WO2022050070A1 - 飛行ロボット - Google Patents

飛行ロボット Download PDF

Info

Publication number
WO2022050070A1
WO2022050070A1 PCT/JP2021/030429 JP2021030429W WO2022050070A1 WO 2022050070 A1 WO2022050070 A1 WO 2022050070A1 JP 2021030429 W JP2021030429 W JP 2021030429W WO 2022050070 A1 WO2022050070 A1 WO 2022050070A1
Authority
WO
WIPO (PCT)
Prior art keywords
leg
main body
landing surface
contact
joint
Prior art date
Application number
PCT/JP2021/030429
Other languages
English (en)
French (fr)
Inventor
薫 星出
雅樹 渋谷
純 川▲崎▼
知成 古川
アブヅル,ダイエム,アブダラ
Original Assignee
Thk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thk株式会社 filed Critical Thk株式会社
Priority to JP2022546225A priority Critical patent/JPWO2022050070A1/ja
Priority to CN202180054022.4A priority patent/CN116018304A/zh
Priority to DE112021004556.3T priority patent/DE112021004556T5/de
Priority to US18/024,402 priority patent/US20230312144A1/en
Publication of WO2022050070A1 publication Critical patent/WO2022050070A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U60/00Undercarriages
    • B64U60/50Undercarriages with landing legs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/02Undercarriages
    • B64C25/08Undercarriages non-fixed, e.g. jettisonable
    • B64C25/10Undercarriages non-fixed, e.g. jettisonable retractable, foldable, or the like
    • B64C25/18Operating mechanisms
    • B64C25/20Operating mechanisms mechanical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60FVEHICLES FOR USE BOTH ON RAIL AND ON ROAD; AMPHIBIOUS OR LIKE VEHICLES; CONVERTIBLE VEHICLES
    • B60F5/00Other convertible vehicles, i.e. vehicles capable of travelling in or on different media
    • B60F5/02Other convertible vehicles, i.e. vehicles capable of travelling in or on different media convertible into aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/02Undercarriages
    • B64C25/08Undercarriages non-fixed, e.g. jettisonable
    • B64C25/10Undercarriages non-fixed, e.g. jettisonable retractable, foldable, or the like
    • B64C25/18Operating mechanisms
    • B64C25/26Control or locking systems therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/70Convertible aircraft, e.g. convertible into land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U60/00Undercarriages
    • B64U60/20Undercarriages specially adapted for uneven terrain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U60/00Undercarriages
    • B64U60/40Undercarriages foldable or retractable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/32Alighting gear characterised by elements which contact the ground or similar surface 
    • B64C2025/325Alighting gear characterised by elements which contact the ground or similar surface  specially adapted for helicopters

Definitions

  • the present invention relates to a flying robot.
  • unmanned aircraft have been used for various purposes, and their development is being actively carried out.
  • an unmanned aerial vehicle a radio-controlled unmanned helicopter and a so-called drone are used.
  • a technique for horizontally supporting a helicopter by adjusting the length of a landing support when the helicopter is landed on a slope see, for example, Patent Document 1.
  • a technique of connecting landing gears to the main body of an air vehicle so as to be independently displaceable and horizontally supporting the main body when landing on rough terrain see, for example, Patent Document 2.
  • the present invention has been made in view of various circumstances as described above, and an object thereof is to enable more stable landing.
  • One aspect of the present invention is to have a main body portion and a plurality of propulsion units that generate propulsive force by driving a rotary wing, and the plurality of propulsion units are a propulsion unit provided in the main body portion and the main body.
  • a plurality of legs that support a portion, each of which has at least one joint and is configured to be able to change the posture of each leg, and landing from a flight state.
  • the control unit includes a control unit that controls the plurality of legs when landing on the surface, and the control unit includes the landing surface after at least one leg of the plurality of legs comes into contact with the landing surface. It is a flying robot that controls a part or all of the at least one leg portion and adjusts the inclination of the main body portion by the time the landing on the landing is completed.
  • the flight robot which is one of the embodiments of the present invention, includes a main body portion, a propulsion portion, a leg portion, and a control unit.
  • the propulsion unit has a plurality of propulsion units.
  • the plurality of propulsion units can individually change the propulsive force by, for example, individually changing the rotation speed of the rotor blades, whereby the attitude of the flying robot can be changed. For example, by giving a difference in the propulsive force of a plurality of propulsion units, the flying robot can be tilted to move in a desired direction and to perform attitude control. Further, by changing the propulsive force of a plurality of propulsion units at the same time, it is possible to move in the vertical direction.
  • the tips of the multiple legs are the parts that come into contact with the landing surface when the flying robot lands.
  • the flight robot may tilt around this contact portion. That is, when one leg comes into contact with the landing surface, the flying robot tilts due to the reaction force from the landing surface.
  • the legs in the present disclosure have at least one joint.
  • the leg touches the landing surface and a force is applied to the leg the vertical distance between the tip and the base of the leg is changed by moving the joint of the leg. Can be done. As a result, the reaction force received from the landing surface can be reduced.
  • the completion of landing means, for example, that the propulsive force of the propulsion unit can be stopped. It may be in flight until the landing is completed.
  • the plurality of legs may be configured so that the flying robot can walk after landing, for example. That is, the plurality of legs may have a function as a leg when landing and a function as a leg when walking after landing. In this way, the leg for landing and the leg for walking after landing can be used in combination.
  • the walking function is not essential for multiple legs.
  • the control unit first touches the landing surface among the plurality of legs. After the first treatment to be recognized as the first leg and the first treatment, the main body is further maintained while maintaining the contact between the first leg and the landing surface and moving the joint of the first leg. The second process of lowering the leg to bring the other leg into contact with the landing surface may be performed.
  • the process of lowering the main body includes the case where the main body is lowered after the legs come into contact with the landing surface.
  • the leg that first comes into contact with the landing surface is recognized as the first leg.
  • Whether or not each leg has come into contact with the landing surface can be determined based on, for example, a pressure sensor provided at the tip of each leg and a change in the output value of the pressure sensor.
  • the force applied to the joints of each leg may be detected.
  • a change in the current flowing through the actuator provided in the joint may be used.
  • the first leg portion may be recognized according to the inclination of the main body portion. For example, when the main body portion is tilted, the leg portion whose base end portion is located on the uppermost side may be recognized as the first leg portion.
  • the main body is further lowered while moving the joint of the first leg.
  • the reaction force from the landing surface can be reduced, so that the main body can be suppressed from tilting.
  • the legs other than the first leg portion may come into contact with the landing surface. In this way, by the second treatment, it is possible to bring the legs other than the first leg into contact with the landing surface while suppressing the tilt of the main body.
  • the control unit maintains contact between the other leg portion in contact with the landing surface and the landing surface, and moves the joint of the other leg portion while moving the main body.
  • the portion may be lowered. This allows the other legs to come into contact with the landing surface. In this way, by sequentially contacting the plurality of legs with the landing surface and moving the joints of the legs in contact with the landing surface, it is possible to bring the plurality of feet into contact with the landing surface without disturbing the posture of the main body. can.
  • the propulsion unit may drive the plurality of propulsion units so that the main body unit is maintained in a horizontal state. That is, when the legs come into contact with the landing surface, the propulsive forces of the plurality of propulsion units can be individually changed while moving the joints, so that the main body can be easily brought closer to the horizontal state.
  • control unit further controls the contact of the other leg with the landing surface based on the angle of the joint in the first leg while the second process is being performed.
  • a third process for determining whether or not the descent of the main body can be continued may be executed.
  • the upper limit of the range of motion of the joint will be reached while moving the joint of the first leg. It can reach. For example, if the landing surface that the first leg contacts is protruding, or if there is a hole in the downward landing surface of the other leg, before the other leg contacts the landing surface. , The joint of the first leg reaches the upper limit of the movable range.
  • the control unit determines whether or not the descent of the main body unit can be continued. By executing such a third process, it is possible to determine whether or not the horizontal state of the main body can be maintained, so that it is possible to suppress landing in an unstable state.
  • the control unit receives the first leg portion in the first leg portion while maintaining the state in which the first leg portion is in contact with the landing surface.
  • the propulsion unit raises the main body to the position at the time of the first contact while returning the angle of the joint to the state at the time of the first contact when the first leg portion first contacts the landing surface. May be good. If it is determined in the third process that the descent of the main body cannot be continued, the main body may be tilted beyond the upper limit of the movable range of the joint of the first leg. If the propulsive force of the propulsion unit is increased while the main body is tilted, the aircraft may rise from the vertical direction to the tilted direction.
  • the control unit returns the angle of the joint in the first leg to the state at the time of the first contact when the first leg first contacts the landing surface, while the propulsion unit returns the main body to the state at the time of the first contact. Raise to position.
  • the main body can be maintained in a horizontal state. And, as long as the main body is kept horizontal, even if the propulsion unit increases the propulsive force of the propulsion unit, it can rise in the vertical direction, so even if there is an obstacle nearby. Can also be suppressed from contacting. Further, the main body can be stabilized by raising the main body while maintaining the state in which the first leg is in contact with the landing surface.
  • a pressure sensor capable of detecting the pressure when each leg comes into contact with the landing surface
  • the control unit is the first in the first process.
  • the first leg is recognized based on the presence or absence of an output regarding contact from the pressure sensor provided with the leg, and the control unit further recognizes the pressure provided on each of the plurality of legs.
  • the fourth process for determining that the landing of the flying robot on the landing surface is completed may be executed. That is, when the leg comes into contact with the landing surface, the output of the pressure sensor provided on the leg changes. Therefore, when the output of the pressure sensor provided on each leg changes, it can be determined that the leg has come into contact with the landing surface.
  • the output of the pressure sensor provided on the leg in contact with the landing surface changes. In this way, it is possible to determine the legs in contact with the landing surface based on the presence or absence of the output of the pressure sensor provided on each leg.
  • the output of the pressure sensor provided on each leg becomes the output corresponding to the completion of the landing.
  • the total pressure detected by each pressure sensor can be a value that correlates with the mass of the flying robot. Therefore, the predetermined correlation state is a state in which it can be determined that the landing of the flying robot has been completed.
  • the fourth process may be executed in consideration of, for example, the upward propulsive force of the propulsion unit and the mass of the flying robot.
  • a detection unit for detecting the inclination of the main body portion is further provided, and the control unit is in contact with the landing surface from the flight state with the plurality of legs in a predetermined posture.
  • the detection unit detects the inclination of the main body from the horizontal state
  • the at least one leg may be controlled to bring the main body closer to the horizontal state.
  • the predetermined posture described above is, for example, a posture that the legs can take when the flying robot is in flight.
  • the control unit may control at least one leg unit.
  • the leg whose base end is located on the uppermost side is likely to be in contact with the landing surface, so that the joint of the leg may be moved.
  • the joints according to the inclination of the main body it is possible to prevent the flying robot from losing its balance during landing.
  • control unit may lower the main body portion while maintaining the contact between the leg portion in contact with the landing surface and the landing surface and moving the joint of the leg portion.
  • the control unit may lower the main body portion while maintaining the contact between the legs in contact with the landing surface and the landing surface and moving the joint of the leg portion.
  • control unit may further determine whether or not the descent of the main body portion can be continued based on the angle of the joint in the leg portion. If the joints of the legs are moved to bring the main body closer to the horizontal state, the upper limit of the movable range may be reached. If the main body is further lowered after reaching the upper limit of the movable range, it may be difficult to bring the main body closer to the horizontal state. In such a case, it can be determined that the lowering of the main body cannot be continued. By making such a judgment, if the lowering of the main body portion is stopped, the main body portion can be suppressed from tilting.
  • the control unit determines that the descent of the main body portion cannot be continued, the control unit maintains the state in which the first leg portion is in contact with the landing surface, and the joint in the first leg portion.
  • the propulsion unit may raise the main body portion to the position at the time of the first contact while returning the angle of the first leg to the state at the time of the first contact when the first leg portion first contacts the landing surface. .. In this way, since the flying robot can be suppressed from ascending in the oblique direction, contact with the obstacle can be suppressed even when an obstacle is present nearby, for example.
  • FIG. 1 is a diagram showing an example of a schematic configuration of a flight robot 1 according to the present embodiment.
  • the flight robot 1 includes a main body 2.
  • the main body 2 has a plurality of propulsion units 23.
  • four propulsion units 23 are mounted on the main body 2, but as long as the main body 2 can fly, four propulsion units 23 are mounted.
  • the propulsion unit 23 has a propeller 21 which is a rotary blade and an actuator 22 for rotationally driving the propeller 21.
  • the propulsion units 23 mounted on the main body 2 are all units of the same type, but the actuator 22 can be independently controlled in each propulsion unit 23.
  • each propulsion unit 23 it is possible to appropriately control the propulsive force obtained by each propulsion unit 23, and thus it is possible to appropriately control the flight attitude, flight speed, and the like of the main body 2 and the flight robot 1.
  • the flight control of the flight body and the like by the propulsion unit 23 will be described later.
  • the main body 2 has a body 25 substantially in the center thereof, and a propulsion unit 23 is provided on the tip side thereof radially from the body 25 via a bridge 24.
  • the four propulsion units 23 are arranged at equal intervals on the circumference centering on the body 25.
  • the leg portion 30 includes a first link portion 31 whose tip portion comes into contact with the landing surface when landing, a second link portion 32 provided on the body 25 side of the first link portion 31, and a first link portion 31.
  • the first joint 33 that rotatably connects the second link portion 32, the second joint 34 that rotatably connects the second link portion 32 and the bridge 24, and the first joint 33 and the second joint 34. It has an actuator (not shown).
  • the first joint 33 connects the base end portion of the first link portion 31 and the tip end portion of the second link portion 32.
  • the second joint 34 connects the base end portion of the second link portion 32 and the body 25.
  • Each of these joints is designed to rotate in the direction of rotation when landing on rough terrain.
  • the first joint 33 and the second joint 34 have a rotation axis in the horizontal direction, and the rotation axis of the first joint 33 and the rotation axis of the second joint 34 are parallel to each other in the same leg portion 30. Designed to be.
  • the present embodiment includes four legs 30, the number of legs 30 is not limited to this, and may be three or more. Further, in the present embodiment, one leg portion 30 has two joints, but the present invention is not limited to this, and it is sufficient to have one or more joints.
  • the body 25 includes a battery 28 for supplying driving power to the actuator 22 of each propulsion unit 23 (see FIG. 2), and a control device 200 for controlling power supply from the battery 28 to the actuator 22 (see FIG. 2). (See FIG. 2) is installed.
  • the control device 200 supplies electric power from the battery 28 to the actuator, and also controls the joints of the leg portion 30.
  • the control device 200 independently controls each of the first joint 33 and each second joint 34.
  • a pressure sensor 31A for detecting pressure is provided at a position at the tip of the first link portion 31 that comes into contact with the landing surface at the time of landing. The details of the control of the main body 2 by the control device 200 will be described later.
  • FIG. 2 is an example of a block diagram showing each functional unit included in the main body unit 2 according to the present embodiment.
  • the main body 2 has a control device 200 for performing flight control related to flight, landing control related to landing, and the like.
  • the control device 200 is a computer having an arithmetic processing unit and a memory, and has a control unit 210 as a functional unit.
  • the control unit 210 is formed by executing a predetermined control program in the control device 200.
  • the control unit 210 is a functional unit that controls the propulsion unit 23 to generate propulsive force for the flight when the main body unit 2 flies.
  • the control unit 210 controls the propulsive force of the four propulsion units 23 based on the environmental information detected by the sensor 27, which is the information related to the flight state of the main body unit 2 and the like.
  • the environmental information includes the angular velocity of the main body 2 detected by the gyro sensor corresponding to the three axes (yaw axis, pitch axis, and roll axis) not shown, and the acceleration sensor corresponding to the three axes not shown. Information on the tilt of the main body 2 and the like can be exemplified.
  • the control unit 210 uses the environmental information acquired from these sensors to feedback control the inclination of the main body unit 2 and the like so as to be in a state suitable for the flight.
  • the environmental information may include an azimuth angle which is the direction of the flight body in the absolute coordinate system when the direction of the earth's axis is used as a reference, and the azimuth angle can be detected by the azimuth angle sensor.
  • the sensor 27 is an example of a detection unit.
  • the control unit 210 When moving the main body 2 and the like back and forth and left and right, the control unit 210 lowers the rotation speed of the actuator 22 of the propulsion unit 23 in the traveling direction, and rotates the actuator 22 of the propulsion unit 23 on the opposite side of the traveling direction. By increasing the number, the main body 2 and the like are in a leaning posture with respect to the traveling direction, and travel in a desired direction. Further, when the main body 2 or the like is rotationally moved, the control unit 210 outputs the output in the rotational direction of the propeller 21 based on the rotational direction of the main body 2 or the like.
  • control unit 210 lowers the output of the actuator 22 corresponding to the propeller 21 rotating clockwise, and at the same time, the control unit 210 reduces the output of the actuator 22 corresponding to the propeller 21 rotating counterclockwise. Increase the output.
  • the control unit 210 is also a functional unit that executes landing control when the flight robot 1 lands.
  • the control unit 210 controls the propulsion unit 23 and the leg unit 30.
  • the control unit 210 controls the actuators provided in the first joint 33 and the second joint 34 based on the detection values of the sensor 27 and the pressure sensor 31A.
  • the actuator provided in each joint of the leg portion 30 is provided with an encoder (not shown) for detecting a state amount (rotational position, rotation speed, etc. of the rotation axis of the actuator) related to each rotation state. Then, the control unit 210 servo-controls the actuator of the leg portion 30 so that the rotation angle of each joint or the like becomes a state suitable for landing based on the state amount of each actuator detected by the encoder of each actuator.
  • FIG. 3 is a diagram showing a state of the legs 30 at the time of landing of the flight robot 1 according to the present embodiment.
  • Reference numeral 3001 indicates the state of the leg portion 30 when the flight robot 1 is in the flight state.
  • the joints of the legs 30 are fixed so as to bend the legs 30 so that the air resistance at the time of movement in the front-back and left-right directions is minimized.
  • the first joint 33 is rotated so that the axial direction of the first link portion 31 approaches the horizontal direction and the tip end side of the first link portion 31 approaches the central axis of the main body portion 2.
  • the state of the legs 30 in the flight state is not limited to this.
  • the center of gravity of the flight robot 1 may be taken into consideration to stabilize the flight of the flight robot 1.
  • Reference numeral 3002 indicates the state of the leg portion 30 when the flight robot 1 is ready for landing.
  • the sensor 27 includes a GNSS (Global Navigation Satellite System) sensor
  • the GNSS sensor detects that the flight robot 1 is located above the destination point, it flies.
  • Robot 1 is ready for landing.
  • the second joint 34 is moved so that each second link portion 32 extends radially in the horizontal direction.
  • the first joint 33 is moved so that the tip end portion of the first link portion 31 faces downward and the central axis of the first link portion 31 is in the vertical direction. That is, each joint portion of the first link portion 31 is controlled so that the first link portion 31 bends at a right angle to the second link portion 32 and the tip portion faces downward in the vertical direction.
  • the landing surface A1 has irregularities, and the distance L1 between the tip of each leg and the landing surface A1 is different for each leg 30. From this state to the next state of 3003, the propulsive force of the propulsion unit 23 is controlled to lower the flight robot 1 in the vertical direction.
  • Reference numeral 3003 indicates a state in which the flight robot 1 descends and one leg (first leg) first comes into contact with the landing surface A1.
  • the control unit 210 recognizes the first leg portion 10A that first contacts the landing surface A1 based on, for example, the output of the pressure sensor 31A provided on each leg portion 30.
  • the control unit 210 further lowers the flight robot 1 even after recognizing the first leg unit 10A. According to the first treatment, the first leg portion 10A that needs to move the first joint 33 and the second joint 34 after that can be recognized.
  • Reference numeral 3004 indicates a state in which the flight robot 1 is further lowered after recognizing the first leg portion 10A. At this time, the second process is being executed.
  • the main body portion 2 is further maintained while maintaining the contact between the first leg portion 10A and the landing surface A1 and moving the first joint 33 and the second joint 34 of the first leg portion 10A. Is a process of lowering and bringing the other leg portion 30 into contact with the landing surface A1.
  • the first joint 33 has a smaller angle between the first link portion 31 and the second link portion 32, and the second joint 34 has a smaller angle.
  • the control unit 210 controls each joint so that the second link unit 32 moves diagonally upward from the second joint 34.
  • the control unit 210 drives a plurality of propulsion units 23 so that the main body unit 2 is maintained in a horizontal state. In this way, by moving the first leg portion 10A first joint 33 and the second joint 34 in response to the lowering of the main body portion 2, the main body portion 2 is maintained in a horizontal state and the first leg portion 10A is maintained. The main body 2 can be lowered while maintaining contact with the landing surface A1.
  • Reference numeral 3005 indicates a state in which the other leg portion 30 is in contact with the landing surface A1 after the control unit 210 recognizes the first leg portion 10A.
  • the control unit 210 determines that the other leg portion 30 has come into contact with the landing surface A1 based on the output of the pressure sensor 31A provided at the tip end portion of each leg portion 30.
  • the first joint 33 and the second joint 34 in the leg portion 30 in contact with the landing surface A1 are moved in response to the descent of the main body portion 2, similarly to the joint of the first leg portion 10A. In this way, the four legs 30 are sequentially brought into contact with the landing surface A1.
  • the main body 2 continues to descend. In this way, the plurality of legs 30 can be brought into contact with the landing surface A1 while maintaining the levelness of the main body 2.
  • the control unit 210 executes the fourth process of determining that the landing on the landing surface A1 is completed.
  • the control unit 210 may land the flight robot 1 on the landing surface A1 when, for example, the output values of the pressure sensors 31A provided on the plurality of legs 30 are in a predetermined correlation state. Judge that it is completed.
  • the predetermined correlation state is, for example, a state in which the flight robot 1 is balanced, and is a state in which the flight robot 1 can be suppressed from tilting even if the propulsion force of the propulsion unit 23 is stopped. For example, if the total pressure detected by each pressure sensor 31A is a pressure corresponding to the mass of the flight robot 1, it may be determined that the landing is completed.
  • the control unit 210 considers the propulsive force of the propulsion unit 23. Make a judgment.
  • the control unit 210 determines that the landing is completed, the propulsion unit 23 may be stopped, or the propeller 21 may be rotated to such an extent that the flight robot 1 does not take off.
  • the 3006 After recognizing the first leg portion 10A, the 3006 lowers the main body portion 2 until the other leg portion 30 contacts the landing surface A1, and the angle of the first joint 33 reaches the upper limit of the allowable range. It shows the reached state.
  • the upper limit of the allowable range of the angle of the first joint 33 may be, for example, an angle that does not physically bend further due to the structure of the first joint 33 or the structure of the leg 30, and a certain margin is provided for the angle. It may be an added angle.
  • the upper limit of the allowable range of the angle of the first joint 33 may be the angle required to avoid contact between the leg 30 and another portion (for example, the propeller 21).
  • the control unit 210 sets the angle of the first joint 33 or the second joint 34 in the first leg portion 10A while the second processing is being performed. Based on this, the third process of determining whether or not the descent of the main body portion 2 for contacting the landing surface A1 of the other leg portion 30 can be continued is executed.
  • control unit 210 determines that the lowering of the main body portion 2 cannot be continued when the angle of the first joint 33 of the first leg portion 10A reaches the upper limit of the allowable range. On the other hand, the control unit 210 determines that the main body portion 2 can continue to descend until the angle of the first joint 33 of the first leg portion 10A reaches the upper limit of the allowable range.
  • the control unit 210 executes the process of re-landing.
  • the control unit 210 adjusts the propulsive force of the propulsion unit 23 so as to stop the descent of the main body unit 2.
  • the control unit 210 keeps the state in which the first leg portion 10A is in contact with the landing surface A1 and sets the angle of the first joint 33 in the first leg portion 10A to the landing surface A1 by the first leg portion 10A.
  • the propulsion unit 23 raises the main body 2 to the position at the time of the first contact.
  • the position at the time of the first contact is the position shown in 3003.
  • the propulsion unit 23 and the first leg portion 10A are controlled so that the main body portion 2 is in a horizontal state.
  • the main body 2 may be tilted. If an attempt is made to raise the body immediately in this state, the main body 2 will be raised in a tilted state. Then, the flying robot 1 may rise in an oblique direction, and if an obstacle exists nearby, the flying robot 1 may come into contact with the obstacle.
  • FIG. 4 is a diagram showing an example of the relationship between the flight robot 1 and the obstacle A2 when the flight robot 1 according to the present embodiment rises.
  • Reference numeral 4001 shows a case where the flight robot 1 is raised to the sky with the main body 2 tilted.
  • 4002 while maintaining the state in which the first leg portion 10A is in contact with the landing surface A1, the angle of the first joint 33 in the first leg portion 10A is first contacted by the first leg portion 10A with the landing surface A1. It shows a case where the flight robot 1 is raised to the sky after returning to the state at the time of the first contact.
  • 4001 if the flying robot 1 rises to the sky while the main body 2 is tilted, there is a risk of contact with the obstacle A2.
  • the main body portion 2 can be returned to the horizontal state. Even if the flying robot 1 rises, contact with the obstacle A2 can be suppressed.
  • the control unit 210 After shifting from the state of 3006 to the state of 3003, the control unit 210 increases the propulsive force of the propulsion unit 23, and raises the flight robot 1 so that the first leg portion 10A separates from the landing surface A1. Then, after the flight robot 1 ascends to the sky, the control unit 210 controls, for example, the propulsion unit 23 to shift the landing point by a predetermined distance or rotate the main body unit in the yaw direction by a predetermined angle on the spot. .. That is, the relative positions of each leg 30 and the landing surface A1 are changed. After that, it shifts to the state of 3002. Then, the control unit 210 tries to land again.
  • the plurality of legs 30 have a function as a leg when landing and a function as a leg when walking after landing.
  • the control unit 210 is also a functional unit that controls an actuator provided on the leg portion 30 for walking when the flight robot 1 walks after the landing of the flight robot 1 is completed.
  • the control unit 210 controls the leg unit 30 based on the environmental information detected by the sensor 27. Further, the control unit 210 has a leg so that the inclination of the main body 2 is suitable for walking based on the state amount of each actuator detected by the encoder of the actuator provided at each joint of the leg portion 30. Servo control the actuator of unit 30.
  • FIG. 5 is an example of a flow chart of landing control according to the first embodiment. Landing control is realized by executing a predetermined control program in the main body 2. In the present embodiment, it is assumed that the main body 2 receives the information indicating the landing point of the flying robot 1. The routine shown in FIG. 5 is started when the flying robot 1 arrives above the landing point.
  • step S101 the control unit 210 hover over the landing position to fix the position.
  • the state of the flight robot 1 at this time corresponds to the state of 3001 in FIG.
  • the control unit 210 controls the propulsion unit so that the flight robot 1 hover over the landing point.
  • step S102 the control unit 210 puts the leg unit 30 in the pre-landing state.
  • the pre-landing state is the state of the leg portion 30 corresponding to 3002 in FIG.
  • the control unit 210 makes the first joint 33 and the second joint 34 of all the leg portions 30 so that the central axis of the first link portion 31 is in the vertical direction and the central axis of the second link portion 32 is in the horizontal direction. move.
  • step S103 the control unit 210 starts the descent of the main body unit 2.
  • the control unit 210 lowers the main body 2 by reducing the propulsive force of the propulsion unit 23. At this time, the main body 2 is lowered while controlling the propulsive force so that the main body 2 approaches the horizontal.
  • step S103 if the main body 2 is already in the lowered state, the main body 2 is continuously lowered.
  • step S104 the control unit 210 determines whether or not any of the leg units 30 has come into contact with the landing surface A1 based on the output value of the pressure sensor 31A.
  • step S104 when the output value of the pressure sensor 31A becomes equal to or higher than the preset landing threshold value, it is determined that the leg portion 30 provided with the pressure sensor 31A has come into contact with the landing surface A1. If an affirmative determination is made in step S104, the process proceeds to step S105, and if a negative determination is made, the process returns to step S103 and the main body 2 is continuously lowered.
  • the state of the flight robot 1 when the affirmative determination is made in step S104 corresponds to the state shown in 3003 of FIG.
  • step S105 the control unit 210 specifies the first leg unit 10A.
  • the control unit 210 identifies the leg portion 30 whose output value of the pressure sensor 31A first becomes equal to or higher than the landing threshold value as the first leg portion 10A.
  • step S106 the control unit 210 stores the altitude of the main body unit 2 when the first leg unit 10A comes into contact with the landing surface A1.
  • the control unit 210 may store, for example, the altitude acquired from the altimeter included in the sensor 27, or may store the distance to the landing surface A1 measured by a radar or the like included in the sensor 27. A sensor or the like necessary for measuring altitude may be appropriately provided in the main body 2.
  • step S107 the control unit 210 reduces the descending speed of the main body unit.
  • the descending speed is lowered in order to facilitate the adjustment at this time. This makes it easier to maintain the horizontal state of the main body 2.
  • step S108 the control unit 210 moves the first joint 33 and the second joint 34 of the leg portion 30 in contact with the landing surface A1 to maintain the horizontal state of the main body portion 2.
  • the state of the flight robot 1 at this time corresponds to the state shown in 3004 of FIG.
  • the control unit 210 moves the first joint 33 and the second joint 34 of all the leg portions 30 in contact with the landing surface A1 in response to the descent of the main body portion 2.
  • the control unit 210 may move the first joint 33 and the second joint 34 so that the output value of the pressure sensor 31A is, for example, a predetermined value or less.
  • the predetermined value is set as a value at which the main body 2 does not tilt.
  • the control unit 210 may move the first joint 33 and the second joint 34 according to the altitude of the main body unit 2.
  • step S109 it is determined whether or not the control unit 210 has detected contact with the landing surface A1 of all the leg units 30.
  • the control unit 210 determines that, for example, when the output values of the pressure sensors 31A of all the legs 30 are equal to or higher than the landing threshold value, the control unit 210 has detected the contact of all the legs 30 with the landing surface A1. If an affirmative determination is made in step S109, the process proceeds to step S110, and if a negative determination is made, the process proceeds to step S112.
  • the state of the flight robot 1 when the affirmative determination is made in step S109 corresponds to the state shown in 3005 of FIG. At this time, the control unit 210 controls the first joint 33 and the second joint 34 so that the main body unit 2 approaches horizontally by using, for example, the environmental information detected by the sensor 27 and the inverse kinematics. do.
  • step S110 it is determined whether or not the output values of all the pressure sensors 31A are in a predetermined correlation state. For example, it is determined whether or not the output values of all the pressure sensors 31A correspond to the values obtained by subtracting the predetermined mass from the mass of the flight robot 1.
  • the predetermined mass is an apparent decrease in the mass of the flight robot 1 due to the propulsive force of the propulsion unit 23. If an affirmative determination is made in step S110, the process proceeds to step S111, and if a negative determination is made, the process proceeds to step S114. Then, in step S111, the control unit 210 stops the propeller 21 to complete the landing.
  • step S109 the process proceeds to step S112, and the control unit 210 acquires the angle of the first joint 33 or the second joint 34 of the first leg portion 10A.
  • control is performed based on the angle of the first joint 33 of the first leg portion 10A.
  • the angle of the first joint 33 is acquired, for example, based on the rotation angle detected by the encoder.
  • step S113 it is determined whether or not the angle of the first joint 33 is larger than the upper limit value.
  • the upper limit value is set as the upper limit value of the movable range of the first joint 33.
  • the angle of the first joint 33 at this time may be a bending angle from a state where the angle between the first link portion 31 and the second link portion 32 is a right angle.
  • step S113 it may be determined whether or not the first joint 33 is in a state where it cannot be moved any further. If an affirmative determination is made in step S113, the process proceeds to step S114.
  • the state of the flight robot 1 when the affirmative determination is made in step S113 corresponds to the state shown in 3006 of FIG. On the other hand, if a negative determination is made in step S113, the process proceeds to step S108, and the control unit 210 continues the descent of the main body unit 2 while moving the joint.
  • step S114 the control unit 210 returns the altitude of the main body unit 2 to the original position.
  • the original position referred to here is a position corresponding to the altitude stored in step S106, and corresponds to a position at the time of first contact.
  • the altitude of the main body 2 is raised in order to redo the landing.
  • the altitude of the main body 2 is increased while the joints of the first leg 10A are restored so as to raise the altitude of the main body 2 while maintaining the contact of the first leg 10A with the landing surface A1. I'm raising it. In this way, the flying robot 1 is prevented from coming into contact with the obstacle A2.
  • step S115 the control unit 210 further raises the main body unit 2 and further changes the landing position.
  • the control unit 210 eliminates the contact between the first leg portion 10A and the landing surface A1. Then, for example, the flight robot 1 is climbed by a predetermined distance, and then the flight robot 1 is rotated by a predetermined angle in the yaw direction. Then, the process returns to step S101 and the landing control is repeated.
  • the first joint 33 or the second joint 34 is moved for each leg portion 30 when landing on rough terrain or the like.
  • the main body 2 can be maintained in a horizontal state. Therefore, it is possible to land on rough terrain or the like while suppressing the flight robot 1 from losing its balance.
  • the angle of the joint of the first leg portion 10A reaches the upper limit of the allowable range after the first leg portion 10A comes into contact with the landing surface A1, the flight robot 1 loses its balance by re-landing. Can be suppressed.
  • the main body 2 is raised to an altitude at which the first leg 10A contacts the landing surface A1, and at this time, the joint is adjusted so as to maintain the contact between the first leg 10A and the landing surface A1. By moving it, it is possible to prevent the flying robot 1 from coming into contact with the obstacle A2.
  • the joint of the leg portion 30 in contact with the landing surface A1 is moved. That is, the joints of the respective legs 30 are not moved until they come into contact with the landing surface A1.
  • the joints of the other leg portions 30 may be moved.
  • the first joint 33 or the second joint 34 may be moved so that the first link portion 31 moves downward.
  • the first joint 33 and the second joint 34 may be moved so that the central axis of the first link portion 31 faces in the vertical direction.
  • the landing surface A1 on the lower side of the other leg portion 30 is often located close to the other leg portion 30.
  • the other leg 30 can be brought into contact with the landing surface A1 at an early stage. can. This makes it easier to balance the flying robot 1, for example.
  • the time required for the flight robot 1 to land can be shortened.
  • FIG. 6 is a diagram showing a state of the leg portion 30 at the time of landing of the flight robot 1 according to this modification. Since 3001, 3002, and 3003 are the same as those in FIG. 3, the description thereof will be omitted.
  • Reference numeral 3014 indicates a state in which the flight robot 1 is further lowered after recognizing the first leg portion 10A. At this time, the first joint 33 and the second joint 34 are moved so that the leg portions 30 other than the leg portion 30 in contact with the landing surface A1 are brought closer to the direction of the landing surface A1. That is, while lowering the main body portion 2, the joints are moved so that the other leg portions 30 move in the direction of the landing surface A1 relative to the body 25.
  • the angle formed by the first link portion 31 and the second link portion 32 is larger than 90 degrees, and the second joint 34 is .
  • Each joint is moved so that the second link portion 32 rotates downward with respect to the second joint 34.
  • the first joint 33 and the second joint 34 are moved so that the central axis of the first link portion 31 faces in the vertical direction.
  • the control unit 210 also controls the joints of the plurality of propulsion units 23 and the grounded leg 30 so that the main body 2 approaches horizontally. In this way, by moving the other leg portion 30 downward while maintaining the horizontal state, the contact with the landing surface A1 can be accelerated.
  • Reference numeral 3015 indicates a state in which the other leg portion 30 is in contact with the landing surface A1 after recognizing the first leg portion 10A.
  • the control unit 210 also determines that the other leg portion 30 has come into contact with the landing surface A1 based on the output of the pressure sensor 31A provided at the tip end portion of each leg portion 30. In 3015, it is assumed that all four legs 30 are in contact with the landing surface A1. In this case, the control unit 210 determines that the landing on the landing surface A1 has been completed.
  • the landing determination method is the same as that of 3005 above.
  • the joints of the other legs 30 may be moved while lowering the main body 2 until all the legs 30 come into contact with the landing surface A1. That is, while moving the first joint 33 and the second joint 34 of the leg portion 30 that are in contact with the landing surface A1, the other leg portion 30 that is not in contact with the landing surface A1 is moved downward.
  • the main body 2 may be lowered while moving the first joint 33 and the second joint 34 of the leg portion 30 of the above. In this way, by sequentially bringing the plurality of legs 30 into contact with the landing surface A1, it is possible to land on the plurality of legs 30 while maintaining the levelness of the main body 2.
  • 3016 After recognizing the first leg portion 10A, 3016 lowers the main body portion 2 until the other leg portion 30 contacts the landing surface A1, and the angle of the first joint 33 reaches the upper limit of the allowable range. It shows a state in which the angle of the first joint 33 and the second joint 34 of the other leg portion 30 has reached the upper limit of the allowable range. In the example of 3016, the angle of the first joint 33 of the first leg portion 10A reaches the upper limit of the bending direction of the allowable range, and the angle of the first joint 33 of the other leg portion 30 is the extension direction of the allowable range. Has reached the upper limit of.
  • the control unit 210 determines the angle of the first joint 33 or the second joint 34 in the first leg 10A during the descent of the main body 2, and the like. Based on the angle of the first joint 33 or the second joint 34 in the leg portion 30, it is determined whether or not the lowering of the main body portion 2 for the contact of the other leg portion 30 with the landing surface A1 can be continued.
  • control unit 210 when the angle of the first joint 33 of the first leg portion 10A reaches the upper limit of the allowable range and the angle of the first joint 33 of the other leg portion 30 reaches the upper limit of the allowable range. In addition, it is determined that the lowering of the main body 2 cannot be continued. On the other hand, the control unit 210 continues to lower the main body 2 until both the angle of the first joint 33 of the first leg 10A and the angle of the first joint 33 of the other leg 30 reach the upper limit of the allowable range. Judge that it can be done. In this modification, since the other leg portion 30 is moved downward, the flight robot 1 can land even when the height difference of the landing surface A1 is larger than that of the first embodiment.
  • the control unit 210 executes a process of re-landing.
  • the control unit 210 adjusts the propulsive force of the propulsion unit 23 so as to stop the descent of the main body unit 2.
  • the control unit 210 keeps the state in which the first leg portion 10A is in contact with the landing surface A1 and sets the angle of the first joint 33 in the first leg portion 10A to the landing surface A1 by the first leg portion 10A.
  • the propulsion unit 23 raises the main body 2 to the position at the time of the first contact.
  • the angles of the first joint 33 and the second joint 34 in the other leg portions 30 are also returned to the state at the time of the first contact in which the first leg portion 10A first contacts the landing surface A1.
  • the control unit 210 maintains the level of the main body 2 so that the tip of the first leg 10A separates from the landing surface A1 and the main body 2 Is raised vertically upward.
  • step S108 of FIG. 5 the control unit 210 moves the joints of the first leg portion 10A while also moving the joints of the other leg portions 30. Further, in step S112, the control unit 210 acquires the angles of the joints of the other leg portions 30 in addition to the angles of the joints of the first leg portion 10A, and in step S113, the angles of the joints exceed the upper limit value. Judge whether or not.
  • the contact between the leg portion 30 and the landing surface A1 is determined based on the output value of the pressure sensor 31A provided in the leg portion 30, but instead of this, in the second embodiment, the flight
  • the inclination of the main body 2 of the robot 1 is detected, it is determined that the leg 30 has come into contact with the landing surface A1. Therefore, in the second embodiment, it is not necessary to provide the pressure sensor 31A on the leg portion 30.
  • the inclination of the main body of the flight robot 1 is detected by the gyro sensor and the acceleration sensor included in the sensor 27.
  • the main body portion 2 tilts around the tip portion of the leg portion 30 that first contacts the landing surface A1.
  • the leg portion 30 has come into contact with the landing surface A1 when the main body portion 2 is tilted. Further, since the direction in which the main body portion 2 is tilted differs depending on the leg portion 30 in contact with the landing surface A1, the leg portion 30 in contact with the landing surface A1 can be specified based on the direction in which the main body portion 2 is tilted. ..
  • the leg 30 in contact with the landing surface A1 is specified according to the inclination of the main body 2, and the first joint 33 or the first joint 33 of the leg 30 is specified.
  • the second joint 34 is moved so that the main body 2 approaches the horizontal state.
  • the first joint 33 and the second joint 34 of the first leg portion 10A are moved so that the main body portion 2 approaches the horizontal state while further lowering the main body portion.
  • the other leg 30 comes into contact with the landing surface A1. It is determined that it has been done.
  • the other leg portion 30 in contact with the landing surface A1 is specified based on the direction in which the main body portion 2 is tilted. In this way, the legs 30 that have come into contact with the landing surface A1 are specified while correcting the inclination of the main body 2, and when it is determined that all the legs 30 have touched the landing surface A1, the flight robot 1 Landing is complete.
  • the landing control in the present embodiment will be described with reference to FIG. 3 above. Since 3001 and 3002 are the same as those in the first embodiment, the description thereof will be omitted.
  • the leg 30 comes into contact with the landing surface A1. Recognize that.
  • the first leg portion 10A is recognized based on the direction in which the main body portion 2 is tilted. For example, the leg portion 30 located above the inclination of the main body portion 2 is recognized as the first leg portion 10A.
  • the control unit 210 further lowers the flight robot 1 even after recognizing the first leg unit 10A.
  • the control unit 210 drives a plurality of propulsion units 23 so that the main body unit 2 is maintained in a horizontal state. In this way, the control unit 210 lowers the main body 2 while controlling the joint and the propulsion unit 23 so that the main body 2 is in a horizontal state.
  • the control unit 210 also detects that the other leg portion 30 is in contact with the landing surface A1 by the sensor 27. Judgment is made based on the inclination of the part 2. For example, even if the joint and the propulsion unit 23 are controlled so that the main body 2 is in a horizontal state, if the main body 2 is tilted, it is determined that the other leg 30 is in contact with the landing surface A1. .. Further, at this time, the other leg portion 30 in contact with the landing surface A1 is specified based on the direction in which the main body portion 2 is tilted.
  • the main body 2 is lowered while moving the joints of the legs 30 in contact with the landing surface A1 so as to maintain the horizontal state of the main body 2 until all the legs 30 come into contact with the landing surface A1.
  • the control unit 210 determines, for example, that landing is possible when all the leg portions 30 are in contact with the landing surface A1 and the main body portion 2 is in the horizontal state, and stops the rotation of the propeller 21. Let me.
  • the control unit 210 returns the flight robot 1 to the state at the time of the first contact and redoes the landing, as in the first embodiment.
  • FIG. 7 is an example of a flow chart of landing control according to the second embodiment. Landing control is realized by executing a predetermined control program in the main body 2. In the present embodiment, it is assumed that the main body 2 receives the information indicating the landing point of the flying robot 1. The routine shown in FIG. 7 is started when the flying robot 1 arrives above the landing point. The steps in which the same processing is executed in the routine shown in FIG. 5 are designated by the same reference numerals and the description thereof will be omitted.
  • step S201 the control unit 210 determines whether or not the inclination of the main body unit 2 is detected. For example, the control unit 210 determines whether or not the inclination of the main body unit 2 detected by the sensor 27 exceeds the threshold value.
  • the threshold value is the inclination when the leg portion 30 comes into contact with the landing surface A1. This threshold value is a larger value than when the main body 2 is tilted due to the influence of wind or the like. If an affirmative determination is made in step S201, the process proceeds to step S105, and if a negative determination is made, the process returns to step S103.
  • the state of the flight robot 1 when the affirmative determination is made in step S201 corresponds to the state shown in 3003 of FIG.
  • step S202 the control unit 210 moves the first joint 33 and the second joint 34 of the leg portion 30 in contact with the landing surface A1 to maintain the horizontal state of the main body portion 2.
  • the state of the flight robot 1 at this time corresponds to the state shown in 3004 of FIG.
  • the control unit 210 moves the first joint 33 and the second joint 34 so that the tilt is eliminated.
  • feedback control may be performed.
  • the control unit 210 moves the joints of the leg portions 30 so as to maintain the horizontal state of the main body unit 2 in the subsequent processes.
  • step S109 if an affirmative judgment is made in step S109, the process proceeds to step S111, and the control unit 210 stops the propeller. If the main body 2 is tilted in the process of stopping the propeller 21, the main body 2 may be brought closer to the horizontal state by moving the joints. Further, if the main body 2 cannot be brought close to the horizontal state in the process of lowering the rotation speed of the propeller 21, the control unit 210 may proceed to step S114 and redo the landing.
  • the main body 2 can be maintained in a horizontal state by moving the first joint 33 or the second joint 34 according to the detection value of the sensor that detects the inclination of the main body 2. Therefore, it is possible to land on rough terrain or the like while suppressing the flight robot 1 from losing its balance.
  • each joint may be moved so that the other leg portions 30 move downward. This makes it possible to land on the landing surface A1 having a larger height difference.

Abstract

本体部と、回転翼の駆動により推進力を発生させる推進ユニットを複数有し、該複数の推進ユニットは本体部に設けられている推進部と、本体部を支持する複数の脚部であって、該複数の脚部のそれぞれは少なくとも一つの関節を有し各脚部の姿勢を変形可能に構成される、複数の脚部と、飛行状態から着陸面に着陸するときに複数の脚部を制御する制御部と、を備え、制御部は、複数の脚部のうち少なくとも1つの脚部が着陸面に接触してから該着陸面への着陸が完了するまでに、該少なくとも1つの脚部の一部又は全部を制御し前記本体部の傾きを調整する。

Description

飛行ロボット
 本発明は、飛行ロボットに関する。
  近年では、無人飛行体が様々な用途に利用され、その開発が盛んに行われている。無人飛行体としては、無線操縦される無人ヘリコプタや、いわゆるドローンが利用されている。ここで、ヘリコプタを傾斜地に着陸させる際に、着陸支持体の長さを調整することにより、ヘリコプタを水平に支持する技術が知られている(例えば、特許文献1参照。)。また、飛行体の本体部に独立変位可能に着陸脚を接続し、不整地への着陸時に本体部を水平に支持する技術が知られている(例えば、特許文献2参照。)。
特表2015-530318号公報 特開2019-206333号公報
 従来では、傾斜した平面に着陸することを想定しているが、凹凸がある場所に着陸することは想定されていない。そのため、従来の飛行体では、凹凸がある場所に着陸する際にバランスを崩す虞がある。
 本発明は、上記したような種々の実情を鑑みてなされたものであり、その目的は、より安定した着陸を可能とすることにある。
 本発明の態様の一つは、本体部と、回転翼の駆動により推進力を発生させる推進ユニットを複数有し、該複数の推進ユニットは前記本体部に設けられている推進部と、前記本体部を支持する複数の脚部であって、該複数の脚部のそれぞれは少なくとも一つの関節を有し各脚部の姿勢を変形可能に構成される、複数の脚部と、飛行状態から着陸面に着陸するときに前記複数の脚部を制御する制御部と、を備え、前記制御部は、前記複数の脚部のうち少なくとも1つの脚部が前記着陸面に接触してから該着陸面への着陸が完了するまでに、該少なくとも1つの脚部の一部又は全部を制御し前記本体部の傾きを調整する、飛行ロボットである。
 本発明によれば、より安定した着陸が可能となる。
実施形態に係る飛行ロボットの概略構成の一例を示す図である。 実施形態に係る本体部に含まれる各機能部を示すブロック図の一例である。 実施形態に係る飛行ロボットの着陸時の脚部の状態を示した図である。 実施形態に係る飛行ロボットが上昇したときの飛行ロボットと障害物との関係の一例を示した図である。 第1実施形態に係る着陸制御のフローチャートの一例である。 第1実施形態の変形例に係る飛行ロボットの着陸時の脚部の状態を示した図である。 第2実施形態に係る着陸制御のフローチャートの一例である。
 本発明の態様の一つである飛行ロボットは、本体部と、推進部と、脚部と、制御部とを備える。推進部は、推進ユニットを複数有する。複数の推進ユニットは、例えば、個別に回転翼の回転数を変化させることで、推進力を個別に変化させることができ、これにより、飛行ロボットの姿勢を変化させることができる。例えば、複数の推進ユニットの推進力に差を与えることにより、飛行ロボットを傾かせて、所望の方向に移動させたり、姿勢制御を行ったりすることができる。また、複数の推進ユニットの推進力を同時に変化させることにより、垂直方向に移動することができる。
 複数の脚部の先端部は、飛行ロボットの着陸時に着陸面に接触する部位である。ここで、不整地に着陸する場合には、複数の脚部の全てが同時に着陸面に接触するとは限らない。そして、例えば、着陸面に凹凸があって、一つの脚部が最初に着陸面に接触すると、この接触部を中心に飛行ロボットが傾く虞がある。すなわち、一つの脚部が着陸面に接触すると、その脚部が着陸面からの反力を受けることにより、飛行ロボットが傾いてしまう。これに対し、本開示における脚部は、少なくとも一つの関節を有している。ここで、脚部が着陸面に接して脚部に力が加わったときに、その脚部の関節を動かすことにより、脚部の先端部と基端部との垂直方向の距離を変化させることができる。これにより、着陸面から受ける反力を低減することができる。そし前記複数の脚部のうち少なくとも1つの脚部が着陸面に接触してから該着陸面への着陸が完了するまでに、該少なくとも1つの脚部の一部又は全部を制御し本体部の傾きを調整することで、着陸時に姿勢を崩すことを抑制できる。なお、着陸が完了するとは、例えば、推進部の推進力を停止させることが可能な状態になっていることをいう。着陸が完了するまでは、飛行状態であるとしてもよい。なお、複数の脚部は、例えば、飛行ロボットの着陸後に当該飛行ロボットが歩行可能なように構成されていてもよい。すなわち、複数の脚部は、着陸するときの脚としての機能と、着陸した後に歩行するときの脚としての機能とを有していてもよい。このように、着陸するときの脚と、着陸した後に歩行するときの脚とを兼用することができる。ただし、複数の脚部において、歩行する機能は必須ではない。
 また、前記制御部は、前記飛行状態から前記着陸面に着陸するために前記推進部により前記本体部を下降させる過程において、前記複数の脚部のうち該着陸面に最初に接触した脚部を第一脚部と認識する第一処理と、前記第一処理後に、前記第一脚部と前記着陸面との接触を維持して該第一脚部の前記関節を動かしながら、更に前記本体部を下降させて他の前記脚部を該着陸面に接触させる第二処理と、を実行してもよい。
 本体部の下降は、第一脚部が着陸面に接触した後も続く。したがって、本体部を下降させる過程には、脚部が着陸面に接触した後に本体部が下降しているときも含んでいる。第一処理では、着陸面に最初に接触した脚部を第一脚部と認識する。各脚部が着陸面に接触したか否かは、例えば、各脚部の先端部に圧力センサを備えておき、この圧力センサの出力値の変化に基づいて判定可能である。また、別法として、例えば、各脚部の関節に加わる力を検出してもよい。この検出には、関節に備わるアクチュエータに流れる電流の変化を利用してもよい。さらに、別法として、例えば、本体部の傾きに応じて、第一脚部を認識してもよい。例えば、本体部が傾いたときに、基端部が最も上側に位置する脚部を第一脚部と認識してもよい。
 第二処理では、第一脚部の関節を動かしながら、更に本体部を下降させる。第一脚部の関節を動かすことにより、本体部を更に下降させても、着陸面からの反力を低減させることができるため、本体部が傾くことを抑制できる。そして、本体部を更に下降させることにより、第一脚部以外の他の脚部が着陸面に接触し得る。このように第二処理により、本体部が傾くことを抑制しつつ、第一脚部以外の他の脚部を着陸面に接触させることができる。
 また、前記制御部は、前記第二処理において、前記着陸面に接触した前記他の脚部と前記着陸面との接触を維持して、前記他の脚部の前記関節を動かしながら、前記本体部を下降させてもよい。これにより、他の脚部を着陸面に接触させることができる。このように、複数の脚部を順次着陸面に接触させ、着陸面に接触した脚部の関節を動かすことにより、本体部の姿勢を崩さずに複数の足部を着陸面に接触させることができる。
 また、前記制御部により前記第二処理が行われている間、前記推進部は、前記本体部が水平状態に維持されるように前記複数の推進ユニットを駆動してもよい。すなわち、脚部が着陸面に接触したときに、関節を動かしつつ複数の推進ユニットの推進力を個別に変化させることにより、本体部を水平状態に容易に近づけることができる。
 また、前記制御部は、更に、前記第二処理が行われている間の前記第一脚部における前記関節の角度に基づいて、前記他の脚部の前記着陸面への接触のための前記本体部の下降の継続可否を判断する第三処理を実行してもよい。第一脚部の関節を動かしつつ本体部を下降させるときに、他の脚部と着陸面との距離が長いと、第一脚部の関節を動かしていくうちに関節の可動範囲の上限に達することもあり得る。例えば、第一脚部が接触した着陸面が突出している場合や、他の脚部の下方向の着陸面に穴が開いている場合には、他の脚部が着陸面に接触する前に、第一脚部の関節が可動範囲の上限に達してしまう。この場合、本体部を更に下降させようとすると、第一脚部が着陸面から受ける反力を低減することができなくなるため、第一脚部と着陸面と接触部を中心に本体部が傾く虞がある。そこで制御部は、本体部の下降の継続の可否を判断する。このような第三処理を実行することにより、本体部の水平状態を維持可能か否か判定することができるため、不安定な状態で着陸することを抑制できる。
 また、前記第三処理において前記本体部の下降を継続できないと判断された場合、前記制御部は、前記第一脚部が前記着陸面に接触した状態を維持しつつ、前記第一脚部における前記関節の角度を、前記第一脚部が前記着陸面に最初に接触した第1接触時の状態に戻しながら、前記推進部が、前記本体部を該第1接触時の位置まで上昇させてもよい。第三処理において本体部の下降を継続できないと判断された場合には、第一脚部の関節の可動範囲の上限を超えて本体部が傾いている場合もあり得る。本体部が傾いたまま推進部の推進力を増加させると、機体が垂直方向から傾いた方向に向かって上昇する虞がある。そして、機体が上昇する方向に障害物があると、その障害物に接触する虞がある。そこで制御部は、第一脚部における関節の角度を、第一脚部が着陸面に最初に接触した第1接触時の状態に戻しながら、推進部が、本体部を該第1接触時の位置まで上昇させる。第一接触時の状態であれば、第一脚部の関節は可動範囲内にあるため、本体部を水平状態に維持することができる。そして、本体部を水平状態に維持しているときであれば、推進部が推進ユニットの推進力を増加させたとしても、垂直方向に上昇可能であるため、例え近くに障害物があったとしても接触することを抑制できる。また、第一脚部が着陸面に接触した状態を維持しつつ本体部を上昇させることにより、本体部を安定させることができる。
 また、前記複数の脚部のそれぞれ先端には、各脚部が前記着陸面に接触したときの圧力を検知可能な圧力センサが設けられ、前記制御部は、前記第一処理では、前記第一脚部の設けられた前記圧力センサからの接触に関する出力の有無に基づいて、該第一脚部の認識を行い、前記制御部は、更に、前記複数の脚部のそれぞれに設けられた前記圧力センサのそれぞれの出力値が、所定の相関状態になっているときに、前記飛行ロボットの前記着陸面への着陸が完了したとの判定をする第四処理を実行してもよい。すなわち、着陸面に脚部が接触すると、当該脚部に設けられている圧力センサの出力が変化する。したがって、各脚部に設けられる圧力センサの出力が変化した場合に、脚部が着陸面に接触したと判断可能である。その後も、他の脚部が着陸面に接触すれば、着陸面に接触した脚部に設けられる圧力センサの出力が変化する。このようにして、各脚部に設けられる圧力センサの出力の有無に基づいて、着陸面に接触している脚部を判断することができる。そして、飛行ロボットの着陸が完了した場合には、各脚部に設けられる圧力センサの出力は、着陸の完了に応じた出力になる。例えば、各圧力センサにより検出される圧力の総計が、飛行ロボットの質量と相関する値になり得る。したがって、所定の相関状態とは、飛行ロボットの着陸が完了したと判定可能な状態である。第四処理は、例えば、推進部による上方向の推進力と、飛行ロボットの質量とを考慮して実行してもよい。着陸が完了した場合には、推進部が推進ユニットによる推進力の発生を停止させても、本体部の傾きは抑制される。
 また、前記本体部の傾きを検知する検知部を、更に備え、前記制御部は、前記複数の脚部が所定の姿勢となっている状態で前記飛行状態から前記着陸面に接触したときに、前記検知部により前記本体部の水平状態からの傾きを検知すると、前記少なくとも1つの脚部を制御して該本体部を水平状態に近付けてもよい。上記の所定の姿勢とは、例えば、飛行ロボットが飛行状態のときに脚部がとり得る姿勢である。上記のように脚部が着陸面に接触すると、本体部が傾く。この傾きを検知した場合に、制御部は、少なくとも1つの脚部を制御してもよい。例えば、本体部が傾いたときに、基端部が最も上側に位置する脚部は、着陸面に接触している可能性が高いので、該脚部の関節を動かすようにしてもよい。このように、本体部の傾きに応じて関節を制御することにより、飛行ロボットが着陸時にバランスを崩すことを抑制できる。
 また、前記制御部は、前記着陸面に接触した前記脚部と前記着陸面との接触を維持して、前記脚部の前記関節を動かしながら、前記本体部を下降させてもよい。着陸面に接触した脚部と着陸面との接触を維持しつつ本体部を下降させることにより、他の脚部も順次着陸面と接触させ得る。
 また、前記制御部は、更に、前記脚部における前記関節の角度に基づいて、前記本体部の下降の継続可否を判断してもよい。本体部を水平状態に近づけるために脚部の関節を動かしていくと、可動範囲の上限に達することもあり得る。可動範囲の上限に達した後にさらに本体部を下降させると、本体部を水平状態に近づけることが困難になり得る。このような場合には、本体部の下降の継続ができないと判断可能である。このように判断することで、本体部の下降を停止させれば、本体部が傾くことを抑制できる。
 また、前記制御部が前記本体部の下降を継続できないと判断した場合、前記制御部は、前記第一脚部が前記着陸面に接触した状態を維持しつつ、前記第一脚部における前記関節の角度を、前記第一脚部が前記着陸面に最初に接触した第1接触時の状態に戻しながら、前記推進部が、前記本体部を該第1接触時の位置まで上昇させてもよい。このようにして、飛行ロボットが斜め方向に上昇することを抑制できるので、例えば、近くに障害物が存在している場合であっても、障害物との接触を抑制できる。
 以下に図面を参照して、本発明を実施するための形態を説明する。ただし、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。また、以下の実施形態は可能な限り組み合わせることができる。
<第1実施形態>
 ここで、本実施例に係る飛行ロボット1について、図1に基づいて説明する。図1は、本実施形態に係る飛行ロボット1の概略構成の一例を示す図である。飛行ロボット1は、本体部2を含んで構成される。本体部2は、複数の推進ユニット23を有している。なお、図1に示す例では、4つの推進ユニット23が本体部2に搭載されているが、本体部2の飛行が可能な限りにおいては、推進ユニット23の搭載数は複数であれば4つに限られない。推進ユニット23は、回転翼であるプロペラ21とそれを回転駆動するためのアクチュエータ22を有している。本体部2に搭載されている推進ユニット23は、全て同種類のユニットであるが、それぞれの推進ユニット23においてアクチュエータ22は独立して制御可能である。そのため、各推進ユニット23により得られる推進力を適宜制御することが可能であり、以て、本体部2及び飛行ロボット1における飛行姿勢や飛行速度等を適宜制御することが可能となる。なお、推進ユニット23による飛行本体部等の飛行制御については、後述する。
 ここで本体部2では、概ねその中央にボディ25を有し、そこから放射状にブリッジ24を介して、その先端側に推進ユニット23が設けられている。4つの推進ユニット23は、ボディ25を中心として円周上に等間隔で配列されている。
 また、本体部2には、本体部2を支持する4つの脚部30が接続されている。4つの脚部30は、ボディ25を中心として円周上に等間隔で配列されている。脚部30は、着陸するときに先端部が着陸面に接触する第一リンク部31と、第一リンク部31よりもボディ25側に設けられる第二リンク部32と、第一リンク部31と第二リンク部32とを回転可能に接続する第一関節33と、第二リンク部32とブリッジ24とを回転可能に接続する第二関節34と、第一関節33及び第二関節34を駆動するアクチュエータ(不図示)とを有する。第一関節33は、第一リンク部31の基端部と、第二リンク部32の先端部を接続している。第二関節34は、第二リンク部32の基端部と、ボディ25とを接続している。これらの各関節は、不整地への着陸時に回転するようにその回転方向が設計されている。例えば、第一関節33及び第二関節34は、水平方向に回転軸を有し、且つ、同一の脚部30において、第一関節33の回転軸と、第二関節34の回転軸とが平行になるように設計される。なお、本実施形態では、4つの脚部30を備えているが、脚部30の数はこれに限らず、3つ以上であればよい。また、本実施形態では1つの脚部30に対して2つの関節を有しているが、これに限らず関節は1つ以上有していればよい。
 また、ボディ25には、各推進ユニット23のアクチュエータ22に駆動電力を供給するためのバッテリ28(図2を参照)や、当該バッテリ28からアクチュエータ22への電力供給等を制御する制御装置200(図2を参照)が搭載されている。制御装置200は、バッテリ28からアクチュエータへ電力供給し、脚部30の関節も制御する。制御装置200は、各第一関節33及び各第二関節34を、夫々独立して制御する。また、第一リンク部31の先端部であって、着陸時に着陸面と接触する位置には、圧力を検出する圧力センサ31Aが設けられている。制御装置200による本体部2に関する制御については、その詳細は後述する。
 <飛行ロボット1の制御部>
 次に、飛行ロボット1が有する本体部2の制御的な構成について、図2に基づいて説明する。図2は、本実施形態に係る本体部2に含まれる各機能部を示すブロック図の一例である。本体部2は、飛行に関する飛行制御及び着陸に関する着陸制御等を行うために制御装置200を有している。制御装置200は、演算処理装置及びメモリを有するコンピュータであり、機能部として、制御部210を有している。制御部210は、制御装置200において所定の制御プログラムが実行されることで形成される。
 制御部210は、本体部2が飛行する場合に、その飛行のための推進力を発生すべく推進ユニット23を制御する機能部である。制御部210は、本体部2等の飛行状態に関連する情報であってセンサ27によって検出される環境情報に基づいて、4つの推進ユニット23の推進力を制御する。当該環境情報としては、不図示の3軸(ヨー軸、ピッチ軸、ロール軸)に対応したジャイロセンサにより検出される本体部2の角速度や、不図示の同3軸に対応した加速度センサにより検出される本体部2の傾き等に関する情報が例示できる。制御部210は、これらのセンサから取得された環境情報を利用して、本体部2等の傾きをその飛行に適した状態となるようにフィードバック制御する。更に、環境情報には、地軸の向きを基準としたときに、絶対座標系における飛行本体部の向きである方位角を含めてもよく、当該方位角は、方位角センサにより検出できる。なお、センサ27は、検知部の一例である。
 本体部2等を前後左右に移動させる場合には、制御部210は、進行方向の推進ユニット23のアクチュエータ22の回転数を下げて、進行方向とは反対側の推進ユニット23のアクチュエータ22の回転数を上げることで、本体部2等は、進行方向に対して前かがみの姿勢となり、所望の方向に進行する。また、本体部2等を回転移動させる場合には、制御部210は、プロペラ21の回転方向による出力を、本体部2等の回転方向に基づいて行う。例えば、本体部2等を右回転させる場合には、制御部210は、右回転しているプロペラ21に対応するアクチュエータ22の出力を下げるとともに、左回転しているプロペラ21に対応するアクチュエータ22の出力を上げる。
 また、制御部210は、飛行ロボット1の着陸時に着陸制御を実行する機能部でもある。着陸制御では、制御部210が、推進ユニット23、及び、脚部30を制御する。制御部210は、着陸時に、センサ27及び圧力センサ31Aの検出値に基づいて、第一関節33及び第二関節34に設けられているアクチュエータを制御する。脚部30の各関節に設けられたアクチュエータには、それぞれの回転状態に関する状態量(アクチュエータの回転軸の回転位置や回転速度等)を検出するエンコーダ(不図示)が設けられている。そして、各アクチュエータのエンコーダによって検出された各アクチュエータの状態量に基づいて、各関節の回転角度等が着陸に適した状態となるように、制御部210は脚部30のアクチュエータをサーボ制御する。
 ここで、図3に基づいて、飛行ロボット1の着陸時の脚部30の状態について説明する。図3は、本実施形態に係る飛行ロボット1の着陸時の脚部30の状態を示した図である。図3では、飛行ロボット1の一部の構造を省略している。3001は、飛行ロボット1が飛行状態の場合の脚部30の状態を示している。飛行状態の場合には、例えば、前後左右方向の移動時における空気抵抗が最も小さくなるように、脚部30を折り曲げるように脚部30の関節が固定される。例えば、第一関節33は、第一リンク部31の軸方向が水平方向に近付くように、且つ、第一リンク部31先端側が本体部2の中心軸に近付くように回転される。なお、飛行状態のときの脚部30の状態はこれに限らない。例えば、空気抵抗の他にも、飛行ロボット1の重心を考慮して、飛行ロボット1の飛行を安定させるような状態にしてもよい。
 3002は、飛行ロボット1が着陸態勢に入った場合の脚部30の状態を示している。例えば、センサ27にGNSS(Global Navigation Satellite System / 全球測位衛星システム)センサが含まれている場合には、当該GNSSセンサにより目的地点の上空に飛行ロボット1が位置していることを検出すると、飛行ロボット1が着陸態勢に入る。このときには、各第二リンク部32が、水平方向に放射状に広がるように、第二関節34が動かされる。さらに、第一リンク部31の先端部が下側を向き且つ第一リンク部31の中心軸が垂直方向になるように、第一関節33が動かされる。すなわち、第一リンク部31は、第二リンク部32に対して直角に曲がり、且つ、先端部が垂直方向下側を向くように、各関節部が制御される。着陸面A1には凹凸があり、各脚部の先端部と着陸面A1との距離L1が脚部30ごとに異なる。この状態から、次の3003の状態になるまで、推進ユニット23の推進力を制御して、飛行ロボット1を垂直方向に下降させる。
 3003は、飛行ロボット1が下降して、最初に1つの脚部(第一脚部)が着陸面A1に接触したときの状態を示している。ここでは、複数の脚部30のうち着陸面A1に最初に接触した脚部30を第一脚部10Aと認識する第一処理が実行されている。制御部210は、例えば、各脚部30に設けられる圧力センサ31Aの出力に基づいて、着陸面A1に最初に接触した第一脚部10Aを認識する。制御部210は、第一脚部10Aを認識後も、飛行ロボット1を更に下降させる。第一処理によれば、その後に第一関節33及び第二関節34を動かす必要のある第一脚部10Aを認識することができる。
 3004は、第一脚部10Aを認識した後に、更に、飛行ロボット1が下降された状態を示している。このときには、第二処理が実行されている。第二処理は、第一処理後に、第一脚部10Aと着陸面A1との接触を維持して該第一脚部10Aの第一関節33及び第二関節34を動かしながら、更に本体部2を下降させて他の脚部30を着陸面A1に接触させる処理である。3004に示すように、第一脚部10Aにおいては、第一関節33が、第一リンク部31と第二リンク部32とのなす角がより小さくなるように、且つ、第二関節34が、第二リンク部32を第二関節34から斜め上方向に移動するように、制御部210が各関節を制御する。第二処理が行われている間、制御部210は、本体部2が水平状態に維持されるように複数の推進ユニット23を駆動している。このように、本体部2の下降に応じて、第一脚部10A第一関節33及び第二関節34を動かすことにより、本体部2は水平状態を維持しながら、且つ、第一脚部10Aと着陸面A1との接触を維持しながら、本体部2を下降させることができる。
 3005は、制御部210が第一脚部10Aを認識した後、さらに他の脚部30が着陸面A1に接触した状態を示している。制御部210は、他の脚部30が着陸面A1に接触したことを、各脚部30の先端部に設けられる圧力センサ31Aの出力に基づいて判定する。着陸面A1に接触した脚部30における第一関節33及び第二関節34は、第一脚部10Aの関節と同様に、本体部2の下降に応じて動かされる。このようにして、4つの脚部30を順次着陸面A1に接触させる。この間も、本体部2の下降は継続される。このように、本体部2の水平を維持しつつ複数の脚部30を着陸面A1に接触させることができる。
 そして、4つの脚部30が全て着陸面A1に接触した場合、制御部210は、着陸面A1への着陸が完了したとの判定をする第四処理を実行する。制御部210は、例えば、複数の脚部30のそれぞれに設けられた圧力センサ31Aのそれぞれの出力値が、所定の相関状態になっているときに、飛行ロボット1の着陸面A1への着陸が完了したとの判定をする。所定の相関状態とは、例えば、飛行ロボット1のバランスがとれている状態であり、推進ユニット23の推進力を停止させても、飛行ロボット1が傾くことを抑制し得る状態である。例えば、各圧力センサ31Aで検出される圧力の総計が、飛行ロボット1の質量に対応する圧力になっていれば、着陸が完了したと判定してもよい。なお、このときには、推進ユニット23の推進力の影響により、飛行ロボット1の実際の質量に対応する圧力よりも低い圧力が検出されるので、制御部210は、推進ユニット23の推進力を考慮した判定を行う。制御部210は、着陸が完了したと判定した場合に、推進ユニット23を停止させてもよいし、飛行ロボット1が離陸しない程度にプロペラ21を回転させておいてもよい。
 3006は、第一脚部10Aを認識した後、さらに他の脚部30が着陸面A1に接触するまで本体部2を下降させている途中に、第一関節33の角度が許容範囲の上限に達した状態を示している。第一関節33の角度の許容範囲の上限は、例えば、第一関節33の構造又は脚部30の構造に起因して物理的にそれ以上曲がらない角度としてもよく、その角度にある程度のマージンを加えた角度としてもよい。また、別法として、第一関節33の角度の許容範囲の上限は、脚部30と他の部位(例えば、プロペラ21)との接触を避けるために必要となる角度としてもよい。第一脚部10Aの第一関節33の角度が許容範囲の上限に達した場合は、それ以上、本体部2の水平を維持したまま本体部2を下降させることができなくなる。なお、第二関節34についても同様に扱うことができる。本体部2の下降中にはこのような事態も起こり得るため、制御部210は、第二処理が行われている間の第一脚部10Aにおける第一関節33または第二関節34の角度に基づいて、他の脚部30の着陸面A1への接触のための本体部2の下降の継続可否を判断する第三処理を実行する。例えば、制御部210は、第一脚部10Aの第一関節33の角度が許容範囲の上限に達した場合に、本体部2の下降を継続できないと判断する。一方、制御部210は、第一脚部10Aの第一関節33の角度が許容範囲の上限に達するまでは、本体部2の下降を継続できると判断する。
 そして、第三処理において本体部2の下降を継続できないと判断された場合に、制御部210は、着陸をやり直す処理を実行する。まず、制御部210は、本体部2の下降を停止させるように推進ユニット23の推進力を調整する。次に、制御部210は、第一脚部10Aが着陸面A1に接触した状態を維持しつつ、第一脚部10Aにおける第一関節33の角度を、第一脚部10Aが着陸面A1に最初に接触した第1接触時の状態に戻す。このときに、推進ユニット23が、本体部2を第1接触時の位置まで上昇させる。第1接触時の位置とは、3003に示される位置である。このようにして、本体部2が水平状態になるように推進ユニット23及び第一脚部10Aが制御される。ここで、第三処理において本体部2の下降を継続できない状態になると、本体部2に傾きが生じている虞がある。仮に、この状態ですぐに上昇しようとすると、本体部2が傾いた状態で上昇させることになる。そうすると、飛行ロボット1が斜め方向に上昇する虞があり、近くに障害物が存在していると、その障害物に接触する虞がある。
 ここで、図4は、本実施形態に係る飛行ロボット1が上昇したときの飛行ロボット1と障害物A2との関係の一例を示した図である。4001は、本体部2が傾いた状態で飛行ロボット1を上空に上昇させた場合を示している。一方、4002は、第一脚部10Aが着陸面A1に接触した状態を維持しつつ、第一脚部10Aにおける第一関節33の角度を、第一脚部10Aが着陸面A1に最初に接触した第1接触時の状態に戻した後に、飛行ロボット1を上空に上昇させた場合を示している。4001に示すように、本体部2が傾いた状態のまま飛行ロボット1が上空に上昇すると、障害物A2に接触する虞がある。一方、4002に示すように、第一脚部10Aにおける第一関節33の角度を、第1接触時の状態に戻した後であれば、本体部2を水平状態に戻すことができるため、その後に飛行ロボット1が上昇しても、障害物A2への接触を抑制できる。
 3006の状態から3003の状態に移行した後は、制御部210が推進ユニット23の推進力を増加させて、第一脚部10Aが着陸面A1から離れるように飛行ロボット1を上昇させる。そして、飛行ロボット1が上空へ上昇した後に、制御部210は、例えば、推進ユニット23を制御して、着陸地点を所定距離だけずらす、または、その場で本体部をヨー方向に所定角度回転させる。すなわち、各脚部30と着陸面A1との相対位置を変化させる。その後、3002の状態に移行する。そして、制御部210は、再度の着陸を試みる。
 複数の脚部30は、着陸するときの脚としての機能と、着陸した後に歩行するときの脚としての機能とを有している。制御部210は、飛行ロボット1の着陸完了後に飛行ロボット1が歩行する場合に、その歩行のために脚部30に設けられているアクチュエータを制御する機能部でもある。制御部210は、センサ27によって検出される環境情報に基づいて脚部30を制御する。また、脚部30の各関節に設けられたアクチュエータのエンコーダによって検出された各アクチュエータの状態量に基づいて、本体部2の傾き等が歩行に適した状態となるように、制御部210は脚部30のアクチュエータをサーボ制御する。
<着陸制御>
 ここで、図5に基づいて、飛行ロボット1が着陸する際に実行される制御である着陸制御について説明する。図5は、第1実施形態に係る着陸制御のフローチャートの一例である。着陸制御は、本体部2において所定の制御プログラムが実行されることで実現される。なお、本実施形態では、飛行ロボット1が着陸する地点を示す情報を本体部2が受信しているものとする。図5に示したルーチンは、飛行ロボット1が着陸地点の上空に到着したときに開始される。
 ステップS101では、制御部210は、着陸する位置の上空でホバリングして位置を固定する。このときの飛行ロボット1の状態は、図3の3001の状態が対応している。制御部210は、飛行ロボット1が着陸地点上空でホバリングするように、推進ユニットを制御する。次に、ステップS102では、制御部210が、脚部30を着陸前状態にする。着陸前状態は、図3の3002に対応する脚部30の状態である。制御部210は、第一リンク部31の中心軸が垂直方向となり、第二リンク部32の中心軸が水平方向となるように、全ての脚部30の第一関節33及び第二関節34を動かす。
 ステップS103では、制御部210は、本体部2の下降を開始させる。制御部210は、推進ユニット23の推進力を低下させることにより、本体部2を下降させる。このときには、本体部2が水平に近づくように推進力を制御しつつ、本体部2を下降させる。なお、本ステップS103では、既に本体部2が下降状態である場合には、継続して本体部2を下降させる。ステップS104では、制御部210は、圧力センサ31Aの出力値に基づいて、何れかの脚部30が着陸面A1に接触したか否か判定する。例えば、圧力センサ31Aの出力値が、予め設定しておいた着陸閾値以上となった場合に、その圧力センサ31Aが備わる脚部30が着陸面A1に接触したと判定される。ステップS104で肯定判定された場合にはステップS105へ進み、否定判定された場合にはステップS103へ戻って引き続き本体部2を下降させる。なお、ステップS104において肯定判定されたときの飛行ロボット1の状態は、図3の3003に示した状態に対応する。
 ステップS105では、制御部210が第一脚部10Aを特定する。制御部210は、圧力センサ31Aの出力値が最初に着陸閾値以上となった脚部30を、第一脚部10Aとして特定する。ステップS106では、制御部210が、第一脚部10Aが着陸面A1に接触したときの本体部2の高度を記憶する。制御部210は、例えば、センサ27に含まれる高度計から取得した高度を記憶してもよいし、センサ27に含まれるレーダなどで測定した着陸面A1との距離を記憶してもよい。高度の測定に必要なセンサ等を、本体部2に適宜設けてもよい。
 そして、ステップS107では、制御部210が、本体部の下降速度を低下させる。この後に、第一関節33及び第二関節34を動かして本体部2の姿勢を調整するため、このときに調整をし易くするために下降速度を低下させている。これにより、本体部2の水平状態を維持しやすくなる。さらに、ステップS108では、制御部210が、着陸面A1に接触している脚部30の第一関節33及び第二関節34を動かして、本体部2の水平状態を維持する。このときの飛行ロボット1の状態は、図3の3004に示した状態に対応する。制御部210は、本体部2の下降に応じて、着陸面A1に接触している全ての脚部30の第一関節33及び第二関節34を動かす。制御部210は、例えば、圧力センサ31Aの出力値が所定値以下となるように第一関節33及び第二関節34を動かしてもよい。所定値は、本体部2が傾かない値として設定される。なお、別法として、制御部210は、本体部2の高度に応じて第一関節33及び第二関節34を動かしてもよい。
 ステップS109では、制御部210が、全ての脚部30の着陸面A1との接触を検出したか否か判定する。制御部210は、例えば、全ての脚部30の圧力センサ31Aの出力値が着陸閾値以上となった場合に、全ての脚部30の着陸面A1との接触を検出したと判定する。ステップS109で肯定判定された場合にはステップS110へ進み、否定判定された場合にはステップS112へ進む。なお、ステップS109で肯定判定されたときの飛行ロボット1の状態は、図3の3005に示した状態に対応する。このときには、制御部210は、例えば、センサ27により検出される環境情報、及び、逆運動学を利用して、本体部2が水平に近づくように、第一関節33及び第二関節34を制御する。
 ステップS110では、全ての圧力センサ31Aの出力値が所定の相関状態になっているか否か判定する。例えば、全ての圧力センサ31Aの出力値が、飛行ロボット1の質量から所定質量を減算した値に対応しているか否か判定される。所定質量は、推進ユニット23の推進力による飛行ロボット1の質量の見かけ上の減少分である。ステップS110で肯定判定された場合にはステップS111へ進み、否定判定された場合にはステップS114へ進む。そして、ステップS111では、制御部210が、プロペラ21を停止させて着陸が完了する。
 一方、ステップS109で否定判定された場合には、ステップS112へ進み、制御部210は、第一脚部10Aの第一関節33または第二関節34の角度を取得する。なお、以下では、第一脚部10Aの第一関節33の角度に基づいた制御を行う場合について説明する。第二関節34の角度に基づいた制御を行う場合にも、第一関節33と同様に考えることができる。第一関節33の角度は、例えば、エンコーダによって検出される回転角度に基づいて取得される。次に、ステップS113では、第一関節33の角度が上限値よりも大きくなったか否か判定される。上限値は、第一関節33の可動範囲の上限値として設定される。なお、このときの第一関節33の角度は、第一リンク部31と第二リンク部32との角度が直角の状態からの折れ曲がる角度としてもよい。本ステップS113では、第一関節33がこれ以上動かすことができない状態であるか否か判定すればよい。ステップS113で肯定判定された場合にはステップS114へ進む。なお、ステップS113で肯定判定されたときの飛行ロボット1の状態は、図3の3006に示した状態に対応する。一方、ステップS113で否定判定された場合にはステップS108へ進み、制御部210は、関節を動かしつつ本体部2の下降を継続させる。
 ステップS114では、制御部210は、本体部2の高度を元の位置まで戻す。ここでいう元の位置とは、ステップS106で記憶された高度に相当する位置であり、第一接触時の位置に相当する。本ステップS114では、着陸をやり直すために、本体部2の高度を上げている。ただし、このときには、第一脚部10Aの着陸面A1との接触を維持したまま、本体部2の高度を上げるように、第一脚部10Aの関節を元に戻しながら本体部2の高度を上げている。このようにして、飛行ロボット1が、障害物A2に接触することを抑制する。
 ステップS115では、制御部210は、本体部2を更に上昇させ、更に、着陸位置を変更する。このときに、制御部210は、第一脚部10Aと着陸面A1との接触を解消させる。そして、例えば、所定距離だけ上昇し、その後に、ヨー方向に飛行ロボット1を所定角度だけ回転させる。そして、ステップS101へ戻って、着陸制御をやり直す。
 このように脚部30に第一関節33または第二関節34を有する飛行ロボット1によれば、不整地などに着陸するときに、脚部30ごとに第一関節33または第二関節34を動かすことにより、本体部2を水平状態に維持することができる。したがって、飛行ロボット1がバランスを崩すことを抑制しつつ、不整地等に着陸することができる。また、第一脚部10Aが着陸面A1に接触した後に、第一脚部10Aの関節の角度が許容範囲の上限に達した場合には、着陸をやり直すことにより、飛行ロボット1がバランスを崩すことを抑制できる。そして、着陸をやり直すときには、第一脚部10Aが着陸面A1に接触した高度まで本体部2を上昇させ、このときに第一脚部10Aと着陸面A1との接触を維持するように関節を動かすことにより、飛行ロボット1が障害物A2に接触することを抑制できる。
<第1実施形態の変形例>
 第1実施形態では、着陸面A1に接触した脚部30の関節を動かしている。すなわち、夫々の脚部30では、着陸面A1に接触するまでは、関節を動かしていない。一方、別法として、第一脚部10Aが着陸面A1に接触した後に、他の脚部30の関節をうごかしてもよい。このときに、第一リンク部31が下方向移動するように第一関節33または第二関節34を動かしてもよい。例えば、第一リンク部31の中心軸が垂直方向を向くように、第一関節33及び第二関節34を動かしてもよい。ここで、第一脚部10Aが着陸面A1に接触したときには、他の脚部30の下側の着陸面A1も他の脚部30に近い位置にあることが多い。このような場合に、他の脚部30が下方向に移動するように、第一関節33及び第二関節34を動かすことにより、他の脚部30を早期に着陸面A1に接触させることができる。これにより、例えば、飛行ロボット1のバランスがとりやすくなる。また、飛行ロボット1の着陸に要する時間を短縮することができる。
 ここで、図6を用いて、本実施形態の変形例における着陸制御を説明する。図6は、本変形例に係る飛行ロボット1の着陸時の脚部30の状態を示した図である。3001,3002,3003については図3と同じため説明を省略する。3014は、第一脚部10Aを認識した後に、更に、飛行ロボット1が下降した状態を示している。このときには、着陸面A1に接触した脚部30以外の他の脚部30を、着陸面A1の方向に近付けるように、第一関節33及び第二関節34を動かしている。すなわち、本体部2を下降させつつ、他の脚部30がボディ25に対して相対的に着陸面A1の方向に移動するように関節を動かしている。3014に示すように、他の脚部30の第一関節33は、第一リンク部31と第二リンク部32とのなす角が90度よりも大きくなるように、且つ、第二関節34は、第二リンク部32が第二関節34を中心に下方向に回転するように、各関節が動かされる。このときには、第一リンク部31の中心軸が垂直方向を向くように、第一関節33及び第二関節34を動かしている。この間も、制御部210は、本体部2が水平に近づくように複数の推進ユニット23、及び、接地している脚部30の関節を制御している。このように、水平状態を維持しながら、他の脚部30を下方向に移動させることにより、着陸面A1との接触を早めることができる。
 3015は、第一脚部10Aを認識した後、さらに他の脚部30が着陸面A1に接触した状態を示している。制御部210は、他の脚部30が着陸面A1に接触したことも、各脚部30の先端部に設けられる圧力センサ31Aの出力に基づいて判定する。なお、3015において、4つの脚部30が全て着陸面A1に接触しているものとする。この場合、制御部210は、着陸面A1への着陸が完了したと判定する。着陸の判定方法については、上記の3005の状態と同じである。
 なお、全ての脚部30が着陸面A1に接触するまで、本体部2を下降させつつ他の脚部30の関節を動かしてもよい。すなわち、着陸面A1に接触した脚部30の第一関節33及び第二関節34を動かしつつ、且つ、着陸面A1に接触していない他の脚部30を下方向に移動させるように、他の脚部30の第一関節33及び第二関節34を動かしつつ、本体部2を下降させてもよい。このように、複数の脚部30を順次着陸面A1に接触させることにより、本体部2の水平を維持しつつ複数の脚部30で着陸が可能となる。
 3016は、第一脚部10Aを認識した後、さらに他の脚部30が着陸面A1に接触するまで本体部2を下降させている途中に、第一関節33の角度が許容範囲の上限に達し、且つ、他の脚部30の第一関節33及び第二関節34の角度が許容範囲の上限に達した状態を示している。3016の例でいうと、第一脚部10Aの第一関節33の角度が、許容範囲の屈曲方向の上限に達し、他の脚部30の第一関節33の角度が、許容範囲の伸展方向の上限値に達している。各脚部30の関節の角度が許容範囲の上限に達した場合は、それ以上、本体部2の水平を維持したまま本体部2を下降させることができなくなり、他の脚部30を下方向に移動させることもできなくなる。本体部2の下降中にはこのような事態も起こり得るため、制御部210は、本体部2の下降中の第一脚部10Aにおける第一関節33または第二関節34の角度、及び、他の脚部30における第一関節33または第二関節34の角度に基づいて、他の脚部30の着陸面A1への接触のための本体部2の下降の継続可否を判断する。例えば、制御部210は、第一脚部10Aの第一関節33の角度が許容範囲の上限に達し、且つ、他の脚部30の第一関節33の角度が許容範囲の上限に達した場合に、本体部2の下降を継続できないと判断する。一方、制御部210は、第一脚部10Aの第一関節33の角度及び他の脚部30の第一関節33の角度が共に許容範囲の上限に達するまでは、本体部2の下降を継続できると判断する。本変形例では、他の脚部30を下方向に移動させるので、上記第1実施形態よりも着陸面A1の高低差が大きい場合であっても飛行ロボット1の着陸が可能となる。
 そして、本体部2の下降を継続できないと判断された場合に、制御部210は、着陸をやり直す処理を実行する。まず、制御部210は、本体部2の下降を停止させるように推進ユニット23の推進力を調整する。次に、制御部210は、第一脚部10Aが着陸面A1に接触した状態を維持しつつ、第一脚部10Aにおける第一関節33の角度を、第一脚部10Aが着陸面A1に最初に接触した第1接触時の状態に戻す。このときに、推進ユニット23が、本体部2を第1接触時の位置まで上昇させる。また、このときに、他の脚部30における第一関節33及び第二関節34の各角度も、第一脚部10Aが着陸面A1に最初に接触した第1接触時の状態に戻す。制御部210は、飛行ロボット1が第一接触時の状態に戻った後、第一脚部10Aの先端部が着陸面A1から離れるように、本体部2の水平を維持しつつ、本体部2を垂直上方向に上昇させる。
 本変形例の着陸制御について、上記の図5に基づいて説明する。図5のステップS108において、制御部210は、第一脚部10Aの関節を動かしつつ、他の脚部30の関節も動かす。また、ステップS112において、制御部210は、第一脚部10Aの関節の角度の他に、他の脚部30の関節の角度も取得し、ステップS113において、各関節の角度が上限値を超えたか否か判定する。
 以上説明したように、本変形例によれば、高低差がより大きな着陸面A1へ着陸することができる。
<第2実施形態>
 第1実施形態では、脚部30に備わる圧力センサ31Aの出力値に基づいて脚部30と着陸面A1との接触を判定しているが、これに代えて、本第2実施形態では、飛行ロボット1の本体部2の傾きが検出された場合に、脚部30が着陸面A1に接触したと判定する。したがって、本第2実施形態では、脚部30に圧力センサ31Aを設ける必要はない。飛行ロボット1の本体部の傾きは、センサ27に含まれるジャイロセンサや加速度センサによって検出される。ここで、不整地に着陸する場合に高度を下げていくと、最初に着陸面A1に接触した脚部30の先端部を中心として本体部2が傾く。したがって、本体部2が傾いたことをもって、脚部30が着陸面A1に接触したと判定することができる。また、着陸面A1に接触した脚部30に応じて本体部2が傾く方向が異なるため、本体部2が傾いた方向に基づいて、着陸面A1に接触した脚部30を特定することができる。
 本実施形態では、本体部2の傾きが検出された場合に、本体部2の傾きに応じて着陸面A1に接触している脚部30を特定し、該脚部30の第一関節33または第二関節34を、本体部2が水平状態に近づくように動かす。第一脚部10Aが特定された後も、本体部を更に下降させつつ、本体部2が水平状態に近づくように第一脚部10Aの第一関節33及び第二関節34を動かしている。その後、本体部2を下降させる過程において、例えば、第一脚部10Aの関節を動かしただけでは本体部2の水平を維持できなくなった場合には、他の脚部30が着陸面A1に接触したと判定する。このときにも、本体部2が傾いた方向に基づいて、着陸面A1に接触した他の脚部30を特定する。このように、本体部2の傾きを修正しつつ着陸面A1に接触した脚部30を特定していき、全ての脚部30が着陸面A1に接地したと判定されると、飛行ロボット1の着陸が完了する。
 次に、上記の図3を用いて、本実施形態における着陸制御を説明する。3001,3002については第1実施形態と同じため説明を省略する。本実施形態では、3003に示した状態のときに、制御部210が、例えば、センサ27により検出される本体部2の傾きが閾値を超えた場合に、脚部30が着陸面A1に接触したと認識する。また、本体部2が傾いた方向に基づいて、第一脚部10Aを認識する。例えば、本体部2の傾きの上側に位置する脚部30を第一脚部10Aとして認識する。制御部210は、第一脚部10Aを認識後も、飛行ロボット1を更に下降させる。
 また、3004に示される状態、すなわち、第一脚部10Aを認識した後に、更に、飛行ロボット1が下降された状態では、第一脚部10Aと着陸面A1との接触を維持するように該第一脚部10Aの第一関節33及び第二関節34を動かしつつ、更に本体部2を下降させて他の脚部30を着陸面A1に接触させる処理が実行される。この処理には、センサ27により本体部2の傾きを検出し、本体部2の傾きが小さくなるように第一脚部10Aの第一関節33または第二関節34を動かす処理も含まれる。さらに、制御部210は、本体部2が水平状態に維持されるように複数の推進ユニット23を駆動している。このように、制御部210は、本体部2が水平状態になるように関節及び推進ユニット23を制御しつつ本体部2を下降させている。
 3005に示される状態、すなわち、他の脚部30が着陸面A1に接触した状態では、制御部210は、他の脚部30が着陸面A1に接触したことも、センサ27により検出される本体部2の傾きに基づいて判定する。例えば、本体部2が水平状態になるように関節及び推進ユニット23を制御していても、本体部2に傾きが生じる場合には、他の脚部30が着陸面A1に接触したと判定する。また、このときに本体部2が傾いた方向に基づいて、着陸面A1に接触した他の脚部30を特定する。そして、全ての脚部30が着陸面A1に接触するまで、本体部2の水平状態を維持するように、着陸面A1に接触している脚部30の関節を動かしつつ、本体部2を下降させる。そして、制御部210は、例えば、全ての脚部30が着陸面A1に接触しており、且つ、本体部2が水平状態のときに着陸可能であると判定して、プロペラ21の回転を停止させる。
 一方、3006に示した状態、すなわち、他の脚部30が着陸面A1に接触するまで本体部2を下降させている途中に、第一関節33の角度が許容範囲の上限に達した状態になると、制御部210は、第1実施形態と同様に、飛行ロボット1を第一接触時の状態まで戻して、着陸をやり直す。
<着陸制御>
 ここで、図7に基づいて、飛行ロボット1が着陸する際に実行される制御である着陸制御について説明する。図7は、第2実施形態に係る着陸制御のフローチャートの一例である。着陸制御は、本体部2において所定の制御プログラムが実行されることで実現される。なお、本実施形態では、飛行ロボット1が着陸する地点を示す情報を本体部2が受信しているものとする。図7に示したルーチンは、飛行ロボット1が着陸地点の上空に到着したときに開始される。図5に示したルーチンを同じ処理が実行されるステップについては、同じ符号を付して説明を省略する。
 図7に示したフローチャートでは、ステップS103の処理が終了すると、ステップS201へ進む。ステップS201では、制御部210は、本体部2の傾きを検出したか否か判定する。例えば、制御部210は、センサ27により検出された本体部2の傾きが閾値を超えているか否か判定する。閾値は、脚部30が着陸面A1に接触したときの傾きである。この閾値は、風などの影響によって本体部2が傾いたときよりも大きな値である。ステップS201で肯定判定された場合にはステップS105へ進み、否定判定された場合にはステップS103へ戻る。なお、ステップS201において肯定判定されたときの飛行ロボット1の状態は、図3の3003に示した状態に対応する。
 また、図7に示したフローチャートでは、ステップS107の処理が完了した場合、または、ステップS113で否定判定がなされた場合には、ステップS202へ進む。ステップS202では、制御部210が、着陸面A1に接触している脚部30の第一関節33及び第二関節34を動かして、本体部2の水平状態を維持する。このときの飛行ロボット1の状態は、図3の3004に示した状態に対応する。制御部210は、例えば、センサ27により本体部2の傾きが検出された場合に、傾きが解消するように、第一関節33及び第二関節34を動かす。このときには、フィードバック制御を行ってもよい。制御部210は、ステップS202の処理が実行されると、その後の処理においても、本体部2の水平状態を維持するように、脚部30の関節を動かす。
 また、図7に示したフローチャートでは、ステップS109で肯定判定された場合にはステップS111へ進んで、制御部210が、プロペラを停止させる。なお、プロペラ21を停止させるまでの過程で、本体部2に傾きが生じた場合には、関節を動かすことにより、本体部2を水平状態に近づけてもよい。また、制御部210は、プロペラ21の回転数を低下させる過程において本体部2を水平状態に近づけることができない場合には、ステップS114に進んで、着陸をやり直してもよい。
 このように、本体部2の傾きを検出するセンサの検出値に応じて第一関節33または第二関節34を動かすことにより、本体部2を水平状態に維持することができる。したがって、飛行ロボット1がバランスを崩すことを抑制しつつ、不整地等に着陸することができる。
 なお、第1実施形態の変形例のように、第一脚部10Aが着陸面A1に接触した後に、他の脚部30が下方向に移動するように、各関節を動かしてもよい。これにより、高低差がより大きな着陸面A1に着陸することが可能となる。
1・・・飛行ロボット、2・・・本体部、30・・・脚部、31・・・第一リンク部、32・・・第二リンク部、33・・・第一関節、34・・・第二関節、210・・・制御部

Claims (12)

  1.  本体部と、
     回転翼の駆動により推進力を発生させる推進ユニットを複数有し、該複数の推進ユニットは前記本体部に設けられている推進部と、
     前記本体部を支持する複数の脚部であって、該複数の脚部のそれぞれは少なくとも一つの関節を有し各脚部の姿勢を変形可能に構成される、複数の脚部と、
     飛行状態から着陸面に着陸するときに前記複数の脚部を制御する制御部と、
     を備え、
     前記制御部は、前記複数の脚部のうち少なくとも1つの脚部が前記着陸面に接触してから該着陸面への着陸が完了するまでに、該少なくとも1つの脚部の一部又は全部を制御し前記本体部の傾きを調整する、
     飛行ロボット。
  2.  前記制御部は、
     前記飛行状態から前記着陸面に着陸するために前記推進部により前記本体部を下降させる過程において、前記複数の脚部のうち該着陸面に最初に接触した脚部を第一脚部と認識する第一処理と、
     前記第一処理の後に、前記第一脚部と前記着陸面との接触を維持して該第一脚部の前記関節を動かしながら、更に前記本体部を下降させて他の前記脚部を該着陸面に接触させる第二処理と、
     を実行する、請求項1に記載の飛行ロボット。
  3.  前記制御部は、
     前記第二処理において、前記着陸面に接触した前記他の脚部と前記着陸面との接触を維持して、前記他の脚部の前記関節を動かしながら、前記本体部を下降させる、
     請求項2に記載の飛行ロボット。
  4.  前記制御部により前記第二処理が行われている間、前記推進部は、前記本体部が水平状態に維持されるように前記複数の推進ユニットを駆動する、
     請求項2または3に記載の飛行ロボット。
  5.  前記制御部は、更に、前記第二処理が行われている間の前記第一脚部における前記関節の角度に基づいて、前記他の脚部の前記着陸面への接触のための前記本体部の下降の継続可否を判断する第三処理を実行する、
     請求項2から4の何れか1項に記載の飛行ロボット。
  6.  前記第三処理において前記本体部の下降を継続できないと判断された場合、前記制御部は、前記第一脚部が前記着陸面に接触した状態を維持しつつ、前記第一脚部における前記関節の角度を、前記第一脚部が前記着陸面に最初に接触した第1接触時の状態に戻しながら、前記推進部が、前記本体部を該第1接触時の位置まで上昇させる、
     請求項5に記載の飛行ロボット。
  7.  前記複数の脚部のそれぞれ先端には、各脚部が前記着陸面に接触したときの圧力を検知可能な圧力センサが設けられ、
     前記制御部は、前記第一処理では、前記第一脚部の設けられた前記圧力センサからの接触に関する出力の有無に基づいて、該第一脚部の認識を行い、
     前記制御部は、更に、前記複数の脚部のそれぞれに設けられた前記圧力センサのそれぞれの出力値が、所定の相関状態になっているときに、前記飛行ロボットの前記着陸面への着陸が完了したとの判定をする第四処理を実行する、
     請求項2から6の何れか1項に記載の飛行ロボット。
  8.  前記本体部の傾きを検知する検知部を、更に備え、
     前記制御部は、前記複数の脚部が所定の姿勢となっている状態で前記飛行状態から前記着陸面に接触したときに、前記検知部により前記本体部の水平状態からの傾きを検知すると、前記少なくとも1つの脚部を制御して該本体部を水平状態に近付ける、
     請求項1に記載の飛行ロボット。
  9.  前記制御部は、
     前記着陸面に接触した前記脚部と前記着陸面との接触を維持して、前記脚部の前記関節を動かしながら、前記本体部を下降させる、
     請求項8に記載の飛行ロボット。
  10.  前記制御部は、更に、前記脚部における前記関節の角度に基づいて、前記本体部の下降の継続可否を判断する、
     請求項8または9に記載の飛行ロボット。
  11.  前記制御部が前記本体部の下降を継続できないと判断した場合、前記制御部は、前記複数の脚部のうち前記着陸面に最初に接触した脚部である第一脚部が前記着陸面に接触した状態を維持しつつ、前記第一脚部における前記関節の角度を、前記第一脚部が前記着陸面に最初に接触した第1接触時の状態に戻しながら、前記推進部が、前記本体部を該第1接触時の位置まで上昇させる、
     請求項10に記載の飛行ロボット。
  12.  前記複数の脚部は、前記着陸面への着陸が完了した後に前記飛行ロボットを歩行させる複数の脚部を兼ねる、
     請求項1から11の何れか1項に記載の飛行ロボット。
PCT/JP2021/030429 2020-09-03 2021-08-19 飛行ロボット WO2022050070A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022546225A JPWO2022050070A1 (ja) 2020-09-03 2021-08-19
CN202180054022.4A CN116018304A (zh) 2020-09-03 2021-08-19 飞行机器人
DE112021004556.3T DE112021004556T5 (de) 2020-09-03 2021-08-19 Flugroboter
US18/024,402 US20230312144A1 (en) 2020-09-03 2021-08-19 Flying robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063074149P 2020-09-03 2020-09-03
US63/074,149 2020-09-03

Publications (1)

Publication Number Publication Date
WO2022050070A1 true WO2022050070A1 (ja) 2022-03-10

Family

ID=80490760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030429 WO2022050070A1 (ja) 2020-09-03 2021-08-19 飛行ロボット

Country Status (5)

Country Link
US (1) US20230312144A1 (ja)
JP (1) JPWO2022050070A1 (ja)
CN (1) CN116018304A (ja)
DE (1) DE112021004556T5 (ja)
WO (1) WO2022050070A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021053929A1 (ja) * 2019-09-17 2021-03-25 ソニー株式会社 飛行体、制御方法及びプログラム
CN117842412A (zh) * 2024-03-05 2024-04-09 中联金冠信息技术(北京)有限公司 无人机脚架收放装置及无人机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170355453A1 (en) * 2016-06-08 2017-12-14 Lg Electronics Inc. Drone
JP2018510805A (ja) * 2015-03-18 2018-04-19 アマゾン テクノロジーズ インコーポレイテッド 無人航空機用調節可能な着陸装置組立体
US20190127052A1 (en) * 2016-06-22 2019-05-02 SZ DJI Technology Co., Ltd. Systems and methods of aircraft walking systems
CN110834722A (zh) * 2018-08-17 2020-02-25 中国飞机强度研究所 一种用于多旋翼无人机的自适应着陆装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9008872B2 (en) 2012-10-04 2015-04-14 The Boeing Company Configuring landing supports for landing on uneven terrain
JP2019085104A (ja) 2017-11-06 2019-06-06 株式会社エアロネクスト 飛行体及び飛行体の制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018510805A (ja) * 2015-03-18 2018-04-19 アマゾン テクノロジーズ インコーポレイテッド 無人航空機用調節可能な着陸装置組立体
US20170355453A1 (en) * 2016-06-08 2017-12-14 Lg Electronics Inc. Drone
US20190127052A1 (en) * 2016-06-22 2019-05-02 SZ DJI Technology Co., Ltd. Systems and methods of aircraft walking systems
CN110834722A (zh) * 2018-08-17 2020-02-25 中国飞机强度研究所 一种用于多旋翼无人机的自适应着陆装置

Also Published As

Publication number Publication date
US20230312144A1 (en) 2023-10-05
CN116018304A (zh) 2023-04-25
JPWO2022050070A1 (ja) 2022-03-10
DE112021004556T5 (de) 2023-09-07

Similar Documents

Publication Publication Date Title
JP6161043B2 (ja) 搬送装置および飛行体の制御方法
WO2022050070A1 (ja) 飛行ロボット
JP6021470B2 (ja) フリップ型運動を自動的に実行するための無人機の姿勢の動力学的制御方法
JP2008094277A (ja) 二重反転回転翼機
EP1797487B1 (en) Autonomous flight for flight platforms
US20160179097A1 (en) Unmanned Aerial Vehicle and a Method for Landing the Same
JP2007290647A (ja) 無人ヘリコプタおよび外部環境推定装置
CN107539467A (zh) 一种用于动态地转换旋翼型无人机的姿态的方法
US20170364093A1 (en) Drone comprising lift-producing wings
JP7196668B2 (ja) 飛行体
CN109279011A (zh) 用于倾转旋翼飞行器的推进旋翼扑动控制系统
JP5713231B2 (ja) 飛行体
JP2008094278A (ja) 二重反転回転翼機
JP2019064280A (ja) 飛行装置
US20190047693A1 (en) Air vehicle and method of controlling air vehicle
JP5585455B2 (ja) 経路探索装置
JP2008093204A (ja) 二重反転回転翼機
CN102428001A (zh) 直升机旋翼的陀螺力的补偿方法
JP2017007429A (ja) 制御装置、航空機、及びプログラム
JP4690239B2 (ja) 無人ヘリコプタ
JP3189027B2 (ja) 飛行体の姿勢制御装置
KR20160150496A (ko) 무인 비행체
JP3185081B2 (ja) 無人ヘリコプタの姿勢制御装置
EP3583028B1 (en) Maintaining attitude control of unmanned aerial vehicles
JP6803602B2 (ja) 飛行体の姿勢制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864128

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546225

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112021004556

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21864128

Country of ref document: EP

Kind code of ref document: A1