WO2022052363A1 - 体外诊断分析系统及光学检测装置 - Google Patents

体外诊断分析系统及光学检测装置 Download PDF

Info

Publication number
WO2022052363A1
WO2022052363A1 PCT/CN2020/138007 CN2020138007W WO2022052363A1 WO 2022052363 A1 WO2022052363 A1 WO 2022052363A1 CN 2020138007 W CN2020138007 W CN 2020138007W WO 2022052363 A1 WO2022052363 A1 WO 2022052363A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
channel
lens
detection device
optical detection
Prior art date
Application number
PCT/CN2020/138007
Other languages
English (en)
French (fr)
Inventor
吴娟芳
梅哲
张彤
王继华
Original Assignee
广州万孚生物技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州万孚生物技术股份有限公司 filed Critical 广州万孚生物技术股份有限公司
Publication of WO2022052363A1 publication Critical patent/WO2022052363A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells

Definitions

  • the present application relates to the technical field of in vitro diagnosis, and in particular, to an in vitro diagnosis analysis system and an optical detection device.
  • PCR Polymerase Chain Reaction
  • Real-time quantitative polymerase chain reaction (Real-time Quantitative PCR Detecting System, qPCR) is to add corresponding fluorescent dyes or fluorescently labeled probes on the basis of conventional PCR, and change the fluorescent signal during the PCR reaction. The process performs real-time detection, the method of monitoring the total amount of products after each PCR cycle with fluorescent chemicals, and the method of quantitative analysis of specific DNA sequences in the sample to be tested.
  • Fluorescence quantitative PCR instrument is a reaction instrument that uses qPCR technology for real-time detection. Generally, the function of the instrument is guaranteed by a thermal cycle system and a fluorescence real-time detection system.
  • the qPCR technology of in vitro diagnosis usually requires the detection of multiple indicators (multiple target detection substances) on one or more samples in one detection.
  • Conventional optical detection devices utilize multiple independent optical units to detect multiple target detection objects in the same reaction chamber or to detect the same or different objects in multiple reaction chambers.
  • the optical detection device does not have the above-mentioned independent optical unit, but includes relatively independent lens modules, light source modules and detection modules. Each module can move independently, so as to avoid the problem of winding, the layout is more compact, and the length of time is shortened. In addition, it can meet the miniaturization development needs of in vitro diagnostic analysis systems.
  • the present application provides an optical detection device, including a lens module, a light source module, a detection module and a driver.
  • the lens module includes a first mounting unit, a dichroic mirror, an excitation sheet and an emission sheet, and the dichroic mirror and the excitation sheet The dichroic mirror and the emission plate are arranged at intervals in the first installation unit and cooperate with the emission plate to form an emission light path;
  • the light source module includes a second installation unit , and at least two light-emitting elements, each light-emitting element is arranged on the second installation unit at intervals, and each light-emitting element and the excitation sheet are arranged at intervals;
  • the detection module includes a third installation unit and at least two detection elements, each detection element The space between them is arranged on the third installation unit, and each detection element and the emission sheet are arranged at intervals;
  • the driver is used to drive the first installation unit, to drive the first installation unit and the second installation unit, or to drive the first installation unit. and at least one of the
  • the relatively independent lens module, light source module and detection module are used to cooperate with each other to assemble an optical detection device.
  • each structure is modularly designed and produced and assembled, and then the modular assembly is carried out to make the circuit layout between the optical detection devices more reasonable. , the modules are more compact.
  • the excitation light path and the emission light path can be selectively docked with the light-emitting element and the detection element to realize the detection of different types of target detection objects of the target sample.
  • the light source module and the detection element do not need to be rotated, and there will be no Therefore, there is no need to provide a winding avoidance space, so that the volume of the optical detection device can be smaller.
  • the modular design of the optical detection device makes the layout of the internal modules more compact, the lens module can be driven to move independently, the winding problem can be avoided, the design is more flexible, and it can meet the miniaturization development needs of the in vitro diagnostic analysis system.
  • the light-emitting elements are arranged at intervals along the same circumference, and the detection elements are arranged at intervals along the other circumference, and the driver is used to drive the first installation unit to rotate along the center of the same circumference;
  • the detection elements are arranged at intervals along a straight line, and the detection elements are arranged at intervals along another straight line.
  • the driver is used to drive the first installation unit to reciprocate along the straight line.
  • the optical detection device further includes a first lens, and the first lens is disposed between the excitation plate and the light-emitting element; or/and the optical detection device further includes a second lens, and the second lens is disposed between the emission plate and the detection plate between components.
  • the first installation unit is provided with an optical path channel
  • the optical path channel includes a first channel, a second channel and a common channel, the first channel and the second channel are staggered, and one end of the first channel and the second channel
  • One end of the lens module is connected to one end of the common channel and forms a common cavity;
  • the lens module corresponds to the optical path channel one-to-one, the dichroic mirror is set in the common cavity, the excitation plate is set in the first channel, and forms with the dichroic mirror
  • the emission sheet is arranged in the second channel and forms an emission light path with the dichroic mirror.
  • the first installation unit includes a light shield, a first plate body and a second plate body, the light shield is provided with an optical path channel, and at least two light shields are sandwiched between the first plate body and the second plate.
  • the first plate body is arranged above the hood, the first plate body is provided with a first through hole communicating with the second channel, and the second plate body is provided with a second through hole communicated with the common channel.
  • At least two light shields are sandwiched between the first plate body and the second plate body along the same circumference to form a set of installation modules, and the first installation unit includes one or more than two sets of installation modules .
  • the first installation unit includes at least two sets of installation modules arranged vertically stacked.
  • the lens assembly further includes a first refractive member, and the first refractive member is disposed in the first channel and disposed between the excitation plate and the dichroic mirror or between the excitation plate and the first lens; Or/and the lens assembly further includes a second refractive element, the second refractive element is arranged in the second channel, and is arranged between the emitting sheet and the dichroic mirror or between the emitting sheet and the second lens.
  • the optical detection device further includes a third lens, and the third lens is disposed between the dichroic mirror and the sample disk.
  • the optical detection device further includes an integrated component, the third lens is fixed in the integrated component, and the integrated component is fixed between the first installation unit and the sample tray.
  • the present application also provides an in vitro diagnostic analysis system, including the optical detection device in any of the above embodiments.
  • the in vitro diagnostic analysis system applies the optical detection device, which can independently drive the lens module, the light source module or the detection module to move, and has a more compact structure, which is conducive to reducing the volume.
  • FIG. 1 is a schematic structural diagram of an optical detection device in an embodiment
  • FIG. 2 is a schematic structural diagram of an optical detection device in an embodiment
  • FIG. 3 is a schematic diagram of the optical path shown in FIG. 2;
  • FIG. 4 is a schematic exploded schematic diagram of a partial structure of the optical detection device shown in FIG. 2;
  • FIG. 5 is a schematic structural diagram of the lens module shown in FIG. 4;
  • FIG. 6 is a schematic exploded schematic diagram of the partial structure of the lens module shown in FIG. 5;
  • FIG. 7 is a schematic diagram of a PCR chip to be detected.
  • lens module 100, first installation unit; 110, optical path; 112, first channel; 114, second channel; 116, common channel; 118, common cavity; 120, light shield; 130, first board ; 132, the first through hole; 140, the second plate body; 142, the second through hole; 200, the dichroic mirror; 300, the excitation plate; 400, the emission plate; ; 24, light-emitting element; 26, first lens; 30, detection module; 32, third installation unit; 34, detection element; 36, second lens; 40, integrated part; 42, third lens; 50, sample tray 52. Sample cavity.
  • an element when an element is referred to as being “fixed on”, “disposed on”, “fixed on” or “mounted on” another element, it can be directly on the other element or an intervening element may also be present .
  • an element When an element is referred to as being “connected” to another element, it can be directly connected to the other element or intervening elements may also be present.
  • one element when one element is considered to be a "fixed transmission connection” to another element, the two can be fixed in a detachable connection, or can be fixed in a non-detachable connection, as long as power transmission can be achieved, such as socket connection, snap connection. , integral molding fixing, welding, etc., can be realized in the related art, and will not be redundant here.
  • the qPCR technology of in vitro diagnosis usually requires the detection of multiple indicators (multiple target detection substances) on one or more samples in one detection.
  • the traditional optical detection device utilizes a plurality of independent optical units to realize the detection of multiple objects to be detected in the same reaction chamber or to realize the detection of the same objects in multiple reaction chambers.
  • an optical detection device including a detection module 30 and a light source module 20 that are independently arranged, a lens module 10 that can move independently, and a lens module 10 for driving the lens module 10 to move. drive (not shown).
  • the lens module 10 includes a first installation unit 100 , a dichroic mirror 200 , an excitation plate 300 and an emission plate 400 , and the dichroic mirror 200 and the excitation plate 300 are disposed in the first installation unit 100 at intervals.
  • the dichroic mirror 200 and the emission sheet 400 are arranged at intervals in the first installation unit 100, and cooperate with the emission sheet 400 to form an emission light path;
  • the light source module 20 includes a second installation unit 22 , and at least two light-emitting elements 24, each light-emitting element 24 is arranged on the second installation unit 22 at intervals, and each light-emitting element 24 and the excitation sheet 300 are arranged at intervals;
  • the detection module 30 includes a third installation unit 32, and at least two There are detection elements 34, the detection elements 34 are arranged on the third installation unit 32 at intervals, and the detection elements 34 are arranged at intervals from the emission sheet 400;
  • the driver is used to drive the first installation unit 100, and is used to drive the first installation unit. 100 and the second installation unit 22 or for driving at least one of the first installation unit 100 and the third installation unit 32 to move.
  • the relatively independent lens module 10 , light source module 20 and detection module 30 are used to cooperate with each other to assemble an optical detection device.
  • each structure is modularly designed and produced and assembled, and then the modularization is carried out.
  • the assembly makes the circuit layout between the optical detection devices more reasonable and the modules more compact.
  • the driver it is only necessary to use the driver to rotate or move the first installation unit 100, to drive the first installation unit 100 and the second installation unit 22, or to drive at least one of the first installation unit 100 and the third installation unit 32.
  • the excitation light path and the emission light path can be selectively docked with the light-emitting element 24 and the detection element 34 to realize the detection of different types of target detection objects of the target sample.
  • the modular design of the optical detection device makes the layout of the internal modules more compact, and can independently drive the lens module 10, the light source module 20 or the detection module 30 to move, which can meet the miniaturization development needs of the in vitro diagnostic analysis system.
  • the second installation unit 22 can be made stationary, that is, the light source module 20 is stationary, and other components are integrated and rotated together, that is, the lens module 10 and the detection module 30 move together with the driver to realize relevant detection. During this process, the light source module 20 does not move, which can reduce the problem of winding.
  • the third installation unit 32 can be made stationary, that is, the detection module 30 is stationary, and other components are integrated to rotate together, that is, the lens module 10 and the light source module 20 move together with the driver to realize relevant detection.
  • the detection module 30 does not move, that is, the existence of winding problems can be reduced;
  • the second installation unit 22 and the third installation unit 32 can be made stationary, that is, the light source module 20 and the detection module 30 are both kept stationary, and the other components are integrated to rotate together, that is, the lens module 10 moves together with the drive, Implement correlation detection. During this process, the light source module 20 and the detection module 30 do not move, that is, there is no wiring problem.
  • any kind of device capable of emitting a monochromatic or broadband electromagnetic field will be understood to be encompassed by the term "light 24".
  • arrays of multiple light emitting elements 24 having identical or different characteristics with respect to frequency, polarization, flux, electrical input power, or technology for emitting photons will also be included within the term "light emitting elements 24".
  • LEDs Light Emitting Diodes
  • OLEDs Organic Light Emitting Diodes
  • PLEDs Polymer Light Emitting Diodes
  • Quantum Dot Based Light Emitting Devices 24, White Light Emitting Devices 24, Halogen Lamps, Lasers, Solid State Lasers, Laser Diodes, Micro Wires wire) lasers, diode solid-state lasers, vertical cavity surface emitting lasers, phosphor-coated LEDs, thin film electroluminescent devices, phosphorescent OLEDs, inorganic/organic LEDs, LEDs using quantum dot technology, LED arrays, floodlight systems using LEDs, White LEDs, incandescent lamps, arc lamps, gas lamps, and fluorescent tubes, will be included within the term "light 24".
  • Detection element 34 In the context of this application, any device capable of detecting electromagnetic radiation is included within the term “detection element 34". For example, charge catastrophic devices (CCDs), photodiodes, photodiode arrays. Furthermore, the detection element 34 can be adapted in such a way that the detected radiation and the correspondingly generated information can be fed to a memory, a computer or another control unit.
  • CCDs charge catastrophic devices
  • photodiodes photodiode arrays.
  • the detection element 34 can be adapted in such a way that the detected radiation and the correspondingly generated information can be fed to a memory, a computer or another control unit.
  • the “driver” can be selected according to the required motion trajectory of the first installation unit 100, including a robot operating arm, a telescopic device, a reciprocating device, a swing drive device, etc., and also includes a servo motor, a rotary hydraulic Equipment that directly provides rotational power, such as cylinders, and other equipment that provides power indirectly. All of the above can be implemented in the related art, and details are not repeated here.
  • sample In the context of this application, the term “sample” will refer to any kind of substance including one or several components detected by optical detection, eg, by optical excitation followed by optical reading.
  • biochemical substances can be analyzed in the context of this application.
  • the sample may be a substance used in the fields of molecular diagnostics, clinical diagnostics, gene and protein expression arrays.
  • the component of the sample (the component to be detected) can in particular be any substance that can be copied by PCR.
  • the optical detection device further includes a first lens 26 , and the first lens 26 is disposed between the excitation plate 300 and the light-emitting element 24 .
  • the optical detection device when the optical detection device is applied to in-vitro diagnostic analysis, the light emitted by the light-emitting element 24 is collected by the first lens 26 and then directed to the excitation plate 300 , and the incident light can be collimated and reflected by the dichroic mirror 200 . Focusing on the sample cavity 52 by the third lens 42
  • the first lens 26 is fixed on the second installation unit 22 , and the first lens 26 is disposed between the excitation plate 300 and the light-emitting element 24 . In this way, the integration of the first lens 26 into the light emitting module is realized by using the second mounting unit 22 .
  • the optical detection device further includes a second lens 36 , and the second lens 36 is disposed between the emission sheet 400 and the detection element 34 .
  • the sample in the sample cavity 52 is excited by the light of the light-emitting element 24 to emit fluorescence, and the fluorescence is collected by the third lens 42 and directed to the dichroic mirror 200 , and then to the emission sheet 400 through the dichroic mirror 200 , and passes through the emission sheet.
  • the second lens 36 After 400, it is emitted to the second lens 36, and the second lens 36 focuses the fluorescence on the detection element 34, so as to improve the detection accuracy and sensitivity.
  • the second lens 36 is fixed on the third mounting unit 32 .
  • the integration of the second lens 36 into the detection module 30 is realized by the third mounting unit 32 .
  • the optical detection device further includes a first lens 26 , and the first lens 26 is disposed between the excitation plate 300 and the light-emitting element 24 ; the optical detection device further includes a second lens 26 .
  • the lens 36 and the second lens 36 are disposed between the emission sheet 400 and the detection element 34 .
  • the dichroic mirror 200 After being reflected by the dichroic mirror 200, it is emitted to the sample cavity 52; the sample in the sample cavity 52 is excited by the light of the light-emitting element 24 to emit fluorescence, and the fluorescence will be emitted to the dichroic mirror 200, and then to the emission plate 400 through the dichroic mirror 200. , after passing through the emission sheet 400 , it is emitted to the second lens 36 , and the second lens 36 focuses the fluorescence on the detection element 34 , thereby improving the detection accuracy and sensitivity.
  • the first installation unit 100 is provided with an optical path 110 , and the optical path 110 includes a first channel 112 , a second channel 114 and a common
  • the channel 116, the first channel 112 and the second channel 114 are staggered and vertical, and one end of the first channel 112 and one end of the second channel 114 are both communicated with one end of the common channel 116 and form a common cavity 118;
  • the lens module 10 and The optical path channels 110 are in one-to-one correspondence, the dichroic mirror 200 is arranged in the common cavity 118 , the excitation plate 300 is arranged in the first channel 112 and forms an excitation optical path with the dichroic mirror 200 , and the emission plate 400 is arranged in the second channel 114 inside, and form an emission light path with the dichroic mirror 200 .
  • the first installation unit 100 is used to form the optical path 110 including the first channel 112, the second channel 114 and the common channel 116, and then the dichroic mirror 200, the excitation plate 300 and the emission plate are assembled 400 is integrated into the optical path channel 110, so that the excitation sheet 300 and the dichroic mirror 200 form an excitation optical path, the emission sheet 400 and the dichroic mirror 200 form an emission optical path, and the light-emitting element 24 and the detection element 34 move along the first installation unit 100 Track interval settings.
  • the switching of the optical path 110 can be realized only by rotating or moving the first mounting unit 100 by the driver, so that the optical path 110 can be selectively docked with the light-emitting element 24 and the detection element 34 to realize different types of target samples.
  • neither the light source module 20 nor the detection element 34 needs to be rotated in this process, and there is no problem of winding, so there is no need to provide a winding avoidance space.
  • the optical detection device adopts the above-mentioned lens module 10, which can independently drive the lens module 10 to move, can avoid the problem of winding, and has a more flexible design, which is conducive to the miniaturization development of the in vitro diagnostic analysis system.
  • the light emitted by the light-emitting element 24 passes through the first lens 26 and the excitation plate 300 and then goes to the dichroic mirror 200, and then passes through the dichroic mirror 200. After being reflected by the dichroic mirror 200, it is emitted to the sample cavity 52 (in this process, the third lens 42 can also be used for focusing). 42 collects, emits to the dichroic mirror 200, and then emits to the emission sheet 400 through the dichroic mirror 200, and then emits to the second lens 36 after passing through the emission sheet 400, and the second lens 36 focuses the fluorescence on the detection element 34. After the detection of one type of target is completed, the driver drives the first installation unit 100 to rotate, so that the optical path 110 corresponds to another light-emitting element 24 and another detection element 34, and the above operations are continued to complete the detection of another type of target.
  • the first installation unit 100 includes a light shield 120 , a first plate body 130 and a second plate body 140 , and the light shield 120 is provided with There is an optical path 110, at least two light shields 120 are sandwiched between the first plate body 130 and the second plate body 140, the first plate body 130 is disposed above the light shielding cover 120, and the first plate body 130 is provided with The first through hole 132 communicated with the second channel 114 and the second plate body 140 is provided with a second through hole 142 communicated with the common channel 116 .
  • the combination of the light shield 120 and the first plate body 130 and the second plate body 140 realizes the formation of at least two optical path channels 110 , which facilitates the installation of the lens module 10 and facilitates design and combination. It also enables the first plate body 130 and the second plate body 140 to move together with the lens module 10 .
  • the optical path 110 can be in one-to-one correspondence with the detection module 30 and the light source module 20, so that the detection of different types of target detection objects in different samples can be performed, and at least two types of target detection objects in at least two chambers can be detected at one time.
  • the optical path channel is arranged in the hood, which can avoid light pollution and affect the detection accuracy.
  • At least two light shields 120 are sandwiched between the first plate body 130 and the second plate body 140 along the same circumference to form a set of installation modules.
  • the first installation unit 100 includes one or more than two groups of installation modules. In this way, a mounting module can be formed, which facilitates modular assembly.
  • the first installation unit 100 includes two or more sets of installation modules that are vertically stacked.
  • the vertical space of the optical detection device can be fully utilized, and more than two sets of installation modules can be stacked vertically without affecting each other, which is conducive to integrating more light source modules and detection modules, and is convenient for improving detection efficiency.
  • modular assembly can be carried out, which is beneficial to reduce the manufacturing cost.
  • the required structures may be formed on the first mounting unit 100 in other manners.
  • the lens assembly 200 further includes a first refracting member, and the first refracting member is disposed in the first channel 112 and disposed between the excitation plate 220 and the dichroic mirror 210 or between the excitation sheet 220 and the first lens 26; or the lens assembly 200 further includes a second refractive element, which is arranged in the second channel 114 and is arranged between the emission sheet 230 and the dichroic mirror 210 between the emitting sheet 230 and the second lens 36; the lens assembly 200 further includes a first refractive element, the first refractive element is arranged in the first channel 112, and is arranged between the excitation sheet 220 and the dichroic mirror 210 and the lens assembly 200 further includes a second refracting member, the second refracting member is disposed in the second channel 114 and disposed between the emitting sheet 230 and the dichroic mirror 210 .
  • the first refraction member or/and the second refraction member to realize the change of the optical path makes the setting of the detection unit 40 and the light emitting unit 30 more flexible, and can be arranged more flexibly in the internal space of the in vitro diagnostic analysis system.
  • first refractive element and the “second refractive element” include, but are not limited to, any related technology that can realize the change of the optical path, such as a reflector, a prism, and an optical fiber.
  • the optical detection device further includes a third lens 42 , and the third lens 42 is disposed between the dichroic mirror 200 and the sample disk 50 .
  • the third lens 42 can better collect the light into the sample cavity 52 of the sample disk 50 .
  • the third lens 42 may be directly integrated into the first installation unit 100 and move synchronously with the first installation unit 100 .
  • the optical detection device further includes an integrated component 40 , the third lens 42 is fixed in the integrated component 40 , and the integrated component 40 is fixed between the first installation unit 100 and the sample tray 50 . between.
  • the third lens 42 can be assembled in a modular manner by using the integrated piece 40, which facilitates the modular assembly.
  • the integrated part 40 can be integrated into the first installation unit 100 and can move synchronously with the first installation unit 100 .
  • the third lens 42 can also be integrated on the sample tray 50; or on other installation structures.
  • first mounting unit 100 may be any mounting structure that can implement the mounting of the above components, such as mounting brackets, mounting bases, mounting frames, and mounting shells.
  • the “second mounting unit 22" may be any mounting structure capable of realizing the mounting of the above-mentioned components, such as a mounting bracket, a mounting seat, and a mounting shell.
  • the “second mounting unit 22" may be any mounting structure capable of realizing the mounting of the above-mentioned components, such as a mounting bracket, a mounting seat, a mounting plate, and a mounting shell.
  • the light-emitting elements 24 are arranged at intervals along the same circumference, and the detection elements 34 are arranged at intervals along the other circumference.
  • the driver is used to drive the first installation unit 100 along the same circumference.
  • the center of the circle turns.
  • At least two light shields 120 are sandwiched between the first plate body 130 and the second plate body 140 along the same circumference to form a set of installation modules, and the first installation unit 100 includes at least two sets of installation modules that are vertically stacked. module. In this way, more components can be integrated by using the rotation, so as to realize the simultaneous detection of more sample cavities 52 .
  • the light emitting elements 24 are arranged at intervals along a straight line, and the detection elements 34 are arranged at intervals along another straight line, and the driver is used to drive the first installation unit 100 to reciprocate along a straight line.
  • the detection of different target detection objects can be realized by reciprocating movement in a straight line direction; in this process, the light source module 20 and the detection module 30 do not need to be rotated, and there is no winding problem, so there is no need to set a winding avoidance space, so that the optical The volume of the detection device can be smaller.
  • the present application also provides an in vitro diagnostic analysis system, including the optical detection device in any of the above embodiments.
  • the in-vitro diagnostic analysis system applies the optical detection device, which can independently drive the lens module 10, the light source module 20 or the detection module 30 to move, and has a more flexible design and easier control.
  • the in vitro diagnostic analysis system further includes a sample tray 50 .
  • the sample tray 50 is provided with a detection cavity corresponding to the free end of the common channel 116 , and a third lens 42 is provided between the detection cavity and the common channel 116 .
  • the light emitted by the light-emitting element 24 passes through the first lens 26 and the excitation sheet 300 and then goes to the dichroic mirror 200, is reflected by the dichroic mirror 200 and then concentrated by the third lens 42, and then goes to the sample cavity 52, the sample cavity
  • the sample in 52 is excited by the light of the light-emitting element 24 to emit fluorescence, and the fluorescence will be emitted to the dichroic mirror 200, then to the emission plate 400 through the dichroic mirror 200, and then to the second lens 36 after passing through the emission plate 400.
  • the second lens 36 focuses the fluorescence onto the detection element 34 .
  • the driver drives the first mounting unit 100 to rotate, so that the optical path 110 corresponds to another light-emitting element and another detection element, and the above operations are continued to complete the detection of another type of target.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种体外诊断分析系统及光学检测装置,光学检测装置包括镜片模块(10)、光源模块(20)、检测模块(30)及驱动器,镜片模块(10)包括第一安装单元(100)、二向色镜(200)、激发片(300)及发射片(400),二向色镜(200)与激发片(300)间隔设置于第一安装单元(100),并与激发片(300)相配合形成激发光路,二向色镜(200)与发射片(400)间隔设置于第一安装单元(100),并与发射片(400)相配合形成发射光路;光源模块(20)包括第二安装单元(22)及发光件(24),发光件(24)设置于第二安装单元(22)上,且发光件(24)与激发片(300)间隔设置;检测模块(30)包括第三安装单元(32)及检测元件(34),检测元件(34)设置于第三安装单元(32)上,且检测元件(34)与发射片(400)间隔设置;驱动器用于驱动第一安装单元(100)进行运动。

Description

体外诊断分析系统及光学检测装置
本申请要求在2020年09月11日提交中国专利局、申请号为202010951053.7的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及体外诊断技术领域,特别是涉及一种体外诊断分析系统及光学检测装置。
背景技术
聚合酶链式反应(Polymerase Chain Reaction,PCR)是一种用于放大扩增特定的DNA片段的分子生物学技术。而实时定量聚合酶链式反应(Real-time Quantitative PCR Detecting System,qPCR),是在常规PCR基础上加入相应的荧光染料或荧光标记探针,在PCR反应过程中通过荧光信号变化,对整个PCR进程进行实时检测,以荧光化学物质监测每次PCR循环后的产物的总量的方法,对待测样本中特定的DNA序列进行定量分析的方法。荧光定量PCR仪是应用qPCR技术进行实时检测的反应仪器,一般由热循环系统、荧光实时检测系统来保证仪器功能。
目前,体外诊断的qPCR技术通常需要在一次检测中,对一个或者多个样本进行多项指标(多个目标检测物)的检测。传统的光学检测装置利用多个独立的光学单元实现同一反应腔室内多个目标检测物的检测或者是实现对多个反应腔室内的相同或者不同目标物检测。检测过程中往往需要采用转动或者平动的方式改变光学单元和PCR腔室的相对位置完成检测。在每次旋转或者平动操作后往往需要加入复位的步骤,以解决绕线的问题。这会导致检测过程复杂,步骤繁琐,检测时间过长和光学检测装置的整体体积过大,不利于体外诊断分析系统的小型化发展。
发明内容
基于此,有必要提供一种体外诊断分析系统及光学检测装置。该光学检测装置不存在上述提到的独立的光学单元,而是包含相对独立的镜片模块,光源模块和检测模块,各模块能够进行独立运动,如此能够避免绕线问题,布局更加紧凑,缩短了检测时间,此外更能够适应体外诊断分析系统的小型化发展需要。
其技术方案如下:
一方面,本申请提供一种光学检测装置,包括镜片模块、光源模块、检测模块及驱动器,镜片模块包括第一安装单元、二向色镜、激发片及发射片,二向色镜与激发片间隔设置于第一安装单元,并与激发片相配合形成激发光路,二向色镜与发射片间隔设置于第一安装单元,并与发射片相配合形成发射光路;光源模块包括第二安装单元、以及至少两个发光件,各发光件之间间隔设置于第二安装单元上,且各发光件与激发片间隔设置;检测模块包括第三安装单元、以及至少两个检测元件,各检测元件之间间隔设置于第三安装单元上,且各检测元件与发射片间隔设置;驱动器用于驱动第一安装单元、用于驱动第一安装单元及第二安装单元或用于驱动第一安装单元及第三安装单元中的至少一个进行运动。
利用相对独立的镜片模块、光源模块及检测模块相互配合组装成光学检测装置,此过程中,各结构模块化设计及生产组装,然后在进行模块化组装,使得光学检测装置之间线路布局更加合理,模块之间更加紧凑。使用时,只需利用驱动器旋转或移动第一安装单元、利用驱动器旋转或移动第一安装单元及第二安装单元或利用驱动器旋转或移动第一安装单元及第三安装单元中的至少一种,即可实现激发光路及发射光路可选择性地与发光件及检测元件进行对接,实现对目标样本的不同类的目标检测物的检测,此过程光源模块及检测元件均无需进行转动,不会存在绕线问题,因此无需设置绕线避让空间,使得光学检测装置的体积可以更小。该光学检测装置通过模块化设计,使得内部模块的布局更加紧凑,可单独驱动镜片模块进行运动,能够避免绕线问题,设计更加灵活,能够适应体外诊断分析系统的小型化发展需要。
下面进一步对技术方案进行说明:
在其中一个实施例中,各发光件之间沿同一圆周间隔设置,各检测元件之间沿另一圆周间隔设置,驱动器用于驱动第一安装单元沿同一圆周的中心转动;或各发光件之间沿直线间隔设置,各检测元件之间沿另一直线间隔设置,驱动器用于驱动第一安装单元沿直线的往复移动。
在其中一个实施例中,光学检测装置还包括第一透镜,第一透镜设置于激发片与发光件之间;或/和光学检测装置还包括第二透镜,第二透镜设置于发射片与检测元件之间。
在其中一个实施例中,第一安装单元设有光路通道,光路通道包括第一通道、第二通道及共用通道,第一通道与第二通道相错开,且第一通道的一端及第二通道的一端均与共用通道的一端连通,并形成共用腔;镜片模块与光路通道一一对应,二向色镜设置于共用腔内,激发片设置于第一通道内,并与二向色镜形成激发光路,发射片设置于第二通道内,并与二向色镜形成发射光路。
在其中一个实施例中,第一安装单元包括遮光罩、第一板体及第二板体,遮光罩设有一条光路通道,至少两个遮光罩间隔夹设于第一板体与第二板体之间,第一板体设置于遮光罩的上方,第一板体设有与第二通道相通的第一通孔,第二板体设有与共用通道相通的第二通孔。
在其中一个实施例中,光路通道至少为两条,遮光罩与光路通道一一对应。
在其中一个实施例中,至少两个遮光罩沿同一圆周间隔夹设于第一板体与第二板体之间为一组安装模块,第一安装单元包括一组或两组以上的安装模块。
在其中一个实施例中,第一安装单元包括竖向叠加设置的至少两组安装模块。
在其中一个实施例中,镜片组件还包括第一折光件,第一折光件设置于第一通道内,并设置于激发片与二向色镜之间或置于激发片与第一透镜之间;或/和镜片组件还包括第二折光件,第二折光件设置于第二通道内,并设置于发射片与二向色镜之间或者与发射片与第二透镜之间。
在其中一个实施例中,光学检测装置还包括第三透镜,第三透镜设置于二向色镜与样品盘之间。
在其中一个实施例中,光学检测装置还包括集成件,第三透镜固设于集成件内,集成件固设于第一安装单元与样品盘之间。
另一方面,本申请还提供了一种体外诊断分析系统,包括上述任一实施例中的光学检测装置。
该体外诊断分析系统应用了该光学检测装置,可单独驱动镜片模块、光源模块或检测模块进行运动,结构更加紧凑,有利于缩小体积。
附图说明
图1为一实施例中的光学检测装置的结构示意图;
图2为一实施例中的光学检测装置的结构示意图;
图3为图2所示的光路通道示意图;
图4为图2所示的光学检测装置的部分结构爆炸示意图;
图5为图4所示的镜片模块的结构示意图;
图6为图5所示的镜片模块的局部结构爆炸示意图;
图7为待检测的PCR芯片示意图。
附图标记说明:
10、镜片模块;100、第一安装单元;110、光路通道;112、第一通道;114、第二通道;116、共用通道;118、共用腔;120、遮光罩;130、第一板体;132、第一通孔;140、第二板体;142、第二通孔;200、二向色镜;300、激发片;400、发射片;20、光源模块;22、第二安装单元;24、发光件;26、第一透镜;30、检测模块;32、第三安装单元;34、检测元件;36、第二透镜;40、集成件;42、第三透镜;50、样本盘;52、样本腔。
具体实施方式
为使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施方式,对本申请进行进一步的详细说明。应当理解的是,此处所描述的具体实施方式仅用以解释本申请,并不限定本申请的保护范围。
需要说明的是,当元件被称为“固定于”、“设置于”、“固设于”或“安设于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。进一步地,当一个元件被认为是“固定传动连接”另一个元件,二者可以是可拆卸连接方式的固定,也可以不可拆卸连接的固定,能够实现动力传递即可,如套接、卡接、一体成型固定、焊接等,在相关技术中可以实现,在此不再累赘。当元件与另一个元件相互垂直或近似垂直是指二者的理想状态是垂直,但是因制造及装配的影响,可以存在一定的垂直误差。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请中涉及的“第一”、“第二”不代表具体的数量及顺序,仅仅是用于名称的区分。
目前,体外诊断的qPCR技术通常需要在一次检测中,对一个或者多个样本进行多项指标(多个目标检测物)的检测。传统的光学检测装置利用多个独立的光学单元实现同一反应腔室内多个目标检测物的检测或者是实现对多个反应腔室内的相同目标物检测。
传统的光学检测装置中采用多个独立的光学单元,则在检测过程中需要采用转动或平动的方式,改变光学单元或者PCR腔室相对位置实现多次检测。另外,每次旋转或者平动操作后往往需要加入复位的步骤,以解决绕线或者反复 检测的问题,使得控制复杂,步骤繁琐,检测时间过长。
另外,如果要保持光学系统和反应腔室相对静止,则需要采用与反应腔室数目一致的光学检测模块,并要求每个光学模块能同时检测多个不同类的目标检测物,这会导致检测模块体积过大。此外,卡盒上的检测腔设计和布局受到也光学系统的空间限制,导致光学设计复杂。
基于此,有必要提供一种布局更加紧凑,能够适应体外诊断分析系统的小型化发展需要的光学检测装置。
如图1至图2所示,一实施例中,提供一种光学检测装置,包括独立设置的检测模块30及光源模块20,能够单独进行运动的镜片模块10以及用于带动镜片模块10运动的驱动器(未示出)。
如图2及图3所示,镜片模块10包括第一安装单元100、二向色镜200、激发片300及发射片400,二向色镜200与激发片300间隔设置于第一安装单元100,并与激发片300相配合形成激发光路,二向色镜200与发射片400间隔设置于第一安装单元100,并与发射片400相配合形成发射光路;光源模块20包括第二安装单元22、以及至少两个发光件24,各发光件24之间间隔设置于第二安装单元22上,且各发光件24与激发片300间隔设置;检测模块30包括第三安装单元32、以及至少两个检测元件34,各检测元件34之间间隔设置于第三安装单元32上,且各检测元件34与发射片400间隔设置;驱动器用于驱动第一安装单元100、用于驱动第一安装单元100及第二安装单元22或用于驱动第一安装单元100及第三安装单元32中的至少一个进行运动。
如图2及图3所示,利用相对独立的镜片模块10、光源模块20及检测模块30相互配合组装成光学检测装置,此过程中,各结构模块化设计及生产组装,然后在进行模块化组装,使得光学检测装置之间线路布局更加合理,模块之间更加紧凑。使用时,只需利用驱动器旋转或移动第一安装单元100、用于驱动第一安装单元100及第二安装单元22或用于驱动第一安装单元100及第三安装单元32中的至少一种,即可实现激发光路及发射光路可选择性地与发光件24及检测元件34进行对接,实现对目标样本的不同类的目标检测物的检测,。该光学检测装置通过模块化设计,使得内部模块的布局更加紧凑,可单独驱动镜片模块10、光源模块20或检测模块30进行运动,能够适应体外诊断分析系统的小型化发展需要。
具体地,利用本装置,可以使第二安装单元22不动,即光源模块20不动,其他部件集成在一起转动,即镜片模块10与检测模块30随驱动器一起运动,实现相关检测。此过程中,光源模块20不动,即可以减少存在绕线问题。
或利用本装置,可以使第三安装单元32不动,即检测模块30不动,其他部件集成在一起转动,即镜片模块10与光源模块20随驱动器一起运动,实现相关检测。此过程中,检测模块30不动,即可以减少存在绕线问题;
或利用本装置,可以使第二安装单元22及第三安装单元32不动,即光源模块20及检测模块30均保持不动,其他部件集成在一起转动,即镜片模块10随驱动一起运动,实现相关检测。此过程中,光源模块20、检测模块30不动,即不会存在绕线问题。
需要说明的是,“发光件24”在本申请的上下文中,能够发射单色或宽带电磁场的任何种类的装置将被理解为包含在术语“发光件24”内。此外,关于频率、偏振、通量、电输入功率、或用于发射光子的技术具有等同或不同特性的多个发光件24的阵列也将包括在术语“发光件24”内。例如,发光二极管(LED),有机发光二极管(OLED),聚合物发光二极管(PLED)、量子点基发光件24、白色发光件24、卤素灯、激光器、固态激光器、激光二极管、微线(micro wire)激光器、二极管固态激光器、竖直腔表面发射激光器、镀磷LED,薄膜场致发光器件、磷光OLED、无机/有机LED、使用量子点技术的LED、LED阵列、使用LED的泛光系统、白色LED、白炽灯、弧光灯、瓦斯灯、和荧光灯管,将包括在术语“发光件24”内。
“检测元件34”在本申请的上下文中,包括能够检测电磁辐射的任何装置都包括在术语“检测元件34”内。例如,电荷祸合器件(CCD)、光电二极管、光电二极管阵列。此外,检测元件34可以按这样一种方式适用,使得检测的辐射和对应产生的信息可以被输送到存储器、计算机或另一个控制单元。
“驱动器”在本申请的上下文中,可以根据第一安装单元100所需的运动轨迹进行选择,包括机器人操作臂、伸缩设备、往复移动设备、摆动驱动设备等等,还包括伺服电机、旋转液压缸等直接提供旋转动力的设备,也包括其他间接提供动力的设备。以上均可在相关技术中实现,在此不再一一赘述。
“样本”在本申请的上下文中,所使用的术语“样本”将指任何种类的物质,包括由光学检测,例如,由光学激励和之后的光学读取,检测的一种或几种成分。例如,在本申请的上下文中可以分析生物化学物质。此外,样本可以是在分子诊断学、临床诊断学、基因和蛋白质表达阵列的领域中使用的物质。样本的成分(要被检测的成分)可以特别是可由PCR拷贝的任何物质。
在上述任一实施例的基础上,一实施例中,光学检测装置还包括第一透镜26,第一透镜26设置于激发片300与发光件24之间。如此,该光学检测装置应用于体外诊断分析时,发光件24发出的光线经过第一透镜26聚集后,再射向激发片300,能对入射光进行准直经二向色镜200反射后,通过第三透镜42 聚焦于样本腔52
可选地,第一透镜26固设于第二安装单元22上,第一透镜26设置于激发片300与发光件24之间。如此,利用第二安装单元22实现将第一透镜26集成到发光模块中。
或另一实施例中,光学检测装置还包括第二透镜36,第二透镜36设置于发射片400与检测元件34之间。如此,样本腔52中的样本物经发光件24的光激发发出荧光,荧光由第三透镜42采集,射向二向色镜200,经由二向色镜200射向发射片400,经过发射片400后射向第二透镜36,由第二透镜36将荧光聚焦至检测元件34上,提高检测精度及灵敏性。
可选地,第二透镜36固设于第三安装单元32上。如此,利用第三安装单元32实现将第二透镜36集成到检测模块30中。
或再另一实施例中,如图2至图4所示,光学检测装置还包括第一透镜26,第一透镜26设置于激发片300与发光件24之间;光学检测装置还包括第二透镜36,第二透镜36设置于发射片400与检测元件34之间。如此,该光学检测装置应用于体外诊断分析时,发光件24发出的光线经过第一透镜26聚集后,再射向激发片300,有利于集中光能后射向二向色镜200,经二向色镜200反射后射向样本腔52;样本腔52中的样本物经发光件24的光激发发出荧光,荧光会射向二向色镜200,经由二向色镜200射向发射片400,经过发射片400后射向第二透镜36,由第二透镜36将荧光聚焦至检测元件34上,提高检测精度及灵敏性。
如图3至图6所示,在上述任一实施例的基础上,一实施例中,第一安装单元100设有光路通道110,光路通道110包括第一通道112、第二通道114及共用通道116,第一通道112与第二通道114相错开并垂直,且第一通道112的一端及第二通道114的一端均与共用通道116的一端连通,并形成共用腔118;镜片模块10与光路通道110一一对应,二向色镜200设置于共用腔118内,激发片300设置于第一通道112内,并与二向色镜200形成激发光路,发射片400设置于第二通道114内,并与二向色镜200形成发射光路。如此,该光学检测装置的使用时,利用第一安装单元100形成包括第一通道112、第二通道114及共用通道116的光路通道110,然后将二向色镜200、激发片300及发射片400集成到光路通道110中,使得激发片300与二向色镜200形成激发光路,发射片400与二向色镜200形成发射光路,发光件24及检测元件34沿第一安装单元100的运动轨迹间隔设置。如此,只需利用驱动器旋转或移动第一安装单元100即可实现光路通道110的切换,使得光路通道110可选择性地与发光件24及检测元件34进行对接,实现对目标样本的不同类的目标物的检测,此过程光 源模块20及检测元件34均无需进行转动,不会存在绕线问题,因此无需设置绕线避让空间。该光学检测装置采用了上述镜片模块10,可单独驱动镜片模块10进行运动,能够避免绕线问题,设计更加灵活,有利于体外诊断分析系统的小型化发展。
具体地,结合第一透镜26及第二透镜36,该光学检测装置应用于体外诊断分析时,发光件24发出的光线经过第一透镜26及激发片300后射向二向色镜200,经二向色镜200反射后射向样本腔52(此过程中,还可以利用第三透镜42进行聚集),样本腔52中的样本物经发光件24的光激发发出荧光,荧光经由第三透镜42采集,射向二向色镜200,经由二向色镜200射向发射片400,经过发射片400后射向第二透镜36,由第二透镜36将荧光聚焦至检测元件34上。完成一类目标物的检测后,驱动器驱动第一安装单元100进行转动,使得光路通道110对应另一发光件24及另一检测元件34上,继续上述操作,完成另一类目标物的检测。
在上述任一实施例的基础上,如图5及图6所示,一实施例中,第一安装单元100包括遮光罩120、第一板体130及第二板体140,遮光罩120设有一条光路通道110,至少两个遮光罩120间隔夹设于第一板体130与第二板体140之间,第一板体130设置于遮光罩120的上方,第一板体130设有与第二通道114相通的第一通孔132,第二板体140设有与共用通道116相通的第二通孔142。如此,利用遮光罩120及第一板体130及第二板体140的组合实现至少两条光路通道110的构成,便于安装镜片模块10,方便进行设计及组合。也使得第一板体130及第二板体140可随镜片模块10一起运动。
可选的,如图1至图5所示,一实施例中,光路通道110至少为两条。如此,光路通道110能够与检测模块30及光源模块20一一对应,使得可以进行不同样本的不同类的目标检测物的检测,一次可以实现至少两个腔室的至少两类目标检测物的检测;同时光路通道设置于遮光罩内,能够避免产生光污染,影响检测精度。
可选的,如图5及图6所示,一实施例中,至少两个遮光罩120沿同一圆周间隔夹设于第一板体130与第二板体140之间为一组安装模块,第一安装单元100包括一组或两组以上的安装模块。如此可以形成安装模块,便于进行模块化组装。
可选的,第一安装单元100包括竖向叠加设置的两组以上的安装模块。如此,可以充分利用光学检测装置的纵向空间,可以竖向叠加设置两组以上的安装模块,且互不影响,有利于集成更多的光源模块及检测模块,便于提高检测效率。同时可以进行模块化组装,有利于降低制造成本。
当然了,其他实施例中,可以利用其他方式在第一安装单元100上形成所需的结构。
在上述任一实施例的基础上,一实施例中,镜片组件200还包括第一折光件,第一折光件设置于第一通道112内,并设置于激发片220与二向色镜210之间或者设置于激发片220和第一透镜26之间;或镜片组件200还包括第二折光件,第二折光件设置于第二通道114内,并设置于发射片230与二向色镜210之间或者设置于发射片230和第二透镜36之间;镜片组件200还包括第一折光件,第一折光件设置于第一通道112内,并设置于激发片220与二向色镜210之间;和镜片组件200还包括第二折光件,第二折光件设置于第二通道114内,并设置于发射片230与二向色镜210之间。如此,利用第一折光件或/和第二折光件实现光路的改变,使得检测单元40及发光单元30的设置更加灵活,能够更加体外诊断分析系统的内部空间进行灵活排布。
需要说明的是,“第一折光件”及“第二折光件”包括但不限于反光镜、棱镜、光纤等能够实现光路改变的任一相关技术实现。
在上述任一实施例的基础上,如图3所示,一实施例中,光学检测装置还包括第三透镜42,第三透镜42设置于二向色镜200与样本盘50之间。利用第三透镜42可以更好的将光线聚集到样品盘50的样品腔52中。
可选地,第三透镜42可以直接集成到第一安装单元100内,随第一安装单元100同步运动。
或,如图1所示,一实施例中,光学检测装置还包括集成件40,第三透镜42固设于集成件40内,集成件40固设于第一安装单元100与样品盘50之间。如此,可以利用集成件40进行模块化组装第三透镜42,便于进行模块化组装。
当然了,集成件40可以再集成到第一安装单元100上,可随第一安装单元100同步运动。
当然了,其他实施例中,该第三透镜42也可以集成到样本盘50上;或其他安装结构上。
需要说明的是,“第一安装单元100”可以是安装支架、安装座、安装框、安装壳等任意一种能够实现上述零件的安装的安装结构。
“第二安装单元22”可以是安装支架、安装座、安装壳等任意一种能够实现上述零件的安装的安装结构。
“第二安装单元22”可以是安装支架、安装座、安装板、安装壳等任意一种能够实现上述零件的安装的安装结构。
如图2及图3所示,一实施例中,各发光件24之间沿同一圆周间隔设置,各检测元件34之间沿另一圆周间隔设置,驱动器用于驱动第一安装单元100沿同一圆周的中心转动。如此,只需旋转即可实现不同目标检测物的检测,控制简单,易于实现;此过程光源模块20及检测元件34均无需进行转动,不会存在绕线问题,因此无需设置绕线避让空间,使得光学检测装置的体积可以更小。同时结合,至少两个遮光罩120沿同一圆周间隔夹设于第一板体130与第二板体140之间为一组安装模块,第一安装单元100包括竖向叠加设置的至少两组安装模块。如此,利用旋转可以集成更多的元件,实现对更多样本腔52的同步检测。
当然了,在另一实施例中,各发光件24之间沿直线间隔设置,各检测元件34之间沿另一直线间隔设置,驱动器用于驱动第一安装单元100沿直线的往复移动。如此,只需沿直线方向往复移动即可实现不同目标检测物的检测;此过程光源模块20及检测模块30均无需进行转动,不会存在绕线问题,因此无需设置绕线避让空间,使得光学检测装置的体积可以更小。
另一方面,本申请还提供了一种体外诊断分析系统,包括上述任一实施例中的光学检测装置。
该体外诊断分析系统应用了该光学检测装置,可单独驱动镜片模块10、光源模块20或检测模块30进行运动,设计更加灵活,更加容易进行控制。
可选的,体外诊断分析系统还包括样本盘50,样本盘50设有与共用通道116的自由端一一对应的检测腔,检测腔与共用通道116之间设有第三透镜42。如此,发光件24发出的光线经过第一透镜26及激发片300后射向二向色镜200,经二向色镜200反射后经第三透镜42聚集,再射向样本腔52,样本腔52中的样本物经发光件24的光激发发出荧光,荧光会射向二向色镜200,经由二向色镜200射向发射片400,经过发射片400后射向第二透镜36,由第二透镜36将荧光聚焦至检测元件34上。完成一类目标物的检测后,驱动器驱动第一安装单元100进行转动,使得光路通道110对应另一发光件及另一检测元件上,继续上述操作,完成另一类目标物的检测。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。

Claims (13)

  1. 一种光学检测装置,包括:
    镜片模块,所述镜片模块包括第一安装单元、二向色镜、激发片及发射片,所述二向色镜与所述激发片间隔设置于所述第一安装单元,并与所述激发片相配合形成激发光路,所述二向色镜与所述发射片间隔设置于所述第一安装单元,并与所述发射片相配合形成发射光路;
    光源模块,所述光源模块包括第二安装单元、以及至少两个发光件,各所述发光件之间间隔设置于所述第二安装单元上,且各所述发光件与所述激发片间隔设置;
    检测模块,所述检测模块包括第三安装单元、以及至少两个检测元件,各所述检测元件之间间隔设置于所述第三安装单元上,且各所述检测元件与所述发射片间隔设置;及
    驱动器,所述驱动器用于驱动所述第一安装单元、用于驱动所述第一安装单元及所述第二安装单元或用于驱动所述第一安装单元及所述第三安装单元中的至少一个进行运动。
  2. 根据权利要求1所述的光学检测装置,其中,各所述发光件之间沿同一圆周间隔设置,各所述检测元件之间沿另一圆周间隔设置,所述驱动器用于驱动所述第一安装单元沿所述同一圆周的中心转动。
  3. 根据权利要求1所述的光学检测装置,其中,各所述发光件之间沿直线间隔设置,各所述检测元件之间沿另一直线间隔设置,所述驱动器用于驱动所述第一安装单元沿所述直线的往复移动。
  4. 根据权利要求1所述的光学检测装置,其中,所述光学检测装置还包括第一透镜,所述第一透镜设置于所述激发片与所述发光件之间;或/和所述光学检测装置还包括第二透镜,所述第二透镜设置于所述发射片与所述检测元件之间。
  5. 根据权利要求1至4任一项所述的光学检测装置,其中,所述第一安装单元设有光路通道,所述光路通道包括第一通道、第二通道及共用通道,所述第一通道与所述第二通道相错开,且所述第一通道的一端及所述第二通道的一端均与所述共用通道的一端连通,并形成共用腔;所述镜片模块与所述光路通道一一对应,所述二向色镜设置于所述共用腔内,所述激发片设置于所述第一通道内,并与所述二向色镜形成激发光路,所述发射片设置于所述第二通道内,并与所述二向色镜形成发射光路。
  6. 根据权利要求5所述的光学检测装置,其中,所述第一安装单元包括遮光罩、第一板体及第二板体,所述遮光罩设有一条所述光路通道,所述遮光罩间隔夹设于所述第一板体与所述第二板体之间,所述第一板体设置于所述遮光罩 的上方,所述第一板体设有与所述第二通道相通的第一通孔,所述第二板体设有与所述共用通道相通的第二通孔。
  7. 根据权利要求6所述的光学检测装置,其中,所述光路通道至少为两条,所述遮光罩与所述光路通道一一对应。
  8. 根据权利要求7所述的光学检测装置,其中,至少两个遮光罩沿同一圆周间隔夹设于所述第一板体与所述第二板体之间为一组安装模块,所述第一安装单元包括一组或两组以上的所述安装模块。
  9. 根据权利要求8所述的光学检测装置,其中,所述第一安装单元包括竖向叠加设置的两组以上的所述安装模块。
  10. 根据权利要求5所述的转盘模块,其中,所述镜片组件还包括第一折光件,所述第一折光件设置于所述第一通道内,并设置于所述激发片与所述二向色镜之间或设置于所述激发片与所述第一透镜之间;或/和所述镜片组件还包括第二折光件,所述第二折光件设置于所述第二通道内,并设置于所述发射片与所述二向色镜之间或设置于所述发射片与所述第二透镜之间。
  11. 根据权利要求5所述的光学检测装置,其中,所述光学检测装置还包括第三透镜,所述第三透镜设置于所述二向色镜与样品盘之间。
  12. 根据权利要求10所述的光学检测装置,其中,所述光学检测装置还包括集成件,所述第三透镜固设于所述集成件内,所述集成件固设于所述第一安装单元与所述样品盘之间。
  13. 一种体外诊断分析系统,包括如权利要求1至12任一项所述的光学检测装置。
PCT/CN2020/138007 2020-09-11 2020-12-21 体外诊断分析系统及光学检测装置 WO2022052363A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010951053.7 2020-09-11
CN202010951053.7A CN112161927A (zh) 2020-09-11 2020-09-11 体外诊断分析系统及光学检测装置

Publications (1)

Publication Number Publication Date
WO2022052363A1 true WO2022052363A1 (zh) 2022-03-17

Family

ID=73857900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138007 WO2022052363A1 (zh) 2020-09-11 2020-12-21 体外诊断分析系统及光学检测装置

Country Status (2)

Country Link
CN (1) CN112161927A (zh)
WO (1) WO2022052363A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112326606B (zh) * 2020-09-11 2022-05-10 广州万孚生物技术股份有限公司 体外诊断分析系统、光学检测装置及运动盘模块

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050151972A1 (en) * 2004-01-14 2005-07-14 Applera Corporation Fluorescent detector with automatic changing filters
CN102422143A (zh) * 2009-03-10 2012-04-18 新加坡科技研究局 处理生物样品和/或化学样品的装置
CN107003244A (zh) * 2015-01-27 2017-08-01 株式会社日立高新技术 多色荧光分析装置
CN107478629A (zh) * 2017-09-04 2017-12-15 中国科学院苏州生物医学工程技术研究所 一种大面积数字pcr微滴荧光高通量检测装置和方法
CN110161003A (zh) * 2019-05-17 2019-08-23 深圳市刚竹医疗科技有限公司 光学检测装置及实时荧光定量核酸扩增检测系统
WO2019203552A1 (ko) * 2018-04-17 2019-10-24 (주)로고스바이오시스템스 핵산증폭반응산물을 실시간으로 검출하는 장치
US10520437B1 (en) * 2019-05-24 2019-12-31 Raytheon Company High sensitivity sensor utilizing ultra-fast laser pulse excitation and time delayed detector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050151972A1 (en) * 2004-01-14 2005-07-14 Applera Corporation Fluorescent detector with automatic changing filters
CN102422143A (zh) * 2009-03-10 2012-04-18 新加坡科技研究局 处理生物样品和/或化学样品的装置
CN107003244A (zh) * 2015-01-27 2017-08-01 株式会社日立高新技术 多色荧光分析装置
CN107478629A (zh) * 2017-09-04 2017-12-15 中国科学院苏州生物医学工程技术研究所 一种大面积数字pcr微滴荧光高通量检测装置和方法
WO2019203552A1 (ko) * 2018-04-17 2019-10-24 (주)로고스바이오시스템스 핵산증폭반응산물을 실시간으로 검출하는 장치
CN110161003A (zh) * 2019-05-17 2019-08-23 深圳市刚竹医疗科技有限公司 光学检测装置及实时荧光定量核酸扩增检测系统
US10520437B1 (en) * 2019-05-24 2019-12-31 Raytheon Company High sensitivity sensor utilizing ultra-fast laser pulse excitation and time delayed detector

Also Published As

Publication number Publication date
CN112161927A (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
US10155978B2 (en) Multi-channel fluorescence detection device
TWI243242B (en) Optical detection in a multi-channel bio-separation system
CN110161003B (zh) 光学检测装置及实时荧光定量核酸扩增检测系统
US7295316B2 (en) Fluorescent detector with automatic changing filters
RU2548606C2 (ru) Оптическая система регистрации для мониторинга реакции пцр-рв
TWI654311B (zh) 螢光偵測裝置
US20030116436A1 (en) Multi-color multiplexed analysis in a bio-separation system
US20040072335A1 (en) Optical instrument including excitation source
US20100193705A1 (en) Apparatus and method for interleaving detection of fluorescence and luminescence
EP2463644A1 (en) Optical instrument including excitation source
JP2006215026A (ja) 多チャンネル蛍光測定用の光学系及びそれを採用した多チャンネル蛍光試料の分析装置
JP2006507494A (ja) 試験エレメントの光学検査用の測定装置
CN211227169U (zh) 一种多通道荧光定量pcr检测系统
WO2022052363A1 (zh) 体外诊断分析系统及光学检测装置
CN111830002A (zh) 用于实时核酸荧光检测的多通道检测系统
US20090308746A1 (en) Analyzing apparatus using rotatable microfluidic disk
WO2022052362A1 (zh) 体外诊断分析系统、光学检测装置及运动盘模块
CN111896516A (zh) 微液滴双荧光信号检测装置
US7632463B2 (en) Analysis apparatus and condenser
CN213633137U (zh) 体外诊断分析系统及光学检测装置
JP2007518109A (ja) 生物学的サンプルにおける蛍光検出のための装置および方法
JP2005181145A (ja) 核酸分析装置
CN212483359U (zh) 用于实时核酸荧光检测的多通道检测系统
CN114644980A (zh) 一种多通道荧光pcr检测系统及多通道荧光检测方法
WO2003034044A2 (en) Multi-color multiplexed analysis in a bio-separation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 27/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20953148

Country of ref document: EP

Kind code of ref document: A1