WO2022050673A1 - 전자파 차폐 필름 - Google Patents

전자파 차폐 필름 Download PDF

Info

Publication number
WO2022050673A1
WO2022050673A1 PCT/KR2021/011730 KR2021011730W WO2022050673A1 WO 2022050673 A1 WO2022050673 A1 WO 2022050673A1 KR 2021011730 W KR2021011730 W KR 2021011730W WO 2022050673 A1 WO2022050673 A1 WO 2022050673A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
electrode pattern
electromagnetic wave
wave shielding
shielding film
Prior art date
Application number
PCT/KR2021/011730
Other languages
English (en)
French (fr)
Inventor
이복규
조성재
Original Assignee
미래나노텍(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미래나노텍(주) filed Critical 미래나노텍(주)
Priority to US18/024,304 priority Critical patent/US20230320050A1/en
Priority to CN202180054504.XA priority patent/CN116058086A/zh
Priority to EP21864633.9A priority patent/EP4210445A1/en
Publication of WO2022050673A1 publication Critical patent/WO2022050673A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0086Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single discontinuous metallic layer on an electrically insulating supporting structure, e.g. metal grid, perforated metal foil, film, aggregated flakes, sintering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0094Shielding materials being light-transmitting, e.g. transparent, translucent
    • H05K9/0096Shielding materials being light-transmitting, e.g. transparent, translucent for television displays, e.g. plasma display panel
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • H05K9/0054Casings specially adapted for display applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0071Active shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0084Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single continuous metallic layer on an electrically insulating supporting structure, e.g. metal foil, film, plating coating, electro-deposition, vapour-deposition
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure

Definitions

  • the present invention relates to an electromagnetic wave shielding film, and to an electromagnetic wave shielding film having an improved electromagnetic wave shielding rate and high electromagnetic wave shielding performance in various frequency bands of electromagnetic waves.
  • an electromagnetic wave shielding member is employed on the front surface of the display to block the harmful electromagnetic waves.
  • Such an electromagnetic wave shielding member is required not to reduce the transparency of the display screen of the display in addition to the function of shielding electromagnetic waves.
  • the conventional electromagnetic wave shielding member used on the front surface of the display includes a metal mesh (mesh).
  • a metal mesh a copper mesh in the form of a film formed through etching of a copper foil was generally used.
  • this manufacturing method has a problem in that the manufacturing process is complicated and the manufacturing cost increases as a photolithography process is performed, and the material is wasted because more than 90% of copper must be removed through etching.
  • FIG. 1 shows a conventional electromagnetic wave shielding member 10 using a conductive paste.
  • the conventional electromagnetic wave shielding member 10 includes a glass substrate 11 , an electromagnetic wave shielding pattern 12 and a ground electrode 13 formed on one surface of the glass substrate 11 , respectively.
  • the electromagnetic wave shielding pattern 12 is formed by embossed printing of a conductive paste on the glass substrate 11 . That is, in the conventional electromagnetic wave shielding member 10 , by forming the electromagnetic wave shielding pattern 12 using a conductive paste, the electromagnetic wave shielding performance could be implemented more inexpensively and simply.
  • the shielding performance was not high, and in particular, there was a problem in that the shielding performance was exhibited only for some frequency bands of electromagnetic waves.
  • an object of the present invention is to provide an electromagnetic wave shielding film having an improved electromagnetic wave shielding rate by increasing the conductivity of a conductive paste and having high shielding performance in various frequency bands of electromagnetic waves. There is this.
  • Electromagnetic wave shielding film for solving the above problems, the substrate; and an electrode pattern provided in a direction of one surface of the substrate and containing metal particles, wherein the metal particles have first particles having a size in a first range and a size in a second range smaller than the first range each comprising second particles, wherein the second particles are greater than the first particles, and at least one first particle is mixed between the second particles.
  • Electromagnetic wave shielding film according to another embodiment of the present invention, a substrate; an electrode pattern provided on one surface of the substrate and containing metal particles; and a transparent conductive layer provided in the direction of one surface of the electrode pattern or the direction of the other surface of the substrate and covering the electrode pattern arranged along one surface of the substrate, wherein the metal particles have a size in a first range. each comprising one particle and second particles having a size in a second range that is smaller than the first range, wherein the second particle is larger than the first particle, and at least one first particle is mixed between the second particles .
  • the electrode pattern may include a first structure in which a plurality of second particles surround the periphery of the first particles.
  • the electrode pattern may further include a second structure to which a plurality of second particles are connected.
  • the electrode pattern may include a greater number of the second structures than the first structures.
  • the size of the first range may be at least twice as large as the size of the second range.
  • the size of the first range may be 1 ⁇ m or more and 1.5 ⁇ m or less, and the size of the second range may be 400 nm or more and 450 nm or less.
  • a number ratio between the first particles and the second particles may be 2:8 to 4:6.
  • the electrode pattern may be formed in a mesh pattern shape including a plurality of polygons arranged along one surface of the substrate.
  • the plurality of polygons may include a plurality of irregular polygons adjacent to each other, and the irregular polygons may have different pitch values between adjacent irregular polygons.
  • the number of vertices of the irregular polygon may be four or more, and directions in which respective sides extend may be different from each other.
  • angles formed by sides adjacent to each other with respect to each vertex may be different from each other.
  • the electrode pattern may be formed along a groove formed on one surface of the substrate or one surface of a resin layer provided on one surface of the substrate.
  • the electrode pattern may be formed in an embossed shape on one surface of the substrate.
  • the metal particles may be any one selected from silver (Ag), copper (Cu), aluminum (Al), nickel (Ni) and chromium (Cr), and the conductive layer is ITO, silver (Ag) nanotubes, yes It may be any one selected from fins, carbon nanotubes, silver (Ag) particles, and conductive polymers.
  • the substrate since the substrate is transparent, it can be employed as a light-transmitting screen device for a display.
  • the present invention configured as described above can exhibit improved electromagnetic wave shielding performance in any electromagnetic wave frequency band generated by the applied product, and integrates electromagnetic waves of various bands generated in complex products or various fields regardless of the frequency band. This has the advantage of being able to block with a high shielding rate.
  • the electrode pattern of the present invention includes an atypical polygon
  • the moiré phenomenon can be avoided at all angles of the plane and visibility is improved.
  • the irregular polygon has the advantage of suppressing the pattern aggregation of the electrode pattern and distributing the electrode pattern in a more balanced manner, thereby further enhancing the electromagnetic wave shielding effect.
  • FIG. 1 shows a conventional electromagnetic wave shielding member 10 using a conductive paste.
  • FIG. 2 is a perspective view of the electromagnetic wave shielding film 100 according to the first embodiment of the present invention.
  • FIG 3 is a partial cross-sectional view of one side of the electromagnetic wave shielding film 100 according to the first embodiment of the present invention.
  • FIG 4 is a plan view of a portion of an electrode pattern 130 having a mesh pattern of regular polygons 132 in the electromagnetic wave shielding film 100 according to the first embodiment of the present invention.
  • FIG 5 is a partial plan view and an enlarged view of an electrode pattern 130 having a mesh pattern of atypical polygons 133 in the electromagnetic wave shielding film 100 according to the first embodiment of the present invention.
  • FIG. 6 illustrates an example of the first structure 136A and the second structure 136B included in the pattern line 131 of the electrode pattern 130 .
  • FIG. 7 shows various comparisons of the actually manufactured electromagnetic wave shielding film 100 according to the first embodiment of the present invention and a comparative example thereof.
  • FIG 8 shows a graph of the electromagnetic wave shielding rate for each frequency of the electromagnetic wave shielding film 100 according to the first embodiment of the present invention that was actually manufactured and a comparative example thereof.
  • FIG. 9 is a partial cross-sectional view of one side of the electromagnetic wave shielding film 200 according to the second embodiment of the present invention.
  • FIG. 10 shows a graph of the electromagnetic wave shielding rate for each frequency of the electromagnetic wave shielding film 200 according to the second embodiment of the present invention that was actually manufactured and a comparative example thereof.
  • FIG 11 shows an example in which the electromagnetic wave shielding film 100 according to the first embodiment of the present invention is applied to a display as a screen device.
  • FIG. 12 is a photograph showing an electrode pattern according to an embodiment of the present invention and a comparative example thereof in comparison.
  • FIG. 13 is a view showing characteristics of a screen device according to an embodiment and a comparative example of the present invention in comparison.
  • FIG. 14 is a photograph for explaining whether a moiré phenomenon occurs in a screen device according to an embodiment of the present invention
  • FIG. 15 is a photograph showing a display to which the screen device according to an embodiment of the present invention is applied.
  • terms such as “or” and “at least one” may indicate one of the words listed together, or a combination of two or more.
  • “A or B” and “at least one of A and B” may include only one of A or B, or both A and B.
  • 'first' and 'second' may be used to describe various components, but the components should not be limited by the above terms.
  • the above terms should not be construed as limiting the order of each component, and may be used for the purpose of distinguishing one component from another.
  • a 'first component' may be referred to as a 'second component'
  • a 'second component' may also be referred to as a 'first component'.
  • Figure 2 shows a perspective view of the electromagnetic wave shielding film 100 according to the first embodiment of the present invention
  • Figure 3 shows a part of a cross-sectional side of the electromagnetic wave shielding film 100 according to the first embodiment of the present invention. That is, FIG. 3 shows a part of a cross section taken along line A-A' in FIG. 2 .
  • the electromagnetic wave shielding film 100 according to the first embodiment of the present invention has electromagnetic wave shielding performance, and as shown in FIGS. 2 and 3 , includes a substrate 110 and an electrode pattern 130 .
  • the electromagnetic wave shielding film 100 according to the first embodiment of the present invention may be employed on the front surface of the display to function as a light-transmitting screen device (hereinafter, referred to as a “screen device”).
  • the substrate 110 is a flat substrate, and may be made of a non-conductive material. In the case of a screen device, the substrate 110 may be made of a transparent material that transmits light. Also, the substrate 110 may be a glass substrate or a substrate made of various resin materials formed in a film shape.
  • the resin substrate 110 may include various resin materials such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide (PI), polycarbonate (PC), or polymethyl methacrylate (PMMA).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PI polyimide
  • PC polycarbonate
  • PMMA polymethyl methacrylate
  • the light transmittance of the substrate 110 may be 80% or more. At this time, as for the light transmittance, the closer to 100%, the better the light transmittance, and the closer to 0%, the worse the light transmittance.
  • the thickness of the substrate 110 may be about 10 ⁇ m or more and 250 ⁇ m or less. In this case, if the thickness of the substrate 110 is less than 10 ⁇ m, it may be difficult to form the electrode pattern 130 on the substrate 110 to a desired thickness. In addition, when the thickness of the substrate 110 exceeds 250 ⁇ m, the luminance of the screen device may be lower than the desired luminance.
  • the electrode pattern 130 is made of a conductive material containing metal particles.
  • the electrode pattern 130 may be formed in various patterns arranged side by side on a plane along one surface of the substrate 110 to perform a function of shielding electromagnetic waves passing through the periphery.
  • the electrode pattern 130 may be in a form in which metal particles are cured through a binder resin.
  • the metal particles may include various conductive metal particles such as silver (Ag), copper (Cu), aluminum (Al), nickel (Ni), and chromium (Cr), and may have various sizes.
  • the electrode pattern 130 may be formed in an irregular mesh pattern when viewed in a plan view.
  • the electrode pattern 130 is not limited thereto, and may be formed in various patterns such as a regular mesh pattern, a regular or irregular line pattern, and a polygonal pattern when viewed in a plan view.
  • the electrode pattern 130 may be formed in the direction of one surface of the substrate 110 . That is, the electrode pattern 130 may be formed on one surface of the substrate 110 or may be formed on one surface of the resin layer 120 provided on one surface of the substrate 110 .
  • the resin layer 120 may be made of a transparent plastic material to transmit light.
  • the resin layer 120 may be made of a material different from that of the substrate 110 , and may include various resin materials such as urethane acrylate.
  • the electrode pattern 130 In order to form the electrode pattern 130 in the direction of one surface of the substrate 110 , by imprinting using a mold having a shape corresponding to the electrode pattern 130 , a concave shape corresponding to the electrode pattern 130 is formed.
  • An intaglio groove may be formed on one surface of the substrate 110 or the resin layer 120 .
  • the electrode pattern 130 having the shape of the intaglio groove may be formed by filling the formed intaglio groove with a conductive material.
  • the electrode pattern 130 when the substrate 110 is a resin substrate, the electrode pattern 130 may be formed on one surface of the substrate 110 .
  • the electrode pattern 130 when the substrate 110 is a resin substrate or a glass substrate, after the resin layer 120 is applied to one surface of the substrate 110 , the electrode pattern 130 may be formed on one surface of the resin layer 120 . there is.
  • a conductive paste made of conductive metal particles and a binder is filled into the intaglio grooves formed on one surface of the substrate 110 or the resin layer 120 using a blade, and then heat or ultraviolet rays are applied to harden the conductive paste. Thereafter, the remaining conductive paste remaining on the surface of the substrate 110 or the resin layer 120 without being filled in the intaglio groove is cleaned and removed by a cleaning member, and then the metal particles are sintered through an additional heat treatment process to sinter the electrode pattern 130 ) can be formed.
  • the electrode pattern 130 has been described as an example of an intaglio electrode method formed by filling a conductive material in an intaglio groove on one surface of the substrate 110 or the resin layer 120 , but differently, the substrate 110 or the resin layer 120 .
  • An embossed electrode method that is formed to protrude from one surface to a predetermined thickness is also applicable.
  • the electrode pattern 130 may be formed by embossing a conductive paste on one surface of the substrate 110 or the resin layer 120 using a gravure offset or the like.
  • FIG. 4 shows a part of a plan view of an electrode pattern 130 having a mesh pattern of regular polygons 132 in the electromagnetic wave shielding film 100 according to the first embodiment of the present invention
  • FIG. 5 is a first embodiment of the present invention. A portion of the plan view and an enlarged view of the electrode pattern 130 having a mesh pattern of atypical polygons 133 in the electromagnetic wave shielding film 100 according to FIG.
  • the electrode pattern 130 may serve as a touch sensor.
  • the electrode pattern 130 may be referred to as a pattern electrode, a detection electrode, a sensor layer, or an electrode layer.
  • the electrode pattern 130 may include a plurality of pattern lines 131 .
  • the plurality of pattern lines 131 may cross each other in various directions to form a plurality of regular polygons 132 or irregular polygons 133 . That is, the plurality of regular polygons 132 or irregular polygons 133 may be formed by respective transition pattern lines 131 . Meanwhile, the pattern line 131 may be referred to as a thin conductive line.
  • each pattern line 131 may have a width W of about 4 ⁇ m or more to about 10 ⁇ m or less. .
  • each of the pattern lines 131 may have a depth H of about 4 ⁇ m or more to about 10 ⁇ m or less.
  • the cross-sectional shape of the pattern line 131 may be a rectangular shape. When the width W and the depth H of the pattern line 131 are smaller than 4 ⁇ m, it may be difficult to manufacture the electrode pattern 130 .
  • the width W and the depth H of the pattern line 131 are greater than 10 ⁇ m, respectively, the light transmittance of the electrode pattern 130 may be affected, and screen visibility of a display to which the screen device is applied may be reduced.
  • the width (W) and depth (H) of the pattern line 131 are each closer to 4 ⁇ m, the light transmittance of the electrode pattern 130 is improved, and as the width W and the depth H of the pattern line 131 are closer to 10 ⁇ m, the change in capacitance due to the user's touch can be accurately detected.
  • the width of the pattern line 131 may be about 0.5 or more to about 10 ⁇ m or less, and the thickness may be about 0.2 ⁇ m to about 5 ⁇ m or less.
  • the cross-sectional shape of the pattern line 131 may be a rectangular shape.
  • the plurality of regular polygons 132 or irregular polygons 133 are arranged along the upper surface of the substrate 110 to form the electrode pattern 130 .
  • the electrode pattern 130 may include a plurality of regular polygons 132 or irregular polygons 133 formed by intersecting regular or irregular thin conductive wires.
  • the regular shape means a regular shape
  • the irregular shape means an irregular shape. That is, the irregular shape may be an irregular shape in which the shape is determined to be a predetermined shape, but a pattern that is regularly repeated cannot be derived from the predetermined shape. Accordingly, the plurality of irregular polygons 133 may have different shapes. However, it may be preferable that the electrode pattern 130 includes a plurality of atypical polygons 133 to facilitate avoidance of moiré.
  • each pitch value P is included within a preset range.
  • the adjacent irregular polygons 133 may have different pitch values P.
  • the pitch value P means the maximum value among distance values between the vertices V of the irregular polygon 133 .
  • the electrode pattern 130 may affect the shielding performance according to the size range of the metal particles exhibiting conductivity.
  • the size of the metal particles may be a maximum length among the lengths from one side to the other side of the metal particles, but is not limited thereto.
  • the shielding performance was limited. That is, in the case of the conventional electrode pattern, the shielding performance was not high, and in particular, the shielding performance was shown only for some frequency bands of electromagnetic waves.
  • the electrode pattern 130 is formed by mixing different sizes of metal particles in a conductive paste. Accordingly, in the electrode pattern 130 , as the packing density of the metal particles is increased, conductivity is improved and resistance is lowered, so that the electromagnetic wave shielding rate can be further increased. That is, since the larger the area in which the metal particles, which are the material of the electrode pattern 130, contact each other, the greater the conductivity. Therefore, when small metal particles and large metal particles are mixed therebetween, the contact area between the particles increases. As it increases, the weight of the metal particles charged in the same space can be increased, resulting in an effect of lowering the overall resistance. As a result, due to the lowered electrical resistance of the electrode pattern 130 , the electromagnetic wave shielding rate of the electromagnetic wave shielding film 100 may be further improved.
  • FIG. 6 illustrates an example of the first structure 136A and the second structure 136B included in the pattern line 131 of the electrode pattern 130 .
  • the pattern line 131 of the electrode pattern 130 includes a plurality of first particles 134 having a size in a first range and a plurality of second particles having a size in a second range. (135), respectively.
  • the second range is a smaller size range than the first range. That is, the first particle 134 has a larger size than the second particle 135 .
  • the sizes of the first particles 134 may be different from each other, and the sizes of the second particles 135 may also be different from each other.
  • the electrode pattern 130 may include a first structure 136A in which at least one second particle 135 is sintered and mixed with the first particle 134 . Since the first structure 136A has a structure in which second particles 134 of small sizes surround the large first particles 135, it is possible to increase the contact area between the particles, thereby improving the shielding performance. can be improved
  • the conductive paste contains more second particles 135 than the first particles 134 . It is preferable to include That is, the electrode pattern 130 preferably includes more second particles 135 than the first particles 134 .
  • the electrode pattern 130 may further include a second structure 136B to which the plurality of second particles 135 are electrically connected. there is.
  • This second structure 136B may be electrically connected to the first structure 136A.
  • the electrode pattern 130 since the shielding performance is greatly improved by the first structure 136A, it may be preferable that the electrode pattern 130 include more of the first structure 136A than the second structure 136B.
  • the electrode pattern 130 may include more second structures 136B than the first structures 136A.
  • the first structure 136A and the second structure 136B may be finally formed during curing and sintering of the conductive paste.
  • each particle 134 and 135 in the conductive paste is partially melted by the heat transferred during the sintering process and the surrounding particles are electrically connected to each other, so that the first structure 136A or the second structure 136B can be generated. there is.
  • the size of the first range may be at least about 2 times to about 4 times greater than the size of the second range.
  • the size of the first range may be 1 ⁇ m or more and 1.5 ⁇ m or less
  • the size of the second range may be 400 nm or more and 450 nm or less. If the size of the first range is less than twice the size of the second range, the second particle 135 surrounding the first particle 134 is too small, and there is a limit in increasing the contact area between the particles.
  • the difference in size and weight between the first particles 134 and the second particles 135 is too large, so that the first particles 134 when mixing metal particles ) is not evenly dispersed in the second particles 135 and tends to agglomerate, so the filling performance may not be good when filling the intaglio grooves.
  • the mixing ratio between the first particles 134 and the second particles 135 may have a great influence on the electrical resistance and shielding performance of the electrode pattern 130 . Accordingly, the number ratio (the number of the first particles: the number of the second particles) between the first particles 134 and the second particles 135 may be preferably 2:8 to 4:6.
  • the number of the first particles 134 is less than the number ratio of 2:8, the number of the first particles 134 is too small and the number of the first structures 136A in the pattern line 131 is not sufficient, so that the shielding performance is poor. can decrease.
  • the filling weight density of the metal particles 134 and 135 in the same space is relatively low, so that the electrical resistance can be relatively high.
  • the number of the first particles 134 is greater than the number ratio of 4:6, the number of the second particles 135 to surround the first particles 134 is insufficient, and the size of the first structure 136A is increased. If it is too small, the shielding performance may be reduced.
  • the conductive paste is filled in the engraved grooves, the probability of an empty space being generated in the engraved grooves increases due to interference between the first particles 134 having large sizes, resulting in poor filling properties and increased electrical resistance.
  • the optimal number ratio between the first particles 134 and the second particles 135 may be 3:7. That is, considering the high packing weight density while increasing the contact area between the first and second particles 134 and 135 filled in the intaglio groove, the number ratio between the first particle 134 and the second particle 135 is 3 In the case of :7, it may be effective to implement low resistance to the electrode pattern 130 and improve shielding performance.
  • FIG. 7 shows various comparisons of the actually manufactured electromagnetic wave shielding film 100 according to the first embodiment of the present invention and a comparative example thereof
  • FIG. 8 is an actually manufactured electromagnetic wave shielding film according to the first embodiment of the present invention.
  • a graph of the electromagnetic wave shielding rate for each frequency for (100) and its comparative example is shown. That is, in FIG. 8 , the x-axis represents the frequency, and the y-axis represents the electromagnetic wave shielding rate, and the unit is decibel (DB).
  • the electromagnetic wave shielding film 100 according to the first embodiment of the present invention was manufactured. Specifically, after coating the resin layer 120 of the urethane acrylate resin on the transparent PET substrate 110, the resin layer is imprinted with a mold having an embossed pattern to form a groove of the engraved pattern. Thereafter, the conductive paste of silver (Ag) particles was filled in the engraved grooves, and the electrode pattern 130 of the mesh pattern was formed by curing and surface cleaning and heat treatment sintering. At this time, each pattern line 131 of the electrode pattern 130 filled in each intaglio groove has the same width (W) and depth (H).
  • the silver (Ag) particles included in the conductive paste include 30% of the first particles 134 of 1 ⁇ m or more and 1.5 ⁇ m or less, and 70% of the second particles 135 of 400 nm or more and 450 nm or less. .
  • the conventional shielding film (comparative example) was produced.
  • the conventional shielding film has the same structure as the electromagnetic wave shielding film 100 according to the first embodiment of the present invention, the substrate, the resin layer, and the electrode pattern. That is, the electrode pattern of the comparative example is manufactured according to imprinting and conductive paste filling of the same mold, and has the same mesh pattern as that of the first embodiment.
  • the electrode pattern was formed using a conductive paste containing silver (Ag) particles having a metal particle size of 200 nm or more to 250 nm or less. That is, in the comparative example, the electrode pattern was formed using silver (Ag) particles of substantially similar size.
  • the first embodiment shows the manufactured electromagnetic wave shielding film 100 according to the first embodiment of the present invention
  • the comparative example shows the manufactured conventional electromagnetic wave shielding film.
  • the first embodiment includes the first structures 136A, whereas the comparative example includes the second structure without the first structure 136A. (136B) only. That is, in the electrode pattern 130 of the first embodiment, the first particles 134 having a large size are located between the second particles 135 having a small size, and the first particles 134 are mixed with the second particles 135 . Metal particles are distributed to surround them.
  • the metal particle size of the electrode pattern 130 is different, and in particular, as in the first embodiment, the large first particles 134 and the small second particles 135 are mixed in a 3:7 mixing ratio.
  • the silver (Ag) content in the same space was further improved by about 4% compared to the comparative example. That is, it was confirmed that the fillability of the metal particles according to the first embodiment was improved.
  • the sheet resistance of the electrode pattern was measured in the same section. As a result, it was confirmed that in the case of Example 1 (where about 0.4 ⁇ , where ⁇ represents an area and represents cm 2 ), the resistance was reduced by about 0.3 ⁇ s than about 0.7 ⁇ .
  • the filling weight density becomes relatively high according to the improvement of the filling properties of the metal particles according to the mixing of the first particles 134 and the second particles 135, so that the electrical resistance can be relatively low. there is.
  • the shielding rate was measured for each frequency. That is, referring to FIG. 8 , it can be seen that the graph of the first embodiment generally has a higher shielding rate than the graph of the comparative example in the entire frequency band.
  • the electromagnetic wave shielding rate increases more in the high frequency band, and it rises further by about 3 dB compared to the graph of the comparative example. That is, as in the first embodiment, the electrode pattern 130 formed by mixing large and small metal particles within a set range improves the filling property, and as a result, the resistance is lowered to increase the electromagnetic wave shielding rate for the entire frequency band. Able to know.
  • FIG. 9 is a partial cross-sectional view of one side of the electromagnetic wave shielding film 200 according to the second embodiment of the present invention.
  • the electromagnetic wave shielding film 200 according to the second embodiment of the present invention has electromagnetic wave shielding performance, and as shown in FIG. 9 , a substrate 210 , a resin layer 220 , an electrode pattern 230 , and a conductivity It may include a layer 240 and a hard coating layer 250 .
  • the substrate 210, the resin layer 220, the electrode pattern 230 and the pattern line 231 are the substrate 110 of the electromagnetic wave shielding film 100 according to the first embodiment of the present invention to be described above or later, Since it is the same as the resin layer 120 , the electrode pattern 130 , and the pattern line 131 , a detailed description thereof will be omitted.
  • the electromagnetic wave shielding film 100 according to the second embodiment of the present invention may also function as a screen device.
  • the electromagnetic wave shielding film 200 has high electromagnetic wave shielding performance even when electromagnetic waves generated from electronic devices are in a high frequency band as well as a low frequency band. It may be implemented through the conductive layer 240 with high conductivity provided additionally on the upper or lower portion of the 230 .
  • the conductive layer 240 is a layer made of a conductive material, and the conductive layer 240 may have an area covering the area of the electrode pattern 230 arranged along one surface of the substrate 210 .
  • the conductive layer 240 may be formed in the direction of one surface of the electrode pattern 230 (refer to FIG. 9(a)) or the other surface of the substrate 210 (refer to FIG. 9(b)).
  • the conductive layer 240 may be formed in both the direction of one surface of the electrode pattern 230 and the direction of the other surface of the substrate 210 .
  • the conductive layer is made of ITO, silver (Ag) nanotubes, graphene, carbon nanotubes, silver (Ag) particles, or a conductive polymer such as PEDOT:PSS (poly(3,4-ethylenedioxythiophene)polystyrene sulfonate). may be included, but is not limited thereto.
  • the conductive layer 240 may be made of a transparent conductive material such as ITO so that the display image can be transmitted.
  • the thickness of the conductive layer 240 is about 80 ⁇ m or more to 200 ⁇ m or less, and the sheet resistance at this time may be preferably about 50 ⁇ or more to about 200 ⁇ or less, more preferably about 100 ⁇ or more to about 150 ⁇ Having a sheet resistance of ⁇ can have the best electromagnetic wave shielding performance.
  • the conductive layer 240 is made of a material having high conductivity, the degree of reflection of electromagnetic waves may be further increased to further improve the electromagnetic wave shielding rate thereof.
  • the hard coating layer 250 may be formed on the other surface of the substrate 210 .
  • the hard coating layer 250 may be selectively applied to prevent scratch damage to the substrate 210 . That is, when the conductive layer 240 is formed on the other surface of the substrate 210 (see FIG. 9(b) ), the conductive layer 240 may be formed on the other surface of the hard coating layer 250 .
  • FIG. 10 shows a graph of the electromagnetic wave shielding rate for each frequency of the electromagnetic wave shielding film 200 according to the second embodiment of the present invention that was actually manufactured and a comparative example thereof.
  • an electromagnetic wave shielding film 200 according to the second embodiment of the present invention was manufactured. Specifically, in the first embodiment manufactured in FIGS. 7 and 8 , a conductive layer 240 was additionally formed. That is, a conductive layer 240 of ITO having a sheet resistance of about 150 ⁇ was deposited on one side of the electromagnetic wave shielding film 100 of the first embodiment.
  • the second embodiment shows the manufactured electromagnetic wave shielding film 200 according to the second embodiment of the present invention.
  • the comparative examples prepared in FIGS. 7 and 8 were used.
  • the shielding rate was measured for each frequency. That is, referring to FIG. 10 , it can be confirmed that the electromagnetic wave shielding film 200 of the second embodiment has a shielding rate of at least about 4 dB and a maximum of about 20 dB compared to the electromagnetic wave shielding film of the comparative example. In particular, it can be seen that the electromagnetic wave shielding rate is greatly improved in the low frequency region.
  • the electromagnetic wave shielding film 200 includes an electrode pattern 230 in which metal particles of a first particle 134 having a large size and a metal particle of a second particle 135 having a small size are mixed.
  • the conductive layer 240 is additionally included, it can be seen that the low-frequency band to the high-frequency band has a uniform and high shielding rate.
  • FIG 11 shows an example in which the electromagnetic wave shielding film 100 according to the first embodiment of the present invention is applied to a display as a screen device.
  • the screen device according to the embodiment of the present invention is a light-transmitting screen device, and includes the electromagnetic wave shielding film 100 according to the first embodiment of the present invention to enable at least one of a touch input and electromagnetic wave shielding.
  • the screen device according to the embodiment of the present invention may further include a protective substrate 30 , a connector 40 and a peripheral wiring 50 in addition to the electromagnetic wave shielding film 100 according to the first embodiment of the present invention.
  • Such a screen device may include a plurality of sets (eg, two sets, etc.) of an electromagnetic wave shielding film 100 , a protective substrate 30 , a connector 40 , and a peripheral wiring 50 , and these sets are stacked up and down can be combined with each other.
  • the screen device may be disposed on the front part of the display, may be used in various ways as at least one of a touch screen device and an electromagnetic wave shielding device, and may be used for a vehicle window or a building window. .
  • the substrate 110 may be made of a transparent material that transmits light, and the lower surface of the substrate 110 may be laminated on the display panel.
  • the electrode pattern 130 , the connector 40 , and the peripheral wiring 50 may be formed on the upper surface of the substrate 110 , and the upper surface thereof may be protected by the protective substrate 30 .
  • the upper surface of the protective substrate 30 may be protected with a glass substrate (not shown).
  • the area of the substrate 110 may be larger than the screen area of the display to which the screen device is applied, or may be the same as the above-mentioned screen area.
  • the region on the substrate 110 on which the electrode pattern 130 is formed may be a channel region, a touch region, or an active region, and the remainder may be a peripheral region.
  • the channel region may include a plurality of channel sections (C).
  • the electrode pattern 130 formed in each channel section C may be electrically insulated from the electrode pattern 130 in the adjacent channel section C by a disconnection or the like. That is, a plurality of disconnection lines may be formed in the electrode pattern 130 to separate and partition the above-described channels in a predetermined direction such that a plurality of respective electrically conductive channels are formed.
  • the disconnected line means a disconnected portion at the periphery of each channel. Meanwhile, the shape and arrangement of the channel section c may vary.
  • the electrode pattern 130 of the electromagnetic wave shielding film 100 may include a plurality of irregular polygons 133 .
  • each of the pitch values P is included within a preset range, and the adjacent irregular polygons 133 have different pitch values P from each other.
  • the protective substrate 30 may be formed to cover the upper surface of the electromagnetic wave shielding film 100 .
  • the protective substrate 30 may have a film shape.
  • the protective substrate 30 may include an optical clear adhesive (OCA) material and may be optically transparent.
  • OCA optical clear adhesive
  • the protective substrate 30 may be referred to as a protective sheet, an adhesive sheet, or an adhesive film.
  • a connector 40 and a peripheral wiring 50 may be formed in a peripheral area on the transparent substrate 110 .
  • the connector 40 may be electrically connected to the electrode pattern 130 , and the peripheral wiring 50 may connect the connector 40 to an external circuit (not shown).
  • a touch signal sensed by the electrode pattern 130 may be transmitted to an external circuit through the connector 40 .
  • the above-described connector 40 and peripheral wiring 50 may include at least one of indium tin oxide (ITO), copper (Cu), and silver (Ag) materials.
  • such a screen device may include the electromagnetic wave shielding film 200 according to the second embodiment of the present invention instead of the electromagnetic wave shielding film 100 according to the first embodiment of the present invention.
  • a description thereof will be omitted.
  • the number of vertices V may be four or more.
  • the irregular polygon 133 may be a polygon with a quadrangle or larger among polygons.
  • the triangular irregular polygon has a smaller area than the square or larger irregular polygon, and the triangular irregular polygon has a sufficient size compared to the pixel area of the display. Since it does not have , pixels and triangular irregular polygons may be optically interfered with.
  • the irregular polygon 133 is formed as a polygon having a quadrangle or larger, since the area thereof is larger than the same pixel value, optical interference between the irregular polygon 133 and the pixel can be suppressed or prevented.
  • the irregular polygon 133 may have various shapes such as a quadrangle, a pentagon, and a hexagon.
  • a quadrangle a quadrangle
  • a pentagon a pentagon
  • a hexagon a hexagon
  • the irregular polygon 133 formed to have five vertices V and five sides S has a first vertex, a second vertex, a third vertex, a fourth vertex and a fifth vertex, a first side, a It may include a second side, a third side, a fourth side, and a fifth side.
  • Each of the irregular polygons 133 may have different directions r in which each side S extends. That is, the first direction in which the first side is extended, the second direction in which the second side is extended, the third direction in which the third side is extended, the fourth direction in which the fourth side is extended, and the fifth direction in which the fifth side is extended are different directions.
  • the irregular polygons 133 may have different angles ⁇ formed by adjacent sides S around each vertex V. Accordingly, a boundary line between the irregular polygons 133 forms a constant pattern. It is possible to prevent from appearing more conspicuously than the surroundings. For example, if the irregularity of the irregular polygons 133 is excessive, a foreign body feeling may rather occur on the electrode pattern 130, according to the first embodiment of the present invention.
  • the irregular polygons 133 can prevent a foreign body feeling.
  • distance values between vertices V may be different from each other within a predetermined size range. That is, the distance value between the first vertex and the second vertex, the distance value between the second vertex and the third vertex, the distance value between the third vertex and the fourth vertex, and the distance value between the fourth vertex and the fifth vertex, The distance values between the fifth vertex and the first vertex may all be within a predetermined size range and have different sizes. Accordingly, it is possible to prevent each of the irregular polygons 133 from being significantly distorted compared to the surrounding, and it is possible to suppress or prevent the unspecified atypical polygons 133 from being conspicuous compared to the surrounding.
  • the plurality of irregular polygons 133 formed as described above may have different shapes between the irregular polygons 133 adjacent to each other.
  • the first irregular polygon 133a and the second irregular polygon 133b adjacent to each other may have different shapes.
  • the pitch value Pa of the first irregular polygon 133a and the pitch value Pb of the second irregular polygon 133b may also be different from each other.
  • the pitch values P, Pa, and Pb mean a maximum value among distance values between the vertices V of the irregular polygon 133 .
  • each pitch value P may be determined according to light transmittance and sheet resistance of the electrode pattern 130 .
  • each of the plurality of atypical polygons 133 has a pitch value P such that the light transmittance of the electrode pattern 130 is 80% or more and the sheet resistance of the electrode pattern 130 is about 10 ⁇ /cm 2 or less.
  • the pitch value of the atypical polygon 133 is any one value selected from among the values such that the lower limit value causes the light transmittance of the electrode pattern 130 to be about 80% or more, and the upper limit value is the electrode pattern 130.
  • the sheet resistance of the electrode pattern 130 is about 10 ⁇ It may be any one value selected from among values to be less than or equal to /cm 2 .
  • the upper limit of the light transmittance of the electrode pattern 130 may be less than about 100%, and the lower limit of the sheet resistance of the electrode pattern 130 may be about 0.1 ⁇ /cm 2 or more.
  • the lower limit and upper limit of the pitch value P of the irregular polygon 133 may be selected within the range of about 70 ⁇ m or more to about 650 ⁇ m or less.
  • the size of the lower limit value among the pitch values P of the plurality of irregular polygons 133 may be about 70% of the size of the reference pitch value, and the size of the upper limit value may be about 130% of the size of the reference pitch value. That is, the plurality of irregular polygons 133 may have upper and lower limits based on the size of a predetermined reference pitch value, and thus, the plurality of irregular polygons 133 have a deviation of about ⁇ 30% with respect to the reference pitch value. can have Specifically, the minimum pitch value may have a deviation of about -30% and the maximum pitch value may have a deviation of about +30% with respect to the reference pitch value. That is, upper and lower limits of the pitch values of the plurality of irregular polygons 133 may be determined by the reference pitch value. That is, the reference pitch value means a pitch value serving as a reference for determining the upper and lower limits of the pitch value.
  • the minimum pitch value among the pitch values of the plurality of irregular polygons 133 may be 0.7 times the reference pitch value, and the maximum pitch value may be 1.3 times the reference pitch value. Accordingly, it is possible to prevent each of the irregular polygons 133 from being prominent in size compared to the surroundings, and to suppress or prevent the non-specific irregular polygons 133 from being outstanding compared to the surroundings.
  • the boundary is It looks more prominent than the surroundings, and a foreign body sensation may occur.
  • the deviation of the upper limit and the lower limit with respect to the reference pitch value is within the above-mentioned range, even if the irregular polygon having the minimum pitch value and the irregular polygon having the maximum pitch value are adjacent to each other, the boundary may not be more prominent than the surroundings, It is possible to prevent the occurrence of foreign body sensation.
  • the reference pitch value is, for example, a minimum pitch value and a maximum pitch value determined by the reference pitch value such that the light transmittance of the electrode pattern 130 is about 80% or more and the sheet resistance of the electrode pattern 130 is about 10 ⁇ /cm 2 or less.
  • the size may be set to be the same as or similar to the pixel size of the display to which the screen device is to be applied within a range of a predetermined pitch value to be included within the size range of the pitch value P.
  • the light transmittance of the electrode pattern 130 is less than about 80%, it is difficult to accurately view the screen output from the display device disposed under the electrode pattern 130 .
  • the sheet resistance of the electrode pattern 130 exceeds about 10 ⁇ /cm 2 , the touch recognition sensitivity of the electrode pattern 130 may be slowed.
  • the above-described reference pitch value may be any one value selected from about 100 ⁇ m or more to about 500 ⁇ m or less. At this time, if the size of the reference pitch value is less than about 100 ⁇ m, the minimum pitch value may be less than about 70 ⁇ m, and the light transmittance of the electrode pattern 130 is about It can be lowered to less than 80%.
  • the size of the reference pitch value exceeds about 500 ⁇ m
  • the size of the maximum pitch value exceeds about 650 ⁇ m
  • due to the atypical polygons having the maximum pitch value the sheet resistance of the electrode pattern 130 is about 10 ⁇ /cm 2 can be larger
  • the pitch value P of the irregular polygon 133 increases, the light transmittance of the electrode pattern 130 may be improved. Also, as the pitch value P of the irregular polygon 133 decreases, the sheet resistance of the electrode pattern 130 may decrease.
  • the size of the reference pitch value and the range of the pitch values P may be determined as described above in accordance with the light transmittance and sheet resistance required for the electrode pattern 130, and the irregular polygon ( 133), the transmittance and sheet resistance of the electrode pattern 130 may be maintained at a desired high level.
  • the light transmittance of the electrode pattern 130 deteriorates, it is difficult for the screen device to accurately recognize the screen output from the display, and if the sheet resistance of the electrode pattern 130 increases, the recognition sensitivity of the touch may be slowed.
  • the range of the pitch value P of the irregular polygons 133 according to the first embodiment of the present invention will be specifically exemplified as follows.
  • the lower limit of the pitch value P of the irregular polygon 133 is about 70 ⁇ m, and the upper limit thereof is about 130 ⁇ m, and in this case, the reference pitch value may be about 100 ⁇ m.
  • the shape or size of each irregular polygon 133 may be determined within the range of the pitch value P. Accordingly, the plurality of irregular polygons 133 may have pitch values P having different sizes within the range of the pitch values P of about 70 ⁇ m or more to about 130 ⁇ m or less. From this, it is possible to prevent the formation of a predetermined shape having a specific regularity in the electrode pattern 130 while preventing excessive irregularity of the irregular polygons 133 .
  • the lower limit of the pitch values P of the plurality of irregular polygons 133 is about 140 ⁇ m, and the upper limit thereof is about 260 ⁇ m, and in this case, the reference pitch value may be about 200 ⁇ m.
  • the shape or size of each irregular polygon 133 may be determined within the range of the pitch value P. That is, the plurality of irregular polygons 133 constituting the electrode pattern 130 may have pitch values P having different sizes within the range of the pitch values P of about 140 ⁇ m or more to about 260 ⁇ m or less. .
  • the lower limit of the pitch value P of the irregular polygon 133 is about 210 ⁇ m, and the upper limit thereof is about 390 ⁇ m, and in this case, the reference pitch value may be about 300 ⁇ m.
  • the shape or size of each irregular polygon 133 may be determined within the range of the pitch value P. That is, the plurality of irregular polygons 133 constituting the electrode pattern 130 may have pitch values P of different sizes within the range of the pitch values P of about 210 ⁇ m or more to about 390 ⁇ m or less. .
  • the lower limit of the pitch value P of the irregular polygon 133 is about 245 ⁇ m, and the upper limit thereof is about 455 ⁇ m, and in this case, the reference pitch value may be about 350 ⁇ m. That is, the plurality of irregular polygons 133 constituting the electrode pattern 130 may have pitch values P of different sizes within the range of the pitch values P of about 245 ⁇ m or more to about 455 ⁇ m or less. .
  • the range of the pitch value (P) of the plurality of irregular polygons 133 exceeds the above-mentioned range, the irregular polygons having a pitch value (P) of less than about 245 ⁇ m and an irregular polygon having a pitch value (P) greater than about 455 ⁇ m When they are adjacent to each other, a foreign body sensation may occur in the electrode pattern 130 due to a difference in size between them.
  • the lower limit of the pitch value P of the irregular polygon 133 is about 280 ⁇ m, and the upper limit thereof is about 520 ⁇ m, and in this case, the reference pitch value may be about 400 ⁇ m.
  • the shape or size of each irregular polygon 133 may be determined within the range of the pitch value P. That is, the plurality of irregular polygons 133 constituting the electrode pattern 130 may have pitch values P of different sizes within the range of the pitch values P of about 280 ⁇ m or more to about 520 ⁇ m or less. .
  • the range of the pitch value (P) of the plurality of irregular polygons 133 exceeds the above-mentioned range, the irregular polygons having a pitch value (P) of less than about 280 ⁇ m and an irregular polygon having a pitch value (P) of greater than about 520 ⁇ m When they are adjacent to each other, a foreign body sensation may occur in the electrode pattern 130 due to a difference in size between them.
  • the lower limit of the pitch value P of the irregular polygon 133 is about 315 ⁇ m, and the upper limit thereof is about 585 ⁇ m, and in this case, the reference pitch value may be about 450 ⁇ m. That is, the plurality of irregular polygons 133 constituting the electrode pattern 130 may have pitch values P of different sizes within the range of the pitch values P of about 315 ⁇ m or more to about 585 ⁇ m or less. . When the range of the pitch value P of the plurality of atypical polygons 133 exceeds the above-described range, a foreign body sensation may occur in the electrode pattern 130 .
  • the lower limit of the pitch value P of the irregular polygon 133 is about 350 ⁇ m, and the upper limit thereof is about 650 ⁇ m, and in this case, the reference pitch value may be about 500 ⁇ m.
  • the shape or size of each irregular polygon 133 may be determined within the range of the pitch value P. That is, the plurality of atypical polygons 133 constituting the electrode pattern 130 may have pitch values P having different sizes within the range of the pitch values P of about 350 ⁇ m or more to about 650 ⁇ m or less. . When the range of the pitch value P of the plurality of atypical polygons 133 exceeds the above-described range, a foreign body sensation may occur in the electrode pattern 130 .
  • the reference pitch value may be a value selected from 100 to 500 ⁇ m, and according to the reference pitch value, the range of the pitch value P of the plurality of atypical polygons 133 may be determined as described above, and the reason is that the It is in the electrical and optical properties of the touch screen device formed of The touch screen device is positioned above the display device to ensure transmittance of a certain value or more, and a low sheet resistance is required to realize high sensitivity when touched.
  • the transmittance and sheet resistance depend on the size of the pitch value in the mesh, and in general, the size of the pitch value of the electrode pattern 130 , the size of the transmittance, and the size of the sheet resistance are proportional to each other.
  • the transmittance has a value of about 80%
  • the sheet resistance shows a value of about 1 ⁇ .
  • the reference pitch value is about 500 ⁇ m
  • it has a transmittance of about 87% and a sheet resistance of about 7 ⁇ .
  • the touch sensitivity may show a lower value compared to the mesh with a small pitch.
  • the atypical polygons 133 having a relatively large or small size compared to the surrounding area are generated in an unspecified area of the electrode pattern 130 or a bundle. can be prevented, and it is possible to prevent an unspecified area in the electrode pattern 130 from appearing more prominent than the surrounding area. That is, it is possible to prevent a feeling of foreign body generated at the boundary line of the irregular polygons 133 due to the size difference.
  • the closer the reference pitch value is to about 100 ⁇ m the smaller the sheet resistance of the electrode pattern 130, so the touch sensitivity can be improved, and the closer the reference pitch value is to about 500 ⁇ m, the greater the light transmittance.
  • the screen of the applied display may be brightened.
  • the shape of the electrode pattern 130 formed as described above may be designed using, for example, a predetermined design program.
  • designing the entire shape of the electrode pattern 130 at once with the above-described predetermined design program causes a significant computational load.
  • the electrode pattern 130 according to the first embodiment of the present invention may include a plurality of unit mesh blocks A that are arrayed with each other.
  • the entire area of the electrode pattern 130 is blocked into unit mesh blocks (A) of the same size, and the shape of the mesh pattern for the block unit mesh block (A) is designed and designed.
  • the shape of one electrode pattern 130 connected to each other may be formed by arranging the shapes.
  • the size of the plurality of unit mesh blocks A may be determined according to, for example, the number of mesh objects in the block.
  • the number of objects in the mesh in the block is determined according to the number of meshes (polygons) in the block, and in this case, the appropriate number of objects is about 40,000 or more to about 250,000 or less.
  • the block size can be up to 5cm X 5cm. Specifically, it may have a block size of 1 cm X 1 cm or more and 5 cm X 5 cm or less. For example, the block size may be selected from 1cm X 1cm to 5cm X 5cm. Of course, the size of the block may vary within the range of 5 cm X 5 cm or less.
  • a block in the form of a square in which the length of the side per area can be optimally set is used, but it is also possible to use a rectangle of any other shape other than the square shape.
  • the above appropriate number of objects and block size was determined based on the computing power of a general design PC.
  • the atypical polygons forming the boundary between the unit mesh blocks (A) in the outermost part of each of the plurality of unit mesh blocks (A) have a shape and size. may be different. That is, in the plurality of unit mesh blocks (A), the shape and size of the irregular polygons of the boundary line may be corrected.
  • the shape and size may be corrected so that the lengths of the sides S of the irregular polygons 133 positioned at the boundary of the unit mesh blocks A and the extension direction r are different from each other, and the irregular polygon
  • the shape of (133) may be corrected so that the angles ⁇ formed by the sides S adjacent to each other around each vertex V are different.
  • This correction is called block boundary line correction, and thereby the unit mesh block It is possible to prevent a feeling of foreign body from occurring at the boundary of (A), and each unit mesh block (A) can be arranged naturally or smoothly, that is, the overall shape of the electrode pattern 130 by the computing power of the design PC. Since it is difficult to design at once, it is necessary to design the shape of the unit mesh blocks (A), respectively, and then array them to design the shape of one electrode pattern (130).
  • the block boundary line correction is not performed, even though the pitch values of the atypical polygons 133 neighboring each other within each unit mesh block A are different from each other, when looking at the boundary of the unit mesh blocks A, the neighboring A case may occur in which the pitch values of the irregular polygons 133 become the same, and thus, the boundary of the unit mesh blocks A may be visually recognized.
  • the block boundary line is corrected, adjacent irregularities on the entire surface of the electrode pattern 130 .
  • the respective pitch values of the polygons 133 may be different from each other, and thus, it is possible to prevent the boundary of the unit mesh blocks A from being recognized.
  • FIG. 12 is a photograph showing an electrode pattern according to an embodiment of the present invention and a comparative example thereof in comparison.
  • Figure 12 (a) is an electrode pattern according to a comparative example of the present invention, and the pitch value has a range of about 70 ⁇ m or more to about 130 ⁇ m or less, and the line width and depth of the mesh line are about 10 ⁇ m, respectively, Since the block boundary line is not corrected, the pitch values of at least some of the irregular polygons adjacent to each other near the boundary of the unit mesh block are the same. Looking at the boundary line of the mesh pattern according to the comparative example, it can be seen that atypical polygons having relatively small sizes are clustered together, and it can be seen that the linear shade is visually recognized on the mesh pattern due to the size difference.
  • (b) of FIG. 12 is an electrode pattern 130 according to an embodiment of the present invention, in which the pitch value has a range of about 70 ⁇ m or more to about 130 ⁇ m or less, and the line width and depth of the mesh line are Each is about 10 ⁇ m, and since the block boundary line has been corrected, the pitch values of the adjacent irregular polygons on the entire surface of the electrode pattern 130 are different from each other.
  • the pitch values of the plurality of irregular polygons 133 have a deviation of about ⁇ 30% with respect to the reference pitch value, and therefore, the aggregation of the irregular polygons due to the size difference does not occur as a whole in the mesh pattern. , it can also be seen that the aforementioned aggregation phenomenon does not occur even at the boundary between blocks. That is, in the embodiment of the present invention, it can be seen that a linear shadow is not formed on the mesh pattern.
  • the above-mentioned boundary line means the boundary line of the unit mesh block forming the electrode pattern.
  • FIG. 13 is a view showing characteristics of a screen device according to an embodiment and a comparative example of the present invention in comparison. That is, FIG. 13 is a table showing light transmittance of screen devices according to Examples and Comparative Examples in comparison with each other.
  • the light transmittance is the transmittance with respect to the intensity of the light passing through the screen device, and the larger the size, the better the light transmits.
  • the comparative example of FIG. 13 is a mesh pattern formed of irregular polygons that do not limit the upper and lower limits of the pitch value using the reference pitch value.
  • the central value of the pitch value is about 100 ⁇ m and the range of the pitch value is about 70 ⁇ m or more It is a mesh pattern including irregular polygons with a line width and a depth of about 10 ⁇ m, respectively, in a predetermined range out of about 130 ⁇ m or less.
  • 13 is a mesh pattern formed of irregular polygons in which the upper and lower limits of the pitch value are defined using the reference pitch value, the reference pitch value is about 100 ⁇ m, and the range of the pitch value is about 70 ⁇ m or more to about It is a mesh pattern including irregular polygons that are included in the range of 130 ⁇ m or less, and have a line width and a depth of about 10 ⁇ m, respectively.
  • the light transmittance of the screen device including the electrode pattern according to the comparative example of FIG. 13 and the screen device including the electrode pattern according to the embodiment are compared, the light transmittance of the comparative example is smaller than 84%, and the light transmittance of the embodiment is This is greater than 84%. That is, it can be seen that the light transmittance is larger in the case of the embodiment. This means that the screen device of the embodiment transmits the screen of the display better.
  • the reason for the difference in light transmittance between the comparative example and the example is that in the case of the comparative example, the difference between the upper and lower limits of the pitch value is large. This is because the shading and the pixel pattern of the display interfere with each other to form a moiré interference fringe.
  • the upper and lower limits of the pitch value are limited to have a deviation of about ⁇ 30% from the reference pitch value, and as the pitch values are variously distributed within the limited range, there is a rule within the electrode pattern. It is possible to prevent excessive irregularity while eliminating repetitive shape repetition, to prevent moiré interference fringes due to size differences, and to improve visibility.
  • FIG. 14 is a photograph for explaining whether a moiré phenomenon occurs in a screen device according to an embodiment of the present invention
  • FIG. 15 is a photograph showing a display to which the screen device according to an embodiment of the present invention is applied.
  • the dark color part of FIG. 14 is the bezel part of the display device
  • the light color part inside the dark bezel part is the screen part of the display
  • FIG. 14 is a picture taken through the screen device according to the embodiment of the present invention. This is a picture of the display.
  • the electromagnetic wave shielding films 100 and 200 according to the present invention configured as described above have improved shielding performance. That is, the electromagnetic wave shielding films 100 and 200 according to the present invention can exhibit improved electromagnetic wave shielding performance in any electromagnetic wave frequency band generated by the applied product, as well as prevent electromagnetic waves of various bands generated in complex products or various fields. Regardless of the frequency band, it can be integrated with a high shielding rate.
  • the electrode patterns 130 and 230 of the electromagnetic wave shielding films 100 and 200 according to the present invention include an atypical polygon 133, it prevents mutual interference with the pixel pattern of the display, thereby preventing the moiré phenomenon at all angles of the plane. can be avoided, and visibility is improved.
  • the atypical polygon 133 suppresses pattern aggregation of the electrode patterns 130 and 230 and distributes the electrode patterns 130 and 230 in a more balanced manner, thereby further enhancing the electromagnetic wave shielding effect.
  • the plurality of atypical polygons 133 have a polygonal shape having at least four or more sides and have different shapes from each other, and the boundary line visibility problem at all angles of 360 degrees while satisfying the optical and electrical properties required for a screen device can be resolved, and the moiré phenomenon can be avoided. Accordingly, when the screen device is attached to the front surface of the display device and used as a touch screen device or an electromagnetic wave shielding device, it is possible to prevent the moiré phenomenon due to the foreign body feeling of the mesh pattern, and also, it is possible to prevent the moiré phenomenon from occurring at all angles regardless of the pixel pattern of the display. By preventing the pixel pattern of the display device from interfering with the electrode pattern 130 of the screen device, the moiré phenomenon can be avoided at all angles of 360 degrees, and visibility of the screen device can be improved.
  • the present invention relates to an electromagnetic wave shielding film, and since it is possible to provide an electromagnetic wave shielding film having improved electromagnetic wave shielding rate and high electromagnetic wave shielding performance in various frequency bands of electromagnetic waves at the same time, it has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

본 발명의 일 실시예에 따른 전자파 차폐 필름은, 기판; 및 상기 기판의 일면 방향에 마련되고, 금속입자를 함유하는 전극패턴;을 포함하며, 상기 금속입자는 제1 범위의 크기를 가지는 제1 입자들과 제1 범위 보다 작은 제2 범위의 크기를 가지는 제2 입자들을 각각 포함하고, 제2 입자가 제1 입자 보다 더 많으며, 제2 입자들 사이에 적어도 하나의 제1 입자가 혼합된 것을 특징으로 한다.

Description

전자파 차폐 필름
본 발명은 전자파 차폐 필름에 관한 것으로서, 전자파 차폐율이 향상되고 동시에 전자파의 다양한 주파수 대역에서도 두루 높은 전자파 차폐 성능을 가지는 전자파 차폐 필름에 관한 것이다.
각종 전자기기는 그 구동 중에 다양한 유해 전자파를 발생시키는데, 이러한 유해 전자파는 인체에 악영향을 미칠 뿐 아니라, 해당 전자기기와 다른 기기의 오작동이나 전파 장애를 초래하여, 제품 성능을 저하시키고 제품 수명을 단축시킬 수 있다.
특히, 대부분의 디스플레이의 경우, 그 작동 특성 상 이러한 유해 전자파를 쉽게 발생시키는 경향이 있어, 해당 유해 전자파를 차단하기 위해 전자파 차폐 부재가 디스플레이의 전면에 채용된다. 이러한 전자파 차폐 부재는 전자파를 차폐하는 기능 외에 디스플레이의 표시 화면의 투시성을 저하시키지 않는 것이 요구된다.
한편, 디스플레이의 전면에 사용되는 종래의 전자파 차폐 부재는 금속 메쉬(mesh)를 포함한다. 이때, 금속 메쉬로는 구리 호일의 에칭을 통해 형성된 필름 형태의 구리 메쉬가 일반적으로 사용되었다.
이러한 구리 메쉬 필름을 제조하기 위해서는 도금에 의한 구리박막 형성과정과, 화질 향상을 위한 흑화 처리과정과, 표면요철 처리과정과, 산화방지 처리과정 등을 수행해야 하고, 다음으로 구리 호일을 PET 필름에 접착한 후 구리 호일에 포토리소그래피(photo lithography)방법을 이용하여 포토레지스트 코팅, 노광, 현상 및 에칭을 수행해야 한다.
하지만, 이러한 제조방법은 제조과정이 복잡하고 포토리소그래피 공정 등이 수행되어야 함에 따라 제조 비용이 상승할 뿐 아니라, 구리의 90% 이상을 에칭을 통해 제거해야 하기 때문에 재료도 낭비하게 되는 문제점이 있었다.
이러한 문제점을 개선하기 위해, 전자파 차폐 부재는 다음과 같은 도전성 페이스트를 이용한 제조 방식이 제안되었다.
도 1은 도전성 페이스트를 이용한 종래의 전자파 차폐 부재(10)를 나타낸다.
도 1에 따른 종래의 전자파 차폐 부재(10)는 유리 기판(11)과, 유리 기판(11)의 일면에 형성된 전자파 차폐 패턴(12) 및 접지 전극(13)을 각각 포함한다. 이때, 전자파 차폐 패턴(12)은 유리 기판(11) 상에 도전성 페이스트가 양각으로 인쇄되어 형성된 것이다. 즉, 종래의 전자파 차폐 부재(10)는 도전성 페이스트를 이용하여 전자파 차폐 패턴(12)을 형성함으로써, 보다 저렴하고 간단하게 전자파 차폐 성능을 구현할 수 있었다.
하지만, 종래의 도전성 페이스트를 이용한 전자파 차폐 부재(10)의 경우, 차폐 성능이 높지 않았으며, 특히 전자파의 일부 주파수 대역에 대해서만 차폐 성능을 나타내는 문제점이 있었다.
특히, 전자기기가 더욱 복잡해지고 고성능화 됨에 따라, 보다 더 높은 전자파 차폐 성능이 요구되고 있을 뿐 아니라, 다양한 전자파 주파수 대역에서도 두루 높은 전자파 차폐 성능이 요구되고 있다. 따라서, 이러한 요구에 부합할 수 있는 종래 기술 보다 진보된 기술이 필요한 실정이다.
다만, 상기의 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 본 발명의 기술분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안될 것이다.
상기한 바와 같은 종래 기술의 문제점을 해결하기 위하여, 본 발명은 도전성 페이스트의 도전성이 증대되어 전자파 차폐율이 향상되고, 전자파의 다양한 주파수 대역에서도 두루 높은 차폐 성능을 가지는 전자파 차폐 필름을 제공하는데 그 목적이 있다.
다만, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 과제를 해결하기 위한 본 발명의 일 실시예에 따른 전자파 차폐 필름은, 기판; 및 상기 기판의 일면 방향에 마련되고, 금속입자를 함유하는 전극패턴;을 포함하며, 상기 금속입자는 제1 범위의 크기를 가지는 제1 입자들과 제1 범위 보다 작은 제2 범위의 크기를 가지는 제2 입자들을 각각 포함하고, 제2 입자가 제1 입자 보다 더 많으며, 제2 입자들 사이에 적어도 하나의 제1 입자가 혼합된다.
본 발명의 다른 일 실시예에 따른 전자파 차폐 필름은, 기판; 상기 기판의 일면 방향에 마련되고, 금속입자를 함유하는 전극패턴; 및 상기 전극패턴의 일면 방향이나 상기 기판의 타면 방향에 마련되며, 상기 기판의 일면을 따라 나열된 상기 전극패턴을 커버하는 투명한 도전층;을 포함하며, 상기 금속입자는 제1 범위의 크기를 가지는 제1 입자들과 제1 범위 보다 작은 제2 범위의 크기를 가지는 제2 입자들을 각각 포함하고, 제2 입자가 제1 입자 보다 더 많으며, 제2 입자들 사이에 적어도 하나의 제1 입자가 혼합된다.
상기 전극패턴은 상기 제1 입자의 주변을 복수개의 제2 입자들이 둘러싸는 제1 구조체를 포함할 수 있다.
상기 전극패턴은 복수개의 제2 입자들이 연결된 제2 구조체를 더 포함할 수 있다.
상기 전극패턴은 상기 제1 구조체 보다 상기 제2 구조체의 개수를 더 많이 포함할 수 있다.
상기 제1 범위의 크기는 상기 제2 범위의 크기 보다 2배 이상 클 수 있다.
상기 제1 범위의 크기는 1㎛ 이상 내지 1.5㎛ 이하일 수 있으며, 상기 제2 범위의 크기는 400㎚ 이상 내지 450㎚ 이하일 수 있다.
상기 제1 입자와 상기 제2 입자 간의 개수 비율은 2:8 내지 4:6일 수 있다.
상기 전극패턴은 상기 기판의 일면을 따라 나열된 복수개의 폴리곤을 포함하는 메쉬 패턴 형상으로 형성될 수 있다.
상기 복수개의 폴리곤은 서로 이웃하는 복수개의 비정형 폴리곤을 포함할 수 있으며, 상기 비정형 폴리곤들은 서로 이웃하는 비정형 폴리곤들 간에 피치값이 서로 다를 수 있다.
상기 비정형 폴리곤은 꼭지점의 개수가 네 개 이상일 수 있고, 각각의 변이 연장되는 방향이 서로 다를 수 있다.
상기 비정형 폴리곤은 각각의 꼭지점을 중심으로 서로 이웃하는 변들이 이루는 각도들이 서로 다를 수 있다.
상기 전극패턴은 상기 기판의 일면이나, 상기 기판의 일면에 구비된 수지층의 일면에 형성된 홈을 따라 형성될 수 있다.
상기 전극패턴은 상기 기판의 일면에 양각 형상으로 형성될 수 있다.
상기 금속입자는 은(Ag), 구리(Cu), 알루미늄(Al), 니켈(Ni) 및 크롬(Cr) 중에서 선택된 어느 하나일 수 있고, 상기 도전층은 ITO, 은(Ag) 나노튜브, 그래핀, 카본 나노튜브, 은(Ag) 입자 또는 전도성 고분자 중에서 선택된 어느 하나일 수 있다.
본 발명의 일 실시예 또는 다른 일 실시예에 따른 전자파 차폐 필름은 상기 기판이 투명하여, 디스플레이에 광 투과성 스크린 장치로 채용 가능하다.
상기와 같이 구성되는 본 발명은 그 적용된 제품에서 발생되는 어떤 전자파 주파수 대역에서도 향상된 전자파 차폐 성능을 발휘할 수 있을 뿐 아니라, 복잡한 제품 또는 다양한 분야에서 발생하는 다양한 대역의 전자파를 그 주파수 대역에 상관없이 통합적으로 높은 차폐율로 차단할 수 있는 이점이 있다.
또한, 본 발명의 전극패턴이 비정형 폴리곤을 포함하는 경우, 디스플레이의 픽셀 패턴과 상호 간섭하는 것을 방지함으로써 평면 모든 각도에서 모아레 현상을 회피할 수 있으며 시인성이 향상되는 이점이 있다. 또한, 이러한 비정형 폴리곤은 전극패턴의 패턴 뭉침을 억제하여 전극패턴을 보다 균형 있게 분포시킴으로써 그 전자파 차폐 효과를 더욱 높일 수 있는 이점이 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 도전성 페이스트를 이용한 종래의 전자파 차폐 부재(10)를 나타낸다.
도 2는 본 발명의 제1 실시예에 따른 전자파 차폐 필름(100)의 사시도를 나타낸다.
도 3은 본 발명의 제1 실시예에 따른 전자파 차폐 필름(100)의 일측 단면도 일부를 나타낸다.
도 4는 본 발명의 제1 실시예에 따른 전자파 차폐 필름(100)에서 정형 폴리곤(132)의 메쉬 패턴을 가지는 전극패턴(130)의 평면도 일부를 나타낸다.
도 5는 본 발명의 제1 실시예에 따른 전자파 차폐 필름(100)에서 비정형 폴리곤(133)의 메쉬 패턴을 가지는 전극패턴(130)의 평면도 일부와 그 확대도를 나타낸다.
도 6은 전극패턴(130)의 패턴라인(131)에 포함된 제1 구조체(136A) 및 제2 구조체(136B)의 일 예를 나타낸다.
도 7은 실제 제작한 본 발명의 제1 실시예에 따른 전자파 차폐 필름(100)과 그 비교예에 대한 다양한 비교를 나타낸다.
도 8은 실제 제작한 본 발명의 제1 실시예에 따른 전자파 차폐 필름(100)과 그 비교예에 대한 주파수 별 전자파 차폐율의 그래프를 나타낸다.
도 9는 본 발명의 제2 실시예에 따른 전자파 차폐 필름(200)의 일측 단면도 일부를 나타낸다
도 10은 실제 제작한 본 발명의 제2 실시예에 따른 전자파 차폐 필름(200)과 그 비교예에 대한 주파수 별 전자파 차폐율의 그래프를 나타낸다.
도 11은 본 발명의 제1 실시예에 따른 전자파 차폐 필름(100)이 디스플레이에 스크린 장치로 적용된 경우의 일 예를 나타낸다.
도 12는 본 발명의 실시예와 그 비교예에 따른 전극패턴을 대비하여 보여주는 사진이다.
도 13은 본 발명의 실시예 및 비교예에 따른 스크린 장치의 특성들을 대비하여 보여주는 도면이다.
도 14는 본 발명의 실시예에 따른 스크린 장치에서의 모아레 현상 발생 여부를 설명하기 위한 사진이고, 도 15는 본 발명의 실시예에 따른 스크린 장치가 적용되는 디스플레이를 보여주는 사진이다.
본 발명의 상기 목적과 수단 및 그에 따른 효과는 첨부된 도면과 관련한 다음의 상세한 설명을 통하여 보다 분명해질 것이며, 그에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 또한, 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며, 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 경우에 따라 복수형도 포함한다. 본 명세서에서, "포함하다", “구비하다”, “마련하다” 또는 “가지다” 등의 용어는 언급된 구성요소 외의 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.
본 명세서에서, “또는”, “적어도 하나” 등의 용어는 함께 나열된 단어들 중 하나를 나타내거나, 또는 둘 이상의 조합을 나타낼 수 있다. 예를 들어, “A 또는 B”, “A 및 B 중 적어도 하나”는 A 또는 B 중 하나만을 포함할 수 있고, A와 B를 모두 포함할 수도 있다.
본 명세서에서, “예를 들어” 등에 따르는 설명은 인용된 특성, 변수, 또는 값과 같이 제시한 정보들이 정확하게 일치하지 않을 수 있고, 허용 오차, 측정 오차, 측정 정확도의 한계와 통상적으로 알려진 기타 요인을 비롯한 변형과 같은 효과로 본 발명의 다양한 실시 예에 따른 발명의 실시 형태를 한정하지 않아야 할 것이다.
본 명세서에서, 어떤 구성요소가 다른 구성요소에 '연결되어' 있다거나 '접속되어' 있다고 기재된 경우, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성 요소에 '직접 연결되어' 있다거나 '직접 접속되어' 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해될 수 있어야 할 것이다.
본 명세서에서, 어떤 구성요소가 다른 구성요소의 '상에' 있다거나 '접하여' 있다고 기재된 경우, 다른 구성요소에 상에 직접 맞닿아 있거나 또는 연결되어 있을 수 있지만, 중간에 또 다른 구성요소가 존재할 수 있다고 이해되어야 할 것이다. 반면, 어떤 구성요소가 다른 구성요소의 '바로 위에' 있다거나 '직접 접하여' 있다고 기재된 경우에는, 중간에 또 다른 구성요소가 존재하지 않은 것으로 이해될 수 있다. 구성요소 간의 관계를 설명하는 다른 표현들, 예를 들면, '~사이에'와 '직접 ~사이에' 등도 마찬가지로 해석될 수 있다.
본 명세서에서, '제1', '제2' 등의 용어는 다양한 구성요소를 설명하는데 사용될 수 있지만, 해당 구성요소는 위 용어에 의해 한정되어서는 안된다. 또한, 위 용어는 각 구성요소의 순서를 한정하기 위한 것으로 해석되어서는 안되며, 하나의 구성요소와 다른 구성요소를 구별하는 목적으로 사용될 수 있다. 예를 들어, '제1구성요소'는 '제2구성요소'로 명명될 수 있고, 유사하게 '제2구성요소'도 '제1구성요소'로 명명될 수 있다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또한, 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예들을 상세히 설명하도록 한다.
도 2는 본 발명의 제1 실시예에 따른 전자파 차폐 필름(100)의 사시도를 나타내며, 도 3은 본 발명의 제1 실시예에 따른 전자파 차폐 필름(100)의 일측 단면도 일부를 나타낸다. 즉, 도 3은 도 2에서 A-A'를 절단한 단면의 일부를 나타낸다.
본 발명의 제1 실시예에 따른 전자파 차폐 필름(100)은 전자파를 차폐 성능을 가지는 것으로서, 도 2 및 도 3에 도시된 바와 같이, 기판(110) 및 전극패턴(130)을 포함한다. 이러한 본 발명의 제1 실시예에 따른 전자파 차폐 필름(100)은 디스플레이의 전면에 채용되어 광 투과성 스크린 장치(이하, “스크린 장치”라 지칭함)로 기능할 수도 있다.
기판(110)은 평판 형상의 기재로서, 비전도성 재질로 이루어질 수 있다. 스크린 장치의 경우, 기판(110)은 광을 투과하는 투명한 재질로 이루어질 수 있다. 또한, 기판(110)은 유리 기판이거나 필름 형상으로 형성된 다양한 수지 재질의 기판일 수 있다. 예를 들어, 수지 재질의 기판(110)은 PET(Polyethylene Terephthalate), PEN(Polyethylene Naphthalate), PI(Polyimide), PC(Polycarbonate), 또는 PMMA(Polymethyl Methacrylate)등과 같은 다양한 수지 재질을 포함할 수 있다. 이러한 기판(110)의 광투과율은 80% 이상일 수 있다. 이때, 광투과율은 100%에 가까울수록 광투과성이 좋고, 0%에 가까울수록 광투과성이 나쁘다.
기판(110)의 두께는 약 10㎛ 이상 내지 250㎛ 이하일 수 있다. 이때, 기판(110)의 두께가 10㎛ 미만이면, 기판(110)에 전극패턴(130)을 원하는 두께로 형성하기 어려울 수 있다. 또한, 기판(110)의 두께가 250㎛ 초과하면, 스크린 장치의 휘도가 원하는 휘도보다 저하될 수 있다.
전극패턴(130)은 금속입자를 함유한 도전성 재질로 이루어진다. 이러한 전극패턴(130)은 기판(110)의 일면을 따라 평면 상에서 나란하게 배열된 다양한 패턴으로 형성되어, 그 주변을 통과하는 전자파에 대한 차폐 기능을 수행할 수 있다. 전극패턴(130)은 금속입자가 바인더 수지를 통해 경화된 형태일 수 있다. 예를 들어, 금속입자는 은(Ag), 구리(Cu), 알루미늄(Al), 니켈(Ni) 및 크롬(Cr) 등 전도성의 다양한 금속입자를 포함할 수 있으며, 다양한 크기를 가질 수 있다.
전극패턴(130)은 평면에서 볼 때 비정형 메쉬(mesh)패턴으로 형성될 수 있다. 다만, 전극패턴(130)은 이에 한정되지 않으며, 평면에서 볼 때 정형 메쉬 패턴, 정형 또는 비정형의 라인패턴, 다각형 패턴 등 다양한 패턴으로 형성될 수 있다.
전극패턴(130)은 기판(110)의 일면 방향에 형성될 수 있다. 즉, 전극패턴(130)은 기판(110)의 일면에 형성되거나, 기판(110)의 일면에 마련된 수지층(120)의 일면에 형성될 수 있다. 이러한 수지층(120)는 광을 투과시키도록 플라스틱의 투명 재질로 이루어질 수 있다. 예를 들어, 수지층(120)은 기판(110)과 다른 재질로 이루어질 수 있으며, 우레탄 아크릴레이트 등과 같은 다양한 수지 재질을 포함할 수 있다.
전극패턴(130)을 기판(110)의 일면 방향에 형성하기 위해, 전극패턴(130)에 대응하는 형상의 몰드를 이용하여 임프린팅(imprinting)함으로써, 전극패턴(130)에 대응한 형상의 오목한 음각 홈을 기판(110) 또는 수지층(120)의 일면에 형성할 수 있다. 이후, 형성된 음각 홈에 전도성 물질을 충전함으로써 해당 음각 홈 형상의 전극패턴(130)을 형성할 수 있다. 이때, 기판(110)이 수지 재질 기판인 경우, 해당 기판(110)의 일면에 전극패턴(130)이 형성될 수 있다. 또한, 기판(110)이 수지 기판 또는 유리 기판인 경우, 기판(110)의 일면에 수지층(120)이 도포된 후, 해당 수지층(120)의 일면에 전극패턴(130)이 형성될 수 있다.
구체적으로, 블레이드를 이용하여 전도성 금속입자와 바인더로 이루어진 전도성 페이스트를 기판(110) 또는 수지층(120)의 일면에 형성된 음각 홈에 충전한 후, 열 또는 자외선 등을 가하여 전도성 페이스트를 경화시킨다. 이후, 음각 홈에 충전되지 못하고 기판(110) 또는 수지층(120)의 표면에 남은 잔여 전도성 페이스트는 세정 부재에 의해 세정 제거되며, 다음으로 추가적인 열처리 과정을 통해 금속입자들은 소결되어 전극패턴(130)이 형성될 수 있다.
전극패턴(130)은 기판(110) 또는 수지층(120)의 일면의 음각 홈 내에 전도성 물질을 충전하여 형성하는 음각 전극 방식을 일 예로 설명하였으나, 이와 다르게 기판(110) 또는 수지층(120)의 일면에서 소정 두께로 돌출 형성되는 양각 전극 방식도 적용 가능하다. 이 경우, 전극패턴(130)은 기판(110) 또는 수지층(120)의 일면에 그라비어 옵셋 등으로 도전성 페이스트를 양각 인쇄함으로써 형성될 수 있다. 물론, 추가적으로 열 또는 자외선 등을 가하여 전도성 페이스트를 경화시킬 수 있으며, 후속 열처리를 통한 금속입자들의 소결도 가능하다.
도 4는 본 발명의 제1 실시예에 따른 전자파 차폐 필름(100)에서 정형 폴리곤(132)의 메쉬 패턴을 가지는 전극패턴(130)의 평면도 일부를 나타내며, 도 5는 본 발명의 제1 실시예에 따른 전자파 차폐 필름(100)에서 비정형 폴리곤(133)의 메쉬 패턴을 가지는 전극패턴(130)의 평면도 일부와 그 확대도를 나타낸다.
한편, 전극패턴(130)은 터치 센서의 역할을 할 수도 있다. 이 경우, 전극패턴(130)은 패턴 전극, 검출 전극, 센서층 혹은 전극층이라고 지칭될 수도 있다.
도 4 및 도 5를 참조하면, 전극패턴(130)은 복수개의 패턴라인(131)을 포함할 수 있다. 복수개의 패턴라인(131)은 각기 다양한 방향으로 상호 교차함으로써 복수개의 정형 폴리곤(132) 또는 비정형 폴리곤(133)을 형성할 수 있다. 즉, 복수개의 정형 폴리곤(132) 또는 비정형 폴리곤(133)은 각각의 변이 패턴라인(131)에 의해 형성될 수 있다. 한편, 패턴라인(131)을 얇은 도선이라고 지칭할 수 있다.
기판(110)의 음각 내에 전도성 물질을 충전하는 음각 전극 방식으로 패턴라인(131)을 형성하는 경우, 각 패턴라인(131)은 그 너비(W)가 약 4㎛ 이상 내지 약 10㎛ 이하일 수 있다. 또한, 각각의 패턴라인(131)은 그 깊이(H)가 약 4㎛ 이상 내지 약 10㎛ 이하일 수 있다. 패턴라인(131)의 단면 형상은 사각형 형상일 수 있다. 패턴라인(131)의 너비(W) 및 깊이(H)가 각각 4㎛ 보다 작으면 전극패턴(130)의 제작이 어려울 수 있다. 패턴라인(131)의 너비(W) 및 깊이(H)가 각각 10㎛ 보다 크면 전극패턴(130)의 광투과성에 영향일 끼칠 수 있고, 스크린 장치가 적용된 디스플레이의 화면 시인성이 저하될 수 있다. 한편, 패턴라인(131)의 너비(W) 및 깊이(H)는 각각 4㎛에 가까울수록 전극패턴(130)의 광투과성이 좋아지고, 10㎛에 가까울수록 사용자의 터치에 의한 정전 용량의 변화를 정확하게 감지할 수 있다.
기판(110) 또는 수지층(120)의 일면에서 돌출 형성되는 양각 전극 방식으로 패턴라인(131)을 형성하는 경우, 패턴라인(131)의 너비는 약 0.5 이상 내지 약 10㎛ 이하일 수 있고, 두께는 약 0.2㎛ 내지 약 5㎛ 이하일 수 있다. 이러한 패턴라인(131)의 단면 형상은 사각형 형상일 수 있다.
복수개의 정형 폴리곤(132) 또는 비정형 폴리곤(133)은 기판(110)의 상면을 따라 나열되며, 전극패턴(130)을 형성한다. 즉, 전극패턴(130)은 정형 또는 비정형의 얇은 도선들이 서로 교차하여 이루어지는 복수개의 정형 폴리곤(132) 또는 비정형 폴리곤(133)을 포함할 수 있다. 여기서, 정형은 규칙적인 형상을 의미하고 비정형은 불규칙적인 형상을 의미한다. 즉, 비정형은 그 형상이 소정 형상으로 정해졌으나, 정해진 형상으로부터 규칙적으로 반복되는 패턴을 도출할 수 없는 불규칙적인 형상일 수 있다. 이에, 복수개의 비정형 폴리곤(133)은 그 형상이 상이할 수 있다. 다만, 전극패턴(130)은 모아레 회피가 용이하도록, 복수개의 비정형 폴리곤(133)을 포함하는 것이 바람직할 수 있다.
복수개의 비정형 폴리곤(133)은 각각의 피치값(P)이 미리 설정된 범위 내에 포함된다. 또한, 서로 이웃하는 비정형 폴리곤(133)들은 각각의 피치값(P)이 서로 상이할 수 있다. 이때, 피치값(P)은 비정형 폴리곤(133)의 꼭지점들(V) 간의 거리값들 중 최대값을 의미한다. 이러한 복수개의 비정형 폴리곤(133)에 대한 상세한 설명은 후술하도록 한다.
한편, 전극패턴(130)은 그 전도성을 나타내는 금속입자의 크기 범위에 따라 그 차폐 성능에 영향을 미칠 수 있다. 이때, 금속입자의 크기는 금속입자의 일측에서 타측까지의 길이 중 최대 길이 등일 수 있으나, 이에 한정되는 것은 아니다.
즉, 종래의 전극패턴의 경우, 유사한 크기 범위를 가지는 금속입자만 포함함에 따라 그 차폐 성능에 한계가 있었다. 즉, 종래의 전극패턴의 경우, 차폐 성능이 높지 않았으며, 특히 전자파의 일부 주파수 대역에 대해서만 차폐 성능을 나타냈다.
이를 개선하기 위해, 본 발명은 도전성 페이스트에 금속입자의 크기를 달리하여 혼합하여 전극패턴(130)을 형성한다. 이에 따라, 전극패턴(130)은 그 금속입자의 충전 밀도가 증대됨으로써 도전성이 향상되고 저항이 낮아짐으로써 전자파 차폐율을 보다 상승시킬 수 있다. 즉, 전극패턴(130)의 재료인 금속입자들이 서로 접촉하는 면적이 많을수록 도전성이 커지므로, 크기가 작은 금속입자들과 이들 사이에 크기가 큰 금속입자들을 혼합하면, 이 입자들 간의 접촉면적이 늘어나면서 동일 공간 내에 금속입자들 충전 중량을 늘릴 수 있어, 전체 저항이 낮아지는 효과가 나타난다. 그 결과, 전극패턴(130)의 낮아진 전기 저항으로 인해, 전자파 차폐 필름(100)의 전자파 차폐율이 더욱 향상될 수 있다.
도 6은 전극패턴(130)의 패턴라인(131)에 포함된 제1 구조체(136A) 및 제2 구조체(136B)의 일 예를 나타낸다.
구체적으로, 도 6을 참조하면, 전극패턴(130)의 패턴라인(131)은 제1 범위의 크기를 가지는 복수개의 제1 입자(134)와, 제2 범위의 크기를 가지는 복수개의 제2 입자(135)를 각각 포함한다. 이때, 제2 범위는 제1 범위 보다 작은 크기 범위이다. 즉, 제1 입자(134)가 제2 입자(135) 보다 크기가 크다. 물론, 제1 입자(134)들 간에도 크기가 서로 다를 수 있으며, 제2 입자(135)들 간에도 크기가 서로 다를 수 있다.
특히, 전극패턴(130)은 제1 입자(134)에 적어도 하나의 제2 입자(135)가 소결 혼합된 제1 구조체(136A)를 포함할 수 있다. 이러한 제1 구조체(136A)는 크기가 큰 제1 입자(135) 주변에 크기가 작은 제2 입자(134)들이 둘러싸는 구조를 가지므로, 그 입자들 간의 접촉면적을 늘릴 수 있어, 차폐 성능을 향상시킬 수 있다.
이때, 제1 입자(134)의 주변을 제2 입자(135)가 둘러싸는 제1 구조체(136A)를 포함해야 하므로, 전도성 페이스트는 제1 입자(134)보다 제2 입자(135)를 더 많이 포함하는 것이 바람직하다. 즉, 전극패턴(130)은 제1 입자(134)보다 제2 입자(135)를 더 많이 포함하는 것이 바람직하다.
또한, 제2 입자(135)가 제1 입자(134)보다 더 많이 포함되므로, 전극패턴(130)은 복수개의 제2 입자(135)들이 전기적으로 연결된 제2 구조체(136B)를 더 포함할 수 있다. 이러한 제2 구조체(136B)는 제1 구조체(136A)에 전기적으로 연결될 수도 있다. 이때, 제1 구조체(136A)에 의해 차폐 성능 향상이 크므로, 전극패턴(130)은 제2 구조체(136B)보다 제1 구조체(136A)를 더 많이 포함하는 것이 바람직할 수 있다. 다만, 경우에 따라, 예를 들어 크기가 큰 제1 입자(134)가 많아짐에 따라 음각 홈에 충전성이 원활하지 않을 경우이거나, 또는 요구되는 제품특성상 폭이 좁은 음각 홈에 입자들을 충전해야 하는 경우 등에는 크기가 큰 제1 입자(134)를 개수를 줄여야 하므로, 전극패턴(130)은 제1 구조체(136A)보다 제2 구조체(136B)를 더 많이 포함할 수도 있다.
이러한 제1 구조체(136A) 및 제2 구조체(136B)는 전도성 페이스트의 경화 및 소결 과정에서 최종 생성될 수 있다. 특히, 소결 과정에서 전달된 열에 의해 전도성 페이스트 내의 각 입자(134, 135)가 일부 녹으면서 그 주변의 입자들이 전기적으로 연결됨으로써, 제1 구조체(136A) 또는 제2 구조체(136B)가 생성될 수 있다.
제1 범위의 크기는 제2 범위의 크기 보다 약 2배 이상 내지 약 4배 이하로 큰 것이 바람직할 수 있다. 가령, 제1 범위의 크기는 1㎛ 이상 내지 1.5㎛ 이하이며, 제2 범위의 크기는 400㎚ 이상 내지 450㎚ 이하일 수 있다. 만일, 제1 범위의 크기가 제2 범위의 크기 보다 2배 미만인 경우, 제1 입자(134)를 둘러싸는 제2 입자(135)가 너무 적어, 그 입자들 간의 접촉면적을 늘리는데 한계가 있다. 또한, 제1 범위의 크기가 제2 범위의 크기 보다 4배 초과인 경우, 제1 입자(134) 및 제2 입자(135) 간의 크기 및 중량 차이가 너무 커서 금속입자 혼합 시 제1 입자(134)가 제2 입자(135) 내에 고르게 분산되지 못하고 뭉쳐지는 경향이 있어 음각 홈에 충전 시 충전성이 좋지 않을 수 있다.
한편, 제1 입자(134)와 제2 입자(135)의 사이에 혼합 비율은 전극패턴(130)의 전기저항 및 차폐 성능에 큰 영향을 미칠 수 있다. 이에 따라, 제1 입자(134)와 제2 입자(135) 간의 개수 비율(제1 입자 개수 : 제2 입자 개수)은 2:8 내지 4:6인 것이 바람직할 수 있다.
즉, 제1 입자(134)가 2:8의 개수 비율 보다 더 적은 경우, 제1 입자(134) 개수가 너무 적어 패턴라인(131) 내에 제1 구조체(136A)의 수가 충분하지 않아 차폐 성능이 감소할 수 있다. 또한, 음각 홈 내에 도전성 페이스트를 충전하면 동일 공간 내에 금속입자(134, 135)의 충전 중량밀도가 상대적으로 낮아지게 되어 전기 저항이 상대적으로 높아질 수 있다.
한편, 제1 입자(134)가 4:6의 개수 비율 보다 더 많은 경우, 제1 입자(134) 주변을 둘러쌀 제2 입자(135)의 개수가 부족해져, 제1 구조체(136A)의 크기가 너무 작아서 차폐 성능이 감소할 수 있다. 또한, 음각 홈에 도전성 페이스트를 충전할 때 크기가 큰 제1 입자(134) 간의 간섭에 의해 음각 홈 내에 빈 공간이 생길 확률이 높아져 충전성이 떨어지고 전기 저항이 커지게 된다.
이러한 점을 고려하여, 제1 입자(134)와 제2 입자(135) 간의 최적 개수 비율은 3:7일 수 있다. 즉, 음각 홈 내에 채워지는 제1 및 제2 입자(134, 135)사이의 접촉면적을 늘리면서 높은 충전 중량밀도를 고려할 때, 제1 입자(134)와 제2 입자(135)간에 개수 비율이 3:7인 경우, 전극패턴(130)에 대한 낮은 저항 구현 및 차폐 성능 향상에 효과적일 수 있다.
도 7은 실제 제작한 본 발명의 제1 실시예에 따른 전자파 차폐 필름(100)과 그 비교예에 대한 다양한 비교를 나타내며, 도 8은 실제 제작한 본 발명의 제1 실시예에 따른 전자파 차폐 필름(100)과 그 비교예에 대한 주파수 별 전자파 차폐율의 그래프를 나타낸다. 즉, 도 8에서, x축은 주파수를 나타내고, y축은 전자파 차폐율을 나타내는데 그 단위는 데시벨(Decibel, DB)이다.
한편, 성능 실험을 위해, 본 발명의 제1 실시예에 따른 전자파 차폐 필름(100)을 제작하였다. 구체적으로, 투명한 PET 기판(110) 상에 우레탄 아크릴레이트 수지의 수지층(120)을 도포한 후, 이 수지층에 양각 패턴을 갖는 몰드로 임프린팅 해 음각 패턴의 홈을 형성한다. 이후, 해당 음각 홈에 은(Ag) 입자의 도전성 페이스트를 충전한 후, 경화 및 표면세정을 하고 열처리 소결함으로써, 메쉬 패턴의 전극패턴(130)을 형성하였다. 이때, 각 음각 홈 안에 충전된 전극패턴(130)의 각 패턴라인(131)은 동일한 너비(W) 및 깊이(H)를 가진다. 도전성 페이스트에 포함된 은(Ag) 입자는 1㎛ 이상 내지 1.5㎛ 이하의 제1 입자(134)를 30% 포함하며, 400㎚ 이상 내지 450㎚ 이하의 제2 입자(135)를 70% 포함한다.
또한, 그 성능 비교를 위해, 종래의 차폐 필름(비교예)을 제작하였다. 이때, 종래의 차폐 필름은 본 발명의 제1 실시예에 따른 전자파 차폐 필름(100)과 동일한 기판, 수지층 및 전극패턴의 구조를 가진다. 즉, 비교예의 전극패턴은 동일 몰드의 임프린팅 및 도전성 페이스트 충전에 따라 제작되어 제1 실시예와 동일한 메쉬 패턴을 가진다. 다만, 금속입자 크기가 200㎚ 이상 내지 250㎚ 이하의 은(Ag) 입자를 포함한 도전성 페이스트를 이용해 전극패턴을 형성하였다. 즉, 비교예에서는 대체로 유사한 크기의 은(Ag) 입자를 이용해 전극패턴을 형성하였다.
도 7 및 도 8에서, 제1 실시예는 제작된 본 발명의 제1 실시예에 따른 전자파 차폐 필름(100)을 나타내며, 비교예는 제작된 종래의 전자파 차폐 필름을 나타낸다.
도 7을 참조하면, 전극패턴의 단면사진 및 그 확대사진에서 알 수 있듯이, 제1 실시예는 제1 구조체(136A)들을 포함하는 반면, 비교예는 제1 구조체(136A)가 없이 제2 구조체(136B)들만 포함한다. 즉, 제1 실시예의 전극패턴(130)은 크기가 작은 제2 입자(135)들 사이에 크기가 큰 제1 입자(134)가 위치하며, 제1 입자(134)를 제2 입자(135)들이 둘러싸도록 금속입자들이 분포하고 있다.
즉, 전극패턴(130)의 금속입자 크기를 다르게 하되, 특히 제1 실시예와 같이 크기가 큰 제1 입자(134)와 크기가 작은 제2 입자(135)를 3:7의 혼합 비율로 할 경우, 동일 공간 내 은(Ag)함량이 비교예 보다 4% 정도 더 향상되었다. 즉, 제1 실시예에 따른 금속입자의 충전성 향상을 확인하였다. 또한, 동일 구간에서 전극패턴의 면저항을 측정하였다. 그 결과, 제1 실시예의 경우(약 0.4Ω□단, □는 면적으로서, ㎠을 나타냄)가 비교예의 경우(약 0.7Ω□보다 약 0.3Ω□정도로 저항이 감소되는 것을 확인하였다.
결과적으로, 제1 실시예의 경우, 제1 입자(134) 및 제2 입자(135)의 혼합에 따른 금속입자의 충전성 향상에 따라 충전 중량밀도가 상대적으로 높아지게 되어, 전기 저항이 상대적으로 낮아질 수 있다.
또한, 제1 실시예와 비교예에 대해, 각 주파수 별로 차폐율을 측정하였다. 즉, 도 8을 참조하면, 제1 실시예의 그래프가 전체 주파수 대역에서 전반적으로 비교예의 그래프보다 높은 차폐율을 가지는 것을 확인할 수 있다. 특히, 제1 실시예의 그래프는 고주파 대역에서 전자파 차폐율이 더욱 많이 상승하는데, 비교예의 그래프대비 약 3dB만큼 더 상승한다. 즉, 제1 실시예와 같이, 크고 작은 금속입자가 설정 범위로 혼합되어 형성된 전극패턴(130)이 충전성이 좋아지고, 그 결과로 저항이 낮아져서 전체 주파수 대역에 대한 전자파 차폐율이 상승하는 것을 알 수 있다.
도 9는 본 발명의 제2 실시예에 따른 전자파 차폐 필름(200)의 일측 단면도 일부를 나타낸다.
본 발명의 제2 실시예에 따른 전자파 차폐 필름(200)은 전자파를 차폐 성능을 가지는 것으로서, 도 9에 도시된 바와 같이, 기판(210), 수지층(220), 전극패턴(230), 도전층(240) 및 하드 코팅층(250)을 포함할 수 있다. 이때, 기판(210), 수지층(220), 전극패턴(230) 및 패턴라인(231)은 상술하거나 후술할 본 발명의 제1 실시예에 따른 전자파 차폐 필름(100)의 기판(110), 수지층(120), 전극패턴(130) 및 패턴라인(131)과 동일하므로, 이들에 대한 상세한 설명은 생략하도록 한다. 물론, 이러한 본 발명의 제2 실시예에 따른 전자파 차폐 필름(100)은 스크린 장치로 기능할 수도 있다.
특히, 본 발명의 제2 실시예에 따른 전자파 차폐 필름(200)은 전자기기에서 발생되는 전자파가 고주파 대역일 뿐 아니라 저주파 대역일 경우에도 높은 전자파 차폐 성능을 가지는 것으로서, 이러한 차폐 성능은 전극패턴(230)의 상부 또는 하부에 추가적으로 마련된 전도도가 높은 도전층(240)을 통해 구현될 수 있다.
즉, 도전층(240)은 도전성 재질로 이루어지는 층으로서, 도전층(240)은 기판(210)의 일면을 따라 나열된 전극패턴(230)의 면적을 커버하는 면적을 가질 수 있다. 도 9를 참조하면, 도전층(240)은 전극패턴(230)의 일면 방향(도 9(a)참조)이나 기판(210)의 타면 방향(도 9(b)참조)에 형성될 수 있다. 또한, 도전층(240)은 전극패턴(230)의 일면 방향과, 기판(210)의 타면 방향에 모두 형성될 수도 있다.
예를 들어, 도전층은 ITO, 은(Ag) 나노튜브, 그래핀, 카본 나노튜브, 은(Ag) 입자 또는 PEDOT:PSS(poly(3,4-ethylenedioxythiophene)polystyrene sulfonate)과 같은 전도성 고분자 등을 포함할 수 있으나, 이에 한정되는 것은 아니다. 또한, 스크린 장치의 경우, 도전층(240)은 디스플레이 영상이 투과될 수 있도록 ITO 등의 투명 전도성 재질로 이루어질 수 있다.
가령, 도전층(240)의 두께는 약 80㎛ 이상 내지 200㎛ 이하이고, 이때의 면저항은 약 50Ω□이상 내지 약 200Ω□이하인 것이 바람직할 수 있으며, 보다 바람직하게는 약 100Ω□이상 내지 약 150Ω□의 면저항을 가지는게 전자파 최적의 차폐율 성능을 가질 수 있다. 다만, 도전층(240)은 전도도가 높은 물질로 이루어질수록, 전자파의 반사 정도를 더욱 상승시켜 그 전자파 차폐율을 더욱 향상시킬 수 있다.
한편, 하드 코팅층(250)은 기판(210)의 타면에 형성될 수 있다. 이러한 하드 코팅층(250)은 기판(210)의 스크래치 손상을 방지하기 위한 것으로 선택적으로 적용될 수 있다. 즉, 도전층(240)이 기판(210)의 타면 방향에 형성될 경우(도 9(b)참조), 하드 코팅층(250)의 타면 상에 도전층(240)이 형성될 수 있다.
도 10은 실제 제작한 본 발명의 제2 실시예에 따른 전자파 차폐 필름(200)과 그 비교예에 대한 주파수 별 전자파 차폐율의 그래프를 나타낸다.
한편, 성능 실험을 위해, 본 발명의 제2 실시예에 따른 전자파 차폐 필름(200)을 제작하였다. 구체적으로, 도 7 및 도 8에서 제작한 제1 실시예에서, 도전층(240)을 추가적으로 형성하였다. 즉, 제1 실시예의 전자파 차폐 필름(100)의 일측에 약 150Ω□의 면저항을 가지는 ITO의 도전층(240)을 증착하였다. 도 10에서, 제2 실시예는 제작된 본 발명의 제2 실시예에 따른 전자파 차폐 필름(200)을 나타낸다. 또한, 그 성능 비교를 위해, 도 7 및 도 8에서 제작한 비교예를 사용하였다.
제2 실시예와 비교예에 대해, 각 주파수 별로 차폐율을 측정하였다. 즉, 도 10을 참조하면, 제2 실시예의 전자파 차폐 필름(200)은 비교예의 전자파 차폐 필름과 비교하여, 차폐율이 최소 약 4dB에서 최대 약 20dB 정도 상승한 것을 확인할 수 있다. 특히, 저주파 구역에서 전자파 차폐율이 크게 향상된 것을 확인할 수 있다.
즉, 본 발명의 제2 실시예에 따른 전자파 차폐 필름(200)은 크기가 큰 제1 입자(134) 및 크기가 작은 제2 입자(135)의 금속입자가 혼합된 전극패턴(230)을 포함하되 도전층(240)을 추가 포함함에 따라, 저주파 대역부터 고주파 대역까지 두루 균일하고 높은 차폐율을 가지는 것을 알 수 있다.
도 11은 본 발명의 제1 실시예에 따른 전자파 차폐 필름(100)이 디스플레이에 스크린 장치로 적용된 경우의 일 예를 나타낸다.
본 발명의 실시예에 따른 스크린 장치는 광 투과성 스크린 장치로서, 터치 입력 및 전자파 차폐 중 적어도 하나가 가능하도록 본 발명의 제1 실시예에 따른 전자파 차폐 필름(100)을 포함한다. 또한, 본 발명의 실시예에 따른 스크린 장치는 본 발명의 제1 실시예에 따른 전자파 차폐 필름(100) 외에도, 보호 기판(30), 커넥터(40) 및 주변 배선(50)을 더 포함할 수 있다. 이러한 스크린 장치는 전자파 차폐 필름(100), 보호 기판(30), 커넥터(40) 및 주변 배선(50)을 복수 세트(예를 들어, 두 세트 등) 구비할 수 있고, 이들 세트는 상하로 적층되어 상호 합지될 수 있다.
이러한 본 발명의 실시예에 따른 스크린 장치는, 디스플레이의 전면부에 배치될 수 있고, 터치 스크린 장치 및 전자파 차폐 장치 중 적어도 하나의 장치로 다양하게 사용될 수 있으며, 차량 유리창이나 건물 유리창에도 사용될 수 있다.
이때, 기판(110)은 광을 투과하는 투명한 재질로 이루어질 수 있으며, 기판(110)의 하면은 디스플레이 패널 상에 적층될 수 있다. 기판(110)의 상면에 전극패턴(130), 커넥터(40) 및 주변 배선(50)이 형성될 수 있고, 이들의 상면이 보호 기판(30)에 의해 보호될 수 있다. 보호 기판(30)의 상면은 글래스 기판(미도시)으로 보호될 수도 있다. 기판(110)의 면적은 스크린 장치를 적용할 디스플레이의 화면 면적보다 크거나 상술한 화면 면적과 같을 수 있다.
한편, 터치 센서의 역할을 하는 경우, 전극패턴(130)이 형성된 기판(110) 상의 영역이 채널 영역, 터치 영역 혹은 활성 영역일 수 있고, 그 나머지가 주변 영역일 수 있다. 채널 영역은 복수개의 채널 구간(C)을 포함할 수 있다. 각각의 채널 구간(C)내에 형성된 전극패턴(130)은 이웃하는 채널 구간(C)내의 전극패턴(130)과 전기적으로 단선 등에 의해 절연될 수 있다. 즉, 전극패턴(130)에는 전기적으로 통전 가능한 각 채널들이 복수개 형성되도록 소정의 방향으로 상술한 채널들을 분리 구획하는 복수개의 단선 라인이 형성될 수 있다. 이러한 단선 라인은 각 채널의 외곽에서 단선된 부분을 의미한다. 한편, 채널 구간(c)의 형상 및 배열은 다양할 수 있다.
또한, 전자파 차폐 필름(100)의 전극패턴(130)은 복수개의 비정형 폴리곤(133)을 포함할 수 있다. 또한, 복수개의 비정형 폴리곤(133)은 각각의 피치값(P)이 미리 설정된 범위 내에 포함되고, 서로 이웃하는 비정형 폴리곤(133)들은 각각의 피치값(P)이 서로 다르다.
보호 기판(30)은 전자파 차폐 필름(100)의 상면을 커버하도록 형성될 수 있다. 보호 기판(30)은 필름 형상일 수 있다. 보호 기판(30)은 OCA(Optical Clear Adhesive)재질을 포함할 수 있고, 광학적으로 투명할 수 있다. 이러한 보호 기판(30)을 보호 시트, 접착 시트, 혹은 접착 필름이라고 지칭할 수도 있다.
투명 기판(110) 상의 주변 영역에는 커넥터(40) 및 주변 배선(50)이 형성될 수 있다. 커넥터(40)는 전극패턴(130)에 전기적으로 접속될 수 있고, 주변 배선(50)은 커넥터(40)를 외부 회로(미도시)와 연결시킬 수 있다. 전극패턴(130)에서 감지되는 터치 신호는 커넥터(40)를 통하여 외부 회로로 전송될 수 있다. 상술한 커넥터(40) 및 주변 배선(50)은 ITO(Indium Tin Oxide), 구리(Cu) 및 은(Ag) 재질 중 적어도 어느 하나의 재질을 포함할 수 있다.
물론, 이러한 스크린 장치는 본 발명의 제1 실시예에 따른 전자파 차폐 필름(100) 대신 본 발명의 제2 실시예에 따른 전자파 차폐 필름(200)을 포함할 수도 있다. 다만, 이에 대한 설명은 생략하도록 한다.
이하, 본 발명의 실시 예에 따른 스크린 장치를 상세하게 설명한다.
이하, 도 4를 참조하여, 본 발명의 제1 실시예에 따른 전극패턴(130)에 구비되는 복수개의 비정형 폴리곤(133)에 대해 보다 상세하게 설명한다. 다만, 이러한 설명은 본 발명의 제2 실시예에 따른 전극패턴(230)에도 그대로 적용될 수 있다.
복수개의 비정형 폴리곤(133)은 각각 꼭지점(V)의 개수가 네 개 이상일 수 있다. 이를테면 비정형 폴리곤(133)은 다각형 중에서도 사각형 이상인 다각형일 수 있다. 예컨대 동일한 피치값을 가진 삼각형의 비정형 폴리곤과 사각형 이상의 비정형 폴리곤을 대비할 때, 삼각형의 비정형 폴리곤은 사각형 이상의 비정형폴리곤에 비하여 면적이 작고, 삼각형의 비정형 폴리곤은 디스플레이의 픽셀 면적에 비하여 그 면적이 충분한 크기를 갖지 못하기 때문에, 픽셀과 삼각형의 비정형 폴리곤이 광학적으로 간섭될 수 있다. 비정형 폴리곤(133)이 사각형 이상인 다각형으로 형성되면, 같은 픽셀값 대비 그 면적이 더 크기 때문에, 비정형 폴리곤(133)과 픽셀과의 광학적인 간섭이 억제 혹은 방지될 수 있다.
비정형 폴리곤(133)은 그 형상이 사각형, 오각형, 육각형 등 다양할 수 있다. 이하에서는 오각형의 비정형 폴리곤(133)을 기준으로 하여 본 발명의 실시예를 상세하게 설명한다.
예컨대, 다섯 개의 꼭지점(V) 및 다섯 개의 변(S)을 갖도록 형성된 비정형 폴리곤(133)은 제1꼭지점, 제2꼭지점, 제3꼭지점, 제4꼭지점 및 제5꼭지점과, 제1변, 제2변, 제3변, 제4변 및 제5변을 포함할 수 있다. 이러한 비정형 폴리곤(133)은 각각의 변(S)이 연장된 방향(r)이 서로 다를 수 있다. 즉, 제1변이 연장된 제1방향과, 제2변이 연장된 제2방향, 제3변이 연장된 제3방향, 제4변이 연장된 제4방향 및 제5변이 연장된 제5방향은 상이한 방향일 수 있다. 또한, 비정형 폴리곤(133)은 각각의 꼭지점(V)을 중심으로 서로 이웃한 변(S)들이 이루는 각도(θ들이 상이할 수 있다. 이에, 비정형 폴리곤(133)들 간의 경계선이 일정한 패턴을 형성하며 주변보다 도드러지게 보이는 것을 원천 방지할 수 있다. 이를테면 비정형 폴리곤(133)들의 비정형성이 과도할 경우, 오히려 전극패턴(130)상에 이물감이 생길수 있는데, 본 발명의 제1 실시예에 따른 비정형 폴리곤(133)들은 이물감을 원천 방지할 수 있다.
한편, 비정형 폴리곤(133)은 꼭지점들(V) 간의 거리값들이 소정의 크기 범위 내에서 서로 다를 수 있다. 즉, 제1꼭지점과 제2꼭지점 간의 거리값과, 제2꼭지점과 제3꼭지점 간의 거리값과, 제3꼭지점과 제4꼭지점 간의 거리값과, 제4꼭지점과 제5꼭지점 간의 거리값과, 제5꼭지점과 제1꼭지점 간의 거리값은 모두 소정의 크기 범위 내에 포함되면서, 서로 그 크기가 다를 수 있다. 따라서, 각각의 비정형 폴리곤(133)이 주변에 비하여 형상적으로 두드러지게 일그러지는 것을 방지할 수 있고, 불특정한 비정형 폴리곤(133)이 주변에 비해 눈에 띄는 것을 억제 혹은 방지할 수 있다. 상술한 바와 같이 형성되는 복수개의 비정형 폴리곤(133)은 서로 인접하는 비정형 폴리곤(133)들 간의 형상이 서로 다를 수 있다. 구체적으로 서로 인접하는 제1 비정형 폴리곤(133a)과 제2 비정형 폴리곤(133b)은 서로 형상이 다를 수 있다. 이때, 제1 비정형 폴리곤(133a)의 피치값(Pa)과 제2 비정형 폴리곤(133b)의 피치값(Pb)도 서로 다를 수 있다. 피치값(P, Pa, Pb)은 비정형 폴리곤(133)의 꼭지점들(V) 간의 거리값들 중 최대값을 의미한다.
복수개의 비정형 폴리곤(133)은 각각의 피치값(P)이 전극패턴(130)의 광투과율과 면저항에 따라 정해질 수 있다. 구체적으로 복수개의 비정형 폴리곤(133)은 전극패턴(130)의 광투과율이 80% 이상이면서 전극패턴(130)의 면저항이 약 10Ω/㎠ 이하가 되도록 각각의 피치값(P)이 정해질 수 있다. 이를테면 비정형 폴리곤(133)의 피치값은 하한값이 전극패턴(130)의 광투과율이 약 80% 이상이 되도록 하는 값들 중에서 선택되는 어느 하나의 값이고, 상한값이 전극패턴(130)의 면저항이 약 10Ω/㎠ 이하가 되도록 하는 값들 중에서 선택되는 어느 하나의 값일 수 있다. 여기서, 전극패턴(130)의 광투과율의 상한은 약 100% 미만이고, 전극패턴(130)의 면저항의 하한은 약 0.1 Ω/㎠ 이상일 수 있다. 상술한 바에 따르면, 비정형 폴리곤(133)의 피치값(P)의 하한값 및 상한값은 약 70㎛ 이상 내지 약 650㎛ 이하의 범위 내에서 선택될 수 있다.
한편, 복수개의 비정형 폴리곤(133)의 피치값(P)들 중 하한값의 크기는 기준 피치값의 크기의 약 70%이고, 상한값의 크기는 기준 피치값의 크기의 약 130%일 수 있다. 즉, 복수개의 비정형 폴리곤(133)은 미리 정해진 기준 피치값의 크기를 기준으로 상한값과 하한값이 정해질 수 있고, 이에, 복수개의 비정형 폴리곤(133)은 기준 피치값에 대하여 약 ±30%의 편차를 가질 수 있다. 구체적으로 기준 피치값에 대하여 최소 피치값이 약 -30%의 편차를 가지고, 최대 피치값이 약 +30%의 편차를 가질 수 있다. 즉, 기준 피치값에 의하여 복수개의 비정형 폴리곤(133)의 피치값들의 상한값과 하한값이 정해질 수 있다. 즉, 기준 피치값은 피치값의 상한값 및 하한값을 정하는 것의 기준이 되는 피치값을 의미한다.
이를테면 복수개의 비정형 폴리곤(133)의 피치값들 중 최소 피치값은 기준 피치값의 0.7배일 수 있고, 최대 피치값은 기준 피치값의 1.3배일 수 있다. 이에, 각각의 비정형 폴리곤(133)이 주변보다 크기적으로 두드러지는 것을 방지하고, 불특정한 비정형 폴리곤(133)이 주변에 비해 눈에 띄는 것을 억제 혹은 방지할 수 있다.
즉, 기준 피치값에 대한 상한값과 하한값의 편차가 상술한 편차를 넘어서면, 최소 피치값을 가진 비정형 폴리곤과 최대 피치값을 가진 비정형 폴리곤이 서로 인접할 때, 이들의 크기 차이에 의해 그 경계가 주변보다 두드러져 보이고, 이물감이 발생할 수 있다. 반면, 기준 피치값에 대한 상한값과 하한값의 편차가 상술한 범위 내이면, 최소 피치값을 가진 비정형 폴리곤과 최대 피치값을 가진 비정형 폴리곤이 서로 인접하여도 그 경계가 주변보다 두드러져 보이지 않을 수 있고, 이물감이 발생하는 것을 방지할 수 있다.
기준 피치값은 예컨대 기준 피치값에 의해 정해지는 최소 피치값과 최대 피치값이 전극패턴(130)의 광투과율이 약 80% 이상이면서 전극패턴(130)의 면저항이 약 10 Ω/㎠ 이하가 되도록 하는 피치값(P)의 크기범위 내에 포함될 수 있도록 하는 소정의 피치값의 범위 내에서 스크린 장치를 적용할 디스플레이의 픽셀 크기와 동일하거나 유사한 크기로 정해질 수 있다. 전극패턴(130)의 광투과율이 약 80% 미만이면 전극패턴(130)의 아래에 배치된 디스플레이 장치로부터 출력되는 화면을 정확하게 시인하기가 어렵다. 전극패턴(130)의 면저항이 약 10 Ω/㎠를 초과하면 전극패턴(130)의 터치 인식 감도가 둔화될 수 있다.
상술한 기준 피치값은 약 100㎛ 이상 내지 약 500㎛ 이하 중 선택되는 어느 하나의 값일 수 있다. 이때, 기준 피치값의 크기가 약 100㎛ 미만이면, 최소 피치값이 크기가 약 70㎛ 미만이 될 수 있고, 최소 피치값을 가지는 비정형 폴리곤들에 의하여, 전극패턴(130)의 광투과성이 약 80% 미만으로 저하될 수 있다. 기준 피치값의 크기가 약 500㎛ 초과이면, 최대 피치값의 크기가 약 650㎛를 초과하게 되고, 최대 피치값을 가지는 비정형 폴리곤들에 의해, 전극패턴(130)의 면저항이 약 10 Ω/㎠ 보다 커질 수 있다. 한편, 비정형 폴리곤(133)은 피치값(P)이 커질수록 전극패턴(130)의 광투과성을 향상시킬 수 있다. 또한, 비정형 폴리곤(133)의 피치값(P)이 작아질수록 전극패턴(130)의 면저항이 작아질 수 있다.
따라서, 비정형 폴리곤(133)은 전극패턴(130)이 요구되는 광투과성과 면저항에 맞게 기준 피치값의 크기 및 이에 의한 피치값(P)들의 범위가 상술한 바와 같이 정해질 수 있고, 비정형 폴리곤(133)들을 포함하는 전극패턴(130)의 투과율과 면저항을 원하는 높은 수준으로 유지할 수 있다. 한편, 전극패턴(130)의 광투과성이 나빠지면 스크린 장치가 디스플레이로부터 출력되는 화면을 정확하게 시인하기가 어렵고, 전극패턴(130)의 면저항이 커지면 터치의 인식 감도가 둔화될 수 있다.
상술한 바와 같이, 전극패턴(130)을 이루는 비정형 폴리곤(133)들 중 불특정한 일부가 그 주변보다 크기가 상대적으로 크거나 작으면 해당 부분이 주변 보다 두드러져 보일 수 있다. 이에, 본 발명의 제1 실시예에 따른 비정형 폴리곤(133)들의 피치값(P)의 범위를 아래와 같이 구체적으로 예시한다.
(실시예 1)
비정형 폴리곤(133)의 피치값(P)의 하한값은 약 70㎛이고, 그 상한값은 약 130㎛이며, 이때, 기준 피치값은 약 100㎛일 수 있다. 이러한 피치값(P)의 범위 내에서 각각의 비정형 폴리곤(133)의 형상 혹은 크기가 결정될 수 있다. 따라서, 복수개의 비정형 폴리곤(133)은 약 70㎛ 이상 내지 약 130㎛ 이하의 피치값(P)의 범위 내에서 서로 다른 다양한 크기의 피치값(P)을 가질 수 있다. 이로부터 비정형 폴리곤(133)들의 비정형성이 과도해지는 것을 방지하면서, 전극패턴(130)중에 특정한 규칙성을 가지는 소정의 형상이 형성되는 것을 원천 방지할 수 있다.
(실시예 2)
복수개의 비정형 폴리곤(133)의 피치값(P)들의 하한값은 약 140㎛이고, 그 상한값은 약 260㎛이며, 이때, 기준 피치값은 약 200㎛일 수 있다. 이러한 피치값(P)의 범위 내에서 각각의 비정형 폴리곤(133)의 형상 혹은 크기가 결정될 수 있다. 즉, 전극패턴(130)을 이루는 복수개의 비정형 폴리곤(133)은 약 140㎛ 이상 내지 약 260㎛ 이하의 피치값(P)의 범위 내에서 서로 다른 다양한 크기의 피치값(P)을 가질 수 있다.
(실시예 3)
비정형 폴리곤(133)의 피치값(P)의 하한값은 약 210㎛이고, 그 상한값은 약 390㎛이며, 이때, 기준 피치값은 약 300㎛일 수 있다. 이러한 피치값(P)의 범위 내에서 각각의 비정형 폴리곤(133)의 형상 혹은 크기가 결정될 수 있다. 즉, 전극패턴(130)을 이루는 복수개의 비정형 폴리곤(133)은 약 210㎛ 이상 내지 약 390㎛ 이하의 피치값(P)의 범위 내에서 서로 다른 다양한 크기의 피치값(P)을 가질 수 있다.
(실시예 4)
비정형 폴리곤(133)의 피치값(P)의 하한값은 약 245㎛이고, 그 상한값은 약 455㎛이며, 이때, 기준 피치값은 약 350㎛일 수 있다. 즉, 전극패턴(130)을 이루는 복수개의 비정형 폴리곤(133)은 약 245㎛ 이상 내지 약 455㎛ 이하의 피치값(P)의 범위 내에서 서로 다른 다양한 크기의 피치값(P)을 가질 수 있다. 복수개의 비정형 폴리곤(133)의 피치값(P)의 범위가 상술한 범위를 넘으면, 피치값(P)이 약 245㎛ 보다 작은 비정형 폴리곤과 피치값(P)이 약 455㎛ 보다 큰 비정형 폴리곤이 서로 인접하였을 때, 이들의 크기 차이에 의해 전극패턴(130)에 이물감이 발생할 수 있다.
(실시예 5)
비정형 폴리곤(133)의 피치값(P)의 하한값은 약 280㎛이고, 그 상한값은 약 520㎛이며, 이때, 기준 피치값은 약 400㎛일 수 있다. 이러한 피치값(P)의 범위 내에서 각각의 비정형 폴리곤(133)의 형상 혹은 크기가 결정될 수 있다. 즉, 전극패턴(130)을 이루는 복수개의 비정형 폴리곤(133)은 약 280㎛ 이상 내지 약 520㎛ 이하의 피치값(P)의 범위 내에서 서로 다른 다양한 크기의 피치값(P)을 가질 수 있다. 복수개의 비정형 폴리곤(133)의 피치값(P)의 범위가 상술한 범위를 넘으면, 피치값(P)이 약 280㎛ 보다 작은 비정형 폴리곤과 피치값(P)이 약 520㎛ 보다 큰 비정형 폴리곤이 서로 인접하였을 때, 이들의 크기 차이에 의해 전극패턴(130)에 이물감이 발생할 수 있다.
(실시예 6)
비정형 폴리곤(133)의 피치값(P)의 하한값은 약 315㎛이고, 그 상한값은 약 585㎛이며, 이때, 기준 피치값은 약 450㎛일 수 있다. 즉, 전극패턴(130)을 이루는 복수개의 비정형 폴리곤(133)은 약 315㎛ 이상 내지 약 585㎛ 이하의 피치값(P)의 범위 내에서 서로 다른 다양한 크기의 피치값(P)을 가질 수 있다. 복수개의 비정형 폴리곤(133)의 피치값(P)의 범위가 상술한 범위를 넘게되면, 전극패턴(130)에 이물감이 발생할 수 있다.
(실시예 7)
비정형 폴리곤(133)의 피치값(P)의 하한값은 약 350㎛이고, 그 상한값은 약 650㎛이며, 이때, 기준 피치값은 약 500㎛일 수 있다. 이러한 피치값(P)의 범위 내에서 각각의 비정형 폴리곤(133)의 형상 혹은 크기가 결정될 수 있다. 즉, 전극패턴(130)을 이루는 복수개의 비정형 폴리곤(133)은 약 350㎛ 이상 내지 약 650㎛ 이하의 피치값(P)의 범위 내에서 서로 다른 다양한 크기의 피치값(P)을 가질 수 있다. 복수개의 비정형 폴리곤(133)의 피치값(P)의 범위가 상술한 범위를 넘게되면, 전극패턴(130)에 이물감이 발생할 수 있다.
이처럼 기준 피치값은 100 내지 500㎛ 중 선택되는 값일 수 있고, 기준 피치값에 따라 복수개의 비정형 폴리곤(133)의 피치값(P)의 범위가 상술한 바와 같이 정해질 수 있으며, 그 이유는 메쉬로 형성되는 터치 스크린 장치의 전기적, 광학적 성질에 있다. 터치 스크린 장치는 디스플레이 장치의 상부에 위치하여 일정한 수치 이상의 투과율이 확보되어야 하고, 터치 시 높은 감도를 구현하기 위하여 낮은 면저항이 필요하다.
이러한 투과율 및 면저항은 메쉬에서 피치값의 크기에 의존하며, 일반적으로 전극패턴(130)의 피치값의 크기와 투과율의 크기와 면저항의 크기는 각각 비례하는 값을 가진다. 전극패턴(130)의 기준 피치값이 약 100㎛일 경우, 투과율은 약 80%정도의 값을 가지며, 면저항은 약 1Ω□의 값을 보인다. 또한, 기준 피치값이 약 500㎛일 경우, 약 87%의 투과율을 가지고 약 7Ω□정도의 면저항을 가진다. 이러한 내용으로 확인이 가능한 것은 피치값의 크기가 커질수록 투과율에서의 이득이 있으나, 그에 따라 커지는 면저항 값으로 인하여 터치 감도 부분에서 작은 피치의 메쉬와 대비하여 낮은 값을 보일 수 있다.
그리고 이와 같이 비정형 폴리곤(133)의 피치값(P)을 미리 정해진 범위 내에 분포시킴으로써 주변에 비해 상대적으로 크기가 크거나 작은 비정형 폴리곤(133)들이 전극패턴(130)중의 불특정한 영역에 발생하거나 뭉치는 것을 방지할 수 있고, 전극패턴(130)중의 불특정한 영역이 주변보다 두드러져 보이는 것을 방지할 수 있다. 즉, 크기 차이에 의하여 비정형 폴리곤(133)들의 경계선에서 발생하는 이물감을 방지할 수 있다. 이때, 기준 피치값이 약 100㎛에 가까울수록 전극패턴(130)의 면저항이 작아지기 때문에, 터치 감도가 좋아질 수 있고, 기준 피치값이 약 500㎛에 가까울수록 광투과율이 커지기 때문에, 스크린 장치가 적용된 디스플레이의 화면이 밝아질 수 있다.
한편, 상술한 바와 같이 형성되는 전극패턴(130)은 예컨대 소정의 설계 프로그램을 사용하여 그 형상을 설계할 수 있다. 이때, 상술한 소정의 설계 프로그램으로 전극패턴(130)의 전체 형상을 한번에 설계하는 것은 상당한 계산 부하를 야기한다. 이에, 도 11을 참조하면, 본 발명의 제1 실시예에 따른 전극패턴(130)은 서로 어레이된 복수개의 단위 메쉬 블록(A)을 포함할 수 있다.
즉, 본 발명의 실시 예에서는 전극패턴(130)의 전체 면적을 동일한 크기의 단위 메쉬 블록(A)들로 블록화하고, 블록화된 단위 메쉬 블록(A)에 대한 메쉬 패턴의 형상을 설계하고, 설계된 형상을 어레이하여 서로 연결되는 하나의 전극패턴(130)의 형상을 형성할 수 있다. 이때, 복수개의 단위 메쉬 블록(A)의 크기는 예컨대 블록 내의 메쉬 객체 수에 따라 정해 질 수 있다. 여기서, 블록 내 메쉬의 객체 수는 블록 내 메쉬(폴리곤)의 수에 따라 결정되며, 이때, 적정 개체 수는 약 40,000개 이상 내지 약 250,000개 이하이다. 이러한 객체 수를 정사각형 형태의 블록으로 구현한다면 최대 5cm X 5cm의 블록의 크기를 가질 수 있다. 상세하게는 1cm X 1cm 이상 5cm X 5cm 이하의 블록 크기를 가질 수 있다. 이를테면 1cm X 1cm 부터 5cm X 5cm 중에서 블록 크기가 선택될 수 있다. 물론, 블록의 크기는 5cm X 5cm 이하의 범위 내에서 다양할 수 있다.
이러한 블록의 형태는 면적당 변의 길이가 최적으로 설정이 가능한 정사각형의 형태의 블록을 사용하나, 정사각형의 형태 이외에 다른 형태의 사각형으로도 사용이 가능하다. 위의 객체 수 및 블록 크기의 적정 수의 결정은 일반적인 설계 PC에서의 컴퓨팅 능력을 기준으로 하여 결정하였으며, 위의 적정 수를 넘어가는 경우 설계 시 연산에 문제가 발생 할 수 있다.
이때, 단위 메쉬 블록(A)의 경계가 시인되는 것을 방지하기 위하여, 복수개의 단위 메쉬 블록(A) 각각의 최외각에서 단위 메쉬 블록(A) 간의 경계를 형성하는 비정형 폴리곤들은 그 형상 및 크기가 서로 다를 수 있다. 즉, 복수개의 단위 메쉬 블록(A)은 경계선의 비정형 폴리곤들의 형상 및 크기가 보정될 수 있다.
구체적으로, 단위 메쉬 블록(A)들의 경계선에 위치하는 비정형 폴리곤(133)들의 변(S)들의 길이와 그 연장 방향(r)이 서로 다르도록 그 형상 및 크기가 보정될 수 있고, 해당 비정형 폴리곤(133)들은 각각의 꼭지점(V)을 중심으로 서로 이웃한 변(S)들이 이루는 각도(θ들이 상이하도록 그 형상이 보정될 수 있다. 이러한 보정을 블록 경계선 보정이라고 하고, 이에 의해 단위 메쉬 블록(A)의 경계에 이물감이 생기는 것을 원천 방지할 수 있고, 각 단위 메쉬 블록(A)을 자연스럽게 혹은 부드럽게 어레이할 수 있다. 즉, 설계 PC의 컴퓨팅 능력에 의해, 전극패턴(130)의 전체 형상을 한번에 설계하기 어렵기 때문에, 단위 메쉬 블록(A)들의 형상을 각각 설계한 후 이들을 어레이하여 하나의 전극패턴(130)형상으로 설계해야 한다.
이때, 블록 경계선 보정을 하지 않으면, 각 단위 메쉬 블록(A)내에서 서로 이웃하는 비정형 폴리곤(133)들의 피치값이 서로 다름에도 불구하고, 단위 메쉬 블록(A)들의 경계를 보면, 서로 이웃하는 비정형 폴리곤(133)들의 피치값이 같아지는 경우가 생길 수 있고, 이에, 단위 메쉬 블록(A)들의 경계가 시인될 수 있다.
반면, 단위 메쉬 블록(A)들의 형상을 각각 설계한 후 이들을 어레이하여 하나의 전극패턴(130)형상으로 설계할 때, 블록 경계선 보정을 하면, 전극패턴(130)의 전체 면에서 서로 이웃하는 비정형 폴리곤(133)들의 각각의 피치값이 서로 다를 수 있고, 이에, 단위 메쉬 블록(A)들의 경계가 시인되는 것을 방지할 수 있다.
도 12는 본 발명의 실시예와 그 비교예에 따른 전극패턴을 대비하여 보여주는 사진이다. 도 12의 (a)는 본 발명의 비교예에 따른 전극패턴으로서 피치값의 범위가 약 70㎛ 이상 내지 약 130㎛ 이하의 범위를 가지고, 메쉬 라인의 선 폭과 깊이는 각각 약 10㎛이며, 블록 경계선 보정이 되지 않은 상태이므로, 단위 메쉬 블록의 경계 부근에서 서로 이웃하는 비정형 폴리곤들의 적어도 일부의 피치값이 서로 같은 상태이다. 비교예에 따른 메쉬 패턴의 경계선을 보면, 크기가 상대적으로 작은 비정형 폴리곤들이 뭉쳐 보이는 것을 확인할 수 있고, 이러한 크기 차이에 의해 메쉬 패턴상에 직선 형상의 음영이 시인되는 것을 볼 수 있다.
반면, 도 12의 (b)는 본 발명의 실시예에 따른 전극패턴(130)으로서, 피치값의 범위가 약 70㎛ 이상 내지 약 130㎛ 이하의 범위를 가지고, 메쉬 라인의 선 폭과 깊이는 각각 약 10㎛이며, 블록 경계선 보정이 된 상태이므로, 전극패턴(130) 전체 면에서 서로 이웃하는 비정형 폴리곤들 각각의 피치값이 서로 다른 상태이다. 사진에서 보여지는 바와 같이, 복수개의 비정형 폴리곤(133)의 피치값들이 기준 피치값에 대하여 약 ± 30%의 편차를 가지고, 따라서, 크기 차이에 의한 비정형 폴리곤의 뭉침 현상이 메쉬 패턴 전체적으로 발생하지 않고, 또한, 블록 간의 경계에서도 상술한 뭉침 현상이 발생하지 않는 것을 확인할 수 있다. 즉, 본 발명의 실시예에서는 메쉬 패턴상에 직선 형상의 음영이 형성되지 않는 것을 볼 수 있다.
한편, 상술한 경계선은 전극패턴을 형성하는 단위 메쉬 블록의 경계선을 의미한다.
도 13은 본 발명의 실시예 및 비교예에 따른 스크린 장치의 특성들을 대비하여 보여주는 도면이다. 즉, 도 13은 본 발명의 실시예 및 비교예에 따른 스크린 장치의 광투과율을 대비하여 보여주는 표이다. 여기서, 광투과율은 스크린 장치를 통과한 광의 세기에 대한 투과율이고, 그 크기가 클수록 광을 잘 투과시키는 것을 의미한다.
도 13의 비교예는 기준 피치값을 이용하여 피치값의 상한값과 하한값을 한정하지 않은 비정형 폴리곤들로 형성된 메쉬 패턴으로서, 피치값의 중심값이 약 100㎛이면서 피치값의 범위가 약 70㎛ 이상 내지 약 130㎛ 이하를 벗어난 소정의 범위이고, 메쉬 라인의 선 폭 및 깊이가 각각 약 10㎛인 비정형 폴리곤들을 포함하는 메쉬 패턴이다. 도 13의 실시예는 기준 피치값을 이용하여 피치값의 상한값과 하한값을 한정한 비정형 폴리곤들로 형성된 메쉬 패턴으로서, 기준 피치값이 약 100㎛이고, 피치값의 범위가 약 70㎛ 이상 내지 약 130㎛ 이하 범위 내에 포함되며, 메쉬 라인의 선 폭 및 깊이가 각 약 10㎛인 비정형 폴리곤들을 포함하는 메쉬 패턴이다.
도 13의 비교예에 따른 전극패턴을 포함하는 스크린 장치와, 실시예에 따른 전극패턴을 포함하는 스크린 장치의 광투과율을 대비하면, 비교예는 광투과율이 84% 보다 작고, 실시예는 광투과율이 84% 보다 크다. 즉, 실시예의 경우가 광투과율이 더 큰 것을 볼 수 있다. 이는 실시예의 스크린 장치가 디스플레이의 화면을 더 잘 투과시켜 보여주는 것을 의미한다.
이처럼 비교예와 실시예의 광투과율이 차이가 나는 이유는 비교예의 경우 피치값의 상한값과 하한값의 차이가 크기 때문에 상대적으로 피치값이 작은 비정형 폴리곤이 주변에 비해 두드러져 보이고, 해당 부분에 음영이 발생 및 심화되고, 이러한 음영과 디스플레이의 픽셀 패턴이 상호 간섭하여 모아레 간섭 무늬가 형성되기 때문이다. 반면, 제1 실시예의 경우에는 피치값의 상한값과 하한 값이 기준 피치값에 대해 약 ± 30%의 편차를 가지도록 한정되고, 한정된 범위 내에서 피치값이 다양하게 분포됨에 따라, 전극패턴 내에 규칙적인 형상의 반복을 없애면 서도 비정형성이 과도해지는 것을 방지할 수 있고, 크기 차이에 의한 모아레 간섭 무늬를 원천 방지할 수 있고, 시인성을 양호하게 할 수 있다.
도 14는 본 발명의 실시예에 따른 스크린 장치에서의 모아레 현상 발생 여부를 설명하기 위한 사진이고, 도 15는 본 발명의 실시예에 따른 스크린 장치가 적용되는 디스플레이를 보여주는 사진이다. 여기서, 도 14의 진한 색 부분은 디스플레이 장치의 베젤 부분이고, 이 진한 색의 베젤 부분 안쪽의 옅은 색 부분은 디스플레이의 화면 부분으로서, 도 14는 본 발명의 실시 예에 따른 스크린 장치를 통하여 촬영한 디스플레이의 사진이다.
비교예에서는 전극패턴 중의 불규칙한 위치에 비정형 폴리곤이 밀집되고 음영이 발생할 수 있기 때문에 디스플레이 상에서 각도가 어떻게 결정되는지에 따라 모아레 현상이 심해지는 경우가 생긴다. 반면, 실시예의 경우에는 메쉬 패턴 중의 불규칙한 위치에 비정형 폴리곤이 밀집되는 것과 음영이 발생하는 것을 원천 방지할 수 있기 때문에 도 14와 같이 디스플레이 위에 스크린 장치를 겹쳐 놓아도 모아레 간섭 무늬가 생기지 않는다. 따라서, 도 15에 도시한 것과 같이, 본 발명의 실시예에서는 360도 전방위에서 스크린 장치를 회전시키더라도 모든 방향에서 모아레 현상이 회피될 수 있고, 양호한 시인성을 확보할 수 있음을 확인할 수 있다.
상술한 바와 같이 구성되는 본 발명에 따른 전자파 차폐 필름(100, 200)은 개선된 차폐 성능을 가진다. 즉, 본 발명에 따른 전자파 차폐 필름(100, 200)은 그 적용된 제품에서 발생되는 어떤 전자파 주파수 대역에서도 향상된 전자파 차폐 성능을 발휘할 수 있을 뿐 아니라, 복잡한 제품 또는 다양한 분야에서 발생하는 다양한 대역의 전자파를 그 주파수 대역에 상관없이 통합적으로 높은 차폐율로 차단할 수 있다.
또한, 본 발명에 따른 전자파 차폐 필름(100, 200)의 전극패턴(130, 230)이 비정형 폴리곤(133)을 포함할 경우, 디스플레이의 픽셀 패턴과 상호 간섭하는 것을 방지함으로써 평면 모든 각도에서 모아레 현상을 회피할 수 있으며, 시인성이 향상된다. 또한, 이러한 비정형 폴리곤(133)은 전극패턴(130, 230)의 패턴 뭉침을 억제하여 전극패턴(130, 230)을 보다 균형 있게 분포시킴으로써 그 전자파 차폐 효과를 더욱 높일 수 있다.
구체적으로, 복수개의 비정형 폴리곤(133)은 적어도 4개 이상의 변을 가지는 다각형 형상이면서 서로 형상이 상이하기 때문에, 스크린 장치에서 요구되는 광학적 특성과 전기적 특성을 만족하면서 360도 모든 각도에서 경계선 시인 문제가 해소될 수 있고, 모아레 현상을 회피할 수 있다. 이에, 스크린 장치가 디스플레이 장치의 전면에 부착되어 터치 스크린 장치 혹은 전자파 차폐 장치로 사용될 때, 메쉬 패턴의 이물감에 의한 모아레 현상을 원천 방지할 수 있고, 또한, 디스플레이의 픽셀 패턴과 무관하게 모든 각도에서 디스플레이 장치의 픽셀 패턴과 스크린 장치의 전극패턴(130)이 상호 간섭하는 것을 방지함으로써 360도 모든 각도에서 모아레 현상을 회피할 수 있고, 스크린 장치의 시인성을 향상시킬 수 있다.
본 발명의 상세한 설명에서는 구체적인 실시 예에 관하여 설명하였으나 본 발명의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 발명의 범위는 설명된 실시 예에 국한되지 않으며, 후술되는 청구범위 및 이 청구범위와 균등한 것들에 의해 정해져야 한다.
본 발명은 전자파 차폐 필름에 관한 것으로, 전자파 차폐율이 향상되고 동시에 전자파의 다양한 주파수 대역에서도 두루 높은 전자파 차폐 성능을 가지는 전자파 차폐 필름을 제공할 수 있으므로, 산업상 이용가능성이 있다.

Claims (15)

  1. 기판; 및
    상기 기판의 일면 방향에 마련되고, 금속입자를 함유하는 전극패턴;을 포함하며,
    상기 금속입자는 제1 범위의 크기를 가지는 제1 입자들과 제1 범위 보다 작은 제2 범위의 크기를 가지는 제2 입자들을 각각 포함하고, 제2 입자가 제1 입자 보다 더 많으며, 제2 입자들 사이에 적어도 하나의 제1 입자가 혼합된 전자파 차폐 필름.
  2. 기판;
    상기 기판의 일면 방향에 마련되고, 금속입자를 함유하는 전극패턴; 및
    상기 전극패턴의 일면 방향이나 상기 기판의 타면 방향에 마련되며, 상기 기판의 일면을 따라 나열된 상기 전극패턴을 커버하는 투명한 도전층;을 포함하며,
    상기 금속입자는 제1 범위의 크기를 가지는 제1 입자들과 제1 범위 보다 작은 제2 범위의 크기를 가지는 제2 입자들을 각각 포함하고, 제2 입자가 제1 입자 보다 더 많으며, 제2 입자들 사이에 적어도 하나의 제1 입자가 혼합된 전자파 차폐 필름.
  3. 제1항 또는 제2항에 있어서,
    상기 전극패턴은 상기 제1 입자의 주변을 복수개의 제2 입자들이 둘러싸는 제1 구조체를 포함하는 전자파 차폐 필름.
  4. 제3항에 있어서,
    상기 전극패턴은 복수개의 제2 입자들이 연결된 제2 구조체를 더 포함하는 전자파 차폐 필름.
  5. 제4항에 있어서,
    상기 전극패턴은 상기 제1 구조체 보다 상기 제2 구조체의 개수를 더 많이 포함하는 전자파 차폐 필름.
  6. 제1항 또는 제2항에 있어서,
    상기 제1 범위의 크기는 상기 제2 범위의 크기 보다 2배 이상 큰 전자파 차폐 필름.
  7. 제1항 또는 제2항에 있어서,
    상기 제1 범위의 크기는 1㎛ 이상 내지 1.5㎛ 이하이며, 상기 제2 범위의 크기는 400㎚ 이상 내지 450㎚ 이하인 전자파 차폐 필름.
  8. 제1항 또는 제2항에 있어서,
    상기 제1 입자와 상기 제2 입자 간의 개수 비율은 2:8 내지 4:6인 전자파 차폐 필름.
  9. 제1항 또는 제2항에 있어서,
    상기 전극패턴은 상기 기판의 일면을 따라 나열된 복수개의 폴리곤을 포함하는 메쉬 패턴 형상으로 형성된 전자파 차폐 필름.
  10. 제9항에 있어서,
    상기 복수개의 폴리곤은 서로 이웃하는 복수개의 비정형 폴리곤을 포함하며,
    상기 비정형 폴리곤들은 서로 이웃하는 비정형 폴리곤들 간에 피치값이 서로 다른 전자파 차폐 필름.
  11. 제10항에 있어서,
    상기 비정형 폴리곤은 꼭지점의 개수가 네 개 이상이고, 각각의 변이 연장되는 방향이 서로 다른 전자파 차폐 필름.
  12. 제10항에 있어서,
    상기 비정형 폴리곤은 각각의 꼭지점을 중심으로 서로 이웃하는 변들이 이루는 각도들이 서로 다른 전자파 차폐 필름.
  13. 제1항 또는 제2항에 있어서,
    상기 전극패턴은 상기 기판의 일면이나, 상기 기판의 일면에 구비된 수지층의 일면에 형성된 홈을 따라 형성된 전자파 차폐 필름.
  14. 제2항에 있어서,
    상기 금속입자는 은(Ag), 구리(Cu), 알루미늄(Al), 니켈(Ni) 및 크롬(Cr) 중에서 선택된 어느 하나이고,
    상기 도전층은 ITO, 은(Ag) 나노튜브, 그래핀, 카본 나노튜브, 은(Ag) 입자 또는 전도성 고분자 중에서 선택된 어느 하나인 전자파 차폐 필름.
  15. 제1항 또는 제2항에 있어서,
    상기 기판이 투명하여, 디스플레이에 광 투과성 스크린 장치로 채용 가능한 전자파 차폐 필름.
PCT/KR2021/011730 2020-09-03 2021-09-01 전자파 차폐 필름 WO2022050673A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/024,304 US20230320050A1 (en) 2020-09-03 2021-09-01 Electromagnetic wave shielding film
CN202180054504.XA CN116058086A (zh) 2020-09-03 2021-09-01 电磁波屏蔽膜
EP21864633.9A EP4210445A1 (en) 2020-09-03 2021-09-01 Electromagnetic wave shielding film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0112118 2020-09-03
KR1020200112118A KR20220030577A (ko) 2020-09-03 2020-09-03 전자파 차폐 필름

Publications (1)

Publication Number Publication Date
WO2022050673A1 true WO2022050673A1 (ko) 2022-03-10

Family

ID=80491809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/011730 WO2022050673A1 (ko) 2020-09-03 2021-09-01 전자파 차폐 필름

Country Status (5)

Country Link
US (1) US20230320050A1 (ko)
EP (1) EP4210445A1 (ko)
KR (1) KR20220030577A (ko)
CN (1) CN116058086A (ko)
WO (1) WO2022050673A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7198389B2 (ja) * 2020-08-04 2022-12-28 株式会社東芝 電極評価方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266312A (ja) * 2006-03-28 2007-10-11 Matsushita Electric Works Ltd 導電薄膜付導電性メッシュ、電磁波シールド性フィルム及びその製造方法
KR20090021009A (ko) * 2007-08-24 2009-02-27 삼성코닝정밀유리 주식회사 디스플레이 장치용 전자파 차폐 부재
JP2012156436A (ja) * 2011-01-28 2012-08-16 Toray Ind Inc 透明導電性基板
KR101699952B1 (ko) * 2015-07-16 2017-01-25 (주)휴켐 전자파 차폐 및 흡수 복합 필름, 및 그 제조 방법
KR20170107625A (ko) * 2016-03-15 2017-09-26 한양대학교 산학협력단 이종크기의 구리 나노입자가 혼합된 전도성 구리 잉크 및 이를 이용한 구리 전극 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090019580A (ko) 2007-08-21 2009-02-25 삼성코닝정밀유리 주식회사 디스플레이 장치용 전자파 차폐 부재

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266312A (ja) * 2006-03-28 2007-10-11 Matsushita Electric Works Ltd 導電薄膜付導電性メッシュ、電磁波シールド性フィルム及びその製造方法
KR20090021009A (ko) * 2007-08-24 2009-02-27 삼성코닝정밀유리 주식회사 디스플레이 장치용 전자파 차폐 부재
JP2012156436A (ja) * 2011-01-28 2012-08-16 Toray Ind Inc 透明導電性基板
KR101699952B1 (ko) * 2015-07-16 2017-01-25 (주)휴켐 전자파 차폐 및 흡수 복합 필름, 및 그 제조 방법
KR20170107625A (ko) * 2016-03-15 2017-09-26 한양대학교 산학협력단 이종크기의 구리 나노입자가 혼합된 전도성 구리 잉크 및 이를 이용한 구리 전극 제조방법

Also Published As

Publication number Publication date
CN116058086A (zh) 2023-05-02
EP4210445A1 (en) 2023-07-12
KR20220030577A (ko) 2022-03-11
US20230320050A1 (en) 2023-10-05

Similar Documents

Publication Publication Date Title
WO2013157858A2 (ko) 전도성 구조체 및 이의 제조방법
WO2012121519A2 (ko) 전도성 구조체 및 이의 제조방법
WO2016159602A1 (ko) 전도성 구조체, 이의 제조방법 및 전도성 구조체를 포함하는 전극
US20210011567A1 (en) Touch panel and sheet of touch sensors
WO2016036201A1 (ko) 터치 스크린 패널용 터치 센서 및 그 제조방법
WO2011159107A9 (ko) 터치패널센서
WO2011008055A2 (ko) 전도체 및 이의 제조방법
WO2011025213A2 (ko) 터치패널센서
WO2012169848A2 (ko) 터치 스크린 센서 기판, 터치 스크린 센서 및 이를 포함하는 패널
WO2017010816A1 (ko) 전도성 구조체, 이의 제조방법, 이를 포함하는 터치패널 및 이를 포함하는 디스플레이 장치
WO2018016811A1 (ko) 필름 터치 센서
KR101836576B1 (ko) 터치 패널
WO2013105724A1 (ko) 터치패널센서
WO2017099476A1 (ko) 전도성 구조체, 이의 제조방법 및 전도성 구조체를 포함하는 전극
WO2014157841A1 (ko) 투명 전극 패턴 적층체 및 이를 구비한 터치 스크린 패널
WO2015137642A2 (en) Touch window and display with the same
WO2016137282A1 (ko) 전도성 구조체 및 이의 제조방법
WO2014189204A1 (ko) 투명 전극 패턴 적층체 및 이를 구비한 터치 스크린 패널
WO2022050673A1 (ko) 전자파 차폐 필름
WO2015002483A1 (ko) 터치 스크린 패널용 터치 센서, 그 제조방법 및 이를 포함하는 터치 스크린 패널
WO2015030513A1 (ko) 터치 스크린 패널용 터치 센서, 그 제조방법 및 이를 포함하는 터치 스크린 패널
WO2020166882A1 (ko) 터치 센서, 이를 포함하는 윈도우 적층체 및 이를 포함하는 화상 표시 장치
WO2016195367A1 (ko) 전도성 구조체 및 이의 제조방법
WO2021137425A1 (ko) 스크린 장치
WO2022045696A1 (ko) 도전성 메쉬 구조체 및 이를 포함하는 안테나 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021864633

Country of ref document: EP

Effective date: 20230403