WO2022048520A1 - 一种空气处理装置和汽车空调模块 - Google Patents

一种空气处理装置和汽车空调模块 Download PDF

Info

Publication number
WO2022048520A1
WO2022048520A1 PCT/CN2021/115450 CN2021115450W WO2022048520A1 WO 2022048520 A1 WO2022048520 A1 WO 2022048520A1 CN 2021115450 W CN2021115450 W CN 2021115450W WO 2022048520 A1 WO2022048520 A1 WO 2022048520A1
Authority
WO
WIPO (PCT)
Prior art keywords
cam
air
link
damper
axis
Prior art date
Application number
PCT/CN2021/115450
Other languages
English (en)
French (fr)
Inventor
刘霆伟
夏宁
Original Assignee
法雷奥汽车空调湖北有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 法雷奥汽车空调湖北有限公司 filed Critical 法雷奥汽车空调湖北有限公司
Priority to EP21863585.2A priority Critical patent/EP4209369A1/en
Publication of WO2022048520A1 publication Critical patent/WO2022048520A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00835Damper doors, e.g. position control
    • B60H1/00857Damper doors, e.g. position control characterised by the means connecting the initiating means, e.g. control lever, to the damper door
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/34Nozzles; Air-diffusers
    • B60H1/3414Nozzles; Air-diffusers with means for adjusting the air stream direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/34Nozzles; Air-diffusers
    • B60H2001/3471Details of actuators

Definitions

  • the invention relates to the field of automobile air conditioners, in particular to an air treatment device and an automobile air conditioner module.
  • the automotive air conditioning system regulates the hot and humid environment in the vehicle cabin by sending treated air into the vehicle cabin.
  • the automobile air conditioning system includes an automobile air conditioning module, and the automobile air conditioning module includes a heat exchanger and an air treatment device for treating the air.
  • the air handling device includes a housing, an air handling unit, a mode damper, an air mixing damper and a drive assembly.
  • the housing has an air inlet and an air outlet, the air inlet allows air to enter the housing, and the air outlet allows air to leave the housing.
  • the air handling unit may be a heater.
  • the mode damper is placed upstream of the air outlet to control the flow of air from the air outlet, wherein a set of drive components is used to drive the movement of the mode damper; the air mixing damper is placed upstream of the air handling unit to control the passage of air through the air handling unit ratio, and another set of drive components is used to drive the movement of the air mix damper.
  • Air passing through the air handling unit may be mixed with air not passing through the air handling unit and then exit the housing via the mode damper and air outlet.
  • the object of the present invention is to provide an air treatment device, which has the advantages of simple structure and high transmission efficiency.
  • Another object of the present invention is to provide an automotive air conditioning module, which includes the above air treatment device.
  • An air treatment device for achieving the stated purpose includes: a casing with an air inlet and an air outlet; an air treatment unit for treating the air entering the casing from the air inlet; and an air mixing damper for controlling the air inlet. the ratio of the air passing through the air handling unit; a mode damper for controlling the flow of the air from the air outlet; the air handling device further includes a drive assembly; the drive assembly includes a cam; the cam has a cam axis, a first cam track, and a second cam track; the
  • the cam is arranged to rotate around the cam axis, so as to drive the first cam track and the second cam track to rotate around the cam axis; wherein the first cam track is used to drive the air mix damper, The second cam track is used for the drive mode damper.
  • the drive assembly further includes a first sliding end and a second sliding end; the first sliding end is configured to slide along the first cam track, and the second sliding end is configured to slide along the The second cam track slides; the distance between the first sliding end and the cam axis is the first distance; the distance between the second sliding end and the cam axis is the second distance; the A cam actuates the driving the air mix damper through a change in the first distance; the cam drives the mode damper through a change in the second distance.
  • the drive assembly further includes a first cam link; the first cam link has a first link axis, the first sliding end and a first drive end; the first cam link the rod is arranged to rotate around the first link axis; the first sliding end is arranged to slide along the first cam track; the distance between the first sliding end and the cam axis is a first distance; the cam actuates the first cam link through the change of the first distance; the first driving end is used to drive the air mixing damper.
  • the drive assembly further includes a second cam link; the second cam link has a second link axis, the second sliding end and a second drive end; the second cam link the rod is arranged to rotate about the second link axis; the second sliding end is arranged to slide along the second cam track; the distance between the second sliding end and the cam axis is a second distance; the cam actuates the second cam link through the change of the second distance; the second driving end is used to drive the mode damper.
  • the drive assembly further includes a mix damper link; the mix damper link has a third sliding end, a third link axis, and a third drive end; the mix damper link is disposed to surround The axis of the third connecting rod rotates; the first driving end has a first connecting rod track; the third sliding end is arranged to slide along the first connecting rod track; The distance between the axes of the first link is a third distance; the first cam link actuates the mixing damper link through the change of the third distance; the third driving end is used to drive the Air mix damper.
  • the air mixing damper has a mixing damper axis; the third driving end is connected with the air mixing damper to drive the air mixing damper to rotate around the mixing damper axis, wherein the first The axis of the three-link is coincident with the axis of the mixing damper.
  • the first cam track has at least one first idle segment and at least one first drive segment, wherein the first distance is constant within the first idle segment and within the first idle segment varies within a drive segment;
  • the second cam track has at least one second idle segment and at least one second drive segment, wherein the second distance does not change within the second idle segment and is constant within the second idle segment Changes within the second drive segment.
  • the second sliding end synchronously slides from the start point of the second idle segment to the end point; And/or during the process of sliding the first sliding end from the start point to the end point of the first driving section, the second sliding end slides synchronously from the start point of the second driving section to the end point.
  • the end point of the first idle segment is connected with the start point of the first drive segment; the end point of the second idle segment is connected with the start point of the second drive segment; and/or all The end point of the first drive section is connected with the start point of the first idle section; the end point of the second drive section is connected with the start point of the second idle section.
  • the first sliding end passes from the start point of the first idle segment through at least one of the first idle segments.
  • One drive segment slides synchronously to the end of the other said first idle segment having a different said first distance.
  • the first distance increases or decreases monotonically.
  • the automobile air conditioning module includes a heat exchanger, and the automobile air conditioning module also includes the above-mentioned air treatment device.
  • the positive improvement effect of the present invention is that in the air treatment device provided by the present invention, the drive assembly can drive the air mixing damper and the mode damper through one cam, so the drive assembly has the advantages of simple structure and high transmission efficiency.
  • the automobile air-conditioning module provided by the present invention includes the above-mentioned air treatment device, so it also has the advantages of simple structure and high transmission efficiency.
  • FIG. 1 is a schematic diagram of an automotive air conditioning module in an embodiment of the present invention, showing an air inlet;
  • FIG. 2 is a schematic diagram of an automotive air conditioning module in one embodiment of the present invention, showing a drive assembly
  • FIG. 3 is a schematic diagram of the connection between the drive assembly and the damper in an embodiment of the present invention.
  • Fig. 4 is the exploded view of Fig. 3;
  • FIG. 5 is a schematic diagram of a cam in an embodiment of the present invention, showing a groove-shaped cam track
  • FIG. 6 is a top view of a cam in an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the relationship between a cam angle and a damper opening in an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a first air conditioning mode in an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a second air conditioning mode in an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a third air conditioning mode in an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a fourth air conditioning mode in an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a fifth air conditioning mode in an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a sixth air conditioning mode in an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a seventh air conditioning mode in an embodiment of the present invention.
  • the distribution of the first feature in the second feature described later in the specification may include an embodiment in which the first and second features are distributed in a direct relationship, and may also include an additional feature formed between the first and second features. implementation so that there may be no direct connection between the first and second features.
  • reference numerals and/or letters may be repeated in various instances throughout the content. This repetition is for brevity and clarity and does not in itself represent a relationship between the various embodiments and/or structures being discussed.
  • first element when a first element is described as being connected or combined with a second element, the description includes embodiments in which the first and second elements are directly connected or combined with each other, and also includes the addition of one or more other intervening elements.
  • the first and second elements are indirectly connected or joined to each other.
  • FIG. 1 to FIG. 10 are only used as examples, which are not drawn according to the conditions of equal scale, and should not be taken as a limitation on the protection scope actually required by the present invention.
  • Automotive air conditioning systems include compressors, condensers, evaporators, and expansion valves that make up the refrigeration cycle, as well as air handling devices that process and deliver air.
  • the first heat exchanger or the second heat exchanger can be integrated in the air treatment device to form an automobile air conditioning module.
  • FIG. 1 and 2 show an above-mentioned automobile air conditioning module 900 , including an air handling device 90 and a heat exchanger 91 .
  • the heat exchanger 91 is an evaporator.
  • the air handling device 90 includes a housing 1, an air handling unit 2, an air mixing damper 3, a mode damper 4, a driving assembly 5 and a fan (not shown in the drawings).
  • the housing 1 has an air inlet 11 and an air outlet 12 .
  • the air handling unit 2 , the air mixing damper 3 , and the mode damper 4 are provided in the casing 1 .
  • the fan is used to send high-pressure air into the air inlet 11 .
  • the air handling unit 2 is used for handling the air entering the housing 1 from the air inlet 11.
  • the air mixing damper 3 is arranged upstream of the air handling unit 2 for controlling the ratio of air passing through the air handling unit 2 .
  • the mode damper 4 is disposed upstream of the air outlet 12 for controlling the flow rate of air flowing out from the air outlet 12 .
  • the air handling unit 2 may be, but is not limited to, a heater, such as a PTC heater, a built-in condenser, or a combination of a PTC heater and a built-in condenser.
  • the air outlet 12 includes a foot blowing outlet 12-1, a surface air outlet 12-2 and a defrosting air outlet 12-3.
  • the mode damper 4 includes a first mode damper, a second mode damper and a third mode damper.
  • the first mode damper may be a foot blowing damper 4-1
  • the second mode damper may be a face blowing damper 4-2
  • the third mode damper may be a defroster damper 4-3.
  • FIG. 7 the combination of the opening degrees of the air mixing damper 3 and the opening degrees of the different mode dampers 4 can form a variety of air conditioning modes, which are shown in FIGS. 8 , 9 , 10 , 11 , 12 and 13 respectively. , 14.
  • the foot blower damper 4-1 has a first mode damper axis 4a-1
  • the face blower damper 4-2 has a second mode damper axis 4a-2
  • the defroster damper has a third mode damper axis 4a-3.
  • the foot blowing damper 4-1, the face blowing damper 4-2 and the defrosting damper 4-3 are respectively rotatably arranged on the casing 1.
  • the air mix damper 3 has a mix damper axis 3 a, and the air mix damper 3 is rotatably arranged on the housing 1 .
  • the first mode damper axis 4a-1, the second mode damper axis 4a-2, the third mode damper axis 4a-3 and the mixing damper axis 3a are preferably parallel to each other and remain relatively stationary.
  • a cam 50 is included; the cam 50 has a cam axis 50a, a first cam track 501 and a second cam track 502; the first cam track 501 and the second cam track 502 are provided offset from the cam axis 50a.
  • the cam 50 is arranged to rotate around the cam axis 50a, and the first cam track 501 and the second cam track 502 follow the rotation of the cam 50 to rotate around the cam axis 50a, wherein the first cam track 501 drives the air mixing damper 3 by sliding fit, The second cam track 502 drives the mode damper 4 by sliding fit.
  • the drive assembly 5 can drive the air mix damper 3 and the mode damper 4 through one cam 50, so the drive assembly 5 has the advantages of simple structure and high transmission efficiency .
  • the second cam track 502 includes a foot blow damper track 502-1, a face blow damper track 502-2 and a defroster damper track 502-3.
  • the foot blower damper track 502-1, the face blower damper track 502-2, the defrost damper track 502-3 and the first cam track 501 are provided on the cam 50.
  • the foot blower damper track 502-1 is used to drive the foot blower damper 4-1
  • the surface blower damper track 502-2 is used to drive the blower damper 4-2
  • the defrost damper track 502-3 is used to drive the defrost damper 4-3 .
  • the shapes of the first cam track 501 and the second cam track 502 are groove-like. In the embodiment not shown, the shapes of the first cam track 501 and the second cam track 502 may also be elongated shapes protruding from the outer surface of the cam 50 .
  • the drive assembly 5 further includes a first cam link 51 .
  • the first cam link 51 has a first link axis 51a, a first sliding end 511 and a first driving end 512; the first cam link 51 is arranged to rotate around the first link axis 51a; the first sliding end 511 is It is set to slide along the first cam track 501; the distance between the first sliding end 511 and the cam axis 50a is the first distance D1.
  • the first distance D1 is The setting is changed; the cam 50 actuates the first cam link 51 through the change of the first distance D1 ; the first driving end 512 is used to drive the air mixing damper 3 .
  • the first link axis 51a is preferably parallel to the cam axis 50a and remains relatively stationary. The existence of the first cam link 51 allows the air mixing damper 3 to be arranged at a certain distance from the cam 50, and at the same time improves the stability of the transmission.
  • the drive assembly 5 further includes a mixing damper link 53; the mixing damper link 53 has a third sliding end 531, a third link axis 53a and a third driving end 532; the mixing damper link 53 is arranged to rotate around the third link axis 53a; the first drive end 512 has a first link track 51b; the third sliding end 531 is arranged to slide along the first link track 51b; the third sliding end 531 is connected to the first link track 51b
  • the distance between the link axes 51a is the third distance D3; the first cam link 51 actuates the mixing damper link 53 through the change of the third distance D3; the third driving end 532 is used for driving the air mixing damper 3 .
  • the first link track 51b is defined by the inner wall of the elongated hole provided in the first driving end 512 .
  • the elongated hole is preferably a through hole.
  • the first link track 51 b cooperates with the third sliding end 531 to realize the power transmission process, so that the mixing damper link 53 has a larger rotation range under the driving of the first cam link 51 .
  • the third link axis 53a is preferably parallel to the first link axis 51a and remains relatively stationary with the first link axis 51a.
  • the air mixing damper 3 has a mixing damper axis 3a; the third driving end 532 is connected with the air mixing damper 3 to drive the air mixing damper 3 to rotate around the mixing damper axis 3a, wherein the third link axis 53a is connected to the mixing damper.
  • the axes 3a coincide.
  • the third driving end 532 is detachably connected with the air mixing damper 3 , such as a shaft hole plug fit.
  • the third driving end 532 may also be integrally formed with the rotating shaft portion of the air mixing damper 3 .
  • the drive assembly 5 further includes a second cam link 52; the second cam link 52 has a second link axis 52a, a second sliding end 521 and a second driving end 522;
  • the two cam links 52 are arranged to rotate around the second link axis 52a; the second sliding end 521 is arranged to slide along the second cam track 502; the distance between the second sliding end 521 and the cam axis 50a is the second distance D2; the cam 50 actuates the second cam link 52 through the change of the second distance D2; the second drive end 522 is used to drive the mode damper 4.
  • the second link axis 52a is preferably parallel to the cam axis 50a and remains relatively stationary. The existence of the second cam link 52 allows the mode damper 4, such as the foot blow damper 4-1 in FIG. 4, to be arranged at a certain distance from the cam 50, and at the same time improves the stability of the transmission.
  • the second cam link 52 includes a foot blowing link 52-1, a surface blowing link 52-2 and a defrosting link 52-3.
  • the second link axis 52a includes the foot blowing link axis 52a-1, The blow face link axis 52a-2 and the defrost link axis 52a-3.
  • the foot blowing link 52-1 rotates around the foot blowing link axis 52a-1
  • the surface blowing link 52-2 rotates around the blowing link axis 52a-2
  • the defrosting link 52-3 rotates around the defrosting link axis 52a -3 turns.
  • the foot blower link axis 52a-1, the face blower link axis 52a-2 and the defrost link axis 52a-3 are preferably respectively parallel to the cam axis 50a and remain relatively stationary.
  • the second sliding end 521 includes a foot blowing sliding end 521-1, a blowing surface sliding end 521-2 and a defrosting sliding end 521-3.
  • the foot blowing sliding end 521-1 is slidingly matched with the foot blowing damper track 502-1
  • the blowing surface sliding end 521-2 is slidably matched with the blowing surface damper track 502-2
  • the defrosting sliding end 521-3 is slidably matched with the defrosting damper track 502- 3 Slip fit.
  • first sliding end 511 and the second sliding end 521 are cylindrical, and the outer peripheral surface of the first sliding end 511 and the outer peripheral surface of the second sliding end 521 are respectively connected with the groove-shaped first cam tracks 501 and 521 , respectively.
  • the inner wall of the groove-shaped second cam track 502 is slidably fitted.
  • the drive assembly 5 also includes a mode damper link 54 .
  • the mode damper link 54 has a fourth sliding end 541, a fourth link axis 54a and a fourth drive end 542; the mode damper link 54 is arranged to rotate about the fourth link axis 54a; the second drive end 522 has a second The connecting rod track 52b; the fourth sliding end 541 is arranged to slide along the second connecting rod track 52b; the distance between the fourth sliding end 541 and the second connecting rod axis 52a is the fourth distance D4; the second cam link 52
  • the mode damper link 54 is actuated by the change of the fourth distance D4 ; the fourth drive end 542 is used to drive the mode damper 4 .
  • the second link track 52b is defined by the inner wall of the elongated hole provided in the second driving end 522 .
  • the elongated hole is preferably a through hole.
  • the second link track 52b cooperates with the fourth sliding end 541 to realize the power transmission process, so that the mode damper link 54 has a larger rotation range under the driving of the second cam link 52 .
  • the fourth link axis 54a is preferably parallel to the second link axis 52a and remains relatively stationary with the second link axis 52a.
  • the first cam track 501 has at least one first idle segment 501 a and at least one first driving segment 501 b , wherein the first distance D1 is constant in the first idle segment 501 a and in the The first drive section 501b varies;
  • the second cam track 502 has at least one second idle section 502a and at least one second drive section 502b, wherein the second distance D2 is constant in the second idle section 502a, and in the second Changes within the drive section 502b.
  • the first free section 501a extends on a circle centered on the cam axis 50a, so that the first distance D1 can be kept constant.
  • the first driving segment 501b extends from a circle centered on the cam axis 50a to another circle centered on the cam axis 50a, so that the first distance D1 can be varied.
  • the second idle segment 502a extends on a circle centered on the cam axis 50a, so that the second distance D2 can remain constant.
  • the second drive segment 502b extends from a circle centered on the cam axis 50a to another circle centered on the cam axis 50a, so that the second distance D2 can be varied.
  • the air mixing damper 3 and the mode damper 4 can be driven to different opening degrees, thus forming the figures 6 and 7 , 8, 9, 10, 11, 12, 13, and 14 of various air conditioning modes M1, M2, M3, M4, M5, M6, M7. Different air conditioning modes are switched through different driving modes.
  • the rotational path of the cam 50 includes angular positions A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14.
  • Cam 50 can reciprocate between angular position A1 and angular position A14.
  • the cam 50 may be arranged to rotate 340° from the first angular position A1 to the fourteenth angular position A14.
  • the cam 50 in the first air conditioning mode M1, the cam 50 is rotated from the first angular position A1 to the second angular position A2, and the first sliding end 511 is along the first idle section 501a of the first cam track 501- 1 sliding, the first distance D1 remains unchanged, so that the first cam link 51 will not be actuated by the cam 50, so that the opening of the air mixing damper 3 remains unchanged; and the second sliding end 521 is along the second cam track
  • the second idle section 502a-1 of 502 slides, and the second distance D2 remains unchanged, so that the second cam link 52 is not actuated by the cam 50, so that the opening of the mode damper 4 remains unchanged; wherein the air is mixed
  • the damper 3 remains unchanged at the maximum opening degree W1, so that all air passes through the air handling unit 2; Therefore, the first air-conditioning mode M1 is the defrosting mode.
  • the cam 50 rotates from the second angular position A2 to the third angular position A3, and the first sliding end 511 slides along the first driving section 501b-1 of the first cam track 501 , the first distance D1 changes, so that the first cam link 51 is actuated by the cam 50, so that the opening degree of the air mixing damper 3 changes; and at least a part of the second sliding end 521 along the second cam track 502
  • the driving section 502b-1 slides, and at least a part of the second distance D2 changes, so that at least a part of the second cam link 52 is actuated by the cam 50, so that the opening degree of at least a part of the mode damper 4 changes; wherein, the air mixing damper 3 Decrease from the first maximum opening degree W1 to the first intermediate opening degree W2, the foot blower damper 4-1 increases from the first minimum opening degree X1 to the first intermediate opening degree X2, and the face blowing damper 4-2 is at the minimum opening degree Y1 Remaining
  • the cam 50 is rotated from the third angular position A3 to the fourth angular position A4, and the first sliding end 511 is along the first idle section 501a of the first cam track 501- 2 sliding, the first distance D1 remains unchanged, so that the first cam link 51 will not be actuated by the cam 50, so that the opening of the air mixing damper 3 remains unchanged; and the second sliding end 521 is along the second cam track
  • the second idle section 502a-2 of 502 slides, and the second distance D2 remains unchanged, so that the second cam link 52 is not actuated by the cam 50, so that the opening of the mode damper 4 remains unchanged; wherein the air is mixed
  • the damper 3 remains unchanged at the first intermediate opening degree W2, so that part of the air passes through the air handling unit 2 and the other part bypasses the air handling unit 2; the foot blowing damper 4-1 remains unchanged at the first intermediate opening degree X2, and the air is The damper 4-2 remains unchanged at the minimum opening degree Y1, and the de
  • the cam 50 rotates from the fourth angular position A4 to the fifth angular position A5, and the first sliding end 511 slides along the first driving section 501b-2 of the first cam track 501 , the first distance D1 changes, so that the first cam link 51 is actuated by the cam 50, so that the opening degree of the air mixing damper 3 changes; and at least a part of the second sliding end 521 along the second cam track 502
  • the driving section 502b-2 slides, and at least a part of the second distance D2 changes, so that at least a part of the second cam link 52 is actuated by the cam 50, so that the opening degree of at least a part of the mode damper 4 changes; wherein, the air mixing damper 3 From the first intermediate opening W2 to the second maximum opening W3, the foot blower damper 4-1 increases from the first intermediate opening X2 to the maximum opening X3, and the face blowing damper 4-2 remains unchanged at the minimum opening Y1 , the defroster damper 4-3
  • the cam 50 is rotated from the fifth angular position A5 to the sixth angular position A6, and the first sliding end 511 is along the first idle section 501a of the first cam track 501- 3 sliding, the first distance D1 remains unchanged, so that the first cam link 51 will not be actuated by the cam 50, so that the opening of the air mixing damper 3 remains unchanged; and the second sliding end 521 along the second cam track
  • the second idle section 502a-3 of 502 slides, and the second distance D2 remains unchanged, so that the second cam link 52 is not actuated by the cam 50, so that the opening of the mode damper 4 remains unchanged; wherein the air is mixed
  • the damper 3 remains unchanged at the second maximum opening degree W3, so that all air passes through the air handling unit 2.
  • the second maximum opening degree W3 is equal to the first maximum opening degree W1; the foot blowing damper 4-1 is at the maximum The opening degree X3 remains unchanged, the surface blower damper 4-2 remains unchanged at the minimum opening degree Y1, and the defroster damper 4-3 remains unchanged at the second intermediate opening degree Z3. Therefore, the third air conditioning mode M3 is the foot blowing mode. .
  • the cam 50 rotates from the sixth angular position A6 to the seventh angular position A7, and the first sliding end 511 slides along the first driving section 501b-3 of the first cam track 501 , the first distance D1 changes, so that the first cam link 51 is actuated by the cam 50, so that the opening degree of the air mixing damper 3 changes; and the second sliding end 521 is along the second driving section of the second cam track 502 502b-3 slides, and the second distance D2 changes, so that the second cam link 52 is actuated by the cam 50, so that the opening degree of the mode damper 4 changes; wherein, the air mixing damper 3 decreases from the second maximum opening degree W3.
  • the foot blower damper 4-1 is reduced from the maximum opening degree X3 to the second intermediate opening degree X4, the surface blowing damper 4-2 is increased from the minimum opening degree Y1 to the intermediate opening degree Y2, and defrosting The damper 4-3 is reduced from the second intermediate opening degree Z3 to the minimum opening degree Z4.
  • the cam 50 is rotated from the seventh angular position A7 to the eighth angular position A8, and the first sliding end 511 is along the first idle section 501a of the first cam track 501- 4 sliding, the first distance D1 remains unchanged, so that the first cam link 51 will not be actuated by the cam 50, so that the opening of the air mixing damper 3 remains unchanged; and the second sliding end 521 is along the second cam track
  • the second idle section 502a-4 of 502 slides, and the second distance D2 remains unchanged, so that the second cam link 52 is not actuated by the cam 50, so that the opening of the mode damper 4 remains unchanged; wherein the air is mixed
  • the damper 3 remains unchanged at the second intermediate opening degree W4, so that part of the air passes through the air handling unit 2 and the other part bypasses the air handling unit 2.
  • the second intermediate opening degree W4 is equal to the first intermediate opening degree W2 ;
  • the foot blowing damper 4-1 remains unchanged at the second intermediate opening X4, in this embodiment, the second intermediate opening X4 is equal to the first intermediate opening X2; the face blowing damper 4-2 remains at the intermediate opening Y2 No change, the defroster damper 4-3 remains unchanged at the minimum opening degree Z4, therefore, the fourth air conditioning mode M4 is a face-blowing and foot-blowing mode.
  • the cam 50 rotates from the eighth angular position A8 to the ninth angular position A9, and the first sliding end 511 slides along the first idle section 501a-4 of the first cam track 501 , the first distance D1 remains unchanged, so that the first cam link 51 will not be actuated by the cam 50, so that the opening of the air mixing damper 3 remains unchanged; and at least a part of the second sliding end 521 is along the second cam track
  • the second driving section 502b-4 of 502 slides, and at least a part of the second distance D2 changes, so that at least a part of the second cam link 52 is actuated by the cam 50, so that the opening degree of at least a part of the mode damper 4 changes; wherein,
  • the air mixing damper 3 remains unchanged at the second intermediate opening degree W4, the foot blowing damper 4-1 is reduced from the second intermediate opening degree X4 to the minimum opening degree X5, and the surface blowing damper 4-2 is increased from the intermediate opening degree Y2 to the maximum
  • the cam 50 in the fifth air conditioning mode M5, the cam 50 is rotated from the ninth angular position A9 to the tenth angular position A10, and the first sliding end 511 is along the first idle section 501a of the first cam track 501- 4 sliding, the first distance D1 remains unchanged, so that the first cam link 51 will not be actuated by the cam 50, so that the opening of the air mixing damper 3 remains unchanged; and the second sliding end 521 is along the second cam track
  • the second idle section 502a-5 of 502 slides, and the second distance D2 remains unchanged, so that the second cam link 52 is not actuated by the cam 50, so that the opening of the mode damper 4 remains unchanged; wherein the air is mixed
  • the damper 3 remains unchanged at the second intermediate opening degree W4, so that part of the air passes through the air handling unit 2 and the other part bypasses the air handling unit 2.
  • the second intermediate opening degree W4 is equal to the first intermediate opening degree W2 ;
  • the foot blower damper 4-1 remains unchanged at the minimum opening degree X5;
  • the face blowing damper 4-2 remains unchanged at the maximum opening degree Y3, and the defroster damper 4-3 remains unchanged at the minimum opening degree Z4. Therefore, the fifth The air-conditioning mode M5 is the first surface blowing mode. In this mode, since the opening of the air mixing damper 3 is relatively large and the amount of air passing through the air handling unit 2 is relatively large, the temperature of the blowing surface is relatively high.
  • the cam 50 rotates from the tenth angular position A10 to the eleventh angular position A11, and the first sliding end 511 is along the first driving section 501b-4 of the first cam track 501 Sliding, the first distance D1 changes, so that the first cam link 51 is actuated by the cam 50, so that the opening of the air mixing damper 3 changes; and the second sliding end 521 is along the second idle of the second cam track 502
  • the segment 502a-5 slides, and the second distance D2 remains unchanged, so that the second cam link 52 is not actuated by the cam 50, so that the opening of the mode damper 4 remains unchanged;
  • the intermediate opening W4 is reduced to the third intermediate opening W5, the foot blower damper 4-1 remains unchanged at the minimum opening degree X5, the face blowing damper 4-2 remains unchanged at the maximum opening degree Y3, and the defrosting damper 4-3 remains unchanged.
  • the minimum opening Z4 remains unchanged.
  • the cam 50 is rotated from the eleventh angular position A11 to the twelfth angular position A12 , and the first sliding end 511 is along the first idle section of the first cam track 501 501a-5 slides, and the first distance D1 remains unchanged, so that the first cam link 51 will not be actuated by the cam 50, so that the opening of the air mixing damper 3 remains unchanged; and the second sliding end 521 moves along the second The second idle section 502a-5 of the cam track 502 slides, and the second distance D2 remains unchanged, so that the second cam link 52 is not actuated by the cam 50, so that the opening of the mode damper 4 remains unchanged; wherein, The air mixing damper 3 remains unchanged at the third intermediate opening degree W5, so that part of the air passes through the air handling unit 2 and the other part bypasses the air handling unit 2; the foot blowing damper 4-1 remains unchanged at the minimum opening degree X5; The damper 4-2 remains unchanged at the
  • the cam 50 is rotated from the twelfth angular position A12 to the thirteenth angular position A13, the first sliding end 511 is along the first driving section 501b of the first cam track 501- 5 sliding, the first distance D1 changes, so that the first cam link 51 is actuated by the cam 50, so that the opening degree of the air mixing damper 3 changes; and the second sliding end 521 along the second cam track 502
  • the idle section 502a-5 slides, and the second distance D2 remains unchanged, so that the second cam link 52 is not actuated by the cam 50, so that the opening of the mode damper 4 remains unchanged;
  • the third intermediate opening W5 is reduced to the minimum opening W6.
  • the minimum opening Z4 remains unchanged.
  • the cam 50 is rotated from the thirteenth angular position A13 to the fourteenth angular position A14 , and the first sliding end 511 is along the first idle section of the first cam track 501 501a-6 slides, the first distance D1 remains unchanged, so that the first cam link 51 will not be actuated by the cam 50, so that the opening degree of the air mixing damper 3 remains unchanged; and the second sliding end 521 along the second The second idle section 502a-5 of the cam track 502 slides, and the second distance D2 remains unchanged, so that the second cam link 52 is not actuated by the cam 50, so that the opening of the mode damper 4 remains unchanged; wherein, The air mixing damper 3 remains unchanged at the minimum opening degree W6, so that all air bypasses the air handling unit 2; the foot blowing damper 4-1 remains unchanged at the minimum opening degree X5; the face blowing damper 4-2 remains at the maximum opening degree Y3
  • the defroster damper 4-3 remains unchanged
  • the first sliding end 511 and the second sliding end 521 are respectively along the first idle section 501a and the second idle section 502a slides.
  • the second sliding end 521 synchronously slides from the start point to the end point of the second idle segment 502a.
  • Such a design ensures that when the air handling device 90 is in the air conditioning mode, neither the air mixing damper 3 nor the mode damper 4 is driven by the rotation of the cam 50 , so that the airflow organization in the air handling device 90 can be kept stable, so that the The process of adjusting the outlet air temperature by the air handling unit 2 can be simplified.
  • the end point of the first idle segment 501a is connected with the start point of the first drive segment 501b; the end point of the second idle segment 502a is connected with the start point of the second drive segment 502b; and/or the end point of the first drive segment 501b
  • the start point of the first idle segment 501a is connected; the end point of the second drive segment 502b is connected to the start point of the second idle segment 502a.
  • the first idle section 501a and the first driving section 501b are spaced apart from each other; the second idle section 502a and the second driving section 502b are spaced apart from each other.
  • the first sliding end 511 From the start of the first idle segment 501a-4 synchronously slides via at least one first drive segment 501b-4, 501b-5 to another first idle segment 502a-5, 501a-6 with a different first distance D1 end.
  • Such a design enables the air mixing damper 3 to be driven and the mode damper 4 to remain stationary, so that the outlet air temperature can be adjusted by changing the opening degree of the mode damper 4 without changing the opening and closing status of the air outlet 12 . , so that the process of adjusting the outlet air temperature through the air handling unit 2 can be simplified.
  • the first distance D1 decreases monotonically during sliding from one first idle segment 501a-4 to another first idle segment 501a-6.
  • the first distance D1 may also increase monotonically.
  • the first distance D1 is monotonically changed so that the opening degree of the air mixing damper 3 can be changed monotonically.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

一种空气处理装置(90)和汽车空调模块(900)。空气处理装置(90)的驱动组件(5)通过一个凸轮(50)就能够驱动空气混合风门(3)和模式风门(4),因此驱动组件(5)具有结构简单且传动效率高的优点。汽车空调模块(900)包括上述空气处理装置(90),具有结构简单且传动效率高的优点。

Description

一种空气处理装置和汽车空调模块 技术领域
本发明涉及汽车空调领域,特别涉及一种空气处理装置和汽车空调模块。
背景技术
汽车空调系统通过向车辆座舱中送入被处理过的空气来调节车辆座舱中的热湿环境。汽车空调系统包括汽车空调模块,汽车空调模块包括换热器和用于对空气进行处理的空气处理装置。
现有技术的技术方案中,空气处理装置包括壳体、空气处理单元、模式风门、空气混合风门和驱动组件。壳体具有进风口和出风口,进风口允许空气进入该壳体,出风口允许空气离开该壳体。空气处理单元可以是加热器。模式风门设置在出风口的上游,以控制空气从出风口流出的流量,其中,一套驱动组件用于驱动模式风门运动;空气混合风门设置在空气处理单元的上游,以控制空气通过空气处理单元的比率,另一套驱动组件用于驱动空气混合风门运动。通过空气处理单元的空气可以与未通过空气处理单元的空气混合,然后经由模式风门和出风口排出壳体。
在上述技术方案中,由于存在由两套不同的驱动组件,例如两个独立的驱动器,分别驱动模式风门和空气混合风门,这导致空气处理装置的结构复杂且传动效率低。
发明内容SUMMARY
本发明的目的在于提供一种空气处理装置,所述空气处理装置具有结构简单且传动效率高的优点。
本发明的目的还在于提供一种汽车空调模块,所述汽车空调模块包括上述空气处理装置。
为实现所述目的的空气处理装置,包括:壳体,具有进风口和出风口;空气处理单元,用于处理从所述进风口进入所述壳体的空气;空气混合风门,用于控制所述空气通过所述空气处理单元的比率;模式风门,用于控制所述空气从所述出风口流出的流量;所述空气处理装置还包括驱动组件;所述驱动组件包括凸轮;所述凸轮具有凸轮轴线、第一凸轮轨道和第二凸轮轨道;所述
凸轮被设置成围绕所述凸轮轴线转动,以带动所述第一凸轮轨道和所述第二凸轮轨道围绕所述凸轮轴线转动;其中,所述第一凸轮轨道用于所述驱动空气混合风门,所述第二凸轮轨道用于所述驱动模式风门。
在一个实施例中,所述驱动组件还包括第一滑动端和第二滑动端;所述第一滑动端被设置成沿所述第一凸轮轨道滑动,所述第二滑动端被设置成沿所述第二凸轮轨道滑动;所述第一滑动端与所述凸轮轴线之间的距离为第一距离;所述第二滑动端与所述凸轮轴线之间的距离为第二距离;所述凸轮通过所述第一距离的变化而致动所述驱动所述空气混合风门;所述凸轮通过所述第二距离的变化而驱动所述模式风门。
在一个实施例中,所述驱动组件还包括第一凸轮连杆;所述第一凸轮连杆具有第一连杆轴线、所述第一滑动端和第一驱动端;所述第一凸轮连杆被设置成围绕所述第一连杆轴线转动;所述第一滑动端被设置成沿所述第一凸轮轨道滑动;所述第一滑动端与所述凸轮轴线之间的距离为第一距离;所述凸轮通过所述第一距离的变化而致动所述第一凸轮连杆;所述第一驱动端用于驱动所述空气混合风门。
在一个实施例中,所述驱动组件还包括第二凸轮连杆;所述第二凸轮连杆具有第二连杆轴线、所述第二滑动端和第二驱动端;所述第二凸轮连杆被设置成围绕所述第二连杆轴线转动;所述第二滑动端被设置成沿所述第二凸轮轨道滑动;所述第二滑动端与所述凸轮轴线之间的距离为第二距离;所述凸轮通过所述第二距离的变化而致动所述第二凸轮连杆;所述第二驱动端用于驱动所述模式风门。
在一个实施例中,所述驱动组件还包括混合风门连杆;所述混合风门连杆具有第三滑动端、第三连杆轴线和第三驱动端;所述混合风门连杆被设置成围绕所述第三连杆轴线转动;所述第一驱动端具有第一连杆轨道;所述第三滑动端被设置成沿所述第一连杆轨道滑动;所述第三滑动端与所述第一连杆轴线之间的距离为第三距离;所述第一凸轮连杆通过所述第三距离的变化而致动所述混合风门连杆;所述第三驱动端用于驱动所述空气混合风门。
在一个实施例中,所述空气混合风门具有混合风门轴线;所述第三驱动端与所述空气混合风门连接,以驱动所述空气混合风门围绕所述混合风门轴线转动,其中,所述第三连杆轴线与所述混合风门轴线重合。
在一个实施例中,所述第一凸轮轨道具有至少一个第一空闲段和至少一个第一驱动段,其中,所述第一距离在所述第一空闲段内不变,且在所述第一驱动段内变化;所述第二凸轮轨道具 有至少一个第二空闲段和至少一个第二驱动段,其中,所述第二距离在所述第二空闲段内不变,且在所述第二驱动段内变化。
在一个实施例中,在所述第一滑动端从所述第一空闲段的起点滑动至终点的过程中,所述第二滑动端从所述第二空闲段的起点同步地滑动至终点;和/或在所述第一滑动端从所述第一驱动段的起点滑动至终点的过程中,所述第二滑动端从所述第二驱动段的起点同步地滑动至终点。
在一个实施例中,所述第一空闲段的终点与所述第一驱动段的起点相连接;所述第二空闲段的终点与所述第二驱动段的起点相连接;和/或所述第一驱动段的终点与所述第一空闲段的起点相连接;所述第二驱动段的终点与所述第二空闲段的起点相连接。
在一个实施例中,在所述第二滑动端从所述第二空闲段的起点滑动至终点的过程中,所述第一滑动端从所述第一空闲段的起点经由至少一个所述第一驱动段同步地滑动至另一个具有不同的所述第一距离的所述第一空闲段的终点。
在一个实施例中,所述第一距离单调地增大或者减小。
为实现所述目的的汽车空调模块,包括换热器,所述汽车空调模块还包括如上所述的空气处理装置。
本发明的积极进步效果在于:本发明提供的空气处理装置,其驱动组件通过一个凸轮就能够驱动空气混合风门和模式风门,因此驱动组件具有结构简单且传动效率高的优点。本发明提供的汽车空调模块,包括上述空气处理装置,因此也具有结构简单且传动效率高的优点。
附图说明
本发明的上述的以及其他的特征、性质和优势将通过下面结合附图和实施例的描述而变得更加明显,其中:
图1为本发明的一个实施例中汽车空调模块的示意图,显示了进风口;
图2为本发明的一个实施例中汽车空调模块的示意图,显示了驱动组件;
图3为本发明的一个实施例中驱动组件与风门连接的示意图;
图4为图3的爆炸图;
图5为本发明的一个实施例中凸轮的示意图,显示了凹槽状的凸轮轨道;
图6为本发明的一个实施例中凸轮的俯视图;
图7为本发明的一个实施例中凸轮角度与风门开度关系的示意图;
图8为本发明的一个实施例中第一空调模式的示意图;
图9为本发明的一个实施例中第二空调模式的示意图;
图10为本发明的一个实施例中第三空调模式的示意图;
图11为本发明的一个实施例中第四空调模式的示意图;
图12为本发明的一个实施例中第五空调模式的示意图;
图13为本发明的一个实施例中第六空调模式的示意图;
图14为本发明的一个实施例中第七空调模式的示意图。
具体实施方式
下述公开了多种不同的实施的主题技术方案的实施方式或者实施例。为简化公开内容,下面描述了各元件和排列的具体实例,当然,这些仅仅为例子而已,并非是对本发明的保护范围进行限制。例如在说明书中随后记载的第一特征在第二特征分布,可以包括第一和第二特征通过直接联系的方式分布的实施方式,也可包括在第一和第二特征之间形成附加特征的实施方式,从而第一和第二特征之间可以不直接联系。另外,这些内容中可能会在不同的例子中重复附图标记和/或字母。该重复是为了简要和清楚,其本身不表示要讨论的各实施方式和/或结构间的关系。进一步地,当第一元件是用与第二元件相连或结合的方式描述的,该说明包括第一和第二元件直接相连或彼此结合的实施方式,也包括采用一个或多个其他介入元件加入使第一和第二元件间接地相连或彼此结合。
需要注意的是,图1至图10均仅作为示例,其并非是按照等比例的条件绘制的,并且不应该以此作为对本发明实际要求的保护范围构成限制。
汽车空调系统包括用于构成制冷循环的压缩机、冷凝器、蒸发器和膨胀阀,以及用于对空气进行处理以及输送的空气处理装置。为了使汽车空调系统的结构紧凑,可以将第一换热器或者第二换热器集成在空气处理装置中,形成汽车空调模块。
图1、2示出了一种上述的汽车空调模块900,包括空气处理装置90和换热器91。在非热泵模式下,换热器91为蒸发器。
空气处理装置90包括壳体1、空气处理单元2、空气混合风门3、模式风门4、驱动组件5和风机(附图未示出)。壳体1具有进风口11和出风口12。空气处理单元2、空气混合风门3、模式风门4设置在壳体1内。风机用于将高压空气送入进风口11。空气处理单元2用于处理从进风 口11进入壳体1的空气。空气混合风门3设置在空气处理单元2的上游,用于控制空气通过空气处理单元2的比率。模式风门4设置在出风口12的上游,用于控制空气从出风口12流出的流量。空气处理单元2可以但不限于是加热器,如PTC加热器、内置冷凝器或者PTC加热器与内置冷凝器的组合。出风口12包括吹脚吹风口12-1,吹面出风口12-2和除霜出风口12-3。
如图3、4、8所示,在图示的实施例中,模式风门4包括第一模式风门、第二模式风门和第三模式风门。第一模式风门可以是吹脚风门4-1,第二模式风门可以是吹面风门4-2,第三模式风门可以是除霜风门4-3。如图7所示,空气混合风门3的开度与不同的模式风门4的开度的组合,可以形成多种空调模式,这些空调模式分别显示在图8、9、10、11、12、13、14中。
更具体地,吹脚风门4-1具有第一模式风门轴线4a-1,吹面风门4-2具有第二模式风门轴线4a-2,除霜风门具有第三模式风门轴线4a-3。吹脚风门4-1、吹面风门4-2和除霜风门4-3分别可转动地设置在壳体1上。空气混合风门3具有混合风门轴线3a,空气混合风门3可转动地设置在壳体1上。第一模式风门轴线4a-1、第二模式风门轴线4a-2、第三模式风门轴线4a-3和混合风门轴线3a优选为相互平行且保持相对静止。
如图2、3、4、5、6所示,空气混合风门3和模式风门4由驱动组件5来驱动。驱动组件5
包括凸轮50;凸轮50具有凸轮轴线50a、第一凸轮轨道501和第二凸轮轨道502;第一凸轮轨道501和第二凸轮轨道502偏离凸轮轴线50a而设置。凸轮50被设置成围绕凸轮轴线50a转动,第一凸轮轨道501和第二凸轮轨道502跟随凸轮50的转动而围绕凸轮轴线50a转动,其中,第一凸轮轨道501通过滑动配合驱动空气混合风门3,第二凸轮轨道502通过滑动配合驱动模式风门4。
由于凸轮50具有第一凸轮轨道501和第二凸轮轨道502,因而使得驱动组件5通过一个凸轮50就能够驱动空气混合风门3和模式风门4,因此驱动组件5具有结构简单且传动效率高的优点。
更具体地,第二凸轮轨道502包括吹脚风门轨道502-1,吹面风门轨道502-2和除霜风门轨道502-3。吹脚风门轨道502-1,吹面风门轨道502-2和除霜风门轨道502-3和第一凸轮轨道501设置在凸轮50上。吹脚风门轨道502-1用于驱动吹脚风门4-1,吹面风门轨道502-2用于驱动吹面风门4-2,除霜风门轨道502-3用于驱动除霜风门4-3。
如图5所示,第一凸轮轨道501和第二凸轮轨道502的形状为凹槽状。在未图示的实施例中,第一凸轮轨道501和第二凸轮轨道502的形状还可以是凸出于凸轮50外表面的长条状。
参考图3、4、5、6,驱动组件5还包括第一凸轮连杆51。第一凸轮连杆51具有第一连杆轴线51a、第一滑动端511和第一驱动端512;第一凸轮连杆51被设置成围绕第一连杆轴线51a转动;第一滑动端511被设置成沿第一凸轮轨道501滑动;第一滑动端511与凸轮轴线50a之间的 距离为第一距离D1,第一滑动端511沿第一凸轮轨道501滑动的过程中,第一距离D1被设置成会发生变化;凸轮50通过第一距离D1的变化而致动第一凸轮连杆51;第一驱动端512用于驱动空气混合风门3。第一连杆轴线51a优选地与凸轮轴线50a平行且保持相对静止。第一凸轮连杆51的存在容许空气混合风门3与凸轮50间隔一定距离设置,同时提高了传动的稳定性。
进一步地,如图4所示,驱动组件5还包括混合风门连杆53;混合风门连杆53具有第三滑动端531、第三连杆轴线53a和第三驱动端532;混合风门连杆53被设置成围绕第三连杆轴线53a转动;第一驱动端512具有第一连杆轨道51b;第三滑动端531被设置成沿第一连杆轨道51b滑动;第三滑动端531与第一连杆轴线51a之间的距离为第三距离D3;第一凸轮连杆51通过第三距离D3的变化而致动混合风门连杆53;第三驱动端532用于驱动空气混合风门3。第一连杆轨道51b由设置在第一驱动端512的长条形孔的内壁限定。该长条形孔优选为通孔。第一连杆轨道51b通过与第三滑动端531的配合实现动力的传动过程,使得混合风门连杆53在第一凸轮连杆51的驱动下具有较大的转动范围。第三连杆轴线53a优选为平行于第一连杆轴线51a,且与第一连杆轴线51a保持相对静止。
更具体地,空气混合风门3具有混合风门轴线3a;第三驱动端532与空气混合风门3连接,以驱动空气混合风门3围绕混合风门轴线3a转动,其中,第三连杆轴线53a与混合风门轴线3a重合。这一设计使得驱动组件5的结构紧凑。在图4所示的实施例中,第三驱动端532与空气混合风门3可拆卸地连接,如轴孔插接配合。在未图示的实施例中,第三驱动端532还可以与空气混合风门3的转轴部一体成型。
继续参考图3、4、5、6,驱动组件5还包括第二凸轮连杆52;第二凸轮连杆52具有第二连杆轴线52a、第二滑动端521和第二驱动端522;第二凸轮连杆52被设置成围绕第二连杆轴线52a转动;第二滑动端521被设置成沿第二凸轮轨道502滑动;第二滑动端521与凸轮轴线50a之间的距离为第二距离D2;凸轮50通过第二距离D2的变化而致动第二凸轮连杆52;第二驱动端522用于驱动模式风门4。第二连杆轴线52a优选地与凸轮轴线50a平行且保持相对静止。第二凸轮连杆52的存在容许模式风门4,如图4中的吹脚风门4-1,与凸轮50间隔一定距离设置,同时提高了传动的稳定性。
第二凸轮连杆52包括吹脚连杆52-1、吹面连杆52-2和除霜连杆52-3,相应地,第二连杆轴线52a包括吹脚连杆轴线52a-1、吹面连杆轴线52a-2和除霜连杆轴线52a-3。吹脚连杆52-1围绕吹脚连杆轴线52a-1转动,吹面连杆52-2围绕吹面连杆轴线52a-2转动,除霜连杆52-3围绕除霜 连杆轴线52a-3转动。吹脚连杆轴线52a-1、吹面连杆轴线52a-2和除霜连杆轴线52a-3优选为分别与凸轮轴线50a平行且保持相对静止。
第二滑动端521包括吹脚滑动端521-1、吹面滑动端521-2和除霜滑动端521-3。吹脚滑动端521-1与吹脚风门轨道502-1滑动配合,吹面滑动端521-2与吹面风门轨道502-2滑动配合,除霜滑动端521-3与除霜风门轨道502-3滑动配合。
如图5所示,第一滑动端511和第二滑动端521为圆柱状,第一滑动端511的外周面和第二滑动端521的外周面分别与凹槽状的第一凸轮轨道501和凹槽状的第二凸轮轨道502的内壁滑动配合。
参考图3、4,驱动组件5还包括模式风门连杆54。模式风门连杆54具有第四滑动端541、第四连杆轴线54a和第四驱动端542;模式风门连杆54被设置成围绕第四连杆轴线54a转动;第二驱动端522具有第二连杆轨道52b;第四滑动端541被设置成沿第二连杆轨道52b滑动;第四滑动端541与第二连杆轴线52a之间的距离为第四距离D4;第二凸轮连杆52通过第四距离D4的变化而致动模式风门连杆54;第四驱动端542用于驱动模式风门4。第二连杆轨道52b由设置在第二驱动端522的长条形孔的内壁限定。该长条形孔优选为通孔。第二连杆轨道52b通过与第四滑动端541的配合实现动力的传动过程,使得模式风门连杆54在第二凸轮连杆52的驱动下具有较大的转动范围。第四连杆轴线54a优选为平行于第二连杆轴线52a,且与第二连杆轴线52a保持相对静止。
如图5、6、7所示,第一凸轮轨道501具有至少一个第一空闲段501a和至少一个第一驱动段501b,其中,第一距离D1在第一空闲段501a内不变,且在第一驱动段501b内变化;第二凸轮轨道502具有至少一个第二空闲段502a和至少一个第二驱动段502b,其中,第二距离D2在第二空闲段502a内不变,且在第二驱动段502b内变化。
第一空闲段501a在以凸轮轴线50a为中心的圆上延伸,使得第一距离D1可以保持不变。第一驱动段501b从以凸轮轴线50a为中心的一个圆延伸至以凸轮轴线50a为中心的另一个圆上,使得第一距离D1能够变化。
第二空闲段502a在以凸轮轴线50a为中心的圆上延伸,使得第二距离D2可以保持不变。第二驱动段502b从以凸轮轴线50a为中心的一个圆延伸至以凸轮轴线50a为中心的另一个圆上,使得第二距离D2能够变化。
由于第一空闲段501a、第一驱动段501b、第二空闲段502a和第二驱动段502b的存在,空气混合风门3和模式风门4可以被驱动至不同的开度,从而形成图6、7、8、9、10、11、12、13、 14所示的多种不同的空调模式M1、M2、M3、M4、M5、M6、M7。不同的空调模式通过不同的驱动模式来进行切换。
参考图7,凸轮50的转动路径包括角度位置A1、A2、A3、A4、A5、A6、A7、A8、A9、A10、A11、A12、A13、A14。凸轮50可以在角度位置A1和角度位置A14之间往复运动。凸轮50可以被设置成从第一角度位置A1转动340°至第十四角度位置A14。
结合图6、7、8,在第一空调模式M1中,凸轮50从第一角度位置A1转动至第二角度位置A2,第一滑动端511沿第一凸轮轨道501的第一空闲段501a-1滑动,第一距离D1保持不变,使得第一凸轮连杆51不会被凸轮50致动,从而使得空气混合风门3的开度保持不变;并且第二滑动端521沿第二凸轮轨道502的第二空闲段502a-1滑动,第二距离D2保持不变,使得第二凸轮连杆52不会被凸轮50致动,从而使得模式风门4的开度保持不变;其中,空气混合风门3在最大开度W1保持不变,使得空气全部通过空气处理单元2;吹脚风门4-1在第一最小开度X1保持不变,吹面风门4-2在最小开度Y1保持不变,除霜风门4-3在最大开度Z1保持不变,因此,第一空调模式M1为除霜模式。
结合图6、7,在第一驱动模式S1中,凸轮50从第二角度位置A2转动至第三角度位置A3,第一滑动端511沿第一凸轮轨道501的第一驱动段501b-1滑动,第一距离D1发生变化,使得第一凸轮连杆51被凸轮50致动,从而使得空气混合风门3的开度发生变化;并且至少一部分第二滑动端521沿第二凸轮轨道502的第二驱动段502b-1滑动,至少一部分第二距离D2发生变化,使得至少一部分第二凸轮连杆52被凸轮50致动,从而使得至少一部分模式风门4的开度发生变化;其中,空气混合风门3从第一最大开度W1减小至第一中间开度W2,吹脚风门4-1从第一最小开度X1增加至第一中间开度X2,吹面风门4-2在最小开度Y1保持不变,除霜风门4-3从最大开度Z1减小至第一中间开度Z2。
结合图6、7、9,在第二空调模式M2中,凸轮50从第三角度位置A3转动至第四角度位置A4,第一滑动端511沿第一凸轮轨道501的第一空闲段501a-2滑动,第一距离D1保持不变,使得第一凸轮连杆51不会被凸轮50致动,从而使得空气混合风门3的开度保持不变;并且第二滑动端521沿第二凸轮轨道502的第二空闲段502a-2滑动,第二距离D2保持不变,使得第二凸轮连杆52不会被凸轮50致动,从而使得模式风门4的开度保持不变;其中,空气混合风门3在第一中间开度W2保持不变,使得空气一部分通过空气处理单元2,另一部分绕过空气处理单元2;吹脚风门4-1在第一中间开度X2保持不变,吹面风门4-2在最小开度Y1保持不变,除霜风门4-3在第一中间开度Z2保持不变,因此,第一空调模式M2为吹脚除霜模式。
结合图6、7,在第二驱动模式S2中,凸轮50从第四角度位置A4转动至第五角度位置A5,第一滑动端511沿第一凸轮轨道501的第一驱动段501b-2滑动,第一距离D1发生变化,使得第一凸轮连杆51被凸轮50致动,从而使得空气混合风门3的开度发生变化;并且至少一部分第二滑动端521沿第二凸轮轨道502的第二驱动段502b-2滑动,至少一部分第二距离D2发生变化,使得至少一部分第二凸轮连杆52被凸轮50致动,从而使得至少一部分模式风门4的开度发生变化;其中,空气混合风门3从第一中间开度W2增加至第二最大开度W3,吹脚风门4-1从第一中间开度X2增加至最大开度X3,吹面风门4-2在最小开度Y1保持不变,除霜风门4-3从第一中间开度Z2减小至第二中间开度Z3。
结合图6、7、10,在第三空调模式M3中,凸轮50从第五角度位置A5转动至第六角度位置A6,第一滑动端511沿第一凸轮轨道501的第一空闲段501a-3滑动,第一距离D1保持不变,使得第一凸轮连杆51不会被凸轮50致动,从而使得空气混合风门3的开度保持不变;并且第二滑动端521沿第二凸轮轨道502的第二空闲段502a-3滑动,第二距离D2保持不变,使得第二凸轮连杆52不会被凸轮50致动,从而使得模式风门4的开度保持不变;其中,空气混合风门3在第二最大开度W3保持不变,使得空气全部通过空气处理单元2,在这个实施例中,第二最大开度W3等于第一最大开度W1;吹脚风门4-1在最大开度X3保持不变,吹面风门4-2在最小开度Y1保持不变,除霜风门4-3在第二中间开度Z3保持不变,因此,第三空调模式M3为吹脚模式。
结合图6、7,在第三驱动模式S3中,凸轮50从第六角度位置A6转动至第七角度位置A7,第一滑动端511沿第一凸轮轨道501的第一驱动段501b-3滑动,第一距离D1发生变化,使得第一凸轮连杆51被凸轮50致动,从而使得空气混合风门3的开度发生变化;并且第二滑动端521沿第二凸轮轨道502的第二驱动段502b-3滑动,第二距离D2发生变化,使得第二凸轮连杆52被凸轮50致动,从而使得模式风门4的开度发生变化;其中,空气混合风门3从第二最大开度W3减小至第二中间开度W4,吹脚风门4-1从最大开度X3减小至第二中间开度X4,吹面风门4-2从最小开度Y1增加至中间开度Y2,除霜风门4-3从第二中间开度Z3减小至最小开度Z4。
结合图6、7、11,在第四空调模式M4中,凸轮50从第七角度位置A7转动至第八角度位置A8,第一滑动端511沿第一凸轮轨道501的第一空闲段501a-4滑动,第一距离D1保持不变,使得第一凸轮连杆51不会被凸轮50致动,从而使得空气混合风门3的开度保持不变;并且第二滑动端521沿第二凸轮轨道502的第二空闲段502a-4滑动,第二距离D2保持不变,使得第二凸轮连杆52不会被凸轮50致动,从而使得模式风门4的开度保持不变;其中,空气混合风门3在第二中间开度W4保持不变,使得空气一部分通过空气处理单元2,另一部分绕过空气处理单元2, 在这个实施例中,第二中间开度W4等于第一中间开度W2;吹脚风门4-1在第二中间开度X4保持不变,在这个实施例中,第二中间开度X4等于第一中间开度X2;吹面风门4-2在中间开度Y2保持不变,除霜风门4-3在最小开度Z4保持不变,因此,第四空调模式M4为吹面吹脚模式。
结合图6、7,在第四驱动模式S4中,凸轮50从第八角度位置A8转动至第九角度位置A9,第一滑动端511沿第一凸轮轨道501的第一空闲段501a-4滑动,第一距离D1保持不变,使得第一凸轮连杆51不会被凸轮50致动,从而使得空气混合风门3的开度保持不变;并且至少一部分第二滑动端521沿第二凸轮轨道502的第二驱动段502b-4滑动,至少一部分第二距离D2发生变化,使得至少一部分第二凸轮连杆52被凸轮50致动,从而使得至少一部分模式风门4的开度发生变化;其中,空气混合风门3在第二中间开度W4保持不变,吹脚风门4-1从第二中间开度X4减小至最小开度X5,吹面风门4-2从中间开度Y2增加至最大开度Y3,除霜风门4-3在最小开度Z4保持不变。
结合图6、7、12,在第五空调模式M5中,凸轮50从第九角度位置A9转动至第十角度位置A10,第一滑动端511沿第一凸轮轨道501的第一空闲段501a-4滑动,第一距离D1保持不变,使得第一凸轮连杆51不会被凸轮50致动,从而使得空气混合风门3的开度保持不变;并且第二滑动端521沿第二凸轮轨道502的第二空闲段502a-5滑动,第二距离D2保持不变,使得第二凸轮连杆52不会被凸轮50致动,从而使得模式风门4的开度保持不变;其中,空气混合风门3在第二中间开度W4保持不变,使得空气一部分通过空气处理单元2,另一部分绕过空气处理单元2,在这个实施例中,第二中间开度W4等于第一中间开度W2;吹脚风门4-1在最小开度X5保持不变;吹面风门4-2在最大开度Y3保持不变,除霜风门4-3在最小开度Z4保持不变,因此,第五空调模式M5为第一吹面模式,在这一模式中,由于空气混合风门3的开度相对较大,通过空气处理单元2的空气的量相对较多,所以吹面的温度相对较高。
结合图6、7,在第五驱动模式S5中,凸轮50从第十角度位置A10转动至第十一角度位置A11,第一滑动端511沿第一凸轮轨道501的第一驱动段501b-4滑动,第一距离D1发生变化,使得第一凸轮连杆51被凸轮50致动,从而使得空气混合风门3的开度发生变化;并且第二滑动端521沿第二凸轮轨道502的第二空闲段502a-5滑动,第二距离D2保持不变,使得第二凸轮连杆52不会被凸轮50致动,从而使得模式风门4的开度保持不变;其中,空气混合风门3从第二中间开度W4减小至第三中间开度W5,吹脚风门4-1在最小开度X5保持不变,吹面风门4-2在最大开度Y3保持不变,除霜风门4-3在最小开度Z4保持不变。
结合图6、7、13,在第六空调模式M6中,凸轮50从第十一角度位置A11转动至第十二角度位置A12,第一滑动端511沿第一凸轮轨道501的第一空闲段501a-5滑动,第一距离D1保持不变,使得第一凸轮连杆51不会被凸轮50致动,从而使得空气混合风门3的开度保持不变;并且第二滑动端521沿第二凸轮轨道502的第二空闲段502a-5滑动,第二距离D2保持不变,使得第二凸轮连杆52不会被凸轮50致动,从而使得模式风门4的开度保持不变;其中,空气混合风门3在第三中间开度W5保持不变,使得空气一部分通过空气处理单元2,另一部分绕过空气处理单元2;吹脚风门4-1在最小开度X5保持不变;吹面风门4-2在最大开度Y3保持不变,除霜风门4-3在最小开度Z4保持不变,因此,第六空调模式M6为第二吹面模式,在这一模式中,由于空气混合风门3的开度相对较小,通过空气处理单元2的空气的量相对较少,所以吹面的温度相对较低。
结合图6、7,在第六驱动模式S6中,凸轮50从第十二角度位置A12转动至第十三角度位置A13,第一滑动端511沿第一凸轮轨道501的第一驱动段501b-5滑动,第一距离D1发生变化,使得第一凸轮连杆51被凸轮50致动,从而使得空气混合风门3的开度发生变化;并且第二滑动端521沿第二凸轮轨道502的第二空闲段502a-5滑动,第二距离D2保持不变,使得第二凸轮连杆52不会被凸轮50致动,从而使得模式风门4的开度保持不变;其中,空气混合风门3从第三中间开度W5减小至最小开度W6,吹脚风门4-1在最小开度X5保持不变,吹面风门4-2在最大开度Y3保持不变,除霜风门4-3在最小开度Z4保持不变。
结合图6、7、14,在第七空调模式M7中,凸轮50从第十三角度位置A13转动至第十四角度位置A14,第一滑动端511沿第一凸轮轨道501的第一空闲段501a-6滑动,第一距离D1保持不变,使得第一凸轮连杆51不会被凸轮50致动,从而使得空气混合风门3的开度保持不变;并且第二滑动端521沿第二凸轮轨道502的第二空闲段502a-5滑动,第二距离D2保持不变,使得第二凸轮连杆52不会被凸轮50致动,从而使得模式风门4的开度保持不变;其中,空气混合风门3在最小开度W6保持不变,使得空气全部绕过空气处理单元2;吹脚风门4-1在最小开度X5保持不变;吹面风门4-2在最大开度Y3保持不变,除霜风门4-3在最小开度Z4保持不变,因此,第七空调模式M7为第三吹面模式,在这一模式中,由于空气混合风门3的开度最小,通过空气处理单元2的空气的量相对最少,所以吹面的温度相对最低。
在本发明实施例的多种不同的空调模式M1、M2、M3、M4、M5、M6、M7中,第一滑动端511与第二滑动端521分别沿第一空闲段501a和第二空闲段502a滑动。在第一滑动端511从第一空闲段501a的起点滑动至终点的过程中,第二滑动端521从第二空闲段502a的起点同步地滑动 至终点。这样的设计使得空气处理装置90处于空调模式中时,空气混合风门3和模式风门4均不会被凸轮50的转动而驱动,从而使得空气处理装置90内的气流组织能够保持稳定,进而使得通过空气处理单元2调节出风温度的过程能够变得简单。
参考图6,第一空闲段501a的终点与第一驱动段501b的起点相连接;第二空闲段502a的终点与第二驱动段502b的起点相连接;和/或第一驱动段501b的终点与第一空闲段501a的起点相连接;第二驱动段502b的终点与第二空闲段502a的起点相连接。第一空闲段501a与第一驱动段501b相互间隔设置;第二空闲段502a与第二驱动段502b相互间隔设置。
参考图6、7,在第二滑动端521从第二空闲段502a的起点滑动至终点的过程中,例如沿图6中的第二空闲段502a-5滑动的过程中,第一滑动端511从第一空闲段501a-4的起点经由至少一个第一驱动段501b-4、501b-5同步地滑动至另一个具有不同的第一距离D1的第一空闲段502a-5、501a-6的终点。这样的设计使得空气混合风门3被驱动而模式风门4保持不动,使得在不改变出风口12的开闭状况的前提下,出风温度能够通过改变驱动而模式风门4的开度而被调节,进而使得通过空气处理单元2调节出风温度的过程能够变得简单。
继续参考图6,从一个第一空闲段501a-4滑动至另一个第一空闲段501a-6的过程中,第一距离D1单调地减小。在未图示的实施例中,第一距离D1也可以单调地增加。第一距离D1单调地变化使得空气混合风门3的开度可以单调地变化。
本发明虽然以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以做出可能的变动和修改,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何修改、等同变化及修饰,均落入本发明权利要求所界定的保护范围之内。

Claims (11)

  1. 一种空气处理装置,包括:
    壳体(1),具有进风口(11)和出风口(12);
    空气处理单元(2),用于处理从所述进风口(11)进入所述壳体(1)的空气;
    空气混合风门(3),用于控制所述空气通过所述空气处理单元(2)的比率;
    模式风门(4),用于控制所述空气从所述出风口(12)流出的流量;
    其特征在于,所述空气处理装置(90)还包括驱动组件(5);所述驱动组件(5)包括凸轮(50);所述凸轮(50)具有凸轮轴线(50a)、第一凸轮轨道(501)和第二凸轮轨道(502);所述凸轮(50)被设置成围绕所述凸轮轴线(50a)转动,以带动所述第一凸轮轨道(501)和所述第二凸轮轨道(502)围绕所述凸轮轴线(50a)转动;
    其中,所述第一凸轮轨道(501)用于驱动所述空气混合风门(3),所述第二凸轮轨道(502)用于驱动所述模式风门(4)。
  2. 如权力要求1所述的空气处理装置,其特征在于,所述驱动组件(5)还包括第一凸轮连杆(51);所述第一凸轮连杆(51)具有第一连杆轴线(51a)、第一滑动端(511)和第一驱动端(512);所述第一凸轮连杆(51)被设置成围绕所述第一连杆轴线(51a)转动;所述第一滑动端(511)被设置成沿所述第一凸轮轨道(501)滑动;
    所述第一滑动端(511)与所述凸轮轴线(50a)之间的距离为第一距离(D1);所述凸轮(50)通过所述第一距离(D1)的变化而致动所述第一凸轮连杆(51);所述第一驱动端(512)用于驱动所述空气混合风门(3)。
  3. 如权力要求2所述的空气处理装置,其特征在于,所述驱动组件(5)还包括第二凸轮连杆(52);所述第二凸轮连杆(52)具有第二连杆轴线(52a)、第二滑动端(521)和第二驱动端(522);所述第二凸轮连杆(52)被设置成围绕所述第二连杆轴线(52a)转动;所述第二滑动端(521)被设置成沿所述第二凸轮轨道(502)滑动;
    所述第二滑动端(521)与所述凸轮轴线(50a)之间的距离为第二距离(D2);所述凸轮(50)通过所述第二距离(D2)的变化而致动所述第二凸轮连杆(52);所述第二驱动端(522)用于驱动所述模式风门(4)。
  4. 如权力要求2所述的空气处理装置,其特征在于,所述驱动组件(5)还包括混合风门连杆(53);所述混合风门连杆(53)具有第三滑动端(531)、第三连杆轴线(53a)和第三驱动端(532);所述混合风门连杆(53)被设置成围绕所述第三连杆轴线(53a)转动;
    所述第一驱动端(512)具有第一连杆轨道(51b);所述第三滑动端(531)被设置成沿所述第一连杆轨道(51b)滑动;所述第三滑动端(531)与所述第一连杆轴线(51a)之间的距离为第三距离(D3);
    所述第一凸轮连杆(51)通过所述第三距离(D3)的变化而致动所述混合风门连杆(53);所述第三驱动端(532)用于驱动所述空气混合风门(3)。
  5. 如权力要求4所述的空气处理装置,其特征在于,所述空气混合风门(3)具有混合风门轴线(3a);所述第三驱动端(532)与所述空气混合风门(3)连接,以驱动所述空气混合风门(3)围绕所述混合风门轴线(3a)转动,其中,所述第三连杆轴线(53a)与所述混合风门轴线(3a)重合。
  6. 如权力要求3所述的空气处理装置,其特征在于,所述第一凸轮轨道(501)具有至少一个第一空闲段(501a)和至少一个第一驱动段(501b),其中,所述第一距离(D1)在所述第一空闲段(501a)内不变,且在所述第一驱动段(501b)内变化;
    所述第二凸轮轨道(502)具有至少一个第二空闲段(502a)和至少一个第二驱动段(502b),其中,所述第二距离(D2)在所述第二空闲段(502a)内不变,且在所述第二驱动段(502b)内变化。
  7. 如权力要求6所述的空气处理装置,其特征在于,在所述第一滑动端(511)从所述第一空闲段(501a)的起点滑动至终点的过程中,所述第二滑动端(521)从所述第二空闲段(502a)的起点同步地滑动至终点;和/或
    在所述第一滑动端(511)从所述第一驱动段(501b)的起点滑动至终点的过程中,所述第二滑动端(521)从所述第二驱动段(502b)的起点同步地滑动至终点。
  8. 如权力要求6所述的空气处理装置,其特征在于,所述第一空闲段(501a)的终点与所述第一驱动段(501b)的起点相连接;所述第二空闲段(502a)的终点与所述第二驱动段(502b)的起点相连接;和/或
    所述第一驱动段(501b)的终点与所述第一空闲段(501a)的起点相连接;所述第二驱动段(502b)的终点与所述第二空闲段(502a)的起点相连接。
  9. 如权力要求6所述的空气处理装置,其特征在于,在所述第二滑动端(521)从所述第二空闲段(502a)的起点滑动至终点的过程中,所述第一滑动端(511)从所述第一空闲段(501a)的起点经由至少一个所述第一驱动段(501b)同步地滑动至另一个具有不同的所述第一距离(D1)的所述第一空闲段(502a)的终点。
  10. 如权力要求9所述的空气处理装置,其特征在于,所述第一距离(D1)单调地增大或者减小。
  11. 一种汽车空调模块,包括换热器(91),其特征在于,所述汽车空调模块(900)还包括如权利要求1至10中任意一项权利要求所述的空气处理装置(90)。
PCT/CN2021/115450 2020-09-01 2021-08-30 一种空气处理装置和汽车空调模块 WO2022048520A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21863585.2A EP4209369A1 (en) 2020-09-01 2021-08-30 Air handling device and vehicle air conditioner module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010903558.6 2020-09-01
CN202010903558.6A CN114103597A (zh) 2020-09-01 2020-09-01 一种空气处理装置和汽车空调模块

Publications (1)

Publication Number Publication Date
WO2022048520A1 true WO2022048520A1 (zh) 2022-03-10

Family

ID=80360326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115450 WO2022048520A1 (zh) 2020-09-01 2021-08-30 一种空气处理装置和汽车空调模块

Country Status (3)

Country Link
EP (1) EP4209369A1 (zh)
CN (1) CN114103597A (zh)
WO (1) WO2022048520A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102666158A (zh) * 2010-05-31 2012-09-12 三菱重工业株式会社 车辆用空气调节装置
US20130288586A1 (en) * 2012-04-26 2013-10-31 Doowon Climate Control Co., Ltd Air controlling system of air conditioner for vehicle
CN105691144A (zh) * 2014-12-15 2016-06-22 翰昂系统株式会社 车辆用空调装置
CN206086278U (zh) * 2016-09-18 2017-04-12 安徽江淮汽车集团股份有限公司 一种汽车空调风门控制机构
CN209616845U (zh) * 2019-03-20 2019-11-12 南方英特空调有限公司 一种汽车空调凸轮盘
CN111055657A (zh) * 2018-10-17 2020-04-24 株式会社利富高韩国 用于汽车的通风口

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10058953A1 (de) * 1999-11-29 2001-06-21 Denso Corp Fahrzeugklimaanlage und Klimatisierungseinheit-Antriebsvorrichtung
JP4552162B2 (ja) * 2000-01-17 2010-09-29 株式会社ヴァレオサーマルシステムズ ドア駆動制御用リンク装置
JP4415441B2 (ja) * 2000-01-27 2010-02-17 株式会社デンソー 空気調和装置
JP2007245801A (ja) * 2006-03-14 2007-09-27 Japan Climate Systems Corp 車両用空調装置のリンク機構
KR20090005564U (ko) * 2007-12-04 2009-06-09 주식회사 두원공조 차량 공조장치 믹스도어의 공기온도 제어기구
BR112016028063B1 (pt) * 2014-12-17 2022-09-06 Hanon Systems Condicionador de ar de veículo e respectivo método de controle
JP6341114B2 (ja) * 2015-02-23 2018-06-13 株式会社デンソー 車両用空調装置
DE102016220124A1 (de) * 2015-10-16 2017-04-20 Hanon Systems HVAC Getriebe um eine Temperatur- und Modussteuerung mit einem Aktor herzustellen
CN210554024U (zh) * 2019-04-03 2020-05-19 法雷奥汽车空调湖北有限公司 供暖通风和空调模块及用于控制其挡板的操作的系统
CN110949097A (zh) * 2019-12-25 2020-04-03 博耐尔汽车电气系统有限公司 一种汽车空调模式风门驱动机构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102666158A (zh) * 2010-05-31 2012-09-12 三菱重工业株式会社 车辆用空气调节装置
US20130288586A1 (en) * 2012-04-26 2013-10-31 Doowon Climate Control Co., Ltd Air controlling system of air conditioner for vehicle
CN105691144A (zh) * 2014-12-15 2016-06-22 翰昂系统株式会社 车辆用空调装置
CN206086278U (zh) * 2016-09-18 2017-04-12 安徽江淮汽车集团股份有限公司 一种汽车空调风门控制机构
CN111055657A (zh) * 2018-10-17 2020-04-24 株式会社利富高韩国 用于汽车的通风口
CN209616845U (zh) * 2019-03-20 2019-11-12 南方英特空调有限公司 一种汽车空调凸轮盘

Also Published As

Publication number Publication date
CN114103597A (zh) 2022-03-01
EP4209369A1 (en) 2023-07-12

Similar Documents

Publication Publication Date Title
US10451297B2 (en) Air conditioning system including a reheat loop
CN105352214B (zh) 一种空调、热泵系统及控制方法
US9643473B2 (en) Heat pump system for vehicles
EP3081409B1 (en) Heat pump system for vehicle
CN104515335A (zh) 车辆用热泵系统
US11718153B2 (en) Air conditioner for vehicles
CN212869983U (zh) 空调室内机和空调器
JP2962019B2 (ja) 車両用空気調和装置
JP2010100140A (ja) 車両用空調装置
WO2022048520A1 (zh) 一种空气处理装置和汽车空调模块
KR20160084882A (ko) 차량용 히트 펌프 시스템
CN109944817A (zh) 可实现多向送风的离心风机组及空调器
EP2923866A1 (en) Heat pump system for vehicle
JP4228838B2 (ja) 空調装置
US20170321907A1 (en) Dehumidifier for High Airflow Rate Systems
CN208952245U (zh) 空调室外机及设有其的空调系统
US10662966B2 (en) Blower housing labyrinth seal
CN207035450U (zh) 空调系统及具有其的车辆
JP3580981B2 (ja) 車両用エアコンの吹き出し温度制御方法および装置
JP2525338B2 (ja) ヒ―トポンプ式空気調和機のデフロスト機構
US20180347578A1 (en) Momentum Based Blower Interstitial Seal
WO2018084259A1 (ja) 車両用空調装置の空調ユニットおよび第1空調ユニットと第2空調ユニットの製造方法
US11841176B2 (en) Method of operating an electronic expansion valve in an air conditioner unit
CN219693433U (zh) 空调室内机及空调
KR20180125689A (ko) 차량용 공조장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021863585

Country of ref document: EP

Effective date: 20230403