WO2022050269A1 - ポンプ装置 - Google Patents

ポンプ装置 Download PDF

Info

Publication number
WO2022050269A1
WO2022050269A1 PCT/JP2021/031916 JP2021031916W WO2022050269A1 WO 2022050269 A1 WO2022050269 A1 WO 2022050269A1 JP 2021031916 W JP2021031916 W JP 2021031916W WO 2022050269 A1 WO2022050269 A1 WO 2022050269A1
Authority
WO
WIPO (PCT)
Prior art keywords
annular disk
disk portion
pump device
liquid
blade
Prior art date
Application number
PCT/JP2021/031916
Other languages
English (en)
French (fr)
Inventor
亮 ▲高▼田
将治 中村
将光 渡部
博道 平木
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to AU2021337996A priority Critical patent/AU2021337996A1/en
Priority to US18/013,649 priority patent/US20230358252A1/en
Priority to EP21864327.8A priority patent/EP4170181A4/en
Publication of WO2022050269A1 publication Critical patent/WO2022050269A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • F04D29/4293Details of fluid inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/001Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between stator blade and rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • F01D11/04Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type using sealing fluid, e.g. steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/08Adaptations for driving, or combinations with, pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/12Feeding by means of driven pumps fluid-driven, e.g. by compressed combustion-air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/04Units comprising pumps and their driving means the pump being fluid driven
    • F04D13/043Units comprising pumps and their driving means the pump being fluid driven the pump wheel carrying the fluid driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/165Sealings between pressure and suction sides especially adapted for liquid pumps
    • F04D29/167Sealings between pressure and suction sides especially adapted for liquid pumps of a centrifugal flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/24Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/586Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps
    • F04D29/588Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps cooling or heating the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • F02C3/045Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor having compressor and turbine passages in a single rotor-module
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • F02C3/06Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor the compressor comprising only axial stages
    • F02C3/073Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor the compressor comprising only axial stages the compressor and turbine stages being concentric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers

Definitions

  • the present disclosure relates to a pumping device for feeding a liquid.
  • This application claims priority based on Japanese Patent Application No. 2020-148970 filed with the Japan Patent Office on September 4, 2020, the contents of which are incorporated herein by reference.
  • Patent Document 1 discloses a turbomachine in which a fuel pump is connected to one side of a drive shaft and a turbine is connected to the other side of the drive shaft, and a generator is attached to the center of the drive shaft. Has been done. Further, Patent Document 2 discloses a system in which an air turbine is integrated with an electric motor as a system for driving a fuel pump.
  • Such a turbo machine is configured such that a device for recovering power (rotating force of the drive shaft) such as a generator or a device for applying power (rotating force of the drive shaft) such as an electric motor is attached to the drive shaft. If this is the case, there is a problem that the length of the drive shaft in the axial direction becomes large and the number of bearings and seals attached to the drive shaft increases.
  • an object of at least one embodiment of the present disclosure is to provide a pump device capable of reducing the length of the rotary shaft of the pump device in the axial direction and suppressing a decrease in reliability of the pump device. To do.
  • the pump device is With a rotating shaft, The hub part attached to the rotating shaft and Centrifugal pump blades attached to the peripheral surface of the hub portion, An annular disc attached to the tip of the centrifugal pump blade, An axial flow turbine blade attached to the outer peripheral surface of the annular disk portion is provided.
  • a liquid flow path is formed in which a liquid flowing from one side to the other side in the axial direction of the rotating shaft flows into the centrifugal pump blade.
  • a gas flow path is formed in which a gas flowing from the other side toward the one side passes through the axial flow turbine blade.
  • a pump device capable of reducing the length of the rotary shaft of the pump device in the axial direction and suppressing a decrease in reliability of the pump device.
  • expressions such as “same”, “equal”, and “homogeneous” that indicate that things are in the same state not only represent exactly the same state, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
  • the expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also an uneven portion or a chamfer within the range where the same effect can be obtained. It shall also represent the shape including the part and the like.
  • the expression “includes”, “includes”, or “has” one component is not an exclusive expression that excludes the existence of another component.
  • the same reference numerals may be given to the same configurations, and the description thereof may be omitted.
  • FIG. 1 is a schematic cross-sectional view schematically showing a cross section along an axis of a pump system including a pump device according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic cross-sectional view schematically showing a cross section along an axis of the pump device according to the embodiment of the present disclosure.
  • the pump device 1 according to some embodiments is attached to the rotary shaft 2, the hub portion 3 attached to the rotary shaft 2, and the peripheral surface 31 of the hub portion 3.
  • the centrifugal pump blade 4 is provided with an annular disk portion 5 attached to the tip 41 of the centrifugal pump blade 4, and an axial flow turbine blade 6 attached to the outer peripheral surface 51 of the annular disk portion 5.
  • the pump system 10 includes at least a pump device 1.
  • the rotary shaft 2 has a longitudinal direction along the extending direction of the axis LA of the rotary shaft 2 (hereinafter referred to as the axis direction X).
  • the peripheral surface 31 of the hub portion 3 includes a concave curved surface 31A curved in a concave shape in a cross section along the axis LA.
  • the concave curved surface 31A is configured so that the distance from the axis LA increases from one end (front end) 32 in the axial direction X to the other end (rear end) 33 in the axial direction X.
  • the one side (right side in the figure) where the front end 32 is located with respect to the rear end 33 of the concave curved surface 31A in the axial direction X is defined as the front side XF, and the side opposite to the front side XF in the axial direction X. (The other side above, the left side in the figure) is defined as the rear side XR.
  • the radial direction Y of the rotary shaft 2 may be simply abbreviated as the radial direction
  • the circumferential direction of the rotary shaft 2 may be simply abbreviated as the circumferential direction.
  • the annular disk portion 5 has an inner peripheral surface 52 including a convex curved surface 52A curved in a convex shape in a cross section along the axis LA.
  • the convex curved surface 52A is configured so that the distance from the axis LA increases from the front end 521 to the rear end 522 in the axis direction X.
  • the base end of the centrifugal pump blade 4 is attached to the concave curved surface 31A of the hub portion 3, and the tip 41 located on the opposite side to the base end is attached to the convex curved surface 52A of the annular disk portion 5. There is.
  • the convex curved surface 52A of the annular disk portion 5 is located outside the concave curved surface 31A of the hub portion 3 in the radial direction, and is arranged with a gap between the convex curved surface 52A and the concave curved surface 31A.
  • the pump device 1 is a centrifugal flow path 11 formed by a centrifugal pump blade 4, a convex curved surface 52A of the disk portion 5 and a concave curved surface 31A of the hub portion 3, and is a liquid introduced along the axial direction X. It has a centrifugal flow path 11 for flowing outward in the radial direction.
  • the pump device 1 is a centrifugal pump attached to a rotary shaft 2, a hub portion 3 attached to the rotary shaft 2, and a peripheral surface 31 of the hub portion 3.
  • the blade 4 includes an annular disk portion 5 attached to the tip 41 of the centrifugal pump blade 4, and an axial flow turbine blade 6 attached to the outer peripheral surface 51 of the annular disk portion 5.
  • a path 12 is formed, and a gas flowing from the other side (rear side XR) toward the one side (front side XF) passes through the axial flow turbine blade 6 on the outer peripheral side of the annular disk portion 5.
  • the road 13 is formed.
  • the liquid flow path 12 is connected to the centrifugal flow path 11 from the front side XF.
  • the liquid flowing through the liquid flow path 12 toward the rear side XR is introduced into the centrifugal flow path 11 from the front side XF.
  • the axial flow turbine blade 6 is rotated by introducing a gas flowing from the rear side XR toward the front side XF.
  • Each of the hub portion 3, the centrifugal pump blade 4, and the annular disk portion 5 rotates in conjunction with the rotation of the axial flow turbine blade 6.
  • the suction force generated by rotating the hub portion 3, the centrifugal pump blade 4, and the annular disk portion 5 sucks the liquid from the liquid flow path 12 into the centrifugal flow path 11 to increase the pressure.
  • the pump device 1 includes an axial flow turbine 10A including an axial flow turbine blade 6 and a centrifugal pump 10B including a centrifugal pump blade 4.
  • the pump device 1 includes a centrifugal pump blade 4 attached to each of the hub portion 3 and the annular disk portion 5, and an axial flow turbine blade attached to the outer peripheral surface 51 of the annular disk portion 5. 6 and.
  • a centrifugal pump blade 4 attached to each of the hub portion 3 and the annular disk portion 5, and an axial flow turbine blade attached to the outer peripheral surface 51 of the annular disk portion 5. 6 and.
  • the axial flow turbine blade 6 and the annular disk portion 5 are each cooled by the liquid flowing through the liquid flow path 12 and passing through the centrifugal pump blade 4, so that the heat resistance thereof can be improved.
  • the pump device 1 does not need to be provided with a cooling structure for cooling the bearings and seals attached to the rotary shaft 2, so that it is possible to suppress the increase in size, weight, and number of parts of the pump device 1. , It is possible to suppress a decrease in reliability due to an increase in size and weight of the pump device 1 and an increase in the number of parts.
  • the pump device 1 described above rotatably houses a hub portion 3, a centrifugal pump blade 4, an annular disc portion 5, and an axial turbine blade 6 as shown in FIG. Further, a side casing 7 and an inlet side casing 8 to be fastened to the front side XF of the main body side casing 7 are further provided. Inside the inlet side casing 8, a liquid introduction path 81 for introducing a liquid into the centrifugal pump blade 4 and a gas discharge path 82 formed on the outer peripheral side of the liquid introduction path 81, which is an axial flow turbine blade 6, are provided. A gas discharge path 82 for discharging the passed gas is formed.
  • the liquid flow path 12 described above includes a reduced flow path 12A connected to the centrifugal flow path 11 and a liquid introduction path 81 connected to the reduced flow path 12A.
  • the inner peripheral surface 52 of the annular disk portion 5 includes the above-mentioned convex curved surface 52A and the tapered surface 52B formed on the front side of the front end 521 of the convex curved surface 52A. ..
  • the tapered surface 52B forms a reduced flow path 12A in which the flow path area orthogonal to the axis LA decreases toward the rear side XR.
  • the liquid introduction path 81 includes an inlet side reduced flow path 81A in which the flow path area orthogonal to the axis LA becomes smaller toward the rear side XR.
  • the inlet-side reduced flow path 81A has an outlet opening end 84 formed on the end surface 83 of the rear-side XR of the inlet-side casing 8.
  • the inlet side reduced flow path 81A is connected to the reduced flow path 12A through the outlet opening end 84.
  • the inlet-side casing 8 is formed with a liquid introduction hole 85 for introducing a liquid into the liquid introduction path 81.
  • the liquid introduction hole 85 has an inner opening end 851 formed on the inner surface 811 forming the liquid introduction path 81 of the inlet-side casing 8 and an outer opening end 852 formed on the outer peripheral surface 86 of the inlet-side casing 8. ..
  • the liquid introduction hole 85 is formed at a position deviated from the gas discharge path 82 in the circumferential direction of the rotary shaft 2.
  • the liquid introduced from the outer open end 852 flows through the liquid introduction path 81 and the reduced flow path 12A toward the rear XR, and is guided to the centrifugal pump blade 4 after the flow is contracted.
  • the main body-side casing 7 includes a liquid discharge path forming portion 710 that forms the liquid discharge path 71, and a gas introduction path forming section 720 that forms the gas introduction path 72.
  • the liquid discharge path 71 includes a scroll flow path 71A formed in a scroll shape on the outer peripheral side of the centrifugal flow path 11 described above.
  • the liquid discharge path 71 has a liquid discharge port 74 formed on the outer peripheral surface 73 of the main body-side casing 7.
  • the liquid discharge port 74 opens outward in the radial direction. The liquid that has passed through the centrifugal pump blade 4 flows through the liquid discharge path 71 and is then discharged from the liquid discharge port 74 to the outside of the main body-side casing 7.
  • the gas flow path 13 described above includes a gas introduction path 72 and a gas discharge path 82.
  • the gas introduced from the gas introduction port (not shown) is guided to the axial flow turbine blade 6 after flowing through the gas introduction path 72.
  • the gas that has passed through the axial flow turbine blade 6 flows through the gas discharge path 82 and is then discharged from a gas discharge port (not shown).
  • the nozzle (static blade) 14 of the axial flow turbine 10A is provided in the gas introduction path 72.
  • the axial flow turbine 10A may be any of an impulse turbine, a reaction turbine, and an impulse reaction turbine.
  • the main body side casing 7 includes a first flange portion 76 that protrudes outward in the radial direction from the end portion 75 of the front side XF.
  • the inlet-side casing 8 includes a second flange portion 87 that protrudes outward in the radial direction from the outer peripheral surface 86 on the rear side XR.
  • the inlet-side casing 8 is fastened to the main body-side casing 7 by fastening the first flange portion 76 and the second flange portion 87 with a fastening member 15 (fastening bolt in the illustrated example).
  • the pump device 1 includes an inlet-side casing 8 fastened to a main body-side casing 7 and a front-side XF of the main body-side casing 7, and a liquid introduction path 81 is provided inside the inlet-side casing 8. , A gas discharge path 82 formed on the outer peripheral side of the liquid introduction path 81 is formed.
  • the length of the inlet-side casing 8 in the axial direction X can be made small, and the pump device 1 can be made compact and compact and lightweight.
  • the pump device 1 described above has a gas pressure P3 (a nozzle 14 and a shaft flow turbine blade 6) at the inlet of the axial flow turbine blade 6 when the gas and the liquid are used as design flows.
  • the pressure between the blades is larger than the pressure P1 (pump inlet pressure) of the liquid flowing through the liquid flow path 12 and smaller than the pressure P2 (pump outlet pressure) of the liquid passing through the centrifugal pump blade 4. It is configured as follows.
  • Centrifugal force is applied to the liquid that flows through the liquid flow path 12 and passes through the centrifugal pump blade 4, and the pressure is increased by driving the pump device 1.
  • a large amount of leakage of the liquid occurs due to the pressure difference between the pump outlet pressure P2 and the pump inlet pressure P1.
  • the amount of liquid leak in the pump device 1 is the pressure difference between the pump outlet pressure P2 and the blade pressure P3, which is smaller than the pressure difference between the pump outlet pressure P2 and the pump inlet pressure P1. It will be the corresponding amount.
  • the amount of liquid leakage in the pump device 1 can be reduced as compared with a normal pump.
  • FIG. 3 is a schematic cross-sectional view schematically showing a cross section along an axis near an annular disk portion in the pump device according to the embodiment of the present disclosure.
  • the pump device 1 described above has a front side gap (one side gap) between the end surface 53 of the front side XF of the annular disk portion 5 and the stationary wall 16.
  • 17 is formed, and a rear side gap (the other side gap) 19 is formed between the end surface 54 of the rear side XR of the annular disk portion 5 and the stationary wall 18.
  • the annular disc portion 5 is formed with a through hole 55 penetrating along the axial direction X of the rotary shaft 2.
  • the through hole 55 has a front side space (one side space) 20 connected to the front side gap 17 or the front side gap 17, and a rear side space (the other side space) 21 connected to the rear side gap 19 or the rear side gap 19. Communicate.
  • the end surface 53 of the annular disk portion 5 extends radially inward from the front end of the outer peripheral surface 51 to which the axial flow turbine blade 6 is attached.
  • the stationary wall 16 is composed of an end surface 83 of the rear side XR of the inlet side casing 8 arranged so as to face the end surface 53. That is, in the illustrated embodiment, the front side gap 17 is formed between the end face 53 and the end face 83. The front side gap 17 is connected to the front side (downstream side) of the axial flow turbine blade 6 in the gas flow path 13 and to the rear side (upstream side) of the gas discharge path 82.
  • the front side space 20 is a space formed on the inner peripheral side of the front side gap 17, and is a space formed between the annular disk portion 5 and the inlet side casing 8.
  • the front space 20 is connected to the liquid flow path 12 formed on the inner peripheral side thereof.
  • the end surface 54 of the annular disk portion 5 extends radially inward from the rear end of the outer peripheral surface 51 to which the axial flow turbine blade 6 is attached.
  • the stationary wall 18 is composed of an end surface 77 of the front side XF of the main body side casing 7 arranged so as to face the end surface 54. That is, in the illustrated embodiment, the rear side gap 19 is formed between the end face 54 and the end face 77. The rear side gap 19 is connected to the front side (downstream side) of the nozzle 14 in the gas flow path 13 and to the rear side (upstream side) of the axial flow turbine blade 6.
  • the annular disk portion 5 has an XR on the rear side of the outer peripheral surface 51 to which the axial flow turbine blade 6 is attached, a rear outer peripheral surface 56 located on the inner side in the radial direction from the outer peripheral surface 51, and an outer peripheral surface in the axial direction X. Between the surface 51 and the rear outer peripheral surface 56, there is an annular recess 57 that is recessed inward in the radial direction from the rear outer peripheral surface 56.
  • the rear side space 21 is a space formed on the inner peripheral side of the rear side gap 19, and includes a space facing the annular recess 57.
  • the rear side space 21 communicates with the outlet of the centrifugal flow path 11 through a gap 22 formed between the rear side outer peripheral surface 56 and the inner peripheral surface 78 of the main body side casing 7 facing the rear side outer peripheral surface 56. ..
  • the inner peripheral surface 78 extends from the inner end of the end surface 77 to the rear side XR along the axial direction X.
  • the through hole 55 has a front opening end 551 formed on the front XF of the disc portion 5 and a rear opening end 552 formed on the rear XR of the disc portion 5.
  • the front opening end 551 is formed on the surface 58 connected to the inner peripheral side of the end surface 53 of the disk portion 5, and the rear opening end 552 is formed on the inner peripheral side of the end surface 54 of the disk portion 5. It is formed on a continuous surface 59.
  • the front opening end 551 is connected to the front space 20, and the rear opening end 552 is connected to the rear space 21.
  • the front opening end 551 may be formed on the end surface 53 to connect to the front gap 17, or the rear opening end 552 may be formed on the end surface 54. It may be connected to the rear side gap 19.
  • the through hole 55 has the same distance L1 from the axis LA of the rotation shaft 2 of the center C1 of the front side opening end 551 as the distance L2 from the axis LA of the center C2 of the rear side opening end 552. It has become.
  • the liquid passing through the centrifugal pump blade 4 is boosted by applying centrifugal force by driving the pump device 1.
  • a part of the pressurized liquid flows into the rear side gap 19 and the rear side space 21.
  • a part of the liquid that has flowed into the rear side gap 19 and the rear side space 21 is sent to the front side gap 17 and the front side space 20 through the through hole 55 by the drive of the pump device 1.
  • the liquid sent to the front side gap 17 and the front side space 20 can cool the front side portions of the axial flow turbine blade 6 and the annular disk portion 5.
  • the through hole 55 is formed because the fluid existing in the rear side gap 19 and the rear side space 21 flows into the front side gap 17 and the front side space 20 through the through hole 55.
  • the pressure in the front side gap 17 and the front side space 20 can be improved as compared with the case where there is no front side gap 17.
  • By improving the pressure in the front side gap 17 and the front side space 20 it is possible to prevent the gas that has passed through the axial flow turbine blade 6 from flowing into the liquid flow path 12 through the front side gap 17 and the front side space 20. can.
  • FIG. 4 is a schematic cross-sectional view schematically showing a cross section along an axis near an annular disk portion in the pump device according to the embodiment of the present disclosure.
  • the above-mentioned through hole 55 has a distance L1 from the axis LA of the rotary shaft 2 of the center C1 of the front side opening end 551 to the center of the rear side opening end 552. It is larger than the distance L2 from the axis LA of C2.
  • the through hole 55 is inclined toward the outer peripheral side toward the front side XF.
  • the through hole 55 has a distance L1 larger than the distance L2.
  • the front side gap 17 through the through hole 55 of the liquid existing in the rear side gap 19 and the rear side space 21 driven by the pump device 1 and the like Since the movement to the front side space 20 is promoted, the portion of the front side XF of each of the axial flow turbine blade 6 and the annular disk portion 5 can be effectively cooled.
  • FIG. 5 is a schematic cross-sectional view schematically showing a cross section along an axis near an annular disk portion in the pump device according to the embodiment of the present disclosure.
  • the above-mentioned through hole 55 has a distance L1 from the axis LA of the rotary shaft 2 of the center C1 of the front side opening end 551 to the center of the rear side opening end 552. It is smaller than the distance L2 from the axis LA of C2.
  • the through hole 55 is inclined toward the outer peripheral side toward the rear side XR.
  • the through hole 55 has a distance L1 smaller than the distance L2.
  • the gas that has flowed into the front side gap 17 and the front side space 20 after passing through the axial flow turbine blade 6 is introduced into the through hole 55, the rear side space 21 and the rear side. It can be returned to the inlet side of the axial flow turbine blade 6 through the gap 19.
  • the amount of leakage of the liquid that has passed through the centrifugal pump blade 4 to the rear side gap 19 and the rear side space 21 can be reduced, so that the efficiency of the pump function of the pump device 1 can be reduced. Can be improved.
  • the gap (front side gap 17) facing the annular disc portion 5 by the annular disc portion 5 is formed. Since the stirring loss of the liquid existing in the rear side gap 19) and the space (front side space 20, rear side space 21) can be reduced, the efficiency of the axial flow turbine 10A of the pump device 1 can be improved. Therefore, the overall performance of the pump device 1 can be improved.
  • FIG. 6 is a schematic cross-sectional view schematically showing a cross section along an axis near an annular disk portion in the pump device according to the embodiment of the present disclosure.
  • the pump device 1 described above has the above-mentioned rear side gap (the other) between the end face 54 of the rear side XR of the annular disk portion 5 and the stationary wall 18 as shown in FIG. Side gap) 19 is formed.
  • the pump device 1 includes the hub portion 3, the centrifugal pump blade 4, the annular disk portion 5, and the above-mentioned main body-side casing 7 that rotatably accommodates the axial flow turbine blade 6, and the XR on the rear side of the rear side gap 19.
  • a labyrinth seal 23 that seals between the annular disc portion 5 and the main body-side casing 7 is provided.
  • the labyrinth seal 23 seals between the rear outer peripheral surface 56 of the disc portion 5 and the inner peripheral surface 78 of the main body casing 7 described above.
  • the liquid that has passed through the centrifugal pump blade 4 is sealed between the annular disk portion 5 and the main body side casing 7 by the labyrinth seal 23 in the XR on the rear side of the rear side gap 19. Since the amount of leakage to the rear side gap 19 and the rear side space 21 can be reduced, the efficiency of the centrifugal pump 10B of the pump device 1 can be improved. Further, by reducing the amount of leakage of the liquid that has passed through the centrifugal pump blade 4 to the rear side gap 19 and the rear side space 21, the gap facing the annular disk portion 5 (front side gap 17, rear side gap 19). Since it is possible to reduce the stirring loss of the liquid existing in the space (front side space 20, rear side space 21), the efficiency of the axial flow turbine 10A of the pump device 1 can be improved. Therefore, the overall performance of the pump device 1 can be improved.
  • the pump device 1 uses a labyrinth seal 23 having a simple structure for the seal between the annular disk portion 5 and the casing 7 on the main body side, so that the structure of the pump device 1 is complicated, increased in size, and increased in weight. Can be suppressed.
  • FIG. 7 is a schematic cross-sectional view schematically showing a cross section along an axis near an annular disk portion in the pump device according to the embodiment of the present disclosure.
  • FIG. 8 is an explanatory diagram for explaining an example of an inducer in one embodiment of the present disclosure.
  • FIG. 8 schematically shows a state in which the hub portion 3 of the pump device 1 is viewed from the outside in the radial direction.
  • the rotation direction RD indicates the rotation direction of the rotation shaft 2 on the front side of the illustrated surface with respect to the axis LA.
  • the MF indicates the flow of the liquid flowing through the liquid flow path 12.
  • the pump device 1 described above further comprises an inducer 24 that projects from the XF on the front side of the centrifugal pump blade 4 on the peripheral surface 31 of the hub portion 3, as shown in FIG. As shown in FIG. 8, the inducer 24 is configured to impart a pre-turn to the liquid flowing into the centrifugal pump blade 4 in the rotation direction RD of the rotary shaft 2.
  • the inducer 24 includes a plurality of guide blades 240 arranged at intervals in the circumferential direction of the rotary shaft 2.
  • Each of the guide blades 240 is inclined so that the trailing edge 242 located on the rear side XR is located in the rotation direction RD with respect to the leading edge 241 located on the front side XF.
  • the liquid flowing through the liquid flow path 12 is guided by the guide blades 240 when passing between the guide blades 240, and a velocity component toward the rotation direction RD is given to the flow MF.
  • the liquid flowing into the centrifugal pump blade 4 is pre-turned in the rotation direction RD of the rotary shaft 2 by the inducer 24, so that the occurrence of cavitation can be suppressed.
  • the inducer 24 it is possible to suppress a decrease in efficiency of the pump device 1 due to the occurrence of cavitation.
  • FIG. 9 is an explanatory diagram for explaining an example of a gas introduction path according to an embodiment of the present disclosure.
  • FIG. 9 schematically shows the hub portion, the centrifugal pump blade, and the casing on the main body side when viewed from the front side in the axial direction of the rotary shaft.
  • the pump device 1 described above comprises a body-side casing 7 in which the gas introduction path 72 described above is formed, as shown in FIG.
  • the gas introduction path 72 described above was formed in a part of the rotary shaft 2 in the circumferential direction.
  • the gas introduction path 72 introduces gas into the axial flow turbine blade 6 from a part in the circumferential direction.
  • the axial flow turbine 10A in the pump device 1 as a partial feed turbine in this way, interference between the liquid discharge path 71 and the gas introduction path 72 for discharging the liquid that has passed through the centrifugal pump blade 4 is suppressed.
  • the liquid discharge port 74 side having a large flow path area of the liquid discharge path 71 can be arranged in a range where the gas introduction path 72 in the circumferential direction of the rotary shaft 2 is not formed.
  • the pump device 1 can be made compact and compact and lightweight.
  • the angle range ⁇ is 0 ° or more and 90 ° or less, where ⁇ is the angle range in which the gas introduction path 72 extends in the circumferential direction of the rotary shaft 2. Is. It is preferably 10 ° or more and 60 ° or less, and more preferably 20 ° or more and 30 ° or less.
  • the pump device 1 can be made compact and compact and lightweight while suppressing interference between the gas introduction path 72 and the liquid discharge path 71.
  • the angular position of the center C3 of the liquid discharge port 74 in the circumferential direction of the rotary shaft 2 is set to 0 °
  • the rotational direction of the rotary shaft 2 is set to 0 °.
  • the gas introduction path 72 described above exists within the range of 90 ° ⁇ ⁇ ⁇ 270 ° when the downstream direction in the RD is the positive direction of the angular position ⁇ in the circumferential direction.
  • the gas introduction path 72 exists within the range of 120 ° ⁇ ⁇ ⁇ 240 °. More preferably, it exists within the range of 150 ° ⁇ ⁇ ⁇ 210 °.
  • the pump device 1 can be made compact and compact and lightweight while suppressing interference between the gas introduction path 72 and the liquid discharge path 71.
  • the gas introduction path 72 described above is provided on the opposite side (rear side XR) of the axial turbine blade 6 and scrolls. It includes a scroll flow path 72A formed in a shape and an inclined introduction path 72B for guiding gas from the scroll flow path 72A to the axial flow turbine blade 6.
  • the inclined introduction path 72B is inclined toward the inner peripheral side toward one side (front side XF).
  • the nozzle 14 described above is provided on the inclined introduction path 72B.
  • the inclined introduction path 72B can increase the pressure of the gas passing through the inclined introduction path 72B which is inclined toward the inner peripheral side toward the front side XF.
  • the separation of the gas from the axial flow turbine blade 6 can be suppressed, and the efficiency of the axial flow turbine 10A of the pump device 1 can be improved.
  • the inclined introduction path 72B is inclined toward the outer peripheral side toward the rear side XR, it is between the inclined introduction path 72B and the scroll flow path 72A and the liquid discharge path 71. Interference can be suppressed. As a result, the pump device 1 can be made compact and compact and lightweight.
  • the main body-side casing 7 has an outer peripheral surface 711 on the XR rearward of the scroll flow path 71A of the liquid discharge path forming section 710 and a gas introduction path forming section 720.
  • a groove portion 722 recessed toward the front side XF is formed between the outer surface 721 on the inner peripheral side.
  • the groove portion 722 extends along the circumferential direction of the rotary shaft 2, and a gap is formed between the outer peripheral surface 711 and the outer surface 721.
  • the gas introduction path forming portion 720 is connected to the liquid discharge path forming portion 710 from the outer peripheral side at the XF on the front side of the groove portion 722.
  • the above-mentioned scroll flow path 71A is formed in the liquid discharge path forming portion 710 on the inner peripheral side of the connection portion with the gas introduction path forming portion 720.
  • the gas introduction path forming section 720 is provided integrally with the liquid discharge path forming section 710. In this case, when heat is transferred from the gas introduction path forming section 720 to the liquid discharge path forming section 710, it is necessary to pass through the portion cooled by the scroll flow path 71A in the liquid discharge path forming section 710. It is possible to effectively suppress heat transfer from the gas introduction path forming section 720 to the casing connected to the liquid discharge path forming section 710 and the rear side XR of the liquid discharge path forming section 710.
  • the pump system 10 described above comprises the pump device 1 described above and a rotational force recovery device 91 configured to recover the rotational force of the rotary shaft 2.
  • One of the rotational force applying devices 92 configured to apply the rotational force to the rotary shaft 2.
  • the rotational force recovery device 91 and the rotational force applying device 92 are attached to the rotary shaft 2.
  • the pump system 10 described above includes a casing 93 for accommodating a rotational force recovery device 91 or a rotational force applying device 92, and a rotational force recovery device 91 or a rotational force applying device.
  • the rotational force recovery device 91 comprises a generator.
  • the rotational force applying device 92 comprises an electric motor.
  • the casing 93 includes a front bearing support portion 931 that supports the front bearing 94 from the outer peripheral side, and a rear bearing support portion 932 that supports the rear bearing 95 from the outer peripheral side.
  • the casing 93 is connected to the rear XR of the liquid discharge path forming portion 710 and not to the gas introduction path forming portion 720.
  • the pump system 10 can be made compact, compact and lightweight by reducing the length of the pump device 1 in the axial direction X.
  • the pump device 1 described above comprises a fuel pump device for sending liquid fuel to an internal combustion engine (not shown).
  • the pump device 1 is configured to drive the centrifugal pump 10B to send liquid fuel to an internal combustion engine (not shown).
  • the present disclosure is not limited to the above-mentioned embodiment, and includes a form in which the above-mentioned embodiment is modified and a form in which these forms are appropriately combined.
  • the pump device (1) is Rotating shaft (2) and The hub portion (3) attached to the rotary shaft (2) and Centrifugal pump blades (4) attached to the peripheral surface (31) of the hub portion (3), and An annular disk portion (5) attached to the tip (41) of the centrifugal pump blade (4), and The axial flow turbine blade (6) attached to the outer peripheral surface (51) of the annular disk portion (5) is provided.
  • a liquid flowing from one side (front side XF) to the other side (rear side XR) in the axial direction (X) of the rotary shaft (2) is said.
  • a liquid flow path (12) flowing into the centrifugal pump blade (4) is formed.
  • a gas flowing from the other side (rear side XR) toward the one side (front side XF) passes through the axial flow turbine blade (6).
  • a road (13) was formed.
  • the pump device includes a centrifugal pump blade attached to each of the hub portion and the annular disk portion, and an axial flow turbine blade attached to the outer peripheral surface of the annular disk portion. ..
  • a centrifugal pump blade attached to each of the hub portion and the annular disk portion
  • an axial flow turbine blade attached to the outer peripheral surface of the annular disk portion.
  • a liquid flow path in which the liquid flowing from one side toward the other side flows into the centrifugal pump blade is formed on the inner peripheral side of the annular disk portion.
  • a gas flow path is formed on the outer peripheral side of the annular disk portion so that the gas flowing from the other side to the one side passes through the axial turbine blade.
  • the axial flow turbine blade and the annular disk portion are each cooled by the liquid flowing through the liquid flow path and passing through the centrifugal pump blade, so that the heat resistance thereof can be improved.
  • the pump device does not need to be provided with a cooling structure for cooling the bearings and seals attached to the rotary shaft, so that it is possible to suppress the increase in size and weight of the pump device and the increase in the number of parts of the pump device. It is possible to suppress the deterioration of reliability due to the increase in size, weight and the number of parts.
  • the pump device (1) according to 1) above.
  • a main body-side casing (7) that rotatably accommodates the hub portion (3), the centrifugal pump blade (4), the annular disk portion (5), and the axial flow turbine blade (6).
  • an inlet-side casing (8) to be fastened to the one side (front side XF) of the main body-side casing (7) is further provided.
  • the pump device includes an inlet-side casing fastened to one side of the main body-side casing and the main body-side casing, and inside the inlet-side casing, a liquid introduction path and a liquid introduction path are provided. A gas discharge path formed on the outer peripheral side is formed. In this case, the length of the inlet-side casing in the axial direction can be reduced, and the pump device can be made compact and compact and lightweight.
  • a one-sided gap (front side gap 17) is formed between the end surface (53) of the one side (front side XF) of the annular disk portion (5) and the stationary wall (16, end surface 83).
  • the other side gap (rear side gap 19) is formed between the end surface (54) of the other side (rear side XR) of the annular disk portion (5) and the stationary wall (18, end surface 77).
  • the annular disk portion (5) is a through hole (55) penetrating along the axial direction (X) of the rotating shaft (2), and is a one-sided space connected to the one-sided gap or the one-sided gap.
  • a through hole (55) was formed to communicate (front space 20) with the other side gap or the other side space (rear side space 21) connected to the other side gap.
  • the liquid passing through the centrifugal pump blade is boosted by applying centrifugal force by driving the pump device.
  • a part of the pressurized liquid flows into the gap on the other side and the space on the other side.
  • a part of the liquid that has flowed into the other side gap or the other side space is sent to the one side gap or the one side space through the through hole by the drive of the pump device.
  • the liquid sent to the one-sided gap or the one-sided space can cool each of the above-mentioned one-sided portions of the axial flow turbine blade and the annular disk portion.
  • the fluid existing in the other side gap or the other side space flows into the one side gap or the one side space through the through hole, so that the case where the through hole is not formed is compared with the case where the through hole is not formed. Therefore, the pressure in the one-sided gap and the one-sided space can be improved.
  • By improving the pressure in the one-sided gap and the one-sided space it is possible to suppress the gas passing through the axial flow turbine blade from flowing into the liquid flow path through the one-sided gap and the one-sided space. By suppressing the inflow of gas that has passed through the axial flow turbine blade into the liquid flow path, the occurrence of cavitation in the liquid flow path or the centrifugal flow path can be suppressed.
  • the through hole (55) is the rotary shaft at the center (C1) of the one-sided opening end (front side opening end 551) formed on the one side (front side XF) of the annular disk portion (5).
  • the through hole has a distance L1 larger than the distance L2.
  • the liquid existing in the other side gap or the other side space driven by the pump device is transferred to the one side gap or the one side space through the through hole. Since the movement is promoted, the one-sided portion of each of the axial turbine blade and the annular disk portion can be effectively cooled.
  • the through hole (55) is the rotary shaft at the center (C1) of the one-sided opening end (front side opening end 551) formed on the one side (front side XF) of the annular disk portion (5).
  • the through hole has a distance L1 smaller than the distance L2.
  • the gas that has flowed into the one-sided gap or one-sided space after passing through the axial-flow turbine blade is passed through the through hole, the one-sided gap, and the one-sided space. Can be returned to the entrance side of.
  • the stirring loss of the liquid existing in the gap or space facing the annular disk portion due to the annular disk portion can be reduced. Since it can be reduced, the efficiency of the turbine function of the pump device can be improved. Therefore, the overall performance of the pump device can be improved.
  • the pump device (1) according to any one of 1) to 5) above.
  • the other side gap (rear side gap 19) is formed between the end surface (54) of the other side (rear side XR) of the annular disk portion (5) and the stationary wall (18, end surface 77).
  • the pump device (1) is A main body-side casing (7) that rotatably accommodates the hub portion (3), the centrifugal pump blade (4), the annular disk portion (5), and the axial flow turbine blade (6).
  • a labyrinth seal (23) that seals between the annular disk portion (5) and the main body-side casing (7) on the other side (rear side XR) of the other side gap (rear side gap 19).
  • the other side of the liquid that has passed through the centrifugal pump blade is sealed between the annular disk portion and the casing on the main body side by the labyrinth seal on the other side of the gap on the other side. Since the amount of leakage to the gap or the space on the other side can be reduced, the efficiency of the centrifugal pump of the pump device can be improved. Further, by reducing the amount of leakage of the liquid that has passed through the centrifugal pump blade to the other side gap or the other side space, it is possible to reduce the stirring loss of the liquid existing in the gap or space facing the annular disk portion. The efficiency of the axial flow turbine of the device can be improved. Therefore, the overall performance of the pump device can be improved.
  • the pressure increase in the other side gap or the other side space can be suppressed, and the pressure rise in the other side gap or the other side space can be suppressed. Since the pressure difference between the one-side gap and the one-side space can be made small, the thrust applied to the annular disk portion can be reduced. Further, in the pump device, by using a labyrinth seal having a simple structure for the seal between the annular disk portion and the casing on the main body side, it is possible to suppress the complicated structure, the size increase and the weight increase of the pump device.
  • the pump device (1) according to any one of 1) to 6) above.
  • the liquid flowing into the centrifugal pump blade is pre-turned in the rotation direction of the rotating shaft by the inducer, so that the occurrence of cavitation can be suppressed.
  • the occurrence of cavitation can be suppressed.
  • the pump device (1) according to any one of 1) to 7) above.
  • a main body-side casing (7) for rotatably accommodating the hub portion (3), the centrifugal pump blade (4), the annular disk portion (5), and the axial flow turbine blade (6) is provided.
  • a gas introduction path (72) for introducing the gas into the axial flow turbine blade (6) is formed inside the main body side casing (7).
  • the gas introduction path (72) was formed in a part of the rotary shaft in the circumferential direction.
  • gas is introduced into the axial flow turbine blade from a part in the circumferential direction by the gas introduction path.
  • the axial flow turbine in the pump device as a partial feed turbine in this way, it is possible to suppress interference between the liquid discharge path and the gas introduction path for discharging the liquid that has passed through the centrifugal pump blades.
  • the liquid discharge port side having a large flow path area of the liquid discharge path can be arranged in a range where the gas introduction path in the circumferential direction of the rotary shaft is not formed.
  • the pump device can be made compact and compact and lightweight.
  • the gas introduction path (72) is A scroll flow path (72A) provided on the other side (rear side XR) of the axial flow turbine blade (6) and formed in a scroll shape.
  • An inclined introduction path (72B) for guiding the gas from the scroll flow path (72A) to the axial flow turbine blade (6), and toward the inner peripheral side toward the one side (front side XF). Includes an inclined introduction path (72B), which is inclined.
  • the inclined introduction path can increase the pressure of the gas passing through the inclined introduction path that is inclined toward the inner peripheral side toward the one side.
  • the efficiency of the axial flow turbine of the pump device can be improved.
  • since the inclined introduction path is inclined toward the outer peripheral side toward the other side, interference between the inclined introduction path and the scroll flow path and the liquid discharge path. Can be suppressed. As a result, the pump device can be made compact and compact and lightweight.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Eye Examination Apparatus (AREA)
  • Fluid-Driven Valves (AREA)
  • Seal Device For Vehicle (AREA)

Abstract

ポンプ装置は、回転シャフトと、回転シャフトに取り付けられたハブ部と、ハブ部の周面に取り付けられた遠心ポンプ翼と、遠心ポンプ翼の先端に取り付けられた環状のディスク部と、環状のディスク部の外周面に取り付けられた軸流タービン翼と、を備え、環状のディスク部の内周側には、回転シャフトの軸線方向における一方側から他方側に向かって流れる液体が遠心ポンプ翼に流入する液体流路が形成され、環状のディスク部の外周側には、前記他方側から前記一方側に向かって流れる気体が軸流タービン翼を通過する気体流路が形成された。

Description

ポンプ装置
 本開示は、液体を送るためのポンプ装置に関する。
 本願は、2020年9月4日に日本国特許庁に出願された特願2020-148970号に基づき優先権を主張し、その内容をここに援用する。
 燃料ポンプなどの液体ポンプをタービンにより駆動するターボ機械が知られている(例えば、特許文献1、2参照)。特許文献1には、駆動軸の一方側に燃料ポンプが接続され、駆動軸の他方側にタービンが接続されたターボ機械であって、駆動軸の中央に発電機が取り付けられたターボ機械が開示されている。また、特許文献2には、燃料ポンプを駆動するためのシステムとして、エアタービンを電動機と一体化したシステムが開示されている。
特開2007-205353号公報 特許第4115902号公報
 特許文献1に記載されたような、駆動軸の一方側に燃料ポンプが接続され、駆動軸の他方側にタービンが接続されたターボ機械は、その駆動軸の軸線方向の長さが大きなものになるため、その大型化や重量化を招く虞がある。このようなターボ機械は、発電機のような動力(駆動軸の回転力)を回収する装置、又は電動機のような動力(駆動軸の回転力)を付与する装置が駆動軸に取り付けられる構成にした場合には、その駆動軸の軸線方向の長さが大きなものになるとともに、駆動軸に取り付けられる軸受やシールが多くなるという問題がある。
 また、上記タービンの高温の作動流体により、駆動軸に取り付けられた軸受やシールが熱による劣化や性能低下を招く虞があり、駆動軸に取り付けられた軸受やシールを冷却するための冷却構造を設ける必要がある。このため、ターボ機械の大型化、重量化および部品点数が増加し、これによりターボ機械の信頼性が損なわれる虞がある。なお、特許文献2に記載されたように、発電機又は電動機と、タービンとを一体化しても上記課題の解決には至らない。
 上述した事情に鑑みて、本開示の少なくとも一実施形態の目的は、ポンプ装置の回転シャフトの軸線方向における長さを小さなものにできるとともに、ポンプ装置の信頼性の低下を抑制できるポンプ装置を提供することにある。
 本開示の一実施形態にかかるポンプ装置は、
 回転シャフトと、
 前記回転シャフトに取り付けられたハブ部と、
 前記ハブ部の周面に取り付けられた遠心ポンプ翼と、
 前記遠心ポンプ翼の先端に取り付けられた環状のディスク部と、
 前記環状のディスク部の外周面に取り付けられた軸流タービン翼と、を備え、
 前記環状のディスク部の内周側には、前記回転シャフトの軸線方向における一方側から他方側に向かって流れる液体が前記遠心ポンプ翼に流入する液体流路が形成され、
 前記環状のディスク部の外周側には、前記他方側から前記一方側に向かって流れる気体が前記軸流タービン翼を通過する気体流路が形成された。
 本開示の少なくとも一実施形態によれば、ポンプ装置の回転シャフトの軸線方向における長さを小さなものにできるとともに、ポンプ装置の信頼性の低下を抑制できるポンプ装置が提供される。
本開示の一実施形態にかかるポンプ装置を備えるポンプシステムの軸線に沿った断面を概略的に示す概略断面図である。 本開示の一実施形態にかかるポンプ装置の軸線に沿った断面を概略的に示す概略断面図である。 本開示の一実施形態にかかるポンプ装置における環状のディスク部近傍の軸線に沿った断面を概略的に示す概略断面図である。 本開示の一実施形態にかかるポンプ装置における環状のディスク部近傍の軸線に沿った断面を概略的に示す概略断面図である。 本開示の一実施形態にかかるポンプ装置における環状のディスク部近傍の軸線に沿った断面を概略的に示す概略断面図である。 本開示の一実施形態にかかるポンプ装置における環状のディスク部近傍の軸線に沿った断面を概略的に示す概略断面図である。 本開示の一実施形態にかかるポンプ装置における環状のディスク部近傍の軸線に沿った断面を概略的に示す概略断面図である。 本開示の一実施形態におけるインデューサの一例を説明するための説明図である。 本開示の一実施形態における気体導入路の一例を説明するための説明図である。
 以下、添付図面を参照して本開示の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本開示の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
 なお、同様の構成については同じ符号を付し説明を省略することがある。
 図1は、本開示の一実施形態にかかるポンプ装置を備えるポンプシステムの軸線に沿った断面を概略的に示す概略断面図である。図2は、本開示の一実施形態にかかるポンプ装置の軸線に沿った断面を概略的に示す概略断面図である。
 幾つかの実施形態にかかるポンプ装置1は、図1および図2に示されるように、回転シャフト2と、回転シャフト2に取り付けられたハブ部3と、ハブ部3の周面31に取り付けられた遠心ポンプ翼4と、遠心ポンプ翼4の先端41に取り付けられた環状のディスク部5と、環状のディスク部5の外周面51に取り付けられた軸流タービン翼6と、を備える。詳細は後述するが、ポンプシステム10は、ポンプ装置1を少なくとも備える。
 回転シャフト2は、回転シャフト2の軸線LAの延在する方向(以下、軸線方向Xとする)に沿って長手方向を有する。ハブ部3の周面31は、軸線LAに沿った断面において凹状に湾曲した凹湾曲面31Aを含む。凹湾曲面31Aは、軸線方向Xにおける一方端(前方端)32から軸線方向Xにおける他方端(後方端)33に向かうにつれて軸線LAからの距離が大きくなるように構成されている。
 以下、軸線方向Xにおける凹湾曲面31Aの後方端33に対して前方端32が位置する上記一方側(図中右側)を前方側XFと定義し、軸線方向Xにおける前方側XFとは反対側(上記他方側、図中左側)を後方側XRと定義する。また、回転シャフト2の径方向Yを単に径方向と略すことがあり、回転シャフト2の周方向を単に周方向と略すことがある。
 図2に示されるように、環状のディスク部5は、軸線LAに沿った断面において凸状に湾曲した凸湾曲面52Aを含む内周面52を有する。凸湾曲面52Aは、軸線方向Xにおける前方端521から後方端522に向かうにつれて軸線LAからの距離が大きくなるように構成されている。遠心ポンプ翼4は、その基端がハブ部3の凹湾曲面31Aに取り付けられ、上記基端とは反対側に位置する先端41が、環状のディスク部5の凸湾曲面52Aに取り付けられている。環状のディスク部5の凸湾曲面52Aは、ハブ部3の凹湾曲面31Aよりも径方向における外側に位置し、凹湾曲面31Aとの間に隙間を有して配置されている。
 ポンプ装置1は、遠心ポンプ翼4、ディスク部5の凸湾曲面52Aおよびハブ部3の凹湾曲面31Aにより形成された遠心流路11であって、軸線方向Xに沿って導入された液体を径方向における外側に向かって流すための遠心流路11を有する。
 幾つかの実施形態にかかるポンプ装置1は、図2に示されるように、回転シャフト2と、回転シャフト2に取り付けられたハブ部3と、ハブ部3の周面31に取り付けられた遠心ポンプ翼4と、遠心ポンプ翼4の先端41に取り付けられた環状のディスク部5と、環状のディスク部5の外周面51に取り付けられた軸流タービン翼6と、を備える。環状のディスク部5の内周側には、回転シャフト2の軸線方向Xにおける一方側(前方側XF)から他方側(後方側XR)に向かって流れる液体が遠心ポンプ翼4に流入する液体流路12が形成され、環状のディスク部5の外周側には、上記他方側(後方側XR)から上記一方側(前方側XF)に向かって流れる気体が軸流タービン翼6を通過する気体流路13が形成されている。
 図2に示されるように、液体流路12は、前方側XFから遠心流路11に繋がっている。液体流路12を後方側XRに向かって流れる液体は、遠心流路11に前方側XFから導入される。軸流タービン翼6は、後方側XRから前方側XFに向かって流れる気体が導入されて回転する。ハブ部3、遠心ポンプ翼4および環状のディスク部5の夫々は、軸流タービン翼6の回転に連動して回転する。ハブ部3、遠心ポンプ翼4および環状のディスク部5を回転させることにより発生させた吸引力により、液体を液体流路12から遠心流路11に吸い込んで昇圧させるようになっている。
 ポンプ装置1は、軸流タービン翼6を含む軸流タービン10Aと、遠心ポンプ翼4を含む遠心ポンプ10Bと、を含むものである。
 上記の構成によれば、ポンプ装置1は、ハブ部3および環状のディスク部5の夫々に取り付けられた遠心ポンプ翼4と、環状のディスク部5の外周面51に取り付けられた軸流タービン翼6と、を備える。このようなポンプ装置1は、軸流タービン10Aおよび遠心ポンプ10Bを一体化させることで、その回転シャフト2の軸線方向Xにおける長さを小さなものにできる。ポンプ装置1の軸線方向Xにおける長さを小さくすることで、ポンプ装置1のコンパクト化や小型軽量化が図れる。
 また、上記の構成によれば、ポンプ装置1は、環状のディスク部5の内周側には、前方側XFから後方側XRに向かって流れる液体が遠心ポンプ翼4に流入する液体流路12が形成され、環状のディスク部5の外周側には、後方側XRから前方側XFに向かって流れる気体が軸流タービン翼6を通過する気体流路13が形成されている。この場合には、軸流タービン翼6および環状のディスク部5の夫々は、液体流路12を流れて遠心ポンプ翼4を通過する液体により冷却されるため、その耐熱性を向上できる。また、液体流路12を流れて遠心ポンプ翼4を通過する液体により遮熱されるため、気体流路13を流れる気体の熱が、軸流タービン翼6および環状のディスク部5を通じて、ハブ部3や回転シャフト2に伝達されるのを抑制できる。気体流路13を流れる気体の熱の回転シャフト2への伝達を抑制することで、回転シャフト2に取り付けられた軸受やシールの熱による劣化や性能低下を抑制できる。これにより、ポンプ装置1は、回転シャフト2に取り付けられた軸受やシールを冷却するための冷却構造を設けなくても良いので、ポンプ装置1の大型化、重量化および部品点数の増加を抑制でき、ポンプ装置1の大型化、重量化および部品点数の増加に伴う信頼性の低下を抑制できる。
 幾つかの実施形態では、上述したポンプ装置1は、図2に示されるように、ハブ部3、遠心ポンプ翼4、環状のディスク部5、および軸流タービン翼6を回転可能に収容する本体側ケーシング7と、本体側ケーシング7の前方側XFに締結される入口側ケーシング8と、をさらに備える。入口側ケーシング8の内部には、遠心ポンプ翼4に液体を導入するための液体導入路81と、液体導入路81の外周側に形成された気体排出路82であって軸流タービン翼6を通過した気体を排出するための気体排出路82と、が形成されている。
 上述した液体流路12は、遠心流路11に繋がる縮小流路12Aと、縮小流路12Aに繋がる液体導入路81と、を含む。図示される実施形態では、環状のディスク部5の内周面52は、上述した凸湾曲面52Aと、凸湾曲面52Aの前方端521よりも前方側に形成されたテーパ面52Bと、を含む。テーパ面52Bは、後方側XRに向かうにつれて軸線LAに直交する流路面積が小さくなる縮小流路12Aを形成する。液体導入路81は、後方側XRに向かうにつれて軸線LAに直交する流路面積が小さくなる入口側縮小流路81Aを含む。入口側縮小流路81Aは、入口側ケーシング8の後方側XRの端面83に形成された出口開口端84を有する。入口側縮小流路81Aは、出口開口端84を通じて縮小流路12Aに繋がる。
 入口側ケーシング8には、液体導入路81に液体を導入するための液体導入孔85が形成されている。液体導入孔85は、入口側ケーシング8の液体導入路81を形成する内面811に形成された内側開口端851と、入口側ケーシング8の外周面86に形成された外側開口端852と、を有する。液体導入孔85は、気体排出路82とは回転シャフト2の周方向においてずれた位置に形成されている。外側開口端852から導入された液体は、液体導入路81および縮小流路12Aを後方側XRに向かって流れて、その流れが収縮された後に遠心ポンプ翼4に導かれる。
 本体側ケーシング7の内部には、遠心ポンプ翼4を通過した液体を排出するための液体排出路71と、軸流タービン翼6に気体を導入するための気体導入路72と、が形成されている。本体側ケーシング7は、液体排出路71を形成する液体排出路形成部710と、気体導入路72を形成する気体導入路形成部720と、を含む。
 液体排出路71は、上述した遠心流路11の外周側にスクロール状に形成されたスクロール流路71Aを含む。液体排出路71は、本体側ケーシング7の外周面73に形成された液体排出口74を有する。液体排出口74は、径方向における外側に向かって開口している。遠心ポンプ翼4を通過した液体は、液体排出路71を流れた後に、液体排出口74から本体側ケーシング7の外部に排出される。
 上述した気体流路13は、気体導入路72と、気体排出路82と、を含む。不図示の気体導入口から導入された気体は、気体導入路72を流れた後に、軸流タービン翼6に導かれる。軸流タービン翼6を通過した気体は、気体排出路82を流れた後に、不図示の気体排出口から排出される。
 図示される実施形態では、気体導入路72に軸流タービン10Aのノズル(静翼)14が設けられている。なお、軸流タービン10Aは、衝動タービン、反動タービン又は衝動反動タービンのうちの何れであってもよい。
 図示される実施形態では、本体側ケーシング7は、前方側XFの端部75から径方向における外側に突出する第1フランジ部76を含む。入口側ケーシング8は、後方側XRにおける外周面86から径方向における外側に突出する第2フランジ部87を含む。入口側ケーシング8は、第1フランジ部76および第2フランジ部87を締結部材15(図示例では締結ボルト)により締結することで、本体側ケーシング7に締結されている。
 上記の構成によれば、ポンプ装置1は、本体側ケーシング7および本体側ケーシング7の前方側XFに締結される入口側ケーシング8を備え、入口側ケーシング8の内部には、液体導入路81と、液体導入路81の外周側に形成された気体排出路82が形成されている。この場合には、入口側ケーシング8の軸線方向Xにおける長さを小さなものにでき、ひいてはポンプ装置1のコンパクト化や小型軽量化が図れる。
 幾つかの実施形態では、上述したポンプ装置1は、上記気体および上記液体を設計流量としたときに、軸流タービン翼6の入口における気体の圧力P3(ノズル14と軸流タービン翼6との間の圧力、翼間圧力)が、液体流路12を流れる液体の圧力P1(ポンプ入口圧力)よりも大きく、且つ遠心ポンプ翼4を通過した液体の圧力P2(ポンプ出口圧力)よりも小さくなるように構成されている。
 液体流路12を流れて遠心ポンプ翼4を通過する液体は、ポンプ装置1の駆動により遠心力が付与されて昇圧する。通常のポンプでは、ポンプ出口圧力P2とポンプ入口圧力P1との圧力差による上記液体の多量のリークが生じることになる。上記の構成によれば、ポンプ装置1における液体のリーク量は、ポンプ出口圧力P2とポンプ入口圧力P1との圧力差よりも圧力差が小さい、ポンプ出口圧力P2と翼間圧力P3と圧力差に応じた量になる。これにより、ポンプ装置1における液体のリーク量を、通常のポンプに比べて低減できる。
(ディスク部の貫通孔)
 図3は、本開示の一実施形態にかかるポンプ装置における環状のディスク部近傍の軸線に沿った断面を概略的に示す概略断面図である。
 幾つかの実施形態では、上述したポンプ装置1は、図3に示されるように、環状のディスク部5の前方側XFの端面53と静止壁16との間には前方側隙間(一方側隙間)17が形成され、環状のディスク部5の後方側XRの端面54と静止壁18との間には後方側隙間(他方側隙間)19が形成されている。環状のディスク部5には、回転シャフト2の軸線方向Xに沿って貫通する貫通孔55が形成されている。貫通孔55は、前方側隙間17又は前方側隙間17に繋がる前方側空間(一方側空間)20と、後方側隙間19又は後方側隙間19に繋がる後方側空間(他方側空間)21と、を連通している。
 図示される実施形態では、環状のディスク部5の端面53は、軸流タービン翼6が取り付けられた外周面51の前方端から径方向における内側に径方向に沿って延在している。静止壁16は、端面53に対向して配置される入口側ケーシング8の後方側XRの端面83からなる。すなわち、図示される実施形態では、前方側隙間17は、端面53と端面83との間に形成されている。前方側隙間17は、気体流路13における軸流タービン翼6よりも前方側(下流側)、且つ気体排出路82よりも後方側(上流側)に繋がる。
 前方側空間20は、前方側隙間17の内周側に形成された空間であり、環状のディスク部5と入口側ケーシング8との間に形成された空間である。前方側空間20は、その内周側に形成された液体流路12に繋がる。
 図示される実施形態では、環状のディスク部5の端面54は、軸流タービン翼6が取り付けられた外周面51の後方端から径方向における内側に径方向に沿って延在している。静止壁18は、端面54に対向して配置される本体側ケーシング7の前方側XFの端面77からなる。すなわち、図示される実施形態では、後方側隙間19は、端面54と端面77との間に形成されている。後方側隙間19は、気体流路13におけるノズル14よりも前方側(下流側)、軸流タービン翼6よりも後方側(上流側)に繋がる。
 環状のディスク部5は、軸流タービン翼6が取り付けられた外周面51よりも後方側XR、且つ外周面51よりも径方向における内側に位置する後方側外周面56と、軸線方向Xにおける外周面51と後方側外周面56との間において、後方側外周面56よりも径方向における内側に凹む環状凹部57と、を有する。後方側空間21は、後方側隙間19の内周側に形成された空間であり、環状凹部57に面する空間を含む。後方側空間21は、後方側外周面56と後方側外周面56に対向する本体側ケーシング7の内周面78との間に形成される隙間22を通じて遠心流路11の出口に連通している。内周面78は、上記端面77の内側端から後方側XRに軸線方向Xに沿って延在している。
 貫通孔55は、ディスク部5の前方側XFに形成された前方側開口端551と、ディスク部5の後方側XRに形成された後方側開口端552と、を有する。図示される実施形態では、前方側開口端551は、ディスク部5の端面53の内周側に連なる面58に形成され、後方側開口端552は、ディスク部5の端面54の内周側に連なる面59に形成されている。前方側開口端551は、前方側空間20に繋がり、後方側開口端552は、後方側空間21に繋がる。なお、他の幾つかの実施形態では、前方側開口端551が端面53に形成されて前方側隙間17に繋がるようになっていてもよいし、後方側開口端552が端面54に形成されて後方側隙間19に繋がるようになっていてもよい。
 図示される実施形態では、貫通孔55は、前方側開口端551の中心C1の回転シャフト2の軸線LAからの距離L1が、後方側開口端552の中心C2の軸線LAからの距離L2と同じになっている。
 上記の構成によれば、遠心ポンプ翼4を通過する液体は、ポンプ装置1の駆動により遠心力が付与されて昇圧する。この昇圧した液体の一部は、後方側隙間19や後方側空間21に流入する。後方側隙間19や後方側空間21に流入した液体の一部は、ポンプ装置1の駆動により貫通孔55を通過して前方側隙間17や前方側空間20に送られる。この場合には。前方側隙間17や前方側空間20に送られた液体により、軸流タービン翼6および環状のディスク部5の夫々の前方側の部分を冷却できる。また、上記の構成によれば、前方側隙間17や前方側空間20には、貫通孔55を通じて後方側隙間19や後方側空間21に存在する流体が流入するため、貫通孔55が形成されていない場合に比べて、前方側隙間17や前方側空間20の圧力を向上できる。前方側隙間17や前方側空間20の圧力を向上させることで、軸流タービン翼6を通過した気体が前方側隙間17や前方側空間20を通過して液体流路12に流入することを抑制できる。軸流タービン翼6を通過した気体の液体流路12への流入を抑制することで、液体流路12又は遠心流路11におけるキャビテーションの発生を抑制できる。
 図4は、本開示の一実施形態にかかるポンプ装置における環状のディスク部近傍の軸線に沿った断面を概略的に示す概略断面図である。
 幾つかの実施形態では、図4に示されるように、上述した貫通孔55は、前方側開口端551の中心C1の回転シャフト2の軸線LAからの距離L1が、後方側開口端552の中心C2の軸線LAからの距離L2よりも大きい。図示される実施形態では、貫通孔55は、前方側XFに向かうにつれて外周側に傾斜している。
 上記の構成によれば、貫通孔55は、上記距離L1が上記距離L2よりも大きい。この場合には、上記距離L1と上記距離L2が同じ場合に比べて、ポンプ装置1の駆動による後方側隙間19や後方側空間21に存在する液体の、貫通孔55を通じた前方側隙間17や前方側空間20への移動が促進されるため、軸流タービン翼6および環状のディスク部5の夫々の上記前方側XFの部分を効果的に冷却できる。
 図5は、本開示の一実施形態にかかるポンプ装置における環状のディスク部近傍の軸線に沿った断面を概略的に示す概略断面図である。
 幾つかの実施形態では、図5に示されるように、上述した貫通孔55は、前方側開口端551の中心C1の回転シャフト2の軸線LAからの距離L1が、後方側開口端552の中心C2の軸線LAからの距離L2よりも小さい。図示される実施形態では、貫通孔55は、後方側XRに向かうにつれて外周側に傾斜している。
 上記の構成によれば、貫通孔55は、上記距離L1が上記距離L2よりも小さい。この場合には、ポンプ装置1の駆動時におけるポンピング作用により、軸流タービン翼6を通過後に前方側隙間17や前方側空間20に流入した気体を、貫通孔55、後方側空間21や後方側隙間19を通じて、軸流タービン翼6の入口側に戻すことができる。軸流タービン翼6を通過した気体を還流させることで、遠心ポンプ翼4を通過した液体の後方側隙間19や後方側空間21へのリーク量を低減できるため、ポンプ装置1のポンプ機能の効率を向上できる。また、遠心ポンプ翼4を通過した液体の後方側隙間19や後方側空間21へのリーク量を低減することで、環状のディスク部5による環状のディスク部5に面する隙間(前方側隙間17、後方側隙間19)や空間(前方側空間20、後方側空間21)に存在する液体の撹拌ロスを低減できるため、ポンプ装置1の軸流タービン10Aの効率を向上できる。したがって、ポンプ装置1の全体性能を向上できる。
(ラビリンスシール)
 図6は、本開示の一実施形態にかかるポンプ装置における環状のディスク部近傍の軸線に沿った断面を概略的に示す概略断面図である。
 幾つかの実施形態では、上述したポンプ装置1は、図6に示されるように、環状のディスク部5の後方側XRの端面54と静止壁18との間には上述した後方側隙間(他方側隙間)19が形成されている。ポンプ装置1は、ハブ部3、遠心ポンプ翼4、環状のディスク部5、および軸流タービン翼6を回転可能に収容する上述した本体側ケーシング7と、後方側隙間19よりも後方側XRにおいて環状のディスク部5と本体側ケーシング7との間をシールするラビリンスシール23と、を備える。
 図示される実施形態では、ラビリンスシール23は、上述したディスク部5の後方側外周面56と、上述した本体側ケーシング7の内周面78と、の間をシールしている。
 上記の構成によれば、後方側隙間19よりも後方側XRにおいて、ラビリンスシール23により、環状のディスク部5と本体側ケーシング7との間をシールすることで、遠心ポンプ翼4を通過した液体の後方側隙間19や後方側空間21へのリーク量を低減できるため、ポンプ装置1の遠心ポンプ10Bの効率を向上できる。また、遠心ポンプ翼4を通過した液体の後方側隙間19や後方側空間21へのリーク量を低減することで、環状のディスク部5に面する隙間(前方側隙間17、後方側隙間19)や空間(前方側空間20、後方側空間21)に存在する液体の撹拌ロスを低減できるため、ポンプ装置1の軸流タービン10Aの効率を向上できる。したがって、ポンプ装置1の全体性能を向上できる。
 また、遠心ポンプ翼4を通過した液体の後方側隙間19や後方側空間21へのリーク量を低減することで、後方側隙間19や後方側空間21の圧力上昇を抑制でき、後方側隙間19や後方側空間21と、前方側隙間17や前方側空間20との間の圧力差を小さなものにできるため、環状のディスク部5にかかるスラストを低減できる。また、ポンプ装置1は、環状のディスク部5と本体側ケーシング7との間のシールに、簡単な構造のラビリンスシール23を用いることで、ポンプ装置1の構造の複雑化、大型化や重量化を抑制できる。
(インデューサ)
 図7は、本開示の一実施形態にかかるポンプ装置における環状のディスク部近傍の軸線に沿った断面を概略的に示す概略断面図である。図8は、本開示の一実施形態におけるインデューサの一例を説明するための説明図である。図8では、ポンプ装置1のハブ部3を径方向における外側から視た状態を概略的に示している。回転方向RDは、軸線LAよりも図示面手前側における回転シャフト2の回転方向を示している。MFは、液体流路12を流れる液体の流れを示している。
 幾つかの実施形態では、上述したポンプ装置1は、図7に示されるように、ハブ部3の周面31における遠心ポンプ翼4よりも前方側XFから突出するインデューサ24をさらに備える。インデューサ24は、図8に示されるように、遠心ポンプ翼4に流入する液体に回転シャフト2の回転方向RDに予旋回を付与するように構成されている。
 図8に示される実施形態では、インデューサ24は、回転シャフト2の周方向に間隔をあけて配置される複数の案内羽根240を含む。案内羽根240の夫々は、後方側XRに位置する後縁242が、前方側XFに位置する前縁241よりも回転方向RDに位置するように傾斜している。液体流路12を流れる液体は、案内羽根240間を通過する際に案内羽根240に案内されて、その流れMFに回転方向RDに向かう速度成分が付与される。
 上記の構成によれば、遠心ポンプ翼4に流入する液体は、インデューサ24により回転シャフト2の回転方向RDに予旋回が付与されるため、キャビテーションの発生を抑制できる。これにより、キャビテーションの発生によるポンプ装置1の効率低下を抑制できる。
(気体導入路)
 図9は、本開示の一実施形態における気体導入路の一例を説明するための説明図である。図9では、回転シャフトの軸線方向における前方側から視たときのハブ部、遠心ポンプ翼および本体側ケーシングを概略的に示している。
 幾つかの実施形態では、上述したポンプ装置1は、図2に示されるように、上述した気体導入路72が内部に形成された本体側ケーシング7を備える。上述した気体導入路72は、回転シャフト2の周方向における一部に形成された。
 上記の構成によれば、気体導入路72により、軸流タービン翼6には、周方向の一部から気体が導入される。このようにポンプ装置1における軸流タービン10Aを部分送入タービンとすることで、遠心ポンプ翼4を通過した液体を排出するための液体排出路71と気体導入路72との間の干渉を抑制できる。具体的には、回転シャフト2の周方向における気体導入路72が形成されていない範囲に、液体排出路71の流路面積が大きな液体排出口74側を配置できる。この場合には、ポンプ装置1のコンパクト化や小型軽量化が図れる。
 幾つかの実施形態では、図9に示されるように、回転シャフト2の周方向における気体導入路72が延在する角度範囲をαとしたときに、角度範囲αは、0°以上90°以下である。好ましくは、10°以上60°以下、さらに好ましくは、20°以上30°以下である。この場合には、気体導入路72と液体排出路71との間の干渉を抑制しつつ、ポンプ装置1のコンパクト化や小型軽量化が図れる。
 幾つかの実施形態では、図9に示されるような軸線LAに直交する断面において、回転シャフト2の周方向における液体排出口74の中心C3の角度位置を0°とし、回転シャフト2の回転方向RDにおける下流方向を上記周方向における角度位置θの正方向としたときに、上述した気体導入路72は、90°≦θ≦270°の範囲内に存在する。好ましくは、気体導入路72は、120°≦θ≦240°の範囲内に存在する。さらに好ましくは、150°≦θ≦210°の範囲内に存在する。この場合には、気体導入路72と液体排出路71との間の干渉を抑制しつつ、ポンプ装置1のコンパクト化や小型軽量化が図れる。
 幾つかの実施形態では、上述したポンプ装置1は、図2に示されるように、上述した気体導入路72は、軸流タービン翼6よりも他方側(後方側XR)に設けられて、スクロール状に形成されたスクロール流路72Aと、スクロール流路72Aから軸流タービン翼6に気体を導くための傾斜導入路72Bと、を含む。傾斜導入路72Bは、一方側(前方側XF)に向かうにつれて内周側に向かって傾斜している。図示される実施形態では、上述したノズル14は、傾斜導入路72Bに設けられる。
 上記の構成によれば、傾斜導入路72Bは、前方側XFに向かうにつれて内周側に向かって傾斜している傾斜導入路72Bを通過する気体の圧力を高めることができる。軸流タービン翼6に導入される気体の圧力を高めることで、軸流タービン翼6からの気体の剥離を抑制でき、ひいてはポンプ装置1の軸流タービン10Aの効率を向上できる。また、上記の構成によれば、傾斜導入路72Bは、後方側XRに向かうにつれて外周側に向かって傾斜しているので、傾斜導入路72Bおよびスクロール流路72Aと、液体排出路71との間の干渉を抑制できる。これにより、ポンプ装置1のコンパクト化や小型軽量化が図れる。
 幾つかの実施形態では、図1に示されるように、本体側ケーシング7は、液体排出路形成部710のスクロール流路71Aよりも後方側XRにおける外周面711と、気体導入路形成部720の内周側の外面721と、の間に、前方側XFに向かって凹む溝部722が形成されている。溝部722は、回転シャフト2の周方向に沿って延在しており、外周面711と外面721との間には、隙間が形成されている。気体導入路形成部720は、上記溝部722よりも前方側XFにて、液体排出路形成部710に外周側から接続されている。液体排出路形成部710は、気体導入路形成部720との接続部の内周側に、上述したスクロール流路71Aが形成されている。図示される実施形態では、気体導入路形成部720は、液体排出路形成部710と一体的に設けられている。この場合には、気体導入路形成部720から液体排出路形成部710に熱が伝達される際に、液体排出路形成部710におけるスクロール流路71Aにより冷却された部位を通過する必要があるため、気体導入路形成部720から、液体排出路形成部710、液体排出路形成部710の後方側XRに接続されたケーシングへの熱の伝達を効果的に抑制できる。これにより、液体排出路形成部710、液体排出路形成部710の後方側XRに接続されたケーシングの内部に収容されたシールや軸受の熱による劣化や性能低下を抑制できる。
 幾つかの実施形態では、図1に示されるように、上述したポンプシステム10は、上述したポンプ装置1と、回転シャフト2の回転力を回収するように構成された回転力回収装置91、又は、回転シャフト2に回転力を付与するように構成された回転力付与装置92、の何れか一方と、を備える。回転力回収装置91や回転力付与装置92は、回転シャフト2に取り付けられる。
 図示される実施形態では、図1に示されるように、上述したポンプシステム10は、回転力回収装置91又は回転力付与装置92を収容するケーシング93と、回転力回収装置91又は回転力付与装置92よりも前方側XFにて回転シャフト2に取り付けられる前方側軸受94と、回転力回収装置91又は回転力付与装置92よりも後方側XRにて回転シャフト2に取り付けられる後方側軸受95と、をさらに備える。或る実施形態では、回転力回収装置91は、発電機からなる。また、或る実施形態では、回転力付与装置92は、電動モータからなる。
 ケーシング93は、前方側軸受94を外周側から支持する前方側軸受支持部931と、後方側軸受95を外周側から支持する後方側軸受支持部932と、を含む。図示される実施形態では、ケーシング93は、液体排出路形成部710の後方側XRに接続されており、気体導入路形成部720には接続されていない。
 上記の構成によれば、ポンプシステム10は、ポンプ装置1の軸線方向Xにおける長さを小さくすることで、ポンプシステム10のコンパクト化や小型軽量化が図れる。
 幾つかの実施形態では、上述したポンプ装置1は、不図示の内燃機関に液体燃料を送るための燃料ポンプ装置からなる。ポンプ装置1は、遠心ポンプ10Bを駆動させること不図示の内燃機関に液体燃料を送るように構成されている。
 本開示は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
 上述した幾つかの実施形態に記載の内容は、例えば以下のように把握されるものである。
1)本開示の少なくとも一実施形態にかかるポンプ装置(1)は、
 回転シャフト(2)と、
 前記回転シャフト(2)に取り付けられたハブ部(3)と、
 前記ハブ部(3)の周面(31)に取り付けられた遠心ポンプ翼(4)と、
 前記遠心ポンプ翼(4)の先端(41)に取り付けられた環状のディスク部(5)と、
 前記環状のディスク部(5)の外周面(51)に取り付けられた軸流タービン翼(6)と、を備え、
 前記環状のディスク部(5)の内周側には、前記回転シャフト(2)の軸線方向(X)における一方側(前方側XF)から他方側(後方側XR)に向かって流れる液体が前記遠心ポンプ翼(4)に流入する液体流路(12)が形成され、
 前記環状のディスク部(5)の外周側には、前記他方側(後方側XR)から前記一方側(前方側XF)に向かって流れる気体が前記軸流タービン翼(6)を通過する気体流路(13)が形成された。
 上記1)の構成によれば、ポンプ装置は、ハブ部および環状のディスク部の夫々に取り付けられた遠心ポンプ翼と、環状のディスク部の外周面に取り付けられた軸流タービン翼と、を備える。このようなポンプ装置は、軸流タービンおよび遠心ポンプを一体化させることで、その回転シャフトの軸線方向における長さを小さなものにできる。ポンプ装置の上記軸線方向における長さを小さくすることで、ポンプ装置のコンパクト化や小型軽量化が図れる。
 また、上記1)の構成によれば、ポンプ装置は、環状のディスク部の内周側には、上記一方側から上記他方側に向かって流れる液体が遠心ポンプ翼に流入する液体流路が形成され、環状のディスク部の外周側には、上記他方側から上記一方側に向かって流れる気体が軸流タービン翼を通過する気体流路が形成されている。この場合には、軸流タービン翼および環状のディスク部の夫々は、液体流路を流れて遠心ポンプ翼を通過する液体により冷却されるため、その耐熱性を向上させることができる。また、液体流路を流れて遠心ポンプ翼を通過する液体により遮熱されるため、気体流路を流れる気体の熱が、軸流タービン翼および環状のディスク部を通じて、ハブ部や回転シャフトに伝達されるのを抑制できる。気体流路を流れる気体の熱の回転シャフトへの伝達を抑制することで、回転シャフトに取り付けられた軸受やシールの熱による劣化や性能低下を抑制できる。これにより、ポンプ装置は、回転シャフトに取り付けられた軸受やシールを冷却するための冷却構造を設けなくても良いので、ポンプ装置の大型化、重量化および部品点数の増加を抑制でき、ポンプ装置の大型化、重量化および部品点数の増加に伴う信頼性の低下を抑制できる。
2)幾つかの実施形態では、上記1)に記載のポンプ装置(1)であって、
 前記ハブ部(3)、前記遠心ポンプ翼(4)、前記環状のディスク部(5)、及び前記軸流タービン翼(6)を回転可能に収容する本体側ケーシング(7)と、
 前記本体側ケーシング(7)の前記一方側(前方側XF)に締結される入口側ケーシング(8)と、をさらに備え、
 前記入口側ケーシング(7)の内部には、前記遠心ポンプ翼(4)に前記液体を導入するための液体導入路(81)と、前記液体導入路(81)の外周側に形成された気体排出路(82)であって前記軸流タービン翼(6)を通過した前記気体を排出するための気体排出路(82)と、が形成された。
 上記2)の構成によれば、ポンプ装置は、本体側ケーシングおよび本体側ケーシングの一方側に締結される入口側ケーシングを備え、入口側ケーシングの内部には、液体導入路と、液体導入路の外周側に形成された気体排出路が形成されている。この場合には、入口側ケーシングの上記軸線方向における長さを小さなものにでき、ひいてはポンプ装置のコンパクト化や小型軽量化が図れる。
3)幾つかの実施形態では、上記1)又は2)に記載のポンプ装置(1)であって、
 前記環状のディスク部(5)の前記一方側(前方側XF)の端面(53)と静止壁(16、端面83)との間には一方側隙間(前方側隙間17)が形成され、
 前記環状のディスク部(5)の前記他方側(後方側XR)の端面(54)と静止壁(18、端面77)との間には他方側隙間(後方側隙間19)が形成され、
 前記環状のディスク部(5)は、前記回転シャフト(2)の軸線方向(X)に沿って貫通する貫通孔(55)であって、前記一方側隙間又は前記一方側隙間と繋がる一方側空間(前方側空間20)と、前記他方側隙間又は前記他方側隙間と繋がる他方側空間(後方側空間21)と、を連通する貫通孔(55)が形成された。
 上記3)の構成によれば、遠心ポンプ翼を通過する液体は、ポンプ装置の駆動により遠心力が付与されて昇圧する。この昇圧した液体の一部は、他方側隙間や他方側空間に流入する。他方側隙間や他方側空間に流入した液体の一部は、ポンプ装置の駆動により貫通孔を通過して一方側隙間や一方側空間に送られる。この場合には、一方側隙間や一方側空間に送られた液体により、軸流タービン翼および環状のディスク部の夫々の上記一方側の部分を冷却できる。また、上記3)の構成によれば、一方側隙間や一方側空間には、貫通孔を通じて他方側隙間や他方側空間に存在する流体が流入するため、貫通孔が形成されていない場合に比べて、一方側隙間や一方側空間の圧力を向上できる。一方側隙間や一方側空間の圧力を向上させることで、軸流タービン翼を通過した気体が一方側隙間や一方側空間を通過して液体流路に流入することを抑制できる。軸流タービン翼を通過した気体の液体流路への流入を抑制することで、液体流路又は遠心流路におけるキャビテーションの発生を抑制できる。
4)幾つかの実施形態では、上記3)に記載のポンプ装置(1)であって、
 前記貫通孔(55)は、前記環状のディスク部(5)の前記一方側(前方側XF)に形成された一方側開口端(前方側開口端551)の中心(C1)の前記回転シャフトの軸線からの距離L1が、前記環状のディスク部(5)の前記他方側(後方側XR)に形成された他方側開口端(後方側開口端552)の中心(C2)の前記回転シャフトの前記軸線からの距離L2よりも大きい。
 上記4)の構成によれば、貫通孔は、上記距離L1が上記距離L2よりも大きい。この場合には、上記距離L1と上記距離L2が同じ場合に比べて、ポンプ装置の駆動による他方側隙間や他方側空間に存在する液体の、貫通孔を通じた一方側隙間や一方側空間への移動が促進されるため、軸流タービン翼および環状のディスク部の夫々の上記一方側の部分を効果的に冷却できる。
5)幾つかの実施形態では、上記3)に記載のポンプ装置(1)であって、
 前記貫通孔(55)は、前記環状のディスク部(5)の前記一方側(前方側XF)に形成された一方側開口端(前方側開口端551)の中心(C1)の前記回転シャフトの軸線からの距離L1が、前記環状のディスク部(5)の前記他方側(後方側XR)に形成された他方側開口端(後方側開口端552)の中心(C2)の前記回転シャフトの前記軸線からの距離L2よりも小さい。
 上記5)の構成によれば、貫通孔は、上記距離L1が上記距離L2よりも小さい。この場合には、ポンプ装置の駆動時におけるポンピング作用により、軸流タービン翼を通過後に一方側隙間や一方側空間に流入した気体を、貫通孔、一方側隙間および一方側空間を通じて軸流タービン翼の入口側に戻すことができる。軸流タービン翼を通過した気体を還流させることで、遠心ポンプ翼を通過した液体の他方側隙間や他方側空間へのリーク量を低減できるため、ポンプ装置のポンプ機能の効率を向上できる。また、遠心ポンプ翼を通過した液体の他方側隙間や他方側空間へのリーク量を低減することで、環状のディスク部による環状のディスク部に面する隙間や空間に存在する液体の撹拌ロスを低減できるため、ポンプ装置のタービン機能の効率を向上できる。したがって、ポンプ装置の全体性能を向上できる。
6)幾つかの実施形態では、上記1)~5)の何れかに記載のポンプ装置(1)であって、
 前記環状のディスク部(5)の前記他方側(後方側XR)の端面(54)と静止壁(18、端面77)との間には他方側隙間(後方側隙間19)が形成され、
 前記ポンプ装置(1)は、
 前記ハブ部(3)、前記遠心ポンプ翼(4)、前記環状のディスク部(5)、及び前記軸流タービン翼(6)を回転可能に収容する本体側ケーシング(7)と、
 前記他方側隙間(後方側隙間19)よりも前記他方側(後方側XR)において前記環状のディスク部(5)と前記本体側ケーシング(7)との間をシールするラビリンスシール(23)と、を備える。
 上記6)の構成によれば、他方側隙間よりも上記他方側において、ラビリンスシールにより、環状のディスク部と本体側ケーシングとの間をシールすることで、遠心ポンプ翼を通過した液体の他方側隙間や他方側空間へのリーク量を低減できるため、ポンプ装置の遠心ポンプの効率を向上できる。また、遠心ポンプ翼を通過した液体の他方側隙間や他方側空間へのリーク量を低減することで、環状のディスク部に面する隙間や空間に存在する液体の撹拌ロスを低減できるため、ポンプ装置の軸流タービンの効率を向上できる。したがって、ポンプ装置の全体性能を向上できる。
 また、遠心ポンプ翼を通過した液体の他方側隙間や他方側空間へのリーク量を低減することで、他方側隙間や他方側空間の圧力上昇を抑制でき、他方側隙間や他方側空間と、一方側隙間や一方側空間との間の圧力差を小さなものにできるため、環状のディスク部にかかるスラストを低減できる。また、ポンプ装置は、環状のディスク部と本体側ケーシングとの間のシールに、簡単な構造のラビリンスシールを用いることで、ポンプ装置の構造の複雑化、大型化や重量化を抑制できる。
7)幾つかの実施形態では、上記1)~6)の何れかに記載のポンプ装置(1)であって、
 前記ハブ部(3)の前記周面(31)における前記遠心ポンプ翼(4)よりも前記一方側(前方側XF)に形成されたインデューサ(24)であって、前記遠心ポンプ翼(4)に流入する前記液体に前記回転シャフト(2)の回転方向(RD)に予旋回を付与するように構成されたインデューサ(24)をさらに備える。
 上記7)の構成によれば、遠心ポンプ翼に流入する液体は、インデューサにより回転シャフトの回転方向に予旋回が付与されるため、キャビテーションの発生を抑制できる。これにより、キャビテーションの発生によるポンプ装置の効率低下を抑制できる。
8)幾つかの実施形態では、上記1)~7)の何れかに記載のポンプ装置(1)であって、
 前記ハブ部(3)、前記遠心ポンプ翼(4)、前記環状のディスク部(5)、及び前記軸流タービン翼(6)を回転可能に収容する本体側ケーシング(7)を備え、
 前記本体側ケーシング(7)の内部には、前記軸流タービン翼(6)に前記気体を導入するための気体導入路(72)が形成され、
 前記気体導入路(72)は、前記回転シャフトの周方向における一部に形成された。
 上記8)の構成によれば、気体導入路により、軸流タービン翼には、周方向の一部から気体が導入される。このようにポンプ装置における軸流タービンを部分送入タービンとすることで、遠心ポンプ翼を通過した液体を排出するための液体排出路と気体導入路との間の干渉を抑制できる。具体的には、回転シャフトの周方向における気体導入路が形成されていない範囲に、液体排出路の流路面積が大きな液体排出口側を配置できる。この場合には、ポンプ装置のコンパクト化や小型軽量化が図れる。
9)幾つかの実施形態では、上記8)に記載のポンプ装置(1)であって、
 前記気体導入路(72)は、
 前記軸流タービン翼(6)よりも前記他方側(後方側XR)に設けられて、スクロール状に形成されたスクロール流路(72A)と、
 前記スクロール流路(72A)から前記軸流タービン翼(6)に前記気体を導くための傾斜導入路(72B)であって、前記一方側(前方側XF)に向かうにつれて内周側に向かって傾斜している傾斜導入路(72B)と、を含む。
 上記9)の構成によれば、傾斜導入路は、上記一方側に向かうにつれて内周側に向かって傾斜している傾斜導入路を通過する気体の圧力を高めることができる。軸流タービン翼に導入される気体の圧力を高めることで、軸流タービン翼からの気体の剥離を抑制でき、ひいてはポンプ装置の軸流タービンの効率を向上できる。また、上記9)の構成によれば、傾斜導入路は、上記他方側に向かうにつれて外周側に向かって傾斜しているので、傾斜導入路およびスクロール流路と、液体排出路との間の干渉を抑制できる。これにより、ポンプ装置のコンパクト化や小型軽量化が図れる。
1      ポンプ装置
2      回転シャフト
3      ハブ部
4      遠心ポンプ翼
5      ディスク部
6      軸流タービン翼
7      本体側ケーシング
8      入口側ケーシング
10     ポンプシステム
10A    軸流タービン
10B    遠心ポンプ
11     遠心流路
12     液体流路
13     気体流路
14     ノズル
15     締結部材
16,18  静止壁
17     前方側隙間
19     後方側隙間
20     前方側空間
21     後方側空間
22     隙間
23     ラビリンスシール
24     インデューサ
31     周面
32     前方端
33     後方端
41     先端
55     貫通孔
57     環状凹部
71     液体排出路
71A    スクロール流路
72     気体導入路
72A    スクロール流路
72B    傾斜導入路
74     液体排出口
76     第1フランジ部
81     液体導入路
82     気体排出路
84     出口開口端
85     液体導入孔
87     第2フランジ部
91     回転力回収装置
92     回転力付与装置
93     ケーシング
94     前方側軸受
95     後方側軸受
710    液体排出路形成部
720    気体導入路形成部
C1,C2,C3 中心
L1,L2  距離
LA     軸線
MF     液体の流れ
P1,P2,P3 圧力
RD     回転方向
X      軸線方向
XF     (軸線方向の)前方側
XR     (軸線方向の)後方側
Y      径方向

Claims (9)

  1.  回転シャフトと、
     前記回転シャフトに取り付けられたハブ部と、
     前記ハブ部の周面に取り付けられた遠心ポンプ翼と、
     前記遠心ポンプ翼の先端に取り付けられた環状のディスク部と、
     前記環状のディスク部の外周面に取り付けられた軸流タービン翼と、を備え、
     前記環状のディスク部の内周側には、前記回転シャフトの軸線方向における一方側から他方側に向かって流れる液体が前記遠心ポンプ翼に流入する液体流路が形成され、
     前記環状のディスク部の外周側には、前記他方側から前記一方側に向かって流れる気体が前記軸流タービン翼を通過する気体流路が形成された、
     ポンプ装置。
  2.  前記ハブ部、前記遠心ポンプ翼、前記環状のディスク部、及び前記軸流タービン翼を回転可能に収容する本体側ケーシングと、
     前記本体側ケーシングの前記一方側に締結される入口側ケーシングと、をさらに備え、
     前記入口側ケーシングの内部には、前記遠心ポンプ翼に前記液体を導入するための液体導入路と、前記液体導入路の外周側に形成された気体排出路であって前記軸流タービン翼を通過した前記気体を排出するための気体排出路と、が形成された、
    請求項1に記載のポンプ装置。
  3.  前記環状のディスク部の前記一方側の端面と静止壁との間には一方側隙間が形成され、
     前記環状のディスク部の前記他方側の端面と静止壁との間には他方側隙間が形成され、
     前記環状のディスク部は、前記回転シャフトの軸線方向に沿って貫通する貫通孔であって、前記一方側隙間又は前記一方側隙間と繋がる一方側空間と、前記他方側隙間又は前記他方側隙間と繋がる他方側空間と、を連通する貫通孔が形成された、
    請求項1又は2に記載のポンプ装置。
  4.  前記貫通孔は、前記環状のディスク部の前記一方側に形成された一方側開口端の中心の前記回転シャフトの軸線からの距離L1が、前記環状のディスク部の前記他方側に形成された他方側開口端の中心の前記回転シャフトの前記軸線からの距離L2よりも大きい、
    請求項3に記載のポンプ装置。
  5.  前記貫通孔は、前記環状のディスク部の前記一方側に形成された一方側開口端の中心の前記回転シャフトの軸線からの距離L1が、前記環状のディスク部の前記他方側に形成された他方側開口端の中心の前記回転シャフトの前記軸線からの距離L2よりも小さい、
    請求項3に記載のポンプ装置。
  6.  前記環状のディスク部の前記他方側の端面と静止壁との間には他方側隙間が形成され、
     前記ポンプ装置は、
     前記ハブ部、前記遠心ポンプ翼、前記環状のディスク部、及び前記軸流タービン翼を回転可能に収容する本体側ケーシングと、
     前記他方側隙間よりも前記他方側において前記環状のディスク部と前記本体側ケーシングとの間をシールするラビリンスシールと、を備える、
    請求項1乃至5の何れか1項に記載のポンプ装置。
  7.  前記ハブ部の前記周面における前記遠心ポンプ翼よりも前記一方側に形成されたインデューサであって、前記遠心ポンプ翼に流入する前記液体に前記回転シャフトの回転方向に予旋回を付与するように構成されたインデューサをさらに備える、
    請求項1乃至6の何れか1項に記載のポンプ装置。
  8.  前記ハブ部、前記遠心ポンプ翼、前記環状のディスク部、及び前記軸流タービン翼を回転可能に収容する本体側ケーシングを備え、
     前記本体側ケーシングの内部には、前記軸流タービン翼に前記気体を導入するための気体導入路が形成され、
     前記気体導入路は、前記回転シャフトの周方向における一部に形成された、
    請求項1乃至7の何れか1項に記載のポンプ装置。
  9.  前記気体導入路は、
     前記軸流タービン翼よりも前記他方側に設けられて、スクロール状に形成されたスクロール流路と、
     前記スクロール流路から前記軸流タービン翼に前記気体を導くための傾斜導入路であって、前記一方側に向かうにつれて内周側に向かって傾斜している傾斜導入路と、を含む、
    請求項8に記載のポンプ装置。
PCT/JP2021/031916 2020-09-04 2021-08-31 ポンプ装置 WO2022050269A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2021337996A AU2021337996A1 (en) 2020-09-04 2021-08-31 Pump device
US18/013,649 US20230358252A1 (en) 2020-09-04 2021-08-31 Pump apparatus
EP21864327.8A EP4170181A4 (en) 2020-09-04 2021-08-31 PUMPING DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-148970 2020-09-04
JP2020148970A JP7455706B2 (ja) 2020-09-04 2020-09-04 ポンプ装置

Publications (1)

Publication Number Publication Date
WO2022050269A1 true WO2022050269A1 (ja) 2022-03-10

Family

ID=80491017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031916 WO2022050269A1 (ja) 2020-09-04 2021-08-31 ポンプ装置

Country Status (5)

Country Link
US (1) US20230358252A1 (ja)
EP (1) EP4170181A4 (ja)
JP (1) JP7455706B2 (ja)
AU (1) AU2021337996A1 (ja)
WO (1) WO2022050269A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205353A (ja) 2006-01-31 2007-08-16 United Technol Corp <Utc> ラムジェット/スクラムジェットエンジン始動装置及びその方法
JP4115902B2 (ja) 2002-07-17 2008-07-09 スネクマ 電動式補機の補助および緊急駆動装置
JP2020509296A (ja) * 2017-03-07 2020-03-26 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles 流体回路用、特に閉回路、とりわけランキンサイクル型閉回路用のターボポンプ
JP2020148970A (ja) 2019-03-14 2020-09-17 株式会社タムラ製作所 感光性樹脂組成物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE309856C (de) * 1917-06-07 1918-12-18 Von Druckluftturbine getriebene Kreiselpumpe
US3093084A (en) 1961-02-21 1963-06-11 Derderian George Pump
US5073335A (en) * 1990-07-10 1991-12-17 General Electric Company Bwr turbopump recirculation system
US6807802B2 (en) * 2001-02-09 2004-10-26 The Regents Of The University Of California Single rotor turbine
US20060263214A1 (en) * 2005-05-19 2006-11-23 Matheny Alfred P Centrifugal impeller with forward and reverse flow paths
US8356469B1 (en) * 2007-04-05 2013-01-22 The United States Of America As Represented By The Secretary Of The Air Force Gas turbine engine with dual compression rotor
US7828511B1 (en) * 2008-03-18 2010-11-09 Florida Turbine Technologies, Inc. Axial tip turbine driven pump
WO2011106780A1 (en) * 2010-02-26 2011-09-01 Ventions, Llc Small scale high speed turbomachinery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4115902B2 (ja) 2002-07-17 2008-07-09 スネクマ 電動式補機の補助および緊急駆動装置
JP2007205353A (ja) 2006-01-31 2007-08-16 United Technol Corp <Utc> ラムジェット/スクラムジェットエンジン始動装置及びその方法
JP2020509296A (ja) * 2017-03-07 2020-03-26 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles 流体回路用、特に閉回路、とりわけランキンサイクル型閉回路用のターボポンプ
JP2020148970A (ja) 2019-03-14 2020-09-17 株式会社タムラ製作所 感光性樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4170181A4

Also Published As

Publication number Publication date
EP4170181A1 (en) 2023-04-26
AU2021337996A1 (en) 2023-02-02
JP2022043609A (ja) 2022-03-16
JP7455706B2 (ja) 2024-03-26
EP4170181A4 (en) 2023-12-20
US20230358252A1 (en) 2023-11-09

Similar Documents

Publication Publication Date Title
US5232333A (en) Single flow turbopump with integrated boosting
US9664060B2 (en) Variable nozzle unit and variable geometry system turbocharger
US10309248B2 (en) Variable geometry system turbocharger
US7264443B2 (en) Centrifugal water pump
EP2154379B1 (en) Rotary fluid machine comprising a sealing device
JP5402061B2 (ja) ターボチャージャ
JP6234600B2 (ja) タービン
WO2015002142A1 (ja) 可変ノズルユニット及び可変容量型過給機
JP5651459B2 (ja) タービンエンジンにおける圧縮機の動作に関するシステム及び装置
JP5494248B2 (ja) 固定翼式ターボチャージャ
JPH06299983A (ja) 渦流ポンプ
JP2011080484A (ja) 多段タービンインペラ型ポンプ集成体
WO2022050269A1 (ja) ポンプ装置
JP6899232B2 (ja) 電動過給機
US5197851A (en) Axial flow turbopump with integrated boosting
US11286780B2 (en) Sealing assembly for reducing thrust and turbomachine including the same
US5224817A (en) Shunt flow turbopump with integrated boosting
JP5464470B2 (ja) ターボチャージャのオイルシール構造
JP6959992B2 (ja) タービン及びターボチャージャ
US10989115B2 (en) Turbocharger
JP6089791B2 (ja) 可変ノズルユニット及び可変容量型過給機
JP2022178684A (ja) ポンプ装置
CN113366193A (zh) 旋转机械
JP2021134754A (ja) 過給機
JP2022178673A (ja) ポンプ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864327

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021864327

Country of ref document: EP

Effective date: 20230119

ENP Entry into the national phase

Ref document number: 2021337996

Country of ref document: AU

Date of ref document: 20210831

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE