WO2022052003A1 - 传感器组件、成像设备、可移动平台及传感器的标定方法 - Google Patents

传感器组件、成像设备、可移动平台及传感器的标定方法 Download PDF

Info

Publication number
WO2022052003A1
WO2022052003A1 PCT/CN2020/114595 CN2020114595W WO2022052003A1 WO 2022052003 A1 WO2022052003 A1 WO 2022052003A1 CN 2020114595 W CN2020114595 W CN 2020114595W WO 2022052003 A1 WO2022052003 A1 WO 2022052003A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
signal processor
movable platform
sensors
physical entity
Prior art date
Application number
PCT/CN2020/114595
Other languages
English (en)
French (fr)
Inventor
龙余斌
庹伟
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080016783.6A priority Critical patent/CN113544060A/zh
Priority to PCT/CN2020/114595 priority patent/WO2022052003A1/zh
Publication of WO2022052003A1 publication Critical patent/WO2022052003A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography

Definitions

  • the present application relates to the technical field of mobile devices, and in particular, to a sensor assembly, an imaging device, a movable platform, and a method for calibrating a sensor.
  • a sensor assembly including a sensor and a signal processor may be provided on the movable platform.
  • the sensor assembly with the above components co-located in one place has a series of problems such as large volume and heavy weight, which makes it difficult to apply to small and medium-sized movable platforms, or to be applied to limited installation space, small load, rotating A carrier with a lower upper torque limit (such as a single-axis or multi-axis head).
  • the signal processor will generate heat during the working process. When the sensor and the signal processor are arranged in one place, the change of heat will affect the consistency of the sensor detection process, thereby reducing the detection accuracy of the sensor.
  • the present application provides a sensor assembly, an imaging device, a movable platform and a method for calibrating a sensor.
  • the present application provides a sensor assembly, comprising:
  • a first sensor for converting electromagnetic waves into digital image signals
  • the second sensor being different from the first sensor
  • the first sensor and the second sensor both send signals to the signal processor, and the signal processor and the first sensor are respectively disposed in the first physical entity and the second physical entity above, the first physical entity is different from the second physical entity.
  • the present application provides an imaging device, comprising:
  • Sensor components including:
  • a first sensor for converting electromagnetic waves into digital image signals
  • the second sensor being different from the first sensor
  • the first sensor and the second sensor both send signals to the signal processor, and the signal processor and the first sensor are respectively arranged on the first physical entity and the casing above, the first physical entity is different from the casing.
  • the present application provides a movable platform, comprising:
  • a gimbal connected to the body
  • An imaging device connected to the PTZ; the imaging device includes:
  • Sensor components including:
  • a first sensor for converting electromagnetic waves into digital image signals
  • the second sensor being different from the first sensor
  • the first sensor and the second sensor both send signals to the signal processor, and the signal processor and the first sensor are respectively arranged on the first physical entity and the casing above, the first physical entity is different from the casing.
  • the present application provides a method for calibrating a sensor, wherein the method for calibrating includes:
  • the first sensor is used for converting electromagnetic waves into digital image signals, and sending the signals to the signal processor disposed in another physical entity.
  • the embodiments of the present application provide a sensor assembly, an imaging device, a movable platform, and a method for calibrating a sensor.
  • the signal processor and the first sensor are separately disposed on the first physical entity and the second physical entity that are different from each other. Or avoid the influence or interference of the heat released by the signal processor in the working process on the first sensor provided on the second physical entity, ensure the thermal stability of the first sensor, and improve the detection accuracy of the imaging device. stability and stability.
  • the signal processor of the sensor assembly of the embodiment of the present application is installed on the first physical entity different from the second physical entity, which can reduce the second physical entity.
  • the weight of the entity is reduced, and the signal processor does not need to occupy the space of the second physical entity, so the volume or size of the second physical entity can be reduced.
  • different sensors can share the signal processor, which further reduces the cost of sensor components, system complexity and system power consumption, and also reduces the overall sensor calibration difficulty.
  • the modular component design improves the replaceability of the system. When the sensor or signal processor fails, the faulty component can be replaced without replacing other normal working components.
  • FIG. 1 is a schematic structural diagram of a sensor assembly provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a sensor assembly provided by an embodiment of the present application, wherein a first sensor is provided on a second physical entity, and a signal processor is provided on the first physical entity;
  • FIG. 3 is a schematic structural diagram of a second physical entity provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a sensor assembly provided by an embodiment of the present application, wherein the first sensor is provided on the second physical entity, and the signal processor and the second sensor are provided on the first physical entity;
  • FIG. 5 is a schematic structural diagram of a molding device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a movable platform provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a movable platform provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a PTZ provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a movable platform provided by an embodiment of the present application.
  • FIG. 10 is a partial structural schematic diagram of a movable platform provided by an embodiment of the present application.
  • FIG. 11 is a partial structural schematic diagram of a movable platform provided by an embodiment of the present application.
  • FIG. 12 is a partial structural schematic diagram of a movable platform provided by an embodiment of the present application.
  • FIG. 13 is a schematic flowchart of a sensor calibration method provided by an embodiment of the present application.
  • an embodiment of the present application provides a sensor assembly 10 .
  • the sensor assembly 10 includes a first sensor 11 , a second sensor 12 and a signal processor 13 .
  • the first sensor 11 is used to convert electromagnetic waves into digital image signals.
  • the second sensor 12 is different from the first sensor 11 .
  • Both the first sensor 11 and the second sensor 12 send signals to the signal processor 13 .
  • the signal processor 13 and the first sensor 11 are respectively disposed on the first physical entity 101 and the second physical entity 102 , and the first physical entity is different from the second physical entity 102 .
  • the signal processor 13 and the first sensor 11 are separately disposed on the first physical entity 101 and the second physical entity 102 which are different from each other, which reduces the power consumption of the second physical entity 102 and reduces the power consumption of the second physical entity 102.
  • the signal processor 13 is installed on the first physical entity 101 different from the second physical entity 102 , the signal processor 13 does not need to occupy the space of the second physical entity 102 , so the volume or size of the second physical entity 102 can be reduced.
  • the signal processor 13 is installed on the first physical entity 101 different from the second physical entity 102 Therefore, the weight of the second physical entity 102 can be reduced, thereby reducing the load pressure on the mounting portion 35 for mounting the second physical entity 102 , and reducing the strength requirement of the mounting portion 35 .
  • the first sensor 11 and the second sensor 12 share the signal processor 13 .
  • the first sensor 11 and the second sensor in the embodiments of the present application The two sensors 12 share the chip of the signal processor 13, which reduces the number of chips used, thereby reducing the cost.
  • the shared signal processor 13 reduces system power consumption and system complexity (especially the difficulty of power supply design, wire usage and wiring design difficulty), and also reduces the overall calibration difficulty of the sensor.
  • the modular design of components improves the replaceability of the system. When the sensor or the signal processor 13 fails, the faulty components can be replaced without replacing other normal working components.
  • Both the first physical entity 101 and the second physical entity 102 can be installed in any suitable position, such as the pan/tilt 300, the fuselage 200, and other carrying structures on the movable platform in the following embodiments.
  • the second physical entity 102 also It can be installed on fixed objects such as the ground or wall.
  • the first physical entity 101 includes a first housing
  • the second physical entity 102 includes a second housing different from the first housing
  • the signal processor 13 and the first sensor 11 are respectively disposed in the first housing and the second housing on the shell.
  • the first housing may be the central housing 201 of the movable platform 1000 in the following embodiments.
  • the second housing may be the casing 20 of the image forming apparatus 100 in the following embodiments.
  • the second physical entity 102 includes a casing 20 on which the first sensor 11 is disposed.
  • the first sensor 11 and the signal processor 13 are arranged at intervals.
  • the signal processor 13 is arranged in the first housing and the first sensor 11 is arranged in the second housing.
  • the wiring design difficulty and wiring length of the sensor assembly 10 can be effectively reduced, This in turn reduces system cost and complexity.
  • the signal processor 13 can also be multiplexed with the central processor or flight controller, navigation control processor, data processor, etc. of the movable platform 1000, thereby further improving the signal processing capability and reducing system power consumption and cost.
  • the first physical entity 101 is different from the second physical entity 102 means that the first physical entity 101 is two independent entity structures.
  • the second sensor 12 and the first sensor 11 are respectively disposed on different physical entities.
  • the second sensor 12 and the first sensor 11 can also be arranged on the same physical entity, and the signal processor 13 can be arranged on a different physical entity, especially for the type of the first sensor 11 and the type of the second sensor 12
  • the signal processor 13 is arranged on a physical entity different from the second sensor 12 and the first sensor 11, which is beneficial to improve the measurement accuracy of the first sensor 11 and the second sensor 12. .
  • the first sensor 11 and the second sensor 12 are provided on the second physical entity 102
  • the signal processor 13 is provided on the first physical entity 101 .
  • the second physical entity 102 includes a casing 20
  • the lens 301 corresponding to the first sensor 11 is disposed on the casing 20
  • the lens 302 corresponding to the second sensor 12 is disposed on the casing 20 .
  • the first sensor 11 is an infrared sensor
  • the second sensor 12 is a visible light sensor.
  • the second sensor 12 is of a different type than the first sensor 11 . It can be understood that in other embodiments, the type of the first sensor 11 and the type of the second sensor 12 may also be the same.
  • the type of the first sensor 11 and the type of the second sensor 12 are both infrared sensors
  • the first physical entity 101 is a first infrared camera
  • the second physical entity 102 is a second infrared camera.
  • the second physical entity 102 includes the first camera device.
  • the signal processor 13 can perform image processing on the digital image signal sent by the first sensor 11 .
  • the signal processor 13 may include an image processor (Image Signal Processing, ISP).
  • the first photographing device includes an infrared photographing device, and the first sensor 11 is an infrared sensor.
  • the first photographing device may also include a visible light photographing device or the like, and the first sensor 11 may be a visible light sensor or the like.
  • the first photographing device includes a lens 30 .
  • the lens 30 is connected to the first sensor 11 so that the first sensor 11 converts the electromagnetic waves passing through the lens 30 into digital image signals.
  • the lens 30 is provided on the second housing of the first photographing device.
  • the lens 30 is a lens structure.
  • the second sensor 12 includes a visible light sensor, a distance sensor, an inertial sensor, a non-visible light sensor, an ultrasonic sensor, a lidar sensor, or the like.
  • the second sensor 12 and the signal processor 13 are provided on the first physical entity 101 .
  • the first physical entity 101 includes a radar housing
  • the second sensor 12 is a radar sensor
  • the second sensor 12 and the signal processor 13 are provided on the radar housing or the first physical entity 101 .
  • the second sensor 12 and the signal processor 13 may also be arranged on different physical entities.
  • the signal processor 13 the first sensor 11 and the second sensor 12 are respectively disposed on the first physical entity 101, the second physical entity 102 and the third physical entity which are different from each other.
  • the first sensor 11 is connected to the signal processor 13 through the flexible connector 14 , so as to realize the communication connection between the first sensor 11 and the signal processor 13 .
  • the first sensor 11 can also be connected to the signal processor 13 in wireless communication.
  • the flexible connector 14 includes at least one of a flexible cable, a flexible circuit board, a flexible flat cable, and the like.
  • the flexible connector 14 is a coaxial cable. In this way, even if the distance between the first sensor 11 and the first physical entity 101 is relatively long, the quality of signal transmission can be guaranteed.
  • sensor assembly 10 may be used with imaging device 100 .
  • the imaging device 100 can be used to detect electromagnetic waves (such as visible light, infrared light, and/or ultraviolet light, etc.) and generate digital image signals based on the detected electromagnetic waves.
  • the digital image signal may include one or more images, which may be static images (eg, photographs), moving images (eg, video), or a suitable combination thereof.
  • the imaging device 100 may be carried by various types of objects, such as movable objects.
  • the imaging device 100 may be positioned at any suitable location on the movable object, such as above, below, on one or more sides, or inside the movable object, and the like.
  • the movable object is a part of the movable platform 1000 in the following embodiments.
  • the movable object includes the body 200 and the pan/tilt head 300 of the following embodiments.
  • the imaging device 100 may be mechanically coupled to the body 200 of the movable object such that the spatial arrangement and/or movement of the movable object corresponds to the spatial arrangement and/or movement of the imaging device 100 .
  • the imaging device 100 is fixedly connected to the movable object, ie the imaging device 100 does not move relative to the movable object to which it is attached.
  • the imaging device 100 is movably connected to the movable object, ie, the connection between the imaging device 100 and the movable object may allow the imaging device 100 to move relative to the movable object.
  • the imaging apparatus 100 may be integrally constructed with a part of the movable object.
  • the imaging device 100 can also be detachably connected to the movable object, such as through a snap connection, a quick release (screw, pin, etc.) connection, and the like.
  • imaging device 100 is electrically connected to a portion of the movable object (eg, processing unit, control system, data storage, etc.) such that data collected by imaging device 100 can be used for various aspects of the movable object. functions such as navigation, control, propulsion, communication with the user or other devices, etc.
  • a portion of the movable object eg, processing unit, control system, data storage, etc.
  • functions such as navigation, control, propulsion, communication with the user or other devices, etc.
  • image data collected by imaging device 100 can be used for a variety of applications, such as object recognition, tracking, pose estimation, ego-motion determination, and the like.
  • the image data collected by the imaging device 100 can be used for functions such as navigation, obstacle avoidance, drawing, target tracking, and the like.
  • the imaging device 100 includes a housing 20 and a sensor assembly 10 .
  • the signal processor 13 and the first sensor 11 are respectively disposed on the first physical entity 101 and the casing 20 , and the first physical entity 101 is different from the casing 20 .
  • the sensor assembly 10 is the sensor assembly 10 in any of the above embodiments.
  • the signal processor 13 and the first sensor 11 are separately disposed on the first physical entity 101 and the casing 20 which are different from each other, thereby reducing the power consumption of the electronic devices disposed on the casing 20 , reducing or avoiding the influence or interference of the heat released by the signal processor 13 on the first sensor 11 disposed on the casing 20 during the working process, ensuring the thermal stability of the first sensor 11, thereby improving the The detection accuracy and stability of the imaging device 100 are simple, convenient and practical.
  • the signal processor 13 is installed on the first physical entity 101 different from the casing 20, and the signal processing The device 13 does not need to occupy the space of the casing 20 , so the volume or size of the casing 20 can be reduced.
  • the signal processor 13 is installed on the first physical entity 101 different from the casing 20, and thus can The weight of the physical entity corresponding to the casing 20 is reduced, thereby reducing the load pressure on the mounting portion 35 for mounting the casing 20 and the first sensor 11 , and reducing the strength requirement of the mounting portion 35 .
  • the first sensor 11 and the second sensor 12 share the signal processor 13.
  • the first sensor 11 and the second sensor 12 in the embodiment of the present application share the same signal processor 13.
  • the signal processor chip reduces the number of chips used, thereby reducing the cost.
  • the shared signal processor 13 reduces system power consumption and system complexity (especially the difficulty of power supply design, wire usage and wiring design difficulty), and also reduces the overall calibration difficulty of the sensor.
  • the modular component design improves the replaceability of the system. When the sensor or signal processor fails, the faulty component can be replaced without replacing other normal working components.
  • an embodiment of the present application further provides a movable platform 1000 including a body 200 , a pan/tilt 300 , and the imaging device 100 of any of the foregoing embodiments.
  • the gimbal 300 is connected to the body 200 .
  • the imaging apparatus 100 is connected to the pan/tilt head 300 .
  • movable platform 1000 may be any suitable object capable of spanning an environment.
  • the movable platform 1000 includes at least one of the following: an unmanned vehicle, an unmanned aerial vehicle, an unmanned ship, or a robot.
  • the environment may include geographic features, plants, landmarks, buildings, people, vehicles, animals, projectiles, and the like. The following description will be given by taking the movable platform 1000 as an unmanned aerial vehicle as an example.
  • the fuselage 200 includes a central casing 201 , an aircraft arm 202 , a power unit 203 disposed on the aircraft arm 202 , and a flight controller 204 disposed in the central casing 201 .
  • one end of the machine arm 202 is connected with the central housing 201
  • the power device 203 is mounted on the other end of the machine arm 202 .
  • the number of the arms 202 may be one or at least two.
  • One or at least two arms 202 extend radially from the central casing 201 .
  • the flight controller 204 is connected in communication with the power plant 203 to control the operation of the power plant 203 to provide flight power for the unmanned aerial vehicle.
  • the flight controller 204 is configured to generate a control command, and send the control command to the ESC of the power device 203 , so that the ESC controls the drive motor of the power device 203 through the control command.
  • the flight controller 204 is a device with a certain logic processing capability, such as a control chip, a single-chip microcomputer, a micro-control unit, and the like.
  • the flight controller 204 and the signal processor 13 share the same chip. Compared with using different chips for the two, the movable platform 1000 of the embodiment of the present application can reduce the number of chips used, thereby reducing the cost.
  • the signal processor 13 is used to control the movement of the movable platform 1000 and process the digital image signal sent by the first sensor 11 .
  • the power plant 203 includes an ESC, a drive motor, and a propeller.
  • the ESC is located in the cavity formed by the arm 202 or the central casing 201 .
  • the ESCs are respectively connected with the flight controller 204 and the drive motor.
  • the ESC is electrically connected to the drive motor for controlling the drive motor.
  • the drive motor is installed on the arm 202, and the rotating shaft of the drive motor is connected to the propeller.
  • the propeller driven by a drive motor, generates a force that moves the UAV, eg, lift or thrust that moves the UAV.
  • At least one motion characteristic of the movable platform 1000 may be controlled by the user terminal.
  • the movable platform 1000 may be controlled by a user terminal to enable the movable platform 1000 to navigate toward a target object in a certain environment, or track the target object in the environment, and the like.
  • the user terminal may be any type of external device.
  • user terminals may include, but are not limited to, smart phones/mobile phones, tablet computers, personal digital assistants (PDAs), laptop computers, desktop computers, media content players, video game stations/systems, and the like.
  • PDAs personal digital assistants
  • laptop computers desktop computers
  • media content players video game stations/systems, and the like.
  • the first physical entity 101 includes the fuselage 200 .
  • the signal processor 13 is provided on the central casing 201 of the fuselage 200 .
  • the signal processor 13 is provided in the central housing 201.
  • the movable platform 1000 of the embodiment of the present application can reduce or shorten the number of connections required for connection.
  • the number or length of the electrical connection lines between the signal processor 13 and the power supply 500 can reduce the weight and cost of the movable platform 1000 and simplify the arrangement design of the electrical connection lines.
  • the first physical entity 101 includes a detection module of the movable platform 1000 .
  • the detection module includes a distance detection module or a second photographing device or the like.
  • the second photographing device includes a non-visible light photographing device, a visible light photographing device, or a multi-spectral photographing device, and the like.
  • the first physical entity 101 may be a radar of the movable platform 1000 .
  • the pan/tilt head 300 can adjust the posture of the imaging device 100 and maintain the imaging device 100 in a desired posture, thereby providing stable imaging conditions for the photographing device.
  • the gimbal 300 can be set at any suitable position of the body 200 , for example, the gimbal 300 is connected to the bottom of the body 200 .
  • a first wiring space 31 is formed in the gimbal 300 , and the flexible connector 14 passes through the first wiring space 31 to connect the first sensor 11 and the signal processor 13 .
  • both ends of the flexible connector 14 are respectively connected to the first sensor 11 and the signal processor 13, and the middle of the flexible connector 14 passes through the first wiring space 31 in the pan/tilt 300, that is, the flexible connector 14 extends from Cables are routed inside the gimbal 300 .
  • the flexible connector 14 located outside the first physical entity 101 and the casing 20 is not exposed to the outside of the gimbal 300 and is easily damaged and the cables are scattered, which is beneficial to protect flexibility.
  • the connecting member 14 can improve the connection reliability of the flexible connecting member 14, and can also improve the aesthetics of the movable platform 1000.
  • the first sensor 11 is electrically connected to the power supply 500 of the movable platform 1000 through the power cord 400 .
  • the power supply 500 of the movable platform 1000 is used to power various electronic devices on the movable platform 1000 .
  • the power supply 500 is provided on the central casing 201 of the fuselage 200 .
  • a second wiring space 32 is formed in the gimbal 300 , and the power cable 400 is passed through the second wiring space 32 to connect the first sensor 11 and the power supply 500 .
  • the power cable 400 is routed from the inside of the gimbal 300, which can avoid the problem that the power cable 400 located outside the first sensor 11 and the center housing 201 is exposed outside the gimbal 300 and is prone to damage and scattered wiring. , which is beneficial to protect the power cord 400 and improve the connection reliability of the power cord 400 , and can also improve the aesthetics of the movable platform 1000 .
  • the second wiring space 32 may be the same as the first wiring space 31 , or may be different from the first wiring space 31 , or may partially overlap, which is not limited herein.
  • the gimbal 300 includes a two-axis gimbal or a three-axis gimbal. It can be understood that in other embodiments, the gimbal 300 may also be a one-axis gimbal, which is not limited herein.
  • the pan/tilt head 300 includes a platform connecting portion 33 , a shaft arm assembly 34 and a mounting portion 35 .
  • the platform connecting portion 33 is connected to the body 200 .
  • the shaft arm assembly 34 is connected to the platform connecting portion 33 .
  • the mounting portion 35 is connected to the shaft arm assembly 34 , and the imaging apparatus 100 is mounted on the mounting portion 35 .
  • the shaft arm assembly 34 includes a motor 341 and a connecting arm 342, the connecting arm 342 is connected to the motor 341, and the platform connecting part 33 and the carrying part 35 are respectively connected to one of the motor 341 and the connecting arm.
  • the pan/tilt 300 is a three-axis pan/tilt
  • the motor 341 includes a roll motor, a pitch motor, and a pan motor, so that the imaging device 100 mounted on the pan/tilt 300 can revolve around the roll axis and the tilt motor of the roll motor.
  • At least one of the pitch axis of the yaw axis and the yaw axis of the yaw motor rotates, thereby realizing a larger angle of imaging.
  • the connecting arm 342 may include a plurality of parts, each part connecting at least one of the roll motor, the pitch motor, the yaw motor, the platform connecting part 33 and the carrying part 35 .
  • the gimbal 300 is a two-axis gimbal
  • the motor 341 includes a first motor and a second motor, so that the imaging device 100 mounted on the gimbal 300 can rotate around the first axis of the first motor and the second motor. At least one of the second axes rotates.
  • the first motor and the second motor may be any two of a roll motor, a pitch motor, and a pan motor.
  • the imaging device 100 can be designed in any suitable number according to actual requirements, such as one, two, three, four or more. When there are at least two imaging apparatuses 100 , the types of the imaging apparatuses 100 may all be the same, or at least some of the imaging apparatuses 100 may be of different types. The imaging device can be positioned and oriented according to actual needs.
  • the imaging device 100 may be used to capture images of a scene at or about the same time. In other embodiments, some imaging devices 100 may be used to capture image data at different times than other imaging devices 100 .
  • the signal processor 13 and the first sensor 11 are separately disposed on the first physical entity 101 and the casing 20 which are different from each other, which reduces the function of the electronic device disposed on the casing 20 . It reduces or avoids the influence or interference of the heat released by the signal processor 13 on the first sensor 11 provided on the casing 20 during the working process, ensures the thermal stability of the first sensor 11, and improves the The detection accuracy and stability of the imaging device 100 are improved, and the structure is simple, convenient and practical.
  • the signal processor 13 is installed on the first physical entity 101 different from the casing 20, and the signal processing The device 13 does not need to occupy the space of the casing 20 , so the volume or size of the casing 20 can be reduced.
  • the signal processor 13 is installed on the first physical entity 101 different from the casing 20, and thus can The weight of the physical entity corresponding to the casing 20 is reduced, thereby reducing the load pressure on the gimbal 300 for carrying the casing 20 and the first sensor 11 , and reducing the strength requirement of the gimbal 300 .
  • the first sensor 11 and the second sensor 12 share the signal processor 13.
  • the first sensor 11 and the second sensor 12 in the embodiment of the present application share the same signal processor 13.
  • the signal processor chip reduces the number of chips used, thereby reducing the cost.
  • the shared signal processor 13 reduces system power consumption and system complexity (especially power supply design difficulty, such as wire usage and wiring design difficulty), and also reduces the overall sensor calibration difficulty.
  • the modular component design improves the replaceability of the system. When the sensor or signal processor fails, the faulty component can be replaced without replacing other normal working components.
  • the first sensor 11 usually needs to be calibrated before leaving the factory or before use, otherwise the temperature measurement effect of different first sensors 11 will deviate. Bias will occur.
  • an embodiment of the present application further provides a sensor calibration method, and the calibration method can be used in the case of calibrating at least two first sensors 11 .
  • the calibration method includes step S110.
  • the first sensor 11 is used for converting electromagnetic waves into digital image signals, and sending the signals to a signal processor 13 disposed in another physical entity.
  • the first sensor 11 is the first sensor 11 in any of the above-mentioned embodiments.
  • the signal processor 13 is the signal processor 13 of any of the above embodiments.
  • the signal processor 13 and the first sensor 11 are separately disposed on different physical entities, which reduces the power consumption of the physical entity corresponding to the first sensor 11 and reduces or avoids the signal processor 13
  • the influence or interference of the heat released in the working process on the first sensor 11 ensures the thermal stability of the first sensor 11 , thereby improving the detection accuracy and stability of the first sensor 11 .
  • the signal processor 13 and the first sensor 11 are respectively arranged on different physical entities, and the signal processor 13 does not need to occupy
  • the space of the physical entity corresponding to the first sensor 11 can thus reduce the volume or size of the physical entity corresponding to the first sensor 11 .
  • the signal processor 13 and the first sensor 11 are respectively disposed on different physical entities, so that the first sensor can be reduced.
  • the weight of the physical entity corresponding to the first sensor 11 is reduced, thereby reducing the load pressure on the mounting portion 35 for mounting the physical entity corresponding to the first sensor 11, and reducing the strength requirement of the mounting portion 35.
  • different first sensors 11 share the signal processor 13 for calibration. Compared with different first sensors 11 corresponding to different signal processors 13 respectively, the number of calibration chips used is reduced, thereby reducing the cost. At the same time, different first sensors 11 share the signal processor 13 to reduce the power consumption and system complexity of the calibration system (especially the power design difficulty, such as wire usage and wiring design difficulty). At the same time, different first sensors detect After the signal, the unified signal post-processing link also improves the standardization of sensor calibration, which in turn reduces the overall sensor calibration difficulty. At the same time, the modular design of components improves the replaceability of the system.
  • the faulty components can be replaced without replacing other normal working components; especially during the calibration process , if any first sensor 11 is found to be faulty, the first sensor 11 can be returned to the factory or repaired without returning the entire sensor assembly 10 including the first sensor 11 and the signal processor 13 to the factory or repaired . It can be understood that, if the first sensor 11 is not calibrated before delivery or use, the temperature measurement effect of different first sensors 11 will deviate, and the overall system will also change after different first sensors 11 are matched to different sensor components 10 accordingly. bias.
  • the number of the first sensors 11 may be determined according to actual requirements, such as two, three or more.
  • the two or more first sensors 11 are of the same type, for example, they are all infrared sensors.
  • using the signal processor 13 to calibrate more than two first sensors 11 includes: before the first sensors 11 are used, using the signal processor 13 to calibrate more than two first sensors 11 .
  • using the signal processor 13 to calibrate more than two first sensors 11 includes using the signal processor 13 to calibrate more than two first sensors 11 before the first sensors 11 leave the factory.
  • the signal processor 13 is used to calibrate the at least two first sensors 11, which can eliminate or reduce the measurement error between the at least two first sensors 11, and then eliminate or reduce the different first sensors 11.
  • the deviation of the system as a whole after a sensor 11 is correspondingly matched to different sensor assemblies 10 .
  • using signal sensors to calibrate more than two first sensors 11 includes: two or more first sensors 11 collect first data respectively within the same period of time; two or more first sensors 11 respectively collect first data The signal is sent to the signal processor 13; the signal processor 13 calibrates two or more first sensors 11 according to the first data.
  • the first sensor 11 converts the electromagnetic wave corresponding to the target object into a digital image signal, and the digital image signal is the first data.
  • Target objects can include people, objects, or obstacles.
  • the data of at least two or more first sensors 11 are collected respectively, and the signal processor 13 can not only calibrate at least two or more first sensors 11 at the same time, thereby improving the calibration efficiency of the first sensors 11;
  • the amount of source information available in the calibration process of the first sensor 11 further assists subsequent standardization processing, such as performing mean square error processing on the data of multiple first sensors 11 as the standardization basis, which provides a guarantee for improving the calibration accuracy.
  • the signal processor 13 calibrates two or more first sensors 11 according to the first data, including: the signal processor 13 determines the signal gains of the two or more first sensors 11 according to the first data; The signal gains of two or more first sensors 11 are aligned to calibrate the plurality of first sensors 11 .
  • the number of the first sensors 11 is three, which are the first sensor 11a, the first sensor 11b, and the first sensor 11c, respectively.
  • the first sensor 11a, the first sensor 11b and the first sensor 11c respectively collect the first data A, the first data B and the first data C within the same time period.
  • the signal processor 13 determines the signal gain of the first sensor 11a, the signal gain of the first sensor 11b, and the signal gain of the first sensor 11c according to the first data A, the first data B, and the first data C.
  • the signal processor 13 After determining the signal gain of each first sensor 11, the signal processor 13 aligns the signal gain of the first sensor 11a, the signal gain of the first sensor 11b and the signal gain of the first sensor 11c, thereby calibrating the first sensor 11a, The first sensor 11b and the first sensor 11c.
  • using the signal sensor to calibrate more than two first sensors 11 includes: the two or more first sensors 11 respectively collect first data for the same scene; the two or more first sensors 11 respectively send the first data to Signal processor 13; the signal processor 13 calibrates two or more first sensors 11 according to the first data.
  • the data of at least two first sensors 11 are collected respectively, so that in the same scene, the signal processor 13 can calibrate more than two first sensors 11 at the same time or successively, which improves the performance of the first sensors 11 Calibration efficiency and calibration accuracy.
  • the scene can be designed as any suitable scene according to actual requirements.
  • the scene includes bold bodies.
  • more than two first sensors 11 can be calibrated by the signal processor 13, which improves the calibration efficiency and calibration accuracy, and reduces the cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Studio Devices (AREA)

Abstract

一种传感器组件(10)、成像设备(100)、可移动平台(1000)及传感器的标定方法,该传感器组件(10)包括第一传感器(11)、第二传感器(12)、信号处理器(13),第一传感器(11)用于将电磁波转换为数字图像信号;第一传感器(11)和第二传感器(12)均将信号发送至信号处理器(13)上,信号处理器(13)与第一传感器(11)分别设置在第一物理实体(101)和第二物理实体(102)上。

Description

传感器组件、成像设备、可移动平台及传感器的标定方法 技术领域
本申请涉及可移动设备技术领域,尤其涉及一种传感器组件、成像设备、可移动平台及传感器的标定方法。
背景技术
在可移动平台上可以设置包括传感器以及信号处理器的传感器组件。但是,将上述部件共同设置在一处的传感器组件,具有体积大、重量大等一系列的问题,进而难以运用于中小型可移动平台,或是运用于安装空间有限、载重量较小、转动力矩上限较低的载体(例如单轴或多轴云台)。其次,信号处理器在工作过程中会产生热量,传感器以及信号处理器设置在一处时,热量的变化会影响传感器检测过程的一致性,从而降低了传感器的检测精度。再次,如果传感器组件中的任一部件出现故障,只能将传感器组件整体进行替换,进一步增加了产品的使用和维护成本。此外,由于感测单元材质的限制,对传感器进行标定一直是现有技术中难以解决的复杂问题。由于传感器种类繁多,为不同的传感器配置不同的信号处理器,导致传感器组件硬件成本高、使用功耗高、线路设计复杂的同时,也进一步增加了传感器标定工作的难度。
发明内容
基于此,本申请提供了一种传感器组件、成像设备、可移动平台及传感器的标定方法。
根据本申请的第一方面,本申请提供了一种传感器组件,包括:
第一传感器,用于将电磁波转换为数字图像信号;
第二传感器,所述第二传感器与所述第一传感器不同;
信号处理器,所述第一传感器和所述第二传感器均将信号发送至所述信号处理器上,所述信号处理器与所述第一传感器分别设置在第一物理实体和第二物理实体上,所述第一物体实体不同于所述第二物理实体。
根据本申请的第二方面,本申请提供了一种成像设备,包括:
机壳;以及
传感器组件,包括:
第一传感器,用于将电磁波转换为数字图像信号;
第二传感器,所述第二传感器与所述第一传感器不同;
信号处理器,所述第一传感器和所述第二传感器均将信号发送至所述信号处理器上,所述信号处理器与所述第一传感器分别设置在第一物理实体和所述机壳上,所述第一物理实体不同于所述机壳。
根据本申请的第三方面,本申请提供了一种可移动平台,包括:
机身;
云台,与所述机身连接;以及
成像设备,与所述云台连接;所述成像设备包括:
机壳;以及
传感器组件,包括:
第一传感器,用于将电磁波转换为数字图像信号;
第二传感器,所述第二传感器与所述第一传感器不同;
信号处理器,所述第一传感器和所述第二传感器均将信号发送至所述信号处理器上,所述信号处理器与所述第一传感器分别设置在第一物理实体和所述机壳上,所述第一物理实体不同于所述机壳。
根据本申请的第四方面,本申请提供了一种传感器的标定方法,其特征在于,所述标定方法包括:
利用信号处理器标定两个以上第一传感器,从而消除两个以上所述第一传感器之间的误差;
其中,所述第一传感器用于将电磁波转换为数字图像信号,并将信号发送至设置在另一物理实体中的所述信号处理器。
本申请实施例提供了一种传感器组件、成像设备、可移动平台及传感器的标定方法,信号处理器和第一传感器分开设置在互不相同的第一物理实体和第二物理实体上,减小或者避免了信号处理器在工作过程中所释放出的热量对设于第二物理实体上的第一传感器的影响或者干扰,保证了第一传感器的热稳定性,从而提高了成像设备的检测准确性和稳定性。此外,与信号处理器和第一 传感器设置在同一物理实体上相比,本申请实施例的传感器组件的信号处理器安装在不同于第二物理实体的第一物理实体上,能够减轻第二物理实体的重量,且信号处理器无需占用第二物理实体的空间,因而能够缩小第二物理实体的体积或者尺寸。此外,不同的传感器还能共用信号处理器,进一步降低传感器组件成本、系统复杂度和系统功耗的同时,也降低了传感器的整体标定难度。同时,模块化的组件设计提高了系统的可替换性,在传感器或信号处理器出现故障时将故障部件替换即可,而无需替换其他正常工作的部件。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例提供的传感器组件的结构示意图;
图2是本申请一实施例提供的传感器组件的结构示意图,其中,第一传感器设在第二物理实体上,信号处理器设在第一物理实体上;
图3是本申请一实施例提供的第二物理实体的结构示意图;
图4是本申请一实施例提供的传感器组件的结构示意图,其中,第一传感器设在第二物理实体上,信号处理器和第二传感器设在第一物理实体上;
图5是本申请一实施例提供的成型设备的结构示意图;
图6是本申请一实施例提供的可移动平台的结构示意图;
图7是本申请一实施例提供的可移动平台的结构示意图;
图8是本申请一实施例提供的云台的结构示意图;
图9是本申请一实施例提供的可移动平台的结构示意图;
图10是本申请一实施例提供的可移动平台的部分结构示意图,组装云台与机身时,将云台上方的保护盖去除后再将云台与机身连接;
图11是本申请一实施例提供的可移动平台的部分结构示意图;
图12是本申请一实施例提供的可移动平台的部分结构示意图,组装云台与机身时,将云台上方的保护盖去除后再将云台与机身连接;
图13是本申请一实施例提供的传感器的标定方法的流程示意图。
附图标记说明:
1000、可移动平台;
100、成像设备;
10、传感器组件;11、第一传感器;12、第二传感器;13、信号处理器;14、柔性连接件;
101、第一物理实体;102、第二物理实体;
20、机壳;30、镜头;
200、机身;201、中心壳体;202、机臂;203、动力装置;204、飞行控制器;
300、云台;31、第一走线空间;32、第二走线空间;33、平台连接部;34、轴臂组件;341、电机;342、连接臂;35、搭载部;
400、电源线;500、电源。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
还应当理解,在本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当进一步理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1和图2,本申请实施例提供一种传感器组件10,该传感器组件10包括第一传感器11、第二传感器12和信号处理器13。第一传感器11用于将电磁波转换为数字图像信号。第二传感器12与第一传感器11不同。第一传感器11和第二传感器12均将信号发送至信号处理器13上。信号处理器13与第一传感器11分别设置在第一物理实体101和第二物理实体102上,第一物体实体不同于第二物理实体102。
上述实施例的传感器组件10,信号处理器13和第一传感器11分开设置在互不相同的第一物理实体101和第二物理实体102上,减小了第二物理实体102的功耗,减小或者避免了信号处理器13在工作过程中所释放出的热量对设于第二物理实体102上的第一传感器11的影响或者干扰,保证了第一传感器11的热稳定性,从而提高了传感器组件10的检测准确性和稳定性,结构简单、方便实用。
其次,与信号处理器13和第一传感器11设置在同一个物理实体上相比,本实施例的传感器组件10,信号处理器13安装在不同于第二物理实体102的第一物理实体101上,信号处理器13无需占用第二物理实体102的空间,因而能够缩小第二物理实体102的体积或者尺寸。
此外,与信号处理器13和第一传感器11设置在同一个物理实体上相比,本实施例的传感器组件10,信号处理器13安装在不同于第二物理实体102的第一物理实体101上,因而能够减轻第二物理实体102的重量,从而减小对用于搭载第二物理实体102的搭载部35件的载重压力,降低对该搭载部35件的强度要求。
在一些实施例中,第一传感器11和第二传感器12共用信号处理器13,与第一传感器11和第二传感器12分别对应不同处理器相比,本申请实施例的第一传感器11和第二传感器12共用信号处理器13芯片,减少了芯片的使用数量,从而降低了成本。同时,共用信号处理器13降低了系统功耗和系统复杂度(特别是电源设计难度、线材使用量和走线设计难度)的同时,也降低了传感器的整体标定难度。同时,模块化的组件设计提高了系统的可替换性,在传感器或信号处理器13出现故障时将故障部件替换即可,而无需替换其他正常工作的部件。
第一物理实体101和第二物理实体102均可以安装在任意合适的位置上,比如下述实施例的云台300、机身200、可移动平台上的其他搭载结构,第二物理实体102还可安装在地面或者墙体等固定物上。
在一些实施例中,第一物理实体101包括第一外壳,第二物理实体102包括与第一外壳不同的第二外壳,信号处理器13与第一传感器11分别设置在第一外壳和第二外壳上。示例性地,第一外壳可以为下述实施例中可移动平台1000的中心壳体201。第二外壳可以为下述实施例中成像设备100的机壳20。示例性地,第二物理实体102包括机壳20,第一传感器11设置在机壳20上。
可以理解地,第一传感器11与信号处理器13间隔设置。
在一些实施方式中,信号处理器13设置在第一外壳内,第一传感器11设置在第二外壳内。通过将信号传感器13设置在第一外壳内尤其是可移动平台的1000的中心壳体201内,较之第二外壳更靠近机体,能够有效减少传感器组件10的走线设计难度和走线长度,进而降低系统成本和复杂度。进一步地,信号处理器13还可以与可移动平台的1000的中央处理器或飞行控制器、导航控制处理器、数据处理器等复用,从而进一步提高信号处理能力、降低系统功耗和成本。
示例性地,第一物理实体101不同于第二物理实体102是指,第一物理实体101为相互独立的两个实体结构。在一些实施例中,第二传感器12与第一传感器11分别设置在不同物理实体上。当然,第二传感器12与第一传感器11也可以设置在同一物理实体上,而信号处理器13设置在另一不同的物理实体上,特别是针对第一传感器11的类型与第二传感器12的类型为红外、紫外等灰度传感器的情况,令信号处理器13设置在与第二传感器12与第一传感器11不同的物理实体上,有利于提高第一传感器11与第二传感器12的测量精度。
比如,第一传感器11和第二传感器12设于第二物理实体102上,信号处理器13设于第一物理实体101上。请参阅图11和图12,第二物理实体102包括机壳20,第一传感器11所对应的镜头301设在机壳20上,第二传感器12所对应的镜头302设在机壳20上。示例性地,第一传感器11为红外传感器,第二传感器12为可见光传感器。
在一些实施例中,第二传感器12的类型与第一传感器11的类型不同。可以理解地,在其他实施例中,第一传感器11的类型与第二传感器12的类型也 可以相同。比如,第一传感器11的类型与第二传感器12的类型均为红外传感器,第一物理实体101为第一红外相机,第二物理实体102为第二红外相机。在一些实施例中,第二物理实体102包括第一拍摄设备。示例性地,信号处理器13能够对第一传感器11所发送的数字图像信号进行图像处理。信号处理器13可以包括图像处理器(Image Signal Processing,ISP)。
在一些实施方式中,第一拍摄设备包括红外拍摄设备,第一传感器11为红外传感器。在其他实施方式中,第一拍摄设备也可以包括可见光拍摄设备等,第一传感器11可以为可见光传感器等。
请参阅图3,在一些实施例中,第一拍摄设备包括镜头30。镜头30与第一传感器11连接,以使第一传感器11将通过镜头30的电磁波转换为数字图像信号。示例性地,镜头30设置在第一拍摄设备的第二外壳上。示例性地,镜头30为透镜结构。
在一些实施例中,第二传感器12包括可见光传感器、距离传感器、惯性传感器、非可见光传感器、超声波传感器或者激光雷达传感器等。
在一些实施例中,第二传感器12和信号处理器13设于第一物理实体101上。请参阅图4,比如,第一物理实体101包括雷达外壳,第二传感器12为雷达传感器,第二传感器12和信号处理器13设于雷达外壳或者第一物理实体101上。
在另一些实施例中,第二传感器12和信号处理器13也可以设置在不同的物理实体上。比如,信号处理器13、第一传感器11和第二传感器12分别设置在互不相同的第一物理实体101、第二物理实体102和第三物理实体上。
请参阅图2和图4,在一些实施例中,第一传感器11通过柔性连接件14与信号处理器13连接,从而实现第一传感器11与信号处理器13的通信连接。在其他实施例中,第一传感器11也可以与信号处理器13无线通信连接。
在一些实施例中,柔性连接件14包括柔性电缆、柔性线路板、软排线等中的至少一种。
在一些实施例中,柔性连接件14为同轴电缆。如此,即使第一传感器11与第一物理实体101之间的距离较长,也能够保证信号传输的质量。
在一些实施例中,传感器组件10可以用于成像设备100。该成像设备100能够用于检测电磁波(比如,可见光、红外光和/或紫外光等)并基于检测到的 电磁波而生成数字图像信号。该数字图像信号可以包括一个或多个图像,该图像可以是静态图像(比如照片)、动态图像(比如视频)或者其合适的组合。
可以理解地,成像设备100可以由各种类型的物体搭载,比如由可移动物体搭载。成像设备100可以设于可移动物体的任意合适位置,比如在该可移动物体的上方、下方、一个或者多个侧面上或者内部等。示例性地,可移动物体为下述实施例中可移动平台1000的其中一部分。可移动物体包括下述实施例的机身200和云台300。
在一些实施例中,成像设备100可以机械连接在可移动物体的机身200上,从而使得可移动物体的空间布局和/或运动对应于成像设备100的空间布局和/或运动。示例性地,成像设备100与可移动物体固定连接,即成像设备100不会相对于其所连接的可移动物体而运动。示例性地,成像设备100与可移动物体可活动连接,即成像设备100与可移动物体之间的连接可以允许成像设备100相对可移动物体运动。成像设备100可以与可移动物体的一部分为一体结构。成像设备100也可以与可移动物体可拆卸连接,比如通过卡扣连接、快拆件(螺钉、销等)连接等。
在一些实施例中,成像设备100电连接至可移动物体的其中一部分(比如,处理单元、控制系统、数据存储等),以使得通过成像设备100收集的数据能够用于该可移动物体的各种功能,比如导航、控制、推进、与用户或者其他装置通信等。
示例性地,通过成像设备100收集的图像数据能够用于多种应用,比如,物体识别、跟踪、姿态估计、自我运动确定等。比如,在无人飞行器操作的情景下,通过成像设备100收集的图像数据能够用于导航、避障、绘图、目标跟踪等功能。
请参阅图5,在一些实施例中,成像设备100包括机壳20和传感器组件10。信号处理器13与第一传感器11分别设置在第一物理实体101和机壳20上,第一物理实体101不同于机壳20。该传感器组件10为上述任一实施例中的传感器组件10。
上述实施例的成像设备100,信号处理器13和第一传感器11分开设置在互不相同的第一物理实体101和机壳20上,减小了设于机壳20上的电子器件的功耗,减小或者避免了信号处理器13在工作过程中所释放出的热量对设于机 壳20上的第一传感器11的影响或者干扰,保证了第一传感器11的热稳定性,从而提高了成像设备100的检测准确性和稳定性,结构简单、方便实用。
其次,与信号处理器13和第一传感器11设置在机壳20上相比,本实施例的传感器组件10,信号处理器13安装在不同于机壳20的第一物理实体101上,信号处理器13无需占用机壳20的空间,因而能够缩小机壳20的体积或者尺寸。
此外,与信号处理器13和第一传感器11设置在机壳20上相比,本实施例的传感器组件10,信号处理器13安装在不同于机壳20的第一物理实体101上,因而能够减轻机壳20所对应的物理实体的重量,从而减小对用于搭载机壳20和第一传感器11的搭载部35件的载重压力,降低对该搭载部35件的强度要求。
再次,第一传感器11和第二传感器12共用信号处理器13,与第一传感器11和第二传感器12分别对应不同处理器相比,本申请实施例的第一传感器11和第二传感器12共用信号处理器芯片,减少了芯片的使用数量,从而降低了成本。同时,共用信号处理器13降低了系统功耗和系统复杂度(特别是电源设计难度、线材使用量和走线设计难度)的同时,也降低了传感器的整体标定难度。同时,模块化的组件设计提高了系统的可替换性,在传感器或信号处理器出现故障时将故障部件替换即可,而无需替换其他正常工作的部件。
请参阅图6和图7,本申请实施例还提供一种可移动平台1000包括机身200、云台300和上述任一实施例的成像设备100。云台300与机身200连接。成像设备100与云台300连接。
在一些实施例中,可移动平台1000可以是任意合适的能够跨越一个环境的物体。比如,可移动平台1000包括以下至少一种:无人驾驶车、无人飞行器、无人驾驶船或机器人等。环境可以包括地理特征、植物、地标、建筑物、人、载运工具、动物、发射体等。下面以可移动平台1000为无人飞行器为例进行解释说明。
请参阅图6和图7,在一些实施例中,机身200包括中心壳体201、机臂202、设于机臂202上的动力装置203和设于中心壳体201内的飞行控制器204。示例性地,机臂202的一端与中心壳体201连接,动力装置203安装在机臂202的另一端上。机臂202的数量可以为一个或者至少两个。一个或者至少两个机臂202呈辐射状从中心壳体201延伸而出。
在一些实施例中,飞行控制器204与动力装置203通信连接,从而控制动力装置203的工作,以为无人飞行器提供飞行动力。示例性地,飞行控制器204用于生成控制指令,并将该控制指令发送至动力装置203的电调,以使得电调通过该控制指令控制动力装置203的驱动电机。飞行控制器204为具有一定逻辑处理能力的器件,比如控制芯片、单片机、微控制单元等。
在一些实施例中,飞行控制器204与信号处理器13共用同一个芯片,与二者分别使用不同芯片相比,本申请实施例的可移动平台1000能够减少芯片的使用数量,从而降低成本。
在一些实施例中,信号处理器13用于控制可移动平台1000运动,并对第一传感器11发送的数字图像信号进行处理。
在一些实施例中,动力装置203包括电调、驱动电机和螺旋桨。电调位于机臂202或中心壳体201所形成的空腔内。电调分别与飞行控制器204及驱动电机连接。具体的,电调与驱动电机电连接,用于控制驱动电机。驱动电机安装在机臂202上,驱动电机的转动轴连接螺旋桨。螺旋桨在驱动电机的驱动下产生使得无人飞行器运动的力,例如,使得无人飞行器运动的升力或者推力。
在一些实施例中,可以通过用户终端来控制可移动平台1000的至少一个运动特性。示例性地,可以通过用户终端控制可移动平台1000以使得可移动平台1000能够在某个环境中朝向目标物体导航,或者,在该环境中跟踪目标物体等。
在一些实施例中,用户终端可以是任何类型的外部装置。比如,用户终端可以包括但不限于:智能电话/手机、平板计算机、个人数字助理(PDA)、膝上计算机、台式计算机、媒体内容播放器、视频游戏站/系统等。
在一些实施例中,第一物理实体101包括机身200。请参阅图6和图7,示例性地,信号处理器13设于机身200的中心壳体201上。具体地,信号处理器13设于中心壳体201内,与信号处理器13设于中心壳体201外部的其他物理实体相比,本申请实施例的可移动平台1000能够减少或缩短用于连接信号处理器13与电源500的电连接线的数量或者长度,从而减轻可移动平台1000的重量、降低成本,并简化电连接线的排布设计。
在一些实施例中,第一物理实体101包括可移动平台1000的探测模块。可以理解地,探测模块包括距离探测模块或者第二拍摄设备等。其中,第二拍摄设备包括非可见光拍摄设备、可见光拍摄设备或者多光谱拍摄设备等。
示例性地,第一物理实体101可以为可移动平台1000的雷达。
在一些实施例中,云台300能够调节成像设备100的姿态并将成像设备100保持于所需的姿态,从而为拍摄设备提供稳定的成像条件。
可以理解地,云台300可以设于机身200的任意合适位置,比如云台300连接至机身200的底部。
请参阅图8,在一些实施例中,云台300内形成有第一走线空间31,柔性连接件14穿设第一走线空间31以连接第一传感器11和信号处理器13。示例性地,柔性连接件14的两端分别连接于第一传感器11和信号处理器13,柔性连接件14的中部穿设云台300内的第一走线空间31,即柔性连接件14从云台300内走线,如此,避免了位于第一物理实体101和机壳20之外的柔性连接件14裸露在云台300的外部而容易发生损伤且走线散乱的问题,有利于保护柔性连接件14并提高柔性连接件14的连接可靠性,同时也能够提高可移动平台1000的美观性。
请参阅图9,在一些实施例中,第一传感器11通过电源线400与可移动平台1000的电源500电连接。可移动平台1000的电源500用于为可移动平台1000上的各电子器件供电。示例性地,电源500设于机身200的中心壳体201上。
请参阅图8,在一些实施例中,云台300内形成有第二走线空间32,电源线400穿设第二走线空间32以连接第一传感器11和电源500。示例性地,电源线400从云台300内走线,能够避免位于第一传感器11和中心壳体201之外的电源线400裸露在云台300的外部而容易发生损伤且走线散乱的问题,有利于保护电源线400并提高电源线400的连接可靠性,同时也能够提高可移动平台1000的美观性。
可以理解地,第二走线空间32可以与第一走线空间31相同,也可以与第一走线空间31不同,也可以是二者部分重合,在此不作限制。
在一些实施例中,云台300包括两轴云台或者三轴云台。可以理解地,在其他实施例中,云台300也可以是一轴云台,在此不作限制。
请参阅图10,在一些实施例中,云台300包括平台连接部33、轴臂组件34和搭载部35。平台连接部33与机身200连接。轴臂组件34与平台连接部33连接。搭载部35与轴臂组件34连接,成像设备100搭载于搭载部35上。
在一些实施例中,轴臂组件34包括电机341和连接臂342,连接臂342与电机341连接,平台连接部33和搭载部35分别连接在电机341和连接臂中的其中一者上。
示例性地,云台300为三轴云台,电机341包括横滚电机、俯仰电机和航向电机,以使搭载在云台300上的成像设备100能够绕横滚电机的横滚轴、俯仰电机的俯仰轴和航向电机的航向轴中的至少一者旋转,从而实现更大角度的成像。
示例性地,连接臂342可以包括多个部分,每一部分连接横滚电机、俯仰电机、航向电机、平台连接部33和搭载部35的至少一者。
示例性地,云台300为两轴云台,电机341包括第一电机和第二电机,以使搭载在云台300上的成像设备100能够绕第一电机的第一轴和第二电机的第二轴中的至少一者旋转。第一电机和第二电机可以是横滚电机、俯仰电机和航向电机中的任意两个。
在一些实施例中,成像设备100可以根据实际需求设计为任意合适的数量,比如一个、两个、三个、四个或者更多。当成像设备100为至少两个时,各成像设备100的类型可以全部相同,也可以是至少一些成像设备100为不同类型。成像装置可以根据实际需要进行定位和定向。
在一些实施方式中,成像设备100可以用于同时或者大致同时捕捉场景的图像。在另一些实施方式中,一些成像设备100可用于在不同于其他成像设备100的时间捕捉图像数据。
上述实施例的可移动平台1000,信号处理器13和第一传感器11分开设置在互不相同的第一物理实体101和机壳20上,减小了设于机壳20上的电子器件的功耗,减小或者避免了信号处理器13在工作过程中所释放出的热量对设于机壳20上的第一传感器11的影响或者干扰,保证了第一传感器11的热稳定性,从而提高了成像设备100的检测准确性和稳定性,结构简单、方便实用。
其次,与信号处理器13和第一传感器11设置在机壳20上相比,本实施例的传感器组件10,信号处理器13安装在不同于机壳20的第一物理实体101上,信号处理器13无需占用机壳20的空间,因而能够缩小机壳20的体积或者尺寸。
此外,与信号处理器13和第一传感器11设置在机壳20上相比,本实施例的传感器组件10,信号处理器13安装在不同于机壳20的第一物理实体101上, 因而能够减轻机壳20所对应的物理实体的重量,从而减小对用于搭载机壳20和第一传感器11的云台300的载重压力,降低对该云台300的强度要求。
再次,第一传感器11和第二传感器12共用信号处理器13,与第一传感器11和第二传感器12分别对应不同处理器相比,本申请实施例的第一传感器11和第二传感器12共用信号处理器芯片,减少了芯片的使用数量,从而降低了成本。同时,共用信号处理器13降低了系统功耗和系统复杂度(特别是电源设计难度,例如线材使用量和走线设计难度)的同时,也降低了传感器的整体标定难度。同时,模块化的组件设计提高了系统的可替换性,在传感器或信号处理器出现故障时将故障部件替换即可,而无需替换其他正常工作的部件。
可以理解地,第一传感器11在出厂或者使用前通常都需要标定,否则不同的第一传感器11测温效果会产生偏差,不同的第一传感器11相应匹配到不同的传感器组件10后系统整体也会产生偏差。
请参阅图13,本申请实施例还提供一种传感器的标定方法,该标定方法可以使用于对至少两个第一传感器11进行标定的情况。该标定方法包括步骤S110。
S110、利用信号处理器13标定两个以上第一传感器11,从而消除两个以上第一传感器11之间的误差。
其中,第一传感器11用于将电磁波转换为数字图像信号,并将信号发送至设置在另一物理实体中的信号处理器13。
在一些实施例中,第一传感器11为上述任一实施例中的第一传感器11。信号处理器13为上述任一实施例的信号处理器13。
可以理解地,信号处理器13和第一传感器11分开设置在互不相同的物理实体上,减小了第一传感器11所对应的物理实体的功耗,减小或者避免了信号处理器13在工作过程中所释放出的热量对设于第一传感器11的影响或者干扰,保证了第一传感器11的热稳定性,从而提高了第一传感器11的检测准确性和稳定性。
其次,与信号处理器13和第一传感器11设置在同一个物理实体上相比,本实施例中信号处理器13与第一传感器11分别设置在不同的物理实体上,信号处理器13无需占用第一传感器11所对应的物理实体的空间,因而能够缩小第一传感器11所对应的物理实体的体积或者尺寸。
此外,与信号处理器13和第一传感器11设置在同一个物理实体上相比,本实施例中信号处理器13与第一传感器11分别设置在不同的物理实体上,因而能够减轻第一传感器11所对应的物理实体的重量,从而减小对用于搭载第一传感器11所对应的物理实体的搭载部35件的载重压力,降低对该搭载部35件的强度要求。
再次,不同的第一传感器11共用信号处理器13进行标定,与不同的第一传感器11分别对应不同的信号处理器13相比,减少了标定芯片的使用数量,从而降低了成本。同时,不同的第一传感器11共用信号处理器13降低了标定系统功耗和系统复杂度(特别是电源设计难度,例如线材使用量和走线设计难度)的同时,不同的第一传感器探测到信号后,统一化的信号后处理链路也提高了传感器标定的标准化程度,进而降低了传感器的整体标定难度。同时,模块化的组件设计提高了系统的可替换性,在第一传感器11或信号处理器13出现故障时将故障部件替换即可,而无需替换其他正常工作的部件;特别是在标定过程中,若发现任一第一传感器11出现故障,将该第一传感器11返厂或修理即可,而无需将包含第一传感器11和信号处理器13在内的传感器组件10整体进行返厂或维修。可以理解地,第一传感器11在出厂或者使用前若未进行标定,不同的第一传感器11测温效果会产生偏差,不同的第一传感器11相应匹配到不同的传感器组件10后系统整体也会产生偏差。
在一些实施例中,第一传感器11的数量可以根据实际需求进行确定,比如为两个、三个或者更多。两个以上第一传感器11的类型相同,比如均为红外传感器。
在一些实施例中,利用信号处理器13标定两个以上第一传感器11,包括:在第一传感器11使用前,利用信号处理器13标定两个以上第一传感器11。
在另一些实施例中,利用信号处理器13标定两个以上第一传感器11,包括在第一传感器11出厂前,利用信号处理器13标定两个以上第一传感器11。
在第一传感器11使用前或者出厂前,利用信号处理器13对至少两个第一传感器11进行标定,可以消除或者降低至少两个第一传感器11之间的测量误差,进而消除或者降低不同第一传感器11相应匹配到不同的传感器组件10后系统整体所产生的偏差。
在一些实施例中,利用信号传感器标定两个以上第一传感器11,包括:两个以上第一传感器11在同一段时间内分别采集第一数据;两个以上第一传感器11分别将第一数据发送至信号处理器13;信号处理器13根据第一数据标定两个以上第一传感器11。
具体地,第一传感器11将目标对象所对应的电磁波转换为数字图像信号,该数字图像信号即为第一数据。目标对象可以包括人、物体或者障碍物等。
在同一段时间内,分别采集至少两个以上第一传感器11的数据,信号处理器13不仅可以同时对至少两个以上第一传感器11进行标定,提高第一传感器11的标定效率;还可以增加第一传感器11标定过程中可用的源信息数量,进而进一步辅助后续的标准化处理,例如将多个第一传感器11的数据进行均方差处理作为标准化依据,为提高标定精度提供了保障。
在一些实施例中,信号处理器13根据第一数据标定两个以上第一传感器11,包括:信号处理器13根据第一数据确定两个以上第一传感器11的信号增益;信号处理器13对两个以上第一传感器11的信号增益进行对齐,以标定多个第一传感器11。
示例性地,第一传感器11的数量有三个,分别为第一传感器11a、第一传感器11b、和第一传感器11c。第一传感器11a、第一传感器11b和第一传感器11c在同一时间段内分别采集第一数据A、第一数据B和第一数据C。信号处理器13根据第一数据A、第一数据B和第一数据C确定第一传感器11a的信号增益、第一传感器11b的信号增益以及第一传感器11c的信号增益。在确定各第一传感器11的信号增益后,信号处理器13对第一传感器11a的信号增益、第一传感器11b的信号增益以及第一传感器11c的信号增益进行对齐,从而标定第一传感器11a、第一传感器11b和第一传感器11c。
在一些实施例中,利用信号传感器标定两个以上第一传感器11,包括:两个以上第一传感器11针对同一场景分别采集第一数据;两个以上第一传感器11分别将第一数据发送至信号处理器13;信号处理器13根据第一数据标定两个以上第一传感器11。
在同一场景下,分别采集至少两个第一传感器11的数据,如此在同一的场景下,信号处理器13能够同时或者先后对两个以上第一传感器11进行标定,提高了第一传感器11的标定效率和标定精度。
可以理解地,所述场景可以根据实际需求设计为任意合适的场景。示例性地,所述场景包括黑体。
上述实施例的标定方法,通过信号处理器13能够标定两个以上第一传感器11,提高了标定效率和标定精度,降低了成本。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (50)

  1. 一种传感器组件,其特征在于,包括:
    第一传感器,用于将电磁波转换为数字图像信号;
    第二传感器,所述第二传感器与所述第一传感器不同;
    信号处理器,所述第一传感器和所述第二传感器均将信号发送至所述信号处理器上,所述信号处理器与所述第一传感器分别设置在第一物理实体和第二物理实体上,所述第一物体实体不同于所述第二物理实体。
  2. 根据权利要求1所述的传感器组件,其特征在于,所述第二传感器的类型与所述第一传感器的类型不同;和/或,所述第二传感器与所述第一传感器分别设置在不同物理实体上。
  3. 根据权利要求1所述的传感器组件,其特征在于,所述第二物理实体包括第一拍摄设备。
  4. 根据权利要求3所述的传感器组件,其特征在于,所述第一拍摄设备包括红外拍摄设备,所述第一传感器为红外传感器。
  5. 根据权利要求3所述的传感器组件,其特征在于,所述第一拍摄设备包括:
    镜头,所述镜头与所述第一传感器连接,以使所述第一传感器将通过所述镜头的电磁波转换为所述数字图像信号。
  6. 根据权利要求1所述的传感器组件,其特征在于,所述第二传感器包括可见光传感器、距离传感器、惯性传感器、非可见光传感器、超声波传感器或者激光雷达传感器。
  7. 根据权利要求1所述的传感器组件,其特征在于,所述第二传感器和所述信号处理器设于所述第一物理实体上。
  8. 根据权利要求1所述的传感器组件,其特征在于,所述第一传感器通过柔性连接件与所述信号处理器连接。
  9. 根据权利要求8所述的传感器组件,其特征在于,所述柔性连接件包括柔性电缆、柔性线路板、软排线中的至少一种。
  10. 根据权利要求9所述的传感器组件,其特征在于,所述柔性连接件为 同轴电缆。
  11. 一种成像设备,其特征在于,包括:
    机壳;以及
    传感器组件,包括:
    第一传感器,用于将电磁波转换为数字图像信号;
    第二传感器,所述第二传感器与所述第一传感器不同;
    信号处理器,所述第一传感器和所述第二传感器均将信号发送至所述信号处理器上,所述信号处理器与所述第一传感器分别设置在第一物理实体和所述机壳上,所述第一物理实体不同于所述机壳。
  12. 根据权利要求11所述的成像设备,其特征在于,所述第一传感器为红外传感器。
  13. 根据权利要求11所述的成像设备,其特征在于,所述成像设备包括:
    镜头,所述镜头与所述第一传感器连接,以使所述第一传感器将通过所述镜头的电磁波转换为所述数字图像信号。
  14. 根据权利要求11所述的成像设备,其特征在于,所述第二传感器包括可见光传感器、距离传感器、惯性传感器、非可见光传感器、超声波传感器或者激光雷达传感器。
  15. 根据权利要求11所述的成像设备,其特征在于,所述第二传感器和所述信号处理器设于所述第一物理实体上。
  16. 根据权利要求11所述的成像设备,其特征在于,所述第一传感器通过柔性连接件与所述信号处理器连接。
  17. 根据权利要求16所述的成像设备,其特征在于,所述柔性连接件包括柔性电缆、柔性线路板、软排线中的至少一种。
  18. 根据权利要求17所述的成像设备,其特征在于,所述柔性连接件为同轴电缆。
  19. 根据权利要求11所述的成像设备,其特征在于,所述成像设备包括以下至少一种:
    单光谱成像设备、多光谱成像设备、高光谱成像设备、超光谱成像设备。
  20. 根据权利要求11所述的成像设备,其特征在于,所述第二传感器的类型与所述第一传感器的类型不同;和/或,所述第二传感器与所述第一传感器分 别设置在不同物理实体上。
  21. 一种可移动平台,其特征在于,包括:
    机身;
    云台,与所述机身连接;以及
    成像设备,与所述云台连接;所述成像设备包括:
    机壳;以及
    传感器组件,包括:
    第一传感器,用于将电磁波转换为数字图像信号;
    第二传感器,所述第二传感器与所述第一传感器不同;
    信号处理器,所述第一传感器和所述第二传感器均将信号发送至所述信号处理器上,所述信号处理器与所述第一传感器分别设置在第一物理实体和所述机壳上,所述第一物理实体不同于所述机壳。
  22. 根据权利要求21所述的可移动平台,其特征在于,所述第二传感器的类型与所述第一传感器的类型不同;和/或,所述第二传感器与所述第一传感器分别设置在不同物理实体上。
  23. 根据权利要求21所述的可移动平台,其特征在于,所述第一传感器为红外传感器。
  24. 根据权利要求21所述的可移动平台,其特征在于,所述成像设备包括:
    镜头,所述镜头与所述第一传感器连接,以使所述第一传感器将通过所述镜头的电磁波转换为所述数字图像信号。
  25. 根据权利要求21所述的可移动平台,其特征在于,所述第二传感器包括可见光传感器、距离传感器、惯性传感器、非可见光传感器、超声波传感器或者激光雷达传感器。
  26. 根据权利要求21所述的可移动平台,其特征在于,所述第二传感器和所述信号处理器设于所述第一物理实体上。
  27. 根据权利要求21所述的可移动平台,其特征在于,所述信号处理器用于控制所述可移动平台运动,并对所述第一传感器发送的所述数字图像信号进行处理。
  28. 根据权利要求21所述的可移动平台,其特征在于,所述第一物理实体包括所述可移动平台的探测模块。
  29. 根据权利要求28所述的可移动平台,其特征在于,所述探测模块包括距离探测模块或者第二拍摄设备。
  30. 根据权利要求29所述的可移动平台,其特征在于,所述第二拍摄设备包括非可见光拍摄设备、可见光拍摄设备或者多光谱拍摄设备。
  31. 根据权利要求21所述的可移动平台,其特征在于,所述第一传感器通过柔性连接件与所述信号处理器连接。
  32. 根据权利要求31所述的可移动平台,其特征在于,所述柔性连接件包括柔性电缆、柔性线路板、软排线中的至少一种。
  33. 根据权利要求32所述的可移动平台,其特征在于,所述柔性连接件为同轴电缆。
  34. 根据权利要求31所述的可移动平台,其特征在于,所述云台内形成有第一走线空间,所述柔性连接件穿设所述第一走线空间以连接所述第一传感器和所述信号处理器。
  35. 根据权利要求21所述的可移动平台,其特征在于,所述成像设备包括以下至少一种:
    单光谱成像设备、多光谱成像设备、高光谱成像设备、超光谱成像设备。
  36. 根据权利要求21所述的可移动平台,其特征在于,所述第一物理实体包括所述机身。
  37. 根据权利要求21所述的可移动平台,其特征在于,所述云台包括两轴云台或者三轴云台。
  38. 根据权利要求21所述的可移动平台,其特征在于,所述第一传感器通过电源线与所述可移动平台的电源电连接。
  39. 根据权利要求38所述的可移动平台,其特征在于,所述云台内形成有第二走线空间,所述电源线穿设所述第二走线空间以连接所述第一传感器和所述电源。
  40. 根据权利要求21所述的可移动平台,其特征在于,所述云台包括:
    平台连接部,与所述机身连接;
    轴臂组件,与所述平台连接部连接;
    搭载部,与所述轴臂组件连接,所述成像设备搭载于所述搭载部上。
  41. 根据权利要求40所述的可移动平台,其特征在于,所述轴臂组件包括:
    电机;
    连接臂,与所述电机连接,所述平台连接部和所述搭载部分别连接在所述电机和所述连接臂中的其中一者上。
  42. 根据权利要求21所述的可移动平台,其特征在于,所述可移动平台包括以下至少一种:
    无人驾驶车、无人飞行器、无人驾驶船或机器人。
  43. 一种传感器的标定方法,其特征在于,所述标定方法包括:
    利用信号处理器标定两个以上第一传感器,从而消除两个以上所述第一传感器之间的误差;
    其中,所述第一传感器用于将电磁波转换为数字图像信号,并将信号发送至设置在另一物理实体中的所述信号处理器。
  44. 根据权利要求43所述的标定方法,其特征在于,所述利用信号处理器标定两个以上所述第一传感器,包括:
    在所述第一传感器使用前,利用所述信号处理器标定两个以上所述第一传感器。
  45. 根据权利要求43所述的标定方法,其特征在于,所述利用信号处理器标定两个以上第一传感器,包括:
    在所述第一传感器出厂前,利用所述信号处理器标定两个以上所述第一传感器。
  46. 根据权利要求43所述的标定方法,其特征在于,所述利用所述信号传感器标定两个以上所述第一传感器,包括:
    两个以上所述第一传感器在同一段时间内分别采集第一数据;
    两个以上所述第一传感器分别将所述第一数据发送至所述信号处理器;
    所述信号处理器根据所述第一数据标定两个以上所述第一传感器。
  47. 根据权利要求46所述的标定方法,其特征在于,所述信号处理器根据所述第一数据标定两个以上所述第一传感器,包括:
    所述信号处理器根据所述第一数据确定两个以上所述第一传感器的信号增益;
    所述信号处理器对两个以上所述第一传感器的信号增益进行对齐,以标定多个所述第一传感器。
  48. 根据权利要求43所述的标定方法,其特征在于,所述利用所述信号传感器标定两个以上所述第一传感器,包括:
    两个以上所述第一传感器针对同一场景分别采集第一数据;
    两个以上所述第一传感器分别将所述第一数据发送至所述信号处理器;
    所述信号处理器根据所述第一数据标定两个以上所述第一传感器。
  49. 根据权利要求48所述的标定方法,其特征在于,所述场景包括黑体。
  50. 根据权利要求43所述的标定方法,其特征在于,所述第一传感器为红外传感器。
PCT/CN2020/114595 2020-09-10 2020-09-10 传感器组件、成像设备、可移动平台及传感器的标定方法 WO2022052003A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080016783.6A CN113544060A (zh) 2020-09-10 2020-09-10 传感器组件、成像设备、可移动平台及传感器的标定方法
PCT/CN2020/114595 WO2022052003A1 (zh) 2020-09-10 2020-09-10 传感器组件、成像设备、可移动平台及传感器的标定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/114595 WO2022052003A1 (zh) 2020-09-10 2020-09-10 传感器组件、成像设备、可移动平台及传感器的标定方法

Publications (1)

Publication Number Publication Date
WO2022052003A1 true WO2022052003A1 (zh) 2022-03-17

Family

ID=78094433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114595 WO2022052003A1 (zh) 2020-09-10 2020-09-10 传感器组件、成像设备、可移动平台及传感器的标定方法

Country Status (2)

Country Link
CN (1) CN113544060A (zh)
WO (1) WO2022052003A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116929160A (zh) * 2023-07-31 2023-10-24 天津大学 一种双通道宽窄视场共像面导引头成像光学系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202009447U (zh) * 2011-04-02 2011-10-12 杭州华银视讯科技有限公司 一种视频展示台
CN105867436A (zh) * 2015-11-27 2016-08-17 深圳市星图智控科技有限公司 无人飞行器及其云台系统
US20160299959A1 (en) * 2011-12-19 2016-10-13 Microsoft Corporation Sensor Fusion Interface for Multiple Sensor Input
CN207319073U (zh) * 2017-08-17 2018-05-04 昊翔电能运动科技(昆山)有限公司 无人机和无人飞行系统
CN208782909U (zh) * 2018-06-05 2019-04-23 北京中科慧眼科技有限公司 一种相机、电子设备及驾驶系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105812635A (zh) * 2016-05-05 2016-07-27 游佳彬 一种红外相机
CN206865614U (zh) * 2017-06-14 2018-01-09 深圳市山禾乐科技开发有限公司 一种具有远程跟踪的红外摄像机
WO2019178846A1 (zh) * 2018-03-23 2019-09-26 深圳市大疆创新科技有限公司 成像系统
CN109683572A (zh) * 2018-12-29 2019-04-26 河海大学常州校区 一种智能加工中心作业场景检测系统及方法
CN110730287B (zh) * 2019-10-24 2021-07-30 深圳市道通智能航空技术股份有限公司 一种可拆换的云台相机、飞行器、系统及其云台拆换方法
CN212969862U (zh) * 2020-09-10 2021-04-13 深圳市大疆创新科技有限公司 传感器组件、成像设备及可移动平台

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202009447U (zh) * 2011-04-02 2011-10-12 杭州华银视讯科技有限公司 一种视频展示台
US20160299959A1 (en) * 2011-12-19 2016-10-13 Microsoft Corporation Sensor Fusion Interface for Multiple Sensor Input
CN105867436A (zh) * 2015-11-27 2016-08-17 深圳市星图智控科技有限公司 无人飞行器及其云台系统
CN207319073U (zh) * 2017-08-17 2018-05-04 昊翔电能运动科技(昆山)有限公司 无人机和无人飞行系统
CN208782909U (zh) * 2018-06-05 2019-04-23 北京中科慧眼科技有限公司 一种相机、电子设备及驾驶系统

Also Published As

Publication number Publication date
CN113544060A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
JP6637068B2 (ja) モジュール式lidarシステム
US11343443B2 (en) Unmanned aerial vehicle and multi-ocular imaging system
US20220402607A1 (en) Foldable multi-rotor aerial vehicle
US10793267B2 (en) Unmanned aerial vehicle
EP2844560B1 (en) Payload mounting platform
JP6310569B2 (ja) 支持機構
WO2018107337A1 (zh) 云台及其操作方法、控制方法,及使用其的可移动设备
CN201287830Y (zh) 航拍摄像机用稳定支架
US20180149949A1 (en) Dome-type three-axis gimbal
US20210214068A1 (en) Image Stabilization For Autonomous Aerial Vehicles
US10710711B2 (en) Systems and methods for UAV sensor placement
WO2019056865A1 (zh) 云台及具有此云台的无人机
Mitani et al. Int-ball: Crew-supportive autonomous mobile camera robot on ISS/JEM
CN106708091B (zh) 一种避障装置
WO2022052003A1 (zh) 传感器组件、成像设备、可移动平台及传感器的标定方法
CN212969862U (zh) 传感器组件、成像设备及可移动平台
WO2020042159A1 (zh) 一种云台的转动控制方法、装置及控制设备、移动平台
WO2021056503A1 (zh) 可移动平台的定位方法、装置、可移动平台及存储介质
Mitani et al. Crew-supportive autonomous mobile camera robot on ISS/JEM
CN212251975U (zh) 云台、云台组件和控制系统
WO2019120214A1 (en) Two-axis gimbal system
CN106060357A (zh) 成像设备、无人机及机器人
Evangeliou et al. Development of a versatile modular platform for aerial manipulators
WO2021134225A1 (zh) 云台、云台组件和控制系统
JP7160391B2 (ja) 距離検出装置、及び撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952791

Country of ref document: EP

Kind code of ref document: A1