arrays.
  • the component of the sample (the component to be detected) can in particular be any substance that can be copied by PCR.
  • the first lens 240 is provided between the light-emitting element 32 and the excitation sheet 220
  • the first lens 240 is fixed in the light source module 30 and combined with the corresponding light-emitting element 32.
  • the first lens 240 does not rotate with the mounting unit 100; or the first lens 240 is fixed between the corresponding light-emitting element 32 and the excitation plate 220 by using other mounting structures, at this time, the first lens 240 does not rotate with the mounting unit 100; or the first lens 240 directly Or indirectly fixed on the installation unit 100 to rotate with the installation unit 100 .
  • the optical detection device further includes a first integrated component (not shown), all the first lenses 240 are fixed on the first integrated component, and the first integrated component is fixed on the installation unit 100 and the detection between elements 42 .
  • the first lens 240 is disposed on the side wall of the mounting unit 100 . In this way, the first lens 240 is integrated into the motion disk module by combining the first integrated component with the mounting unit 100 .
  • a second lens 250 is provided between the detection element 42 and the emission sheet 230 means that the second lens 250 is fixed in the detection module 40 and combined with the corresponding detection element 42. At this time, the second lens 250 is not installed with the installation unit 100. or the second lens 250 is fixed between the corresponding detection element 42 and the emitting sheet 230 by using other mounting structures, and the second lens 250 does not rotate with the mounting unit 100 at this time; or the second lens 250 is directly or indirectly fixed on the On the installation unit 100, it rotates with the installation unit 100.
  • the optical detection device further includes a second integrated component 50 , all the second lenses 250 are fixed on the second integrated component 50 , and the second integrated component 50 is fixed on the installation unit 100 and the detection element 42 .
  • the second lens 250 is integrated into the motion disk module by combining the second integrated component 50 with the mounting unit 100 .
  • the lens assembly 200 further includes a first lens 240 , and the first lens 240 is disposed on the first optical path and between the excitation plate 220 and the light-emitting element 32 . That is, the first lens 240 may be directly integrated on the mounting unit 100 .
  • the lens assembly 200 further includes a second lens 250 , and the second lens 250 is arranged on the second optical path and between the emission sheet 230 and the detection element 42 . That is, the second lens 250 may be directly integrated on the mounting unit 100 .
  • the lens assembly 200 further includes a first lens 240, the first lens 240 is disposed on the first optical path and between the excitation plate 220 and the light-emitting element 32; and the lens assembly 200 further includes a second lens 250, and the second lens 250 is disposed On the second optical path, and disposed between the emission sheet 230 and the detection element 42 . That is, the first lens 240 and the second lens 250 may be directly integrated on the mounting unit 100 .
  • optical path channels 110 there are more than two optical path channels 110 .
  • the optical path 110 can be in one-to-one correspondence with the detection module 40 and the light source module 30 , so that the detection of different types of target detection substances in different samples can be performed, and at least two types of target detection substances in at least two different samples can be detected at one time. .
  • the “installation unit 100 ” may be any installation structure that can realize the installation of the above-mentioned components, such as an installation bracket, an installation seat, and an installation shell.
  • the installation unit 100 includes a light shield 120 , a first plate body 130 and a second plate body 140 corresponding to the optical path channels 110 one-to-one.
  • There is an optical path 110 at least two light shields 120 are sandwiched between the first plate body 130 and the second plate body 140, the first plate body 130 is disposed above the light shielding cover 120, and the first plate body 130 is provided with The first through hole 132 communicated with the second channel 114 and the second plate body 140 is provided with a second through hole 144 communicated with the common channel 116 .
  • the combination of the light shield 120 and the first plate body 130 and the second plate body 140 is used to facilitate the installation of the lens assembly 200 and facilitate the design and combination.
  • At least two light path channels 110 can be realized by using at least two light shields at the same time, which is convenient for installing the lens assembly 200 and facilitating design and combination. Meanwhile, the optical path channel 110 is disposed in the light shield 120, which can avoid light pollution and affect the detection accuracy.
  • At least two light shields 120 are sandwiched between the first plate body 130 and the second plate body 140 along the same circumference to form a set of installation modules.
  • the installation unit 100 includes one or more than two groups of installation modules. In this way, a mounting module can be formed, which facilitates modular assembly.
  • the installation unit 100 includes two or more sets of installation modules that are vertically stacked.
  • the vertical space of the optical detection device can be fully utilized, and more than two sets of installation modules can be stacked vertically without affecting each other, which is beneficial to integrate more light source modules 30 and detection modules 40 and improve detection efficiency.
  • modular assembly can be carried out, which is beneficial to reduce the manufacturing cost.
  • the required structures may be formed on the mounting unit 100 in other manners.
  • the lens assembly 200 further includes a first refracting member, and the first refracting member is disposed in the first channel 112 and disposed between the excitation plate 220 and the dichroic mirror 210 It is sometimes arranged between the excitation sheet 220 and the first lens 240 ; or the lens assembly 200 further includes a second refractive element, which is arranged in the second channel 114 and is arranged between the emission sheet 230 and the dichroic mirror 210 It is occasionally arranged between the emission sheet 230 and the second lens 250; the lens assembly 200 further includes a first refractive element, and the first refractive element is arranged in the first channel 112, and is arranged between the excitation sheet 220 and the dichroic mirror 210 or is arranged between the excitation sheet 220 and the first lens 240; and the lens assembly 200 further includes a second refractive member, the second refractive member is arranged in the second channel 114, and is arranged between the emission
  • the first refraction member or/and the second refraction member to change the optical path makes the settings of the detection module 40 and the light source module 30 more flexible, and can be arranged more flexibly in the internal space of the in vitro diagnostic analysis system.
  • first refractive element and the “second refractive element” include, but are not limited to, any related technology that can realize the change of the optical path, such as a reflector, a prism, and an optical fiber.
  • the lens assembly 200 further includes a third lens 260 .
  • the third lens 260 is disposed in the common channel 116 and disposed in the dichroic mirror 210 below. In this way, the third lens 260 can be directly integrated into the installation unit 100 and move synchronously with the installation unit 100 .
  • the optical detection device further includes a third integrated component 60 , the third lens 260 is fixed in the third integrated component 60 , and the third integrated component 60 is fixed on the installation unit 100 and the third integrated component 60 . between the sample trays 70 .
  • the third lens 260 can be modularly assembled by using the third integrated component 60 , and then integrated into the mounting unit 100 , and can move synchronously with the mounting unit 100 .
  • the third lens 260 may also be integrated on the sample tray; or on other installation structures.
  • the common channels of the optical path channels 110 are arranged at intervals along the same circumference, and the driver is used to drive the installation unit 100 to rotate.
  • the detection of different target detection objects can be realized only by rotation, and the control is simple and easy to realize.
  • at least two light shields 120 are sandwiched between the first plate body 130 and the second plate body 140 along the same circumference to form a set of installation modules, and the installation unit 100 includes more than two sets of installation modules arranged vertically stacked. In this way, more components can be integrated by using the rotation, and the simultaneous detection of more sample cavities 72 can be realized.
  • the present application also provides an in vitro diagnostic analysis system, including the optical detection device in any of the above-mentioned embodiments, and also includes a sample tray 70, and the sample tray 70 is provided with a one-to-one detection method corresponding to the free end of the common channel A third lens 260 is provided between the cavity 72, the detection cavity 72 and the common channel.
  • the in-vitro diagnostic analysis system applies the optical detection device, which can drive the moving disk module to move independently, avoids the problem of winding, does not need to set up avoidance space, and has a more flexible design and easier control.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种运动盘模块包括安装单元(100)及镜片组件(200),安装单元(100)设有光路通道(110),光路通道(110)包括第一通道(112)、第二通道(114)及共用通道(116),第一通道(112)与第二通道(114)相错开,且第一通道(112)的一端及第二通道(114)的一端均与共用通道(116)的一端连通,并形成共用腔(118);镜片组件(200)与光路通道(110)一一对应,镜片组件(200)包括二向色镜(210)、激发片(220)及发射片(230),二向色镜(210)设置于共用腔(118)内,激发片(220)设置于第一通道(112)内,并与二向色镜(210)形成第一光路,发射片(230)设置于第二通道(114)内,并与二向色镜(210)形成第二光路。光学检测装置包括运动盘模块,能够避免绕线问题。体外诊断分析系统包括光学检测装置,设计更加灵活,更加容易进行控制。

Description

体外诊断分析系统、光学检测装置及运动盘模块
本申请要求在2020年09月11日提交中国专利局、申请号为202010951039.7的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及体外诊断技术领域,特别是涉及一种体外诊断分析系统、光学检测装置及运动盘模块。
背景技术
聚合酶链式反应(Polymerase Chain Reaction,PCR)是一种用于放大扩增特定的DNA片段的分子生物学技术。而实时定量聚合酶链式反应(Real-time Quantitative PCR Detecting System,qPCR),是在常规PCR基础上加入相应的荧光染料或荧光标记探针,在PCR反应过程中通过荧光信号变化,对整个PCR进程进行实时检测,以荧光化学物质监测每次PCR循环后的产物的总量的方法,对待测样本中特定的DNA序列进行定量分析的方法。荧光定量PCR仪是应用qPCR技术进行实时检测的反应仪器,一般由热循环系统、荧光实时检测系统来保证仪器功能。
目前,体外诊断的qPCR技术通常需要在一次检测中,对一个或者多个样本进行多项指标(多个目标检测物)的检测。传统的光学检测装置利用多个独立的光学单元实现同一反应腔室内多个目标检测物的检测或者是实现对多个反应腔室内的相同目标物检测。这会导致光学检测装置内的绕线复杂,整体体积过大,不利于体外诊断分析系统的小型化发展。
发明内容
基于此,有必要提供一种体外诊断分析系统、光学检测装置及运动盘模块。该运动盘模块独立于检测模块及光源模块设置,能够单独进行运动,如此能够避免绕线问题。该光学检测装置采用了上述运动盘模块,可单独驱动运动盘模块进行运动,能够避免绕线问题,设计更加灵活,有利于体外诊断分析系统的小型化发展。该体外诊断分析系统应用了该光学检测装置,设计更加灵活,更加容易进行控制。
其技术方案如下:
一方面,本申请提供一种运动盘模块,包括安装单元及镜片组件,安装单 元设有光路通道,光路通道包括第一通道、第二通道及共用通道,第一通道与第二通道相错开,且第一通道的一端及第二通道的一端均与共用通道的一端连通,并形成共用腔;镜片组件与光路通道一一对应,镜片组件包括二向色镜、激发片及发射片,二向色镜设置于共用腔内,激发片设置于第一通道内,并与二向色镜形成第一光路,发射片设置于第二通道内,并与二向色镜形成第二光路。
利用安装单元形成包括第一通道、第二通道及共用通道的光路通道,然后将镜片组件集成到安装单元上,使得激发片与二向色镜形成第一光路,发射片与二向色镜形成第二光路。如此,旋转或移动安装单元即可实现光路通道的切换,应用于光学检测装置中,发光件及检测元件沿安装单元的运动轨迹间隔设置,使得光路通道可选择性地与发光件及检测元件进行对接,实现对目标样本的不同类目标检测物的检测,此过程光源模块及检测元件均无需进行转动,不会存在绕线问题,因此无需设置绕线避让空间。
下面进一步对技术方案进行说明:
在其中一个实施例中,安装单元包括遮光罩、第一板体及第二板体,遮光罩设有一条光路通道,至少两个遮光罩间隔夹设于第一板体与第二板体之间,第一板体设置于遮光罩的上方,第一板体设有与第二通道相通的第一通孔,第二板体设有与共用通道相通的第二通孔。
在其中一个实施例中,光路通道为至少为两条,遮光罩与光路通道一一对应。
在其中一个实施例中,至少两个遮光罩沿同一圆周间隔夹设于第一板体与第二板体之间为一组安装模块,安装单元包括一组或两组以上的安装模块。
在其中一个实施例中,安装单元包括竖向叠加设置至少两组的安装模块。
在其中一个实施例中,镜片组件还包括第一折光件,第一折光件设置于第一通道内,并设置于激发片与二向色镜之间或置于激发片与第一透镜之间;或/和镜片组件还包括第二折光件,第二折光件设置于第二通道内,并设置于发射片与二向色镜之间或置于发射片与第二透镜之间。
在其中一个实施例中,运动盘模块还包括第三透镜,第三透镜设置于二向色镜与样品盘之间。
在其中一个实施例中,镜片组件还包括第一透镜,第一透镜设置于第一光路上,并设置于激发片与发光件之间;或/和运动盘模块还包括第二透镜,第二透镜设置于第二光路上,并设置于发射片与检测元件之间。
另一方面,本申请还提供了一种光学检测装置,包括上述的运动盘模块, 还包括光源模块、检测模块及驱动器,光源模块设有至少两个发光件,发光件与激发片之间设有第一透镜,检测模块设有至少两个检测元件,检测元件与发射片之间设有第二透镜,驱动器用于驱动安装单元进行运动。
该光学检测装置的使用时,利用安装单元形成包括第一通道、第二通道及共用通道的光路通道,然后将镜片组件集成到安装单元上,使得激发片与二向色镜形成第一光路,发射片与二向色镜形成第二光路,发光件及检测元件沿安装单元的运动轨迹间隔设置。如此,只需利用驱动器旋转或移动安装单元即可实现光路通道的切换,使得光路通道可选择性地与发光件及检测元件进行对接,实现对目标样本的不同类的目标检测物的检测,此过程光源模块及检测元件均无需进行转动,不会存在绕线问题,因此无需设置绕线避让空间。该光学检测装置采用了上述运动盘模块,可单独驱动运动盘模块进行运动,能够避免绕线问题,设计更加灵活,有利于体外诊断分析系统的小型化发展。
下面进一步对技术方案进行说明:
在其中一个实施例中,光学检测装置还包括第一集成件,所有第一透镜固设于第一集成件上,第一集成件固设于安装单元和发光件之间;或光学检测装置还包括第二集成件,所有第二透镜固设于第二集成件上,第二集成件固设于安装单元和检测元件之间。
在其中一个实施例中,光路通道的共用通道沿同一圆周间隔设置,驱动器用于驱动安装单元转动。
在其中一个实施例中,光学检测装置还包括第三透镜,第三透镜设置于二向色镜与样品盘之间。
在其中一个实施例中,光学检测装置还包括第三集成件,第三集成件固设于安装单元与样品盘之间,第三透镜固设于第三集成件内。
另一方面,本申请还提供了一种体外诊断分析系统,包括上述任一实施例中的光学检测装置。
该体外诊断分析系统应用了该光学检测装置,可单独驱动运动盘模块进行运动,能够避免绕线问题,无需设置避让空间,设计更加灵活,更加容易进行控制。
附图说明
图1为一实施例中的光学检测装置的结构示意图;
图2为一实施例中的光学检测装置的结构示意图;
图3为图2所示的光路通道示意图;
图4为图2所示的光学检测装置的部分结构爆炸示意图;
图5为图4所示的运动盘模块的结构示意图;
图6为图5所示的运动盘模块的局部结构爆炸示意图;
图7为待检测的PCR芯片示意图。
附图标记说明:
10、运动盘模块;100、安装单元;110、光路通道;112、第一通道;114、第二通道;116、共用通道;118、共用腔;120、遮光罩;130、第一板体;132、第一通孔;140、第二板体;142、第二通孔;200、镜片组件;210、二向色镜;220、激发片;230、发射片;240、第一透镜;250、第二透镜;260、第三透镜;30、光源模块;32、发光件;40、检测模块;42、检测元件;50、第二集成件;60、第三集成件;70、样本盘;72、样本腔。
具体实施方式
为使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施方式,对本申请进行进一步的详细说明。应当理解的是,此处所描述的具体实施方式仅用以解释本申请,并不限定本申请的保护范围。
需要说明的是,当元件被称为“固定于”、“设置于”、“固设于”或“安设于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。进一步地,当一个元件被认为是“固定传动连接”另一个元件,二者可以是可拆卸连接方式的固定,也可以不可拆卸连接的固定,能够实现动力传递即可,如套接、卡接、一体成型固定、焊接等,在相关技术中可以实现,在此不再累赘。当元件与另一个元件相互垂直或近似垂直是指二者的理想状态是垂直,但是因制造及装配的影响,可以存在一定的垂直误差。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请中涉及的“第一”、“第二”不代表具体的数量及顺序,仅仅是用于名称的区分。
目前,体外诊断的qPCR技术通常需要在一次检测中,对一个或者多个样本进行多项指标(多个目标检测物)的检测。传统的光学检测装置利用多个独立的光学单元实现同一反应腔室内多个目标检测物的检测或者是实现对多个反应腔室内的相同目标物检测。
传统的光学检测装置中采用多个独立的光学单元,则在检测过程中需要采用转动或平动的方式,改变光学单元或者PCR腔室相对位置实现多次检测。另外,每次旋转或者平动操作后往往需要加入复位的步骤,以解决绕线或者反复检测的问题,使得控制复杂,步骤繁琐,检测时间过长。
另外,如果要保持光学系统和反应腔室相对静止,则需要采用与反应腔室数目一致的光学检测模块,并要求每个光学模块能同时检测多个不同类的目标检测物,这会导致检测模块体积过大。此外,卡盒上的检测腔设计和布局受到也光学系统的空间限制,导致光学设计复杂。
基于此,有必要提供一种能够避免绕线问题,设计更加灵活的光学检测装置。
如图1至图2所示,一实施例中,提供一种光学检测装置,包括独立于检测模块40及光源模块30设置,能够单独进行运动的运动盘模块、光源模块30、检测模块40及驱动器。
如图3至图6所示,该运动盘模块包括安装单元100及镜片组件200,安装单元100设有光路通道110,光路通道110包括第一通道112、第二通道114及共用通道116,第一通道112与第二通道114相错开,且第一通道112的一端及第二通道114的一端均与共用通道116的一端连通,并形成共用腔118;镜片组件200与光路通道110一一对应,镜片组件200包括二向色镜210、激发片220及发射片230,二向色镜210设置于共用腔118内,激发片220设置于第一通道112内,并与二向色镜210形成第一光路,发射片230设置于第二通道114内,并与二向色镜210形成第二光路。
如图1及图2所示,光源模块30设有至少两个发光件32,发光件32与激发片220之间设有第一透镜240,检测模块40设有至少两个检测元件42,检测元件42与发射片230之间设有第二透镜250,驱动器用于驱动安装单元100进行运动。
该光学检测装置的使用时,利用安装单元100形成包括第一通道112、第二通道114及共用通道的光路通道110,然后将镜片组件200集成到安装单元100上,使得激发片220与二向色镜210形成第一光路,发射片230与二向色镜210形成第二光路,发光件32及检测元件42沿安装单元100的运动轨迹间隔设置。 如此,只需利用驱动器旋转或移动安装单元100即可实现光路通道110的切换,使得光路通道110可选择性地与发光件32及检测元件42进行对接,实现对目标样本的不同类的目标物的检测,此过程光源模块30及检测元件42均无需进行转动,不会存在绕线问题,因此无需设置绕线避让空间。该光学检测装置采用了上述运动盘模块,可驱动运动盘模块单独进行运动、或驱动运动盘模块和光源模块一起进行运动、或驱动运动盘模块及检测模块一起进行运动,能够避免绕线问题,设计更加灵活,有利于体外诊断分析系统的小型化发展。
具体地,如图3所示,该光学检测装置应用于体外诊断分析时,发光件32发出的光线经过第一透镜240及激发片220后射向二向色镜210,经二向色镜210反射后射向样本腔72(此过程中,可以利用第三透镜260进行聚集),样本腔72中的样本物经发光件32的光激发发出荧光,荧光会射向二向色镜210,经由二向色镜210射向发射片230,经过发射片230后射向第二透镜250,由第二透镜250将荧光聚焦至检测元件42上。完成一类目标物的检测后,驱动器驱动安装单元100进行转动,使得光路通道110对应另一发光件32及另一检测元件42上,继续上述操作,完成另一类目标物的检测。
需要说明的是,“发光件32”在本申请的上下文中,能够发射单色或宽带电磁场的任何种类的装置将被理解为包含在术语“发光件32”内。此外,关于频率、偏振、通量、电输入功率、或用于发射光子的技术具有等同或不同特性的多个发光件32的阵列也将包括在术语“发光件32”内。例如,发光二极管(LED),有机发光二极管(OLED),聚合物发光二极管(PLED)、量子点基发光件32、白色发光件32、卤素灯、激光器、固态激光器、激光二极管、微线(micro wire)激光器、二极管固态激光器、竖直腔表面发射激光器、镀磷LED,薄膜场致发光器件、磷光OLED、无机/有机LED、使用量子点技术的LED、LED阵列、使用LED的泛光系统、白色LED、白炽灯、弧光灯、瓦斯灯、和荧光灯管,将包括在术语“发光件32”内。
“检测元件42”在本申请的上下文中,包括能够检测电磁辐射的任何装置都包括在术语“检测元件42”内。例如,电荷祸合器件(CCD)、光电二极管、光电二极管阵列。此外,检测元件42可以按这样一种方式适用,使得检测的辐射和对应产生的信息可以被输送到存储器、计算机或另一个控制单元。
“驱动器”在本申请的上下文中,可以根据安装单元100所需的运动轨迹进行选择,包括机器人操作臂、伸缩设备、往复移动设备、摆动驱动设备等等,还包括伺服电机、旋转液压缸等直接提供旋转动力的设备,也包括其他间接提供动力的设备。以上均可在相关技术中实现,在此不再一一赘述。
“样本”在本申请的上下文中,所使用的术语“样本”将指任何种类的物 质,包括由光学检测,例如,由光学激励和之后的光学读取,检测的一种或几种成分。例如,在本申请的上下文中可以分析生物化学物质。此外,样本可以是在分子诊断学、临床诊断学、基因和蛋白质表达阵列的领域中使用的物质。样本的成分(要被检测的成分)可以特别是可由PCR拷贝的任何物质。
需要说明的是,“发光件32与激发片220之间设有第一透镜240”包括第一透镜240固设于光源模块30中,与对应的发光件32进行组合,此时第一透镜240不随安装单元100进行转动;或第一透镜240利用其它安装结构固设于对应的发光件32与激发片220之间,此时第一透镜240不随安装单元100进行转动;或第一透镜240直接或间接固设于安装单元100上,随安装单元100进行转动。
可选地,一实施例中,光学检测装置还包括第一集成件(未示出),所有第一透镜240固设于第一集成件上,第一集成件固设于安装单元100和检测元件42之间。此时,第一透镜240设置于安装单元100的侧壁。如此,利用第一集成件与安装单元100进行组合,实现将第一透镜240集成到运动盘模块中。
“检测元件42与发射片230之间设有第二透镜250”包括第二透镜250固设于检测模块40中,与对应的检测元件42进行组合,此时第二透镜250不随安装单元100进行转动;或第二透镜250利用其它安装结构固设于对应的检测元件42与发射片230之间,此时第二透镜250不随安装单元100进行转动;或第二透镜250直接或间接固设于安装单元100上,随安装单元100进行转动。
具体到本实施例中,如图1所示,光学检测装置还包括第二集成件50,所有第二透镜250固设于第二集成件50上,第二集成件50固设于安装单元100和检测元件42之间。如此,利用第二集成件50与安装单元100进行组合,实现将第二透镜250集成到运动盘模块中。
当然了,在其他实施例中,镜片组件200还包括第一透镜240,第一透镜240设置于第一光路上,并设置于激发片220和发光件32之间。即,该第一透镜240可以直接集成到安装单元100上。
或镜片组件200还包括第二透镜250,第二透镜250设置于第二光路上,并设置于发射片230和检测元件42之间。即,该第二透镜250可以直接集成到安装单元100上。
镜片组件200还包括第一透镜240,第一透镜240设置于第一光路上,并设置于激发片220和发光件32之间;和镜片组件200还包括第二透镜250,第二透镜250设置于第二光路上,并设置于发射片230和检测元件42之间。即,第一透镜240及第二透镜250可以直接集成到安装单元100上。
在上述任一实施例的基础上,如图1至图5所示,一实施例中,光路通道110为一条。
或,光路通道110为两条以上。如此,光路通道110能够与检测模块40及光源模块30一一对应,使得可以进行不同样本的不同类的目标检测物的检测,一次可以实现至少两份不同样本的至少两类目标检测物的检测。
需要说明的是,“安装单元100”可以是安装支架、安装座、安装壳等任意一种能够实现上述零件的安装的安装结构。
可选的,如图5及图6所示,一实施例中,安装单元100包括与光路通道110一一对应的遮光罩120、第一板体130及第二板体140,遮光罩120设有一条光路通道110,至少两个遮光罩120间隔夹设于第一板体130与第二板体140之间,第一板体130设置于遮光罩120的上方,第一板体130设有与第二通道114相通的第一通孔132,第二板体140设有与共用通道116相通的第二通孔144。如此,利用遮光罩120及第一板体130及第二板体140的组合,便于安装镜片组件200,方便进行设计及组合。
同时利用至少两个遮光罩可以实现至少两条光路通道110,便于安装镜片组件200,方便进行设计及组合。同时光路通道110设置于遮光罩120内,能够避免产生光污染,影响检测精度。
可选的,如图5及图6所示,一实施例中,至少两个遮光罩120沿同一圆周间隔夹设于第一板体130与第二板体140之间为一组安装模块,安装单元100包括一组或两组以上的安装模块。如此可以形成安装模块,便于进行模块化组装。
可选的,安装单元100包括竖向叠加设置的两组以上的安装模块。如此,可以充分利用光学检测装置的纵向空间,可以竖向叠加设置两组以上的安装模块,且互不影响,有利于集成更多的光源模块30及检测模块40,便于提高检测效率。同时可以进行模块化组装,有利于降低制造成本。
当然了,其他实施例中,可以利用其他方式在安装单元100上形成所需的结构。
在上述任一实施例的基础上,一实施例中,镜片组件200还包括第一折光件,第一折光件设置于第一通道112内,并设置于激发片220与二向色镜210之间或设置于激发片220与第一透镜240之间;或镜片组件200还包括第二折光件,第二折光件设置于第二通道114内,并设置于发射片230与二向色镜210之间或设置于发射片230与第二透镜250之间;镜片组件200还包括第一折光件,第一折光件设置于第一通道112内,并设置于激发片220与二向色镜210 之间或设置于激发片220与第一透镜240之间;和镜片组件200还包括第二折光件,第二折光件设置于第二通道114内,并设置于发射片230与二向色镜210之间或设置于发射片230与第二透镜250之间。如此,利用第一折光件或/和第二折光件实现光路的改变,使得检测模块40及光源模块30的设置更加灵活,能够更加体外诊断分析系统的内部空间进行灵活排布。
需要说明的是,“第一折光件”及“第二折光件”包括但不限于反光镜、棱镜、光纤等能够实现光路改变的任一相关技术实现。
在上述任一实施例的基础上,如图3所示,一实施例中,镜片组件200还包括第三透镜260,第三透镜260设置于共用通道116内,并设置于二向色镜210的下方。如此,该第三透镜260可以直接集成到安装单元100内,随安装单元100同步运动。
或,如图1所示,一实施例中,光学检测装置还包括第三集成件60,第三透镜260固设于第三集成件60内,第三集成件60固设于安装单元100和样品盘70之间。如此,可以利用第三集成件60进行模块化组装第三透镜260,然后再集成到安装单元100上,可随安装单元100同步运动。
当然了,其他实施例中,该第三透镜260也可以集成到样本盘上;或其他安装结构上。
在上述任一实施例的基础上,如图2及图3所示,一实施例中,光路通道110的共用通道沿同一圆周间隔设置,驱动器用于驱动安装单元100转动。如此,只需旋转即可实现不同目标检测物的检测,控制简单,易于实现。同时结合,至少两个遮光罩120沿同一圆周间隔夹设于第一板体130与第二板体140之间为一组安装模块,安装单元100包括竖向叠加设置两组以上的安装模块。如此,利用旋转可以集成更多的元件,实现对更多样本腔72的同步检测。
另一方面,本申请还提供了一种体外诊断分析系统,包括上述任一实施例中的光学检测装置,还包括样本盘70,样本盘70设有与共用通道的自由端一一对应的检测腔72,检测腔72与共用通道之间设有第三透镜260。
该体外诊断分析系统应用了该光学检测装置,可单独驱动运动盘模块进行运动,能够避免绕线问题,无需设置避让空间,设计更加灵活,更加容易进行控制。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。

Claims (14)

  1. 一种运动盘模块,包括:
    安装单元,所述安装单元设有光路通道,所述光路通道包括第一通道、第二通道及共用通道,所述第一通道与所述第二通道相错开,且所述第一通道的一端及所述第二通道的一端均与所述共用通道的一端连通,并形成共用腔;及
    镜片组件,所述镜片组件安装在所述安装单元上,所述镜片组件与所述光路通道一一对应,所述镜片组件包括二向色镜、激发片及发射片,所述二向色镜设置于所述共用腔内,所述激发片设置于所述第一通道内,并与所述二向色镜形成第一光路,所述发射片设置于所述第二通道内,并与所述二向色镜形成第二光路。
  2. 根据权利要求1所述的运动盘模块,其中,所述安装单元包括遮光罩、第一板体及第二板体,所述遮光罩设有一条所述光路通道,遮光罩间隔夹设于所述第一板体与所述第二板体之间,所述第一板体设置于所述遮光罩的上方,所述第一板体设有与所述第二通道相通的第一通孔,所述第二板体设有与所述共用通道相通的第二通孔。
  3. 根据权利要求2所述的运动盘模块,其中,所述光路通道至少为两条,所述遮光罩与所述光路通道一一对应。
  4. 根据权利要求3所述的运动盘模块,其中,至少两个遮光罩沿同一圆周间隔夹设于所述第一板体与所述第二板体之间为一组安装模块,所述安装单元包括一组或两组以上的所述安装模块。
  5. 根据权利要求4所述的运动盘模块,其中,所述安装单元包括竖向叠加设置两组以上的安装模块。
  6. 根据权利要求1至5任一项所述的运动盘模块,其中,所述运动盘模块还包括第一透镜,所述第一透镜设置于所述第一光路上,并设置于所述激发片与所述发光件之间;或/和所述运动盘模块还包括第二透镜,所述第二透镜设置于所述第二光路上,并设置于所述发射片和所述检测元件之间。
  7. 根据权利要求6所述的运动盘模块,其中,所述运动盘模块还包括第三透镜,所述第三透镜设置于所述二向色镜与样品盘之间。
  8. 根据权利要求6所述的运动盘模块,其中,镜片组件还包括第一折光件,第一折光件设置于所述第一通道内,并设置于所述激发片与所述二向色镜之间或置于所述激发片与所述第一透镜之间;或/和镜片组件还包括第二折光件,第二折光件设置于所述第二通道内,并设置于所述发射片与所述二向色镜之间或置于所述发射片与所述第二透镜之间。
  9. 一种光学检测装置,包括如权利要求1至8任一项所述的运动盘模块,还包括:
    光源模块,所述光源模块设有至少两个发光件,所述发光件与所述激发片之间设有第一透镜;
    检测模块,所述检测模块设有至少两个检测元件,所述检测元件与所述发射片之间设有第二透镜;及
    驱动器,所述驱动器用于驱动所述安装单元进行运动。
  10. 根据权利要求9所述的光学检测装置,其中,所述光学检测装置还包括第一集成件,所有所述第一透镜固设于所述第一集成件上;或所述光学检测装置还包括第二集成件,所有所述第二透镜固设于所述第二集成件上。
  11. 根据权利要求9所述的光学检测装置,其中,所述光路通道的共用通道沿同一圆周间隔设置,所述驱动器用于驱动所述安装单元转动。
  12. 根据权利要求9至11任一项所述的光学检测装置,其中,所述光学检测装置还包括第三透镜,所述第三透镜设置于所述二向色镜与样品盘之间。
  13. 根据权利要求12所述的光学检测装置,其中,所述光学检测装置还包括第三集成件,所述第三集成件固设于所述安装单元与样品盘之间,所述第三透镜固设于所述第三集成件内。
  14. 一种体外诊断分析系统,包括如权利要求9至13任一项所述的光学检测装置。
PCT/CN2020/138006 2020-09-11 2020-12-21 体外诊断分析系统、光学检测装置及运动盘模块 WO2022052362A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010951039.7A CN112326606B (zh) 2020-09-11 2020-09-11 体外诊断分析系统、光学检测装置及运动盘模块
CN202010951039.7 2020-09-11

Publications (1)

Publication Number Publication Date
WO2022052362A1 true WO2022052362A1 (zh) 2022-03-17

Family

ID=74303162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138006 WO2022052362A1 (zh) 2020-09-11 2020-12-21 体外诊断分析系统、光学检测装置及运动盘模块

Country Status (2)

Country Link
CN (1) CN112326606B (zh)
WO (1) WO2022052362A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115161187B (zh) * 2022-09-06 2023-04-07 鲲鹏基因(北京)科技有限责任公司 多通道荧光检测装置及pcr仪

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102422143A (zh) * 2009-03-10 2012-04-18 新加坡科技研究局 处理生物样品和/或化学样品的装置
US20150037876A1 (en) * 2013-07-31 2015-02-05 Samsung Electronics Co., Ltd. Multi-channel fluorescence detecting module and nucleic acid analysis system having the same
CN107746806A (zh) * 2017-11-20 2018-03-02 鲲鹏基因(北京)科技有限责任公司 一种实时荧光定量pcr仪
CN109085148A (zh) * 2018-10-11 2018-12-25 滨江华康(北京)生物科技有限公司 一种多通道荧光检测光学系统
CN110161003A (zh) * 2019-05-17 2019-08-23 深圳市刚竹医疗科技有限公司 光学检测装置及实时荧光定量核酸扩增检测系统
CN111215161A (zh) * 2020-01-15 2020-06-02 北京中科生仪科技有限公司 一种用于核酸扩增仪的光学检测系统
CN112161927A (zh) * 2020-09-11 2021-01-01 广州万孚生物技术股份有限公司 体外诊断分析系统及光学检测装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1435684A (zh) * 2002-01-30 2003-08-13 无锡市朗珈生物医学工程有限公司 生物芯片荧光检测扫描装置
WO2008072365A1 (ja) * 2006-12-13 2008-06-19 Nikon Corporation 蛍光検出装置及び蛍光観察システム
CN101612035B (zh) * 2009-07-17 2011-06-29 清华大学 微创多通道活体荧光信号实时检测系统及方法
US20120261256A1 (en) * 2011-04-13 2012-10-18 Chang Chia-Pin Sample holders and analytical instrument for point-of-care qualification of clinical samples
CN102565907A (zh) * 2012-03-08 2012-07-11 孔令华 一种二色相镜滤光薄膜及其制备方法和应用
CN102778559A (zh) * 2012-08-14 2012-11-14 广州万孚生物技术股份有限公司 胶体金免疫层析检测试剂盒及其制备方法
CN103792190B (zh) * 2012-10-31 2016-06-29 光宝科技股份有限公司 光学测量装置及光学测量方法
CN203479709U (zh) * 2013-10-16 2014-03-12 许昌学院 旋转扫描式多通道毛细管电泳芯片激光诱导荧光检测系统
KR102199814B1 (ko) * 2014-02-27 2021-01-08 엘지전자 주식회사 부유미생물 측정장치 및 그 측정방법
CN105954286A (zh) * 2016-05-26 2016-09-21 上海新产业光电技术有限公司 一种基于旋转滤光片单色器的能见度测量仪
CN206348271U (zh) * 2016-11-22 2017-07-21 深圳大学 超快超连续谱各个谱成分时间分布及时间一致性测量仪
CN108120683B (zh) * 2017-12-26 2024-02-09 深圳德夏生物医学工程有限公司 用于生化分析仪的可调光源装置
CN208091919U (zh) * 2018-04-24 2018-11-13 桂林优利特医疗电子有限公司 一种荧光检测装置
CN108519373B (zh) * 2018-04-27 2024-03-15 广州万孚生物技术股份有限公司 一种化学发光微流控芯片及含其的分析仪器
CN110082898A (zh) * 2019-04-24 2019-08-02 中国科学院自动化研究所 荧光显微镜镜头及荧光显微镜
CN110161008B (zh) * 2019-06-04 2021-10-29 山东理工大学 共光轴度和放大倍数可自校准的荧光颗粒示踪方法与装置
CN110530793B (zh) * 2019-08-21 2022-06-28 荧飒光学科技(上海)有限公司 一体化傅里叶变换光致发光光谱仪

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102422143A (zh) * 2009-03-10 2012-04-18 新加坡科技研究局 处理生物样品和/或化学样品的装置
US20150037876A1 (en) * 2013-07-31 2015-02-05 Samsung Electronics Co., Ltd. Multi-channel fluorescence detecting module and nucleic acid analysis system having the same
CN107746806A (zh) * 2017-11-20 2018-03-02 鲲鹏基因(北京)科技有限责任公司 一种实时荧光定量pcr仪
CN109085148A (zh) * 2018-10-11 2018-12-25 滨江华康(北京)生物科技有限公司 一种多通道荧光检测光学系统
CN110161003A (zh) * 2019-05-17 2019-08-23 深圳市刚竹医疗科技有限公司 光学检测装置及实时荧光定量核酸扩增检测系统
CN111215161A (zh) * 2020-01-15 2020-06-02 北京中科生仪科技有限公司 一种用于核酸扩增仪的光学检测系统
CN112161927A (zh) * 2020-09-11 2021-01-01 广州万孚生物技术股份有限公司 体外诊断分析系统及光学检测装置

Also Published As

Publication number Publication date
CN112326606A (zh) 2021-02-05
CN112326606B (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
CN110161003B (zh) 光学检测装置及实时荧光定量核酸扩增检测系统
US10155978B2 (en) Multi-channel fluorescence detection device
EP1228357B1 (en) Fluorometer with low heat-generating light source
TWI243242B (en) Optical detection in a multi-channel bio-separation system
US7968856B2 (en) Fluorometer with low heat-generating light source
US7295316B2 (en) Fluorescent detector with automatic changing filters
US7700928B2 (en) Apparatus and method for interleaving detection of fluorescence and luminescence
CN110132909B (zh) 荧光检测装置
US7248359B2 (en) Combining multi-spectral light from spatially separated sources
JP2006215026A (ja) 多チャンネル蛍光測定用の光学系及びそれを採用した多チャンネル蛍光試料の分析装置
US20090308746A1 (en) Analyzing apparatus using rotatable microfluidic disk
CN107466362B (zh) 减少凝结的基于冷却型光电倍增管的光检测器及相关设备和方法
WO2022052362A1 (zh) 体外诊断分析系统、光学检测装置及运动盘模块
CN211227169U (zh) 一种多通道荧光定量pcr检测系统
WO2022052363A1 (zh) 体外诊断分析系统及光学检测装置
Bosse et al. Open LED illuminator: a simple and inexpensive LED illuminator for fast multicolor particle tracking in neurons
JP3991029B2 (ja) 核酸分析装置
JPWO2015151738A1 (ja) 分析装置
JP2007518109A (ja) 生物学的サンプルにおける蛍光検出のための装置および方法
CN213633137U (zh) 体外诊断分析系统及光学检测装置
WO2003034044A2 (en) Multi-color multiplexed analysis in a bio-separation system
Haahr Multiline Lasers for Fluorescence Microscopy: Simplifying multicolor biomedical imaging in compact instrumentation
TW201804147A (zh) 螢光檢測系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20953147

Country of ref document: EP

Kind code of ref document: A1