WO2022048123A1 - 一种物联网通信方法、装置、设备及计算机存储介质 - Google Patents

一种物联网通信方法、装置、设备及计算机存储介质 Download PDF

Info

Publication number
WO2022048123A1
WO2022048123A1 PCT/CN2021/079307 CN2021079307W WO2022048123A1 WO 2022048123 A1 WO2022048123 A1 WO 2022048123A1 CN 2021079307 W CN2021079307 W CN 2021079307W WO 2022048123 A1 WO2022048123 A1 WO 2022048123A1
Authority
WO
WIPO (PCT)
Prior art keywords
detected objects
detection device
area
mapping relationship
controlled devices
Prior art date
Application number
PCT/CN2021/079307
Other languages
English (en)
French (fr)
Inventor
罗朝明
张军
吕小强
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2022048123A1 publication Critical patent/WO2022048123A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • H04L12/2816Controlling appliance services of a home automation network by calling their functionalities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • H04L12/2823Reporting information sensed by appliance or service execution status of appliance services in a home automation network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds

Definitions

  • the embodiments of the present application relate to, but are not limited to, the Internet of Things technology, and in particular, relate to an Internet of Things communication method, apparatus, device, and computer storage medium.
  • devices such as air conditioners and electric lights need to be controlled by the user by triggering buttons.
  • the air conditioner control panel fixed on the wall needs to be triggered, or the remote control needs to be performed remotely; for another example, when the user needs to turn on or off the lighting equipment, the switch of the lighting equipment needs to be triggered .
  • the user controls these devices by means of key-triggering, which may lead to troublesome operations for the user.
  • Embodiments of the present application provide an Internet of Things communication method, apparatus, device, and computer storage medium.
  • an IoT communication method including:
  • the detection device acquires the number of detected objects in the first area; the first area is within the detection range of the detection device;
  • the first message includes or indicates the number of the detected objects, and the first message is used to make the control device determine the first based on the number of the detected objects
  • the number of first controlled devices in the area where the first controlled devices are those that remain in the working state or those that are to be switched to the working state.
  • an IoT communication method including:
  • the control device receives the first message sent by the detection device; the first message includes or indicates the number of detected objects in the first area corresponding to the detection device; the first area is within the detection range of the detection device ;
  • the number of the first controlled devices in the first area is determined; the first controlled devices are the controlled devices that remain in the working state or the controlled devices that are to be switched to the working state.
  • an IoT communication device including:
  • an acquisition unit used for the detection device to acquire the number of detected objects in the first area; the first area is within the detection range of the detection device;
  • a sending unit configured to send a first message to the control device; the first message includes or indicates the number of the detected objects, and the first message is used to make the control device based on the number of the detected objects, Determine the number of first controlled devices in the first area, where the first controlled devices are controlled devices that remain in the working state or controlled devices that are to be switched to the working state.
  • an Internet of Things communication device including:
  • a receiving unit configured to control the device to receive the first message sent by the detection device; the first message includes or indicates the number of detected objects in the first area corresponding to the detection device; the first area is in the detection within the detection range of the device;
  • a determining unit configured to determine the number of first controlled devices in the first area based on the number of detected objects; the first controlled device is a controlled device that remains in a working state or is to be switched to a working state controlled equipment.
  • an Internet of Things communication device comprising: a memory and a processor
  • the memory stores a computer program executable on the processor
  • a computer storage medium stores one or more programs, and the one or more programs can be executed by one or more processors to implement the steps in the above method.
  • the control device since the number of first controlled devices determined by the control device is determined based on the number of detected objects in the first area determined by the detection device, and the first controlled device is a controlled device that maintains a working state The control device or the controlled device to be switched to the working state, so that not only the control device can control the controlled device to work automatically, but the user does not need to complete the corresponding control through complex buttons, which improves the automation degree of the controlled device.
  • the number of controlled devices can be adaptively adjusted according to the number of detected objects, so that the number of operating controlled devices can meet the needs of the detected objects.
  • FIG. 1a is a schematic diagram of an Internet of Things communication architecture provided by an embodiment of the application.
  • FIG. 1b is a schematic flowchart of an Internet of Things communication method provided by an embodiment of the application.
  • FIG. 2 is a schematic flowchart of another Internet of Things communication method provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of another Internet of Things communication method provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of still another Internet of Things communication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of an Internet of Things communication method provided by another embodiment of the present application.
  • FIG. 6 is a schematic flowchart of an Internet of Things communication method provided by another embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a communication method for the Internet of Things according to still another embodiment of the present application.
  • FIG. 8 is a schematic diagram of the composition and structure of an Internet of Things communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the composition and structure of another Internet of Things communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a hardware entity of an IoT communication device according to an embodiment of the present application.
  • the scheduling and control of controlled devices are generally relatively simple.
  • the air conditioners on the same floor are usually turned on and off uniformly through manual control.
  • a light control system in an office area usually requires manual keys to trigger the switch of one or more lights and/or adjust the brightness.
  • the air conditioner cannot be switched on and off automatically according to the number of people in the current area, and the light control system in the office area cannot automatically adjust the switch and/or brightness of the lights according to the number of people in the current area.
  • FIG. 1a is a schematic diagram of an IoT communication architecture provided by an embodiment of the present application.
  • the IoT communication architecture 100 may include: a detection device A, a control device, and a controlled device A and B, wherein:
  • the detection device A may acquire the number of detected objects in the corresponding first area, and then send the acquired number of detected objects to the control device.
  • the control device After receiving the number of detected objects sent by the detection device, the control device can control the operation of the controlled device corresponding to the detection device. For example, the control device may control the operation of the controlled devices A and B corresponding to the detection device A.
  • the control device may subscribe to the detection device A and the controlled devices A and B. For example, the control device may send a first subscription request to the detection device, and the detection device may send a request to the control device In the message of successful subscription, the first subscription request may indicate that the detection device should send the number of detected objects in the first area to the control device.
  • the control device may also send a second subscription request to each controlled device, each controlled device may send a subscription success message to the control device, and the second subscription request may indicate that the control device can control each controlled device.
  • control device may store a correspondence between the identification of the detection device and the identification of the controlled device. In other embodiments, the control device may store a correspondence between the identification of the detection device, the identification of the first area, and the identification of the controlled device. These correspondences are stored by the user in the control device after the IoT communication architecture is arranged. The user can modify these corresponding relationships on the control device, or the control device can be controlled by other devices to modify these corresponding relationships.
  • FIG. 1b is a schematic flowchart of an IoT communication method provided by an embodiment of the application. As shown in FIG. 1b, the method includes:
  • the detection device acquires the number of detected objects in the first area; the first area is within the detection range of the detection device.
  • the detection device may include at least one of the following: millimeter-wave radar, ultra-wideband biological radar, ultra-wideband detection device, Bluetooth device, and photographing device.
  • the detection device may include a device that obtains the number of detected objects in the first area.
  • the detection device may include at least two devices; for example, each of the at least two devices may detect the current number of detected objects in the first area, and then detect the current number of objects detected by each device. The number of detected objects is averaged to obtain the number of detected objects; for another example, different devices in at least two devices can detect the current number of detected objects in different sub-regions in the first region, and then analyze the detected objects of each device. The current numbers are added to obtain the number of detected objects.
  • the at least two devices may be the same type of devices, for example, the at least two devices may both be millimeter wave radars, or the at least two devices may be different types of devices , for example, part of the equipment is millimeter-wave radar, and another part of the equipment is ultra-wideband bio-radar.
  • each of the at least two first areas corresponds to each detection device, so that different detection devices may correspond to different first areas The number of detected objects in the area.
  • the detection device may determine the distance between the detection device and the detected object, and determine the number of detected objects in the first area by the distance, In other embodiments, the detection device may determine the number of detected objects in the first area by capturing images at least for the first area.
  • the number of detected devices in this embodiment of the present application may be the current number of detected devices.
  • the detection device may determine the current number of detected objects in the first area every fixed time period.
  • the number of detected devices may be the current number of detected objects in the first area at a certain moment.
  • the fixed time length may be set by the user in advance, and the fixed time length may be between 1 second and 1 minute, for example, may be 1 second, 5 seconds, 30 seconds, 1 minute, and so on.
  • the detection range of the detection device may be the range that the detection device can detect.
  • the range of the first region may be the same as the range that the detection device can detect. In other embodiments, the range of the first region may be smaller than the range that the detection device can detect.
  • the first area may be a circle with the detection device as the center and a radius of 3 meters to 10 meters.
  • the first area may be a radius of 3 meters, 5m or 10m range.
  • the first area may be a two-dimensional circular area, a three-dimensional spherical area, a conical area, or a hemispherical area, or the like. In other embodiments, the first area may also be a polygonal, conical, cylindrical or elliptical area.
  • the range of the first area may be preset, and the size of the range of the first area may be related to at least one of the range of the area that the detection device can detect, the area environment where the controlled device is located, the spatial layout, and the detection accuracy. related. For example, in the office area, if the first area is a spherical area, but if the set radius is too large, the detected objects upstairs or downstairs will also be detected, which will lead to an error in the number of detected objects. Therefore, the number of jobs of the controlled equipment will be larger.
  • the detected object may be a person.
  • the detected object may also be a living object such as other animals or plants, or a device running in a computer room, such as an industrial computer, a server, or a robot.
  • the detected object may be a combination of at least two objects.
  • the application does not specifically limit the type of the detected object.
  • the detection device sends a first message to the control device; the first message includes or indicates the number of detected objects, and the first message is used to enable the control device to determine the number of the first controlled device in the first area based on the number of detected objects number, the first controlled device is a controlled device that remains in a working state or a controlled device that is to be switched to a working state.
  • the control device in the embodiment of the present application may be a device for controlling the operation of the controlled device.
  • the control device when the controlled device is an air conditioner, the control device may be an air conditioner control device; when the controlled device is an electric light, the control device may be an electric light control device, and the like.
  • the control device may be a scheduling system, a server or a management platform.
  • the controlled device in this embodiment of the present application may include an air conditioner, a tuyere shutter, a lighting device, a display device, or a network device, and the like.
  • the control device may determine the number of air conditioners to be in operation, determine the number of tuyere shutters to be in operation, determine the number of lighting devices to be in operation, determine the number of display devices to be in operation, determine the number of At least one of the number of devices to be in operation. Among them, about to be in the working state, including maintaining the working state or to be switched to the working state.
  • the detection device may acquire attribute information of one or at least two resources, and send the attribute information of the one or at least two resources to the control device, Therefore, the control device can jointly determine the number of the first controlled devices based on the number of detected objects and attribute information of one or at least two resources.
  • the resource may be in a certain controlled device or other device corresponding to the first area, wherein the attribute information of the resource may include the attribute value of the resource.
  • the attribute information of the resource may further include at least one of state information, data type, location information, and parameter information of the detection device of the resource.
  • the property value of the resource may be a value measured by a sensor, for example, a sensing value of a sensor.
  • the sensing value of the sensor is, for example, a sensing value such as ambient temperature, ambient humidity, ambient light brightness, or ambient noise.
  • the control device can not only determine the number of the first controlled device, but also determine the operating parameters of each first controlled device.
  • the operating parameters may include but are not limited to at least one of the following: air conditioner temperature, air output air volume, air conditioner operation mode (cooling, heating or dehumidification), opening size of the tuyere shutter (the larger the tuyere shutter is opened, the larger the air output, the larger the air outlet).
  • the controlled device is an air conditioner
  • the control device may further determine that the temperature of the first air conditioner is 25 degrees Celsius when it is running, and the second The temperature when the air conditioner is running is 23 degrees Celsius.
  • the control command sent to the first air conditioner can carry 25 degrees Celsius; when the temperature of the second air conditioner is not set to 23 degrees Celsius, the The control command sent by the second air conditioner can carry 23 degrees Celsius. In some embodiments, when the temperature of the first air conditioner is set to 25 degrees Celsius, the control command sent to the first air conditioner may not carry 25 degrees Celsius.
  • the control device since the number of first controlled devices determined by the control device is determined based on the number of detected objects in the first area determined by the detection device, and the first controlled device is a controlled device that maintains a working state The control device or the controlled device to be switched to the working state, so that not only the control device can control the controlled device to work automatically, but the user does not need to complete the corresponding control through complex buttons, which improves the automation degree of the controlled device.
  • the number of controlled devices can be adaptively adjusted according to the number of detected objects, so that the number of operating controlled devices can meet the needs of the detected objects.
  • FIG. 2 is a schematic flowchart of another IoT communication method provided by an embodiment of the present application. As shown in FIG. 2 , the method includes:
  • the detection device acquires the number of detected objects in the first area; the first area is within the detection range of the detection device.
  • the detection device may detect the distance between the detection device and the detected object; the number of distances less than the first threshold is determined as the number of detected objects.
  • the first area may be an area with the detection device as the center and the radius as the first threshold.
  • the first area may be a two-dimensional area or a three-dimensional area.
  • the first region in some embodiments may be a sphere, a cylinder, a frustum, or other shapes.
  • the detection device may determine the number of distances less than the first threshold as the number of detected objects, or the detection device may determine the number of detected objects within the radius as the number of detected objects.
  • the first threshold is 3 meters
  • the current distances detected by the detection device are 1.5 meters, 2.5 meters, 3 meters, and 4.5 meters
  • the detection device can determine that the number of detected objects is 3.
  • the detection device may only consider the number of detected objects in the first area, and not consider the number outside the first area, so that the detection accuracy can be accurate.
  • the detection device photographs at least the first area to obtain the first image; and analyzes the first image to obtain the number of detected objects.
  • the detection device can be provided with a camera and an image processing module, and the image processing module is, for example, a graphics processor (Graphics Processing Unit, GPU).
  • the image processing module analyzes the first image to determine the number of detected objects in the first area of the first image.
  • the detection device may include a photographing device and an image processing device
  • the image processing device may be set in the cloud
  • the photographing device captures a first image
  • the detection device sends a first message to the control device; the control device receives the first message sent by the detection device.
  • the image processing device After the image processing device determines the number of detected objects, it can send the number of detected objects to the photographing device, so that the photographing device sends the first message to the control device, or, after the image processing device determines the number of detected objects After that, the first message can be directly generated and sent to the control device.
  • the first message may further include the identification of the detection device; the first message is also used to enable the control device to determine the first area corresponding to the detection device based on the identification of the detection device, and then to determine all controlled devices in the first area.
  • the identification of the detection device is the identification of the photographing device.
  • the first message may also include the distance between the detection device and the detected object.
  • the number of distances is the same as the number of detected objects.
  • At least two detection devices may be provided in one spatial area, and each detection device of the at least two detection devices may detect the number of detected objects in the respective first area.
  • Each detection device can send a first message including its identification and the number of detected objects to the control device, and the control device can determine the first area corresponding to each detection device based on the identification of each detection device, The number of first controlled devices in each first zone is then determined.
  • the ranges of the first regions corresponding to the at least two detection devices may be the same or different, and the first regions corresponding to the at least two detection devices may not overlap, partially overlap, or completely overlap.
  • control device can accurately determine the number of the first controlled devices in each first area, so that different operation strategies of the controlled devices can be implemented for different first areas, so that the control device can Different areas are controlled by different controlled devices, which improves the pertinence of control.
  • the detection device may also detect the physiological characteristics of the detected object in the first area, and then the first message sent by the detection device to the control device may include the physiological characteristics of the detected object.
  • the physiological characteristics may include, but are not limited to, at least one of height, age, gender, ECG, EEG, blood oxygen, blood pressure, and body temperature.
  • the control device may jointly determine the number of first controlled devices in the first area based on the number of detected objects and the physiological characteristics of the detected objects.
  • the control device may jointly determine the number of the first controlled devices in the first area based on the number of detected objects, physiological characteristics of the detected objects, and attribute information of one or at least two resources.
  • the detection device may determine whether the number of first controlled devices corresponding to the number of detected objects changes, that is, whether the correspondence between the number of detected objects and the number of first controlled devices changes , in the case of a change, the first message is sent to the control device.
  • a first mapping relationship is obtained; the first mapping relationship includes a mapping relationship between the preset number of detected objects and the preset number of first controlled devices; based on changes in the number of detected objects and the first A mapping relationship is used to determine that when the number of the first controlled devices changes, the first message is sent to the control device.
  • the first message is not sent to the control device.
  • the first mapping relationship may be stored in the storage space of the detection device.
  • the first mapping relationship may be an initially set mapping relationship, or the first mapping relationship may be an initially set mapping relationship or a mapping relationship obtained by updating other mapping relationships.
  • the initially set mapping relationship or other mapping relationships may be stored in the detection device, and the user equipment may send feedback information to the detection device, or the user may operate the detection device to cause the detection device to generate feedback information, and the detection device
  • the initially set mapping relationship or other mapping relationships may be updated based on the feedback information, thereby obtaining the first mapping relationship.
  • the mapping relationship stored in the detection device is constantly changing with the continuous feedback of the user, so that the number of first controlled devices determined according to the number of detected objects can more and more meet the needs of the actual scene.
  • the first mapping relationship when the mapping relationship currently stored by the detection device is the first mapping relationship, the first mapping relationship can be changed to the second mapping relationship based on the feedback information of the user, so that the first mapping relationship can be determined based on the number of detected objects subsequently.
  • the second mapping relationship is used to determine.
  • the first message is sent to the control device under the condition that the number of detected objects does not change within the first time period.
  • the detection device can send the first message to the control device only when the number of people in the first area is stable, so as to prevent the control device from causing the control device to make at least some of the controlled devices corresponding to the first area due to the unstable number of people. Status changes frequently.
  • the detection device may send the first message to the control device every certain time period. For example, the detection device may acquire the number of detected objects once every specific time period, generate a first message based on the acquired number of detected objects, and report the first message to the control device.
  • the detection device may send the first message to the control device when the number of detected objects changes, and the amount of change in the number of detected objects is greater than the number threshold.
  • the detection device may change the number of detected objects when the number of detected objects changes by more than the number threshold, and the number of detected objects after the change within the first time period does not change , and send the first message to the control device.
  • the control device determines the number of first controlled devices in the first area based on the number of detected objects; the first controlled device is a controlled device that remains in a working state or a controlled device to be switched to a working state.
  • the number of the first controlled devices may be less than or equal to the number of all controlled devices corresponding to the first area.
  • control device may control at least some of the controlled devices in all the controlled devices in the first area, so that the first controlled device is in a working state.
  • control device may determine a fifth number of sub-controlled devices from the first controlled device; the sub-controlled devices are the controlled devices to be switched to the working state; to each of the fifth number of sub-controlled devices A sub-controlled device sends a first control command, and each sub-control device responds to the first control command and switches its own state to a working state. In this manner, at least some of the controlled devices are the fifth number of sub-controlled devices.
  • control device may determine the number of controlled devices currently in the working state in the first area, and in the case that the number of the first controlled devices is less than the number of controlled devices currently in the working state, from the current working state Among the controlled devices, determine the sixth number of second controlled devices; the second controlled devices are the controlled devices to be switched to the non-working state; The controlled device sends a second control instruction, and each second controlled device responds to the second control instruction and switches its own state to a non-working state; wherein the non-working state includes one of the following: logout, standby, shutdown, and sleep. In this manner, at least some of the controlled devices are the sixth number of second controlled devices.
  • control device may acquire a first mapping relationship; the first mapping relationship includes a mapping relationship between a preset number of detected objects and a preset number of first controlled devices; based on the number of detected objects and The first mapping relationship determines the number of first controlled devices.
  • the control device may also receive feedback information sent by the user equipment; the feedback information includes or indicates adjustment information for the first mapping relationship; based on the feedback information, the first mapping relationship is updated to the second mapping relationship; based on the number of detected objects and the first mapping relationship; Second, the mapping relationship determines the number of the first controlled devices.
  • the first mapping relationship may be a relationship set by the control device when the system is initially set.
  • the first mapping relationship may be that 1 to 3 people turn on 1 air conditioner extension and/or light, 3 to 6 people turn on 2 extension machines and/or lights, and so on.
  • the second mapping relationship may be that 1 to 4 people turn on one air conditioner extension and/or light, and 5 to 10 people turn on 2 air conditioners and/or lights.
  • User equipment may include terminals, access terminal equipment, subscriber units, subscriber stations, mobile stations, mobile stations, remote stations, remote terminal equipment, mobile equipment, User Equipment (UE), wireless communication equipment, user agents or user device.
  • Terminal devices can be servers, mobile phones, tablet computers, notebook computers, PDAs, personal digital assistants, portable media players, smart speakers, navigation devices, display devices, smart bracelets and other wearable devices, virtual reality (Virtual Reality, VR) devices, Augmented Reality (AR) devices, pedometers, digital TVs or desktop computers, etc.
  • the user equipment can log in with a specific identity (for example, an administrator), so as to send feedback information to the control device based on the logged-in identity.
  • the feedback information may be the correspondence between the number of people and the controlled device, so the control device may directly update the first mapping relationship based on the correspondence to obtain the second mapping relationship.
  • the feedback information may include the user's feeling information about the current operation of the controlled device, for example, the feedback information may include information such as high temperature in the current area, low brightness in the current area, and the like.
  • the feedback information may further include current location information of the user equipment, so that the control device may determine the first area to which the user equipment belongs based on the location information.
  • the control device may control at least part of the controlled device when the number of detected objects satisfies a preset condition. In some embodiments, when it is determined that the number of the first controlled devices changes based on the change in the number of detected objects and the first mapping relationship, the number of the first controlled devices is determined. In other embodiments, the number of the first controlled devices is determined based on the number of the detected objects under the condition that the number of detected objects does not change within the first time period. In still other embodiments, the control device may determine that the number of detected objects changes when the number of detected objects changes, causing the number of first controlled devices to change, and the number of detected objects after the change within the first time period does not change.
  • the number of first controlled devices may send a control instruction to at least some of all the controlled devices in the first area, so as to make the first controlled devices in a working state. For example, a first control instruction is sent to some controlled devices, the first control instruction is used to instruct the controlled device to switch to a non-working state, and a second control instruction is sent to other controlled devices, and the second control instruction is used to instruct the controlled device The device switches to the working state.
  • the control device may send at least two first messages based on the reception of the detection device , to determine that the number of detected objects satisfies the preset condition, so that the control device needs to determine the change of the number of detected objects.
  • the detection device determines that the number of the first controlled devices changes when the number of detected objects changes and the first mapping relationship, and/or, the number of detected objects does not change within the first period of time. , and send the first message to the control device, so that the control device can directly determine that the number of detected objects satisfies the preset condition based on the received first message, so that the control device does not need to determine the change of the number of detected objects.
  • the above adjustment is performed after the number of people remains unchanged for a period of time (eg, 5 minutes) and/or after the number of people changes greatly, preventing frequent changes in the number of people from causing frequent switching of air conditioners and/or lights.
  • the embodiments of the present application provide the following implementations:
  • FIG. 3 is a schematic flowchart of another Internet of Things communication method provided by an embodiment of the present application. As shown in FIG. 3 , the method includes:
  • the detection device determines the first moment of sending the radio frequency signal and the second moment of receiving the reflected signal; the reflected signal is a signal obtained by the radio frequency signal reflected by the detected object.
  • the detection device determines the distance between the detection device and the detected object based on the first moment and the second moment.
  • the detection device may determine the distance based on the first time instant, the second time instant, and the speed of light.
  • the detection device may be a millimeter-wave radar, and the millimeter-wave radar can detect and track a detected object within a short distance.
  • the principle is that the millimeter-wave radar emits a specific radio frequency signal, and the detected object will reflect the radio frequency signal.
  • the millimeter wave radar can determine the physiological characteristics of the detected object based on the reflected radio frequency signal.
  • the detection device may be an ultra-wideband (Ultra-WideBand, UWB) bio-radar, and the UWB bio-radar can realize the detection and tracking of a detected object within a short distance.
  • UWB bio-radar transmits a pulse sequence, and the microwave beam in the form of pulse irradiates the detected object to generate an echo, and the repetition period of the pulse sequence in the echo changes.
  • UWB bio-radar detects the detected object by analyzing the echo sequence. existence and its trajectory.
  • the following methods can be used: set the ultra-wideband radar sensor to transmit pulses with a fixed period, and collect the baseband echo signal (radar frame); use singular value decomposition (Singular Value Decomposition, SVD) algorithm to filter out clutter; use baseband CLEAN algorithm to extract target scattering points, and obtain measurement through scattering point aggregation algorithm; use joint probability data association and Kalman filter to update target state and trajectory, and obtain the tracking of each target result.
  • the baseband echo signal is collected, the distance resolution is at the centimeter level, and the frame rate of the transmission and reception is 100-200 frames per second.
  • filtering out clutter by the SVD algorithm includes: forming a two-dimensional data matrix for every m consecutive radar frames, where m is 10-20; using the SVD algorithm to extract singular values and singular vectors, and combining the first n After the singular values are set to zero, the singular vectors are reorganized, where n takes 1 to 2.
  • the baseband CLEAN algorithm whose input waveform template also belongs to the baseband signal, has the same range resolution as the input baseband radar frame.
  • the steps of using joint probability data association include selecting valid measures, constructing a confirmation matrix, splitting joint events, calculating interconnection probability, and updating status.
  • the detection device determines the number of distances less than the first threshold as the number of detected objects.
  • the detection device sends a first message to the control device; the control device receives the first message sent by the detection device.
  • the control device determines the number of first controlled devices in the first area based on the number of detected objects.
  • the detection device can determine not only the distance between the detection device and the detected object, but also the physiological characteristics of the detected object by determining the first moment of sending the radio frequency signal and the second moment of receiving the reflected signal. , so that the operation mode of the controlled device determined by the control device is more in line with the needs of the detected object.
  • FIG. 4 is a schematic flowchart of still another IoT communication method provided by an embodiment of the present application. As shown in FIG. 4 , the method includes:
  • the detection device determines the third moment of sending the first information to the first portable device, and determines the fourth moment of receiving the second information sent by the first portable device in response to the first information; the second information includes: the first portable device The fifth moment when the first information sent by the detection device is received, and the sixth moment when the first portable device sends the second information to the detection device.
  • the detection device determines the distance between the detection device and the detected object based on the third time, the fourth time, the fifth time, and the sixth time.
  • the detection device may use the first time length obtained by subtracting the third time from the sixth time, the second time length obtained by subtracting the fourth time from the fifth time, and the first time length minus the third time. The amount of change and the speed of light between the two time lengths are obtained, and the distance between the detection device and the detected object is determined.
  • the detection device may be a UWB detection device, for example, the detection device may be a UWB card reader.
  • the first portable device may be a UWB smart device.
  • the second information sent by the first portable device to the detection device may include the physiological characteristics of the detected object.
  • the first portable device may be the same device as the above-mentioned user equipment.
  • the UWB card reader can communicate with the UWB smart device and measure the distance between the two (the error is less than 30 cm) .
  • the UWB card reader can simultaneously communicate and measure distances with multiple UWB smart devices within a short distance, so it can detect the number of UWB smart devices existing within a certain range (for example, in a spherical space with a radius of 3 meters), so that the number of users can be inferred. (General users only carry one UWB tag/UWB ID card/mobile phone with UWB tag function turned on). If the user carries multiple UWB smart devices, multiple UWB smart devices with close position coordinates (eg, within 50 centimeters) can be determined to be owned by the same user.
  • the detection device determines the number of distances less than the first threshold as the number of detected objects.
  • the detection device sends a first message to the control device; the control device receives the first message sent by the detection device.
  • the control device determines the number of first controlled devices in the first area based on the number of detected objects.
  • the detection device can determine the number of detected objects in the first area according to the first portable device by sending the first information to the first portable device and receiving the second information sent by the first portable device, The manner of determining the number of detected objects is thus simple and accurate.
  • the second information may include the physiological characteristics of the detected object, so that in the case where the detection device sends the detected object's physiological characteristics to the control device, the control device can perform the detection on the controlled device based on the detected object's physiological characteristics. control, so that the operation mode of the controlled device determined by the control device is more in line with the needs of the detected object.
  • FIG. 5 is a schematic flowchart of an Internet of Things communication method provided by another embodiment of the present application. As shown in FIG. 5 , the method includes:
  • the detection device determines the signal strength of receiving the third information sent by the second portable device.
  • the detection device can be a beacon base station
  • the second portable device can be a Bluetooth device
  • the Bluetooth device sends information
  • the beacon base station can determine the distance from the Bluetooth device based on the signal strength (Received Signal Strength Indication, RSSI) of the information sent by the Bluetooth device .
  • the third message sent by the Bluetooth device to the beacon base station may be a feedback message corresponding to the beacon sent by the beacon base station.
  • the detection device determines the distance between the detection device and the detected object based on the signal strength.
  • the detection device may be a network device, such as a 4G base station, a 5G base station, a Wireless Fidelity (WiFi) access point or a ZigBee base station, etc.
  • the second portable device may be A mobile terminal, for example, a mobile terminal is a mobile phone, a computer, a WIFI device or a ZigBee device.
  • the network device may determine the distance between the detection device and the detected object based on the signal strength of the radio frequency signal sent by the mobile terminal, the signal strength of the WiFi signal, or the signal strength of the Zigbee signal.
  • the network device may use the signal strength of the Bluetooth signal (that is, the signal strength of the third information), the signal strength of the radio frequency signal, the signal strength of the WiFi signal, and the signal strength of the Zigbee signal. At least two of the signal strengths determine the distance between the detection device and the detected object.
  • the detection device may determine a certain and accurate distance from the at least two distances by taking the mean, median, mode, or other mathematical means.
  • the detection device determines the number of distances less than the first threshold as the number of detected objects.
  • the detection device sends a first message to the control device; the control device receives the first message sent by the detection device.
  • the control device determines the number of first controlled devices in the first area based on the number of detected objects.
  • the distance between the detection device and the detected object is determined by the signal strength of the received signal, which provides another way of determining the number of detected objects in the first area.
  • FIG. 6 is a schematic flowchart of an IoT communication method provided by another embodiment of the present application. As shown in FIG. 6 , the method includes:
  • the detection device captures at least a first area to obtain a captured image, analyzes the captured image, and determines the number of detected objects.
  • the detection device sends a first message to the control device; the control device receives the first message sent by the detection device.
  • the control device determines the number of first controlled devices in the first area based on the number of detected objects.
  • the detection device obtains the number of detected objects by analyzing the captured images, thereby providing yet another method for determining the number of detected objects in the first area.
  • FIG. 7 is a schematic flowchart of an IoT communication method provided by still another embodiment of the present application. As shown in FIG. 7 , the method includes:
  • the detection device determines the number of detected objects in the first area; the first area is within the detection range of the detection device.
  • the detection device sends a first message to the control device; the control device receives the first message sent by the detection device.
  • the control device divides the first area into at least two sub-areas.
  • the control device determines the sub-number of detected objects in each of the at least two sub-regions.
  • the first message further includes the distance between the detection device and the detected object.
  • the control device may determine the location information of the detected object based on the distance; and determine the sub-number of the detected object based on the location information.
  • the control device can receive the distance sent by each device in the at least three devices including the detection device, and the distance sent by each device is: the distance between each device detected by each device and the detected object; based on the distance sent by each device
  • the three-point positioning method is used to determine the position information of the detected object.
  • Determining the location information of the detected objects may be determining the location information of each detected object in the detected objects.
  • the location information may be location coordinate information, the location coordinate information may be two-dimensional location coordinates, or the location coordinate information may be three-dimensional location coordinates.
  • the control device determines the sub-quantity of the first controlled device corresponding to each sub-area based on the sub-quantity of the detected objects in each sub-area.
  • the detection device may include at least two devices, and the at least two devices may respectively detect the sub-number of detected objects in each of the at least two sub-regions.
  • the control device determines distribution information of the first controlled device based on the sub-number of the first controlled device.
  • the distribution information may include at least one of the following: a distribution location of each first controlled device, an identifier of each first controlled device, an operating parameter of each first controlled device, and the like.
  • the control device may control at least some of the controlled devices based on the distribution information, so that the first controlled device corresponding to the distribution information is in a working state.
  • controlling at least some of the controlled devices may be sending a first control instruction or a second control instruction to each of the at least some of the controlled devices.
  • the first controlled devices corresponding to each sub-area may be evenly distributed.
  • the control device can divide the first area A into sub-area A1, sub-area A2 and sub-area A3, and determine that the number of sub-jobs in sub-area A1 is 5, and the 5 controlled devices can be set evenly and will be in working state, confirm that the number of sub-jobs in sub-area A2 is 4, 4 controlled devices can be set evenly and will be in working state, confirm that the number of sub-jobs in sub-area A3 is 6, and 6 controlled devices can be set evenly and will be in working condition.
  • control device determines the distribution information of the first controlled device based on the position information of the detected object; There are different modes of operation of the controlled device, which in turn can provide different services for different areas in the first area.
  • the embodiments of the present application provide an IoT communication device, the device includes each unit included and each module included in each unit, which can be implemented by a processor in a terminal device; of course, it can also be It is realized by a specific logic circuit.
  • FIG. 8 is a schematic diagram of the composition and structure of an IoT communication device provided by an embodiment of the present application.
  • the IoT communication device 800 includes: an obtaining unit 801, which is used for the detection device to obtain the information of the detected object in the first area. Quantity; the first area is within the detection range of the detection equipment;
  • the sending unit 802 is configured to send a first message to the control device; the first message includes or indicates the number of detected objects, and the first message is used to enable the control device to determine the first controlled object in the first area based on the number of detected objects The number of devices.
  • the first controlled device is a controlled device that remains in a working state or a controlled device that is to be switched to a working state.
  • the IoT communication apparatus 800 includes: a determining unit 803, configured to detect the distance between the detection device and the detected object; and determine the number of distances less than the first threshold as the number of detected objects .
  • the determining unit 803 is further configured for the detection device to photograph at least the first area to obtain a first image; and to analyze the first image to obtain the number of detected objects.
  • the sending unit 802 is further configured to acquire a first mapping relationship; the first mapping relationship includes a mapping relationship between a preset number of detected objects and a preset number of first controlled devices; Detect the change of the number of objects and the first mapping relationship, and send a first message to the control device when it is determined that the number of the first controlled devices changes.
  • the sending unit 802 is further configured to send the first message to the control device when the number of detected objects does not change within the first time period.
  • the detection device includes at least one of the following: a millimeter-wave radar, an ultra-wideband bio-radar, an ultra-wideband detection device, a Bluetooth device, and a photographing device.
  • FIG. 9 is a schematic diagram of the composition and structure of another IoT communication apparatus provided by an embodiment of the present application.
  • the IoT communication apparatus 900 includes: a receiving unit 901 for controlling a device to receive a first message sent by a detection device ;
  • the first message includes or indicates the number of detected objects in the first area corresponding to the detection device; the first area is within the detection range of the detection device;
  • the determining unit 902 is configured to determine the number of first controlled devices in the first area based on the number of detected objects; the first controlled device is a controlled device that remains in a working state or a controlled device to be switched to a working state.
  • the determining unit 902 is further configured to divide the first region into at least two sub-regions; determine the sub-number of detected objects in each sub-region of the at least two sub-regions; based on the detected objects in each sub-region The sub-quantity of the first controlled device is determined, and the sub-quantity of the first controlled device is determined based on the sub-quantity of the first controlled device. The distribution information of the first controlled device is determined.
  • the first message further includes the distance between the detection device and the detected object; the determining unit 902 is further configured to determine the location information of the detected object based on the distance; based on the location information, determine the child of the detected object quantity.
  • the determining unit 902 is further configured to acquire a first mapping relationship; the first mapping relationship includes a mapping relationship between a preset number of detected objects and a preset number of first controlled devices; based on the detected The number of objects and the first mapping relationship determine the number of first controlled devices.
  • the receiving unit 901 is further configured to receive feedback information sent by the user equipment; the feedback information includes or indicates adjustment information for the first mapping relationship;
  • the determining unit 902 is further configured to update the first mapping relationship to the second mapping relationship based on the feedback information; and determine the number of the first controlled devices based on the number of detected objects and the second mapping relationship.
  • the determining unit 902 is further configured to determine the number of the first controlled devices in the case where it is determined that the number of the first controlled devices changes based on the change in the number of detected objects and the first mapping relationship .
  • the determining unit 902 is further configured to determine the first controlled device based on the number of detected objects under the condition that the number of detected objects does not change within the first time period. quantity.
  • the above-mentioned IoT communication method is implemented in the form of a software function module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.
  • the technical solutions of the embodiments of the present application may be embodied in the form of software products in essence or the parts that contribute to related technologies.
  • the computer software products are stored in a storage medium and include several instructions to make One detection device/control device executes all or part of the methods described in the various embodiments of the present application.
  • the hardware entity of the Internet of Things communication device 1000 includes: a processor 1001 and a memory 1002, wherein the memory 1002 stores a A computer program running on the processor 1001, when the processor 1001 executes the program, implements the steps in the method executed by the detection device in any of the foregoing embodiments; or, when the processor 1001 executes the program, realizes the execution of the control device in any of the foregoing embodiments. steps in the method.
  • An embodiment of the present application provides a computer storage medium, where one or more programs are stored in the computer storage medium, and the one or more programs can be executed by one or more processors, so as to implement the method executed by the detection device in any of the foregoing embodiments or, to implement the steps in the method for controlling device execution in any of the foregoing embodiments.
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory or storage space in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be a register, Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • references throughout the specification to "one embodiment” or “an embodiment” or “an embodiment of the present application” or “the preceding embodiments” or “some embodiments” or “some implementations” mean the same as implementing A particular feature, structure, or characteristic of an example is included in at least one embodiment of the present application.
  • the appearances of "one embodiment” or “an embodiment” or “the present embodiment” or “the preceding embodiments” or “some embodiments” or “some implementations” in various places throughout this specification are not necessarily necessarily referring to the same Example.
  • the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application.
  • implementation constitutes any limitation.
  • the above-mentioned serial numbers of the embodiments of the present application are only for description, and do not represent the advantages or disadvantages of the embodiments.
  • the detection device/control device executes any step in the embodiments of the present application, and the processor of the detection device/control device may execute the step.
  • the embodiments of the present application do not limit the sequence in which the detection device/control device performs the following steps.
  • the manner in which data is processed in different embodiments may be the same method or different methods.
  • any step in the embodiments of the present application can be independently performed by the detection device/control device, that is, when the detection device/control device performs any step in the following embodiments, it may not depend on other steps. execution.
  • the disclosed detection device/control device and method may be implemented in other ways.
  • the division of the units is only a logical function division.
  • the coupling, or direct coupling, or communication connection between the various components shown or discussed may be through some interfaces, and the indirect coupling or communication connection of resource devices or units may be electrical, mechanical or other. Form.
  • the methods disclosed in the several method embodiments provided in this application can be arbitrarily combined under the condition of no conflict to obtain new method embodiments.
  • the features disclosed in the several product embodiments provided in this application can be combined arbitrarily without conflict to obtain a new product embodiment.
  • the features disclosed in several methods or detection device/control device embodiments provided in this application can be combined arbitrarily without conflict to obtain new method embodiments or detection device/control device embodiments.
  • the aforementioned program can be stored in a computer-readable storage medium, and when the program is executed, the execution includes: The steps of the above method embodiment; and the aforementioned storage medium includes: a mobile storage resource device, a read only memory (Read Only Memory, ROM), a magnetic disk or an optical disk and other media that can store program codes.
  • ROM Read Only Memory
  • the above-mentioned integrated units of the present application are implemented in the form of software function modules and sold or used as independent products, they may also be stored in a computer-readable storage medium.
  • the technical solutions of the embodiments of the present application may be embodied in the form of software products in essence or the parts that contribute to related technologies.
  • the computer software products are stored in a storage medium and include several instructions to make
  • the detection device/control device executes all or part of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes various media that can store program codes, such as a removable storage resource device, a ROM, a magnetic disk, or an optical disk.
  • the embodiments of the present application provide an Internet of Things communication method, device, equipment, and computer storage medium.
  • the automation degree of the work of the controlled equipment is improved, and the work of the controlled equipment is also improved.
  • the number can be adaptively adjusted according to the number of detected objects, so that the number of working controlled devices can meet the needs of detected objects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Automation & Control Theory (AREA)
  • Selective Calling Equipment (AREA)
  • Telephonic Communication Services (AREA)

Abstract

本申请实施例公开了一种物联网通信方法、装置、设备及计算机存储介质,其中,该方法包括:检测设备获取第一区域中被检测对象的数量;所述第一区域在所述检测设备的探测范围内;向控制设备发送第一消息;所述第一消息包括或指示所述被检测对象的数量,所述第一消息用于使所述控制设备基于所述被检测对象的数量,确定所述第一区域中第一受控设备的数量,所述第一受控设备为保持工作状态的受控设备或待切换至工作状态的受控设备。

Description

一种物联网通信方法、装置、设备及计算机存储介质
相关申请的交叉引用
本申请基于申请号为202010922305.3、申请日为2020年09月04日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以全文引入的方式引入本申请。
技术领域
本申请实施例涉及但不限于物联网技术,尤其涉及一种物联网通信方法、装置、设备及计算机存储介质。
背景技术
在物联网系统中,例如空调、电灯等设备需要通过用户通过按键触发的方式来进行控制。例如,在用户需要开启或关闭空调时,需要触发固定在墙上的空调控制面板,或者,需要通过遥控器进行遥控;再例如,在用户需要开启或关闭照明设备时,需要触发照明设备的开关。然而,用户通过按键触发的方式对这些设备进行控制,会导致用户的操作麻烦。
发明内容
本申请实施例提供一种物联网通信方法、装置、设备及计算机存储介质。
第一方面,提供一种物联网通信方法,包括:
检测设备获取第一区域中被检测对象的数量;所述第一区域在所述检测设备的探测范围内;
向控制设备发送第一消息;所述第一消息包括或指示所述被检测对象的数量,所述第一消息用于使所述控制设备基于所述被检测对象的数量,确定所述第一区域中第一受控设备的数量,所述第一受控设备为保持工作状态的受控设备或待切换至工作状态的受控设备。
第二方面,提供一种物联网通信方法,包括:
控制设备接收检测设备发送的第一消息;所述第一消息包括或指示与所述检测设备对应的第一区域中被检测对象的数量;所述第一区域在所述检测设备的探测范围内;
基于所述被检测对象的数量,确定所述第一区域中第一受控设备的数量;所述第一受控设备为保持工作状态的受控设备或待切换至工作状态的受控设备。
第三方面,提供一种物联网通信装置,包括:
获取单元,用于检测设备获取第一区域中被检测对象的数量;所述第一区域在所述检测设备的探测范围内;
发送单元,用于向控制设备发送第一消息;所述第一消息包括或指示所述被检测对象的数量,所述第一消息用于使所述控制设备基于所述被检测对象的数量,确定所述第一区域中第一受控设备的数量,所述第一受控设备为保持工作状态的受控设备或待切换 至工作状态的受控设备。
第四方面,提供一种物联网通信装置,包括:
接收单元,用于控制设备接收检测设备发送的第一消息;所述第一消息包括或指示与所述检测设备对应的第一区域中被检测对象的数量;所述第一区域在所述检测设备的探测范围内;
确定单元,用于基于所述被检测对象的数量,确定所述第一区域中第一受控设备的数量;所述第一受控设备为保持工作状态的受控设备或待切换至工作状态的受控设备。
第五方面,提供一种物联网通信设备,包括:存储器和处理器,
所述存储器存储有可在处理器上运行的计算机程序,
所述处理器执行所述程序时实现上述方法中的步骤。
第六方面,提供一种计算机存储介质,所述计算机存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现上述方法中的步骤。
在本申请实施例中,由于控制设备确定的第一受控设备的数量,是基于检测设备确定的第一区域中被检测对象的数量确定的,而第一受控设备为保持工作状态的受控设备或待切换至工作状态的受控设备,从而不仅使得控制设备能够控制受控设备自动工作,无需用户通过复杂的按键完成相应地控制,提高了受控设备工作的自动化程度,还使得受控设备的工作数量能够根据被检测对象的数量自适应调整,从而工作的受控设备的数量能够满足被检测对象的需求。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,这些附图示出了符合本申请的实施例,并于说明书一起用于说明本申请的技术方案。
图1a为本申请实施例提供的一种物联网通信架构示意图;
图1b为本申请实施例提供的一种物联网通信方法的流程示意图;
图2为本申请实施例提供的另一种物联网通信方法的流程示意图;
图3为本申请实施例提供的又一种物联网通信方法的流程示意图;
图4为本申请实施例提供的再一种物联网通信方法的流程示意图;
图5为本申请另一实施例提供的一种物联网通信方法的流程示意图;
图6为本申请又一实施例提供的一种物联网通信方法的流程示意图;
图7为本申请再一实施例提供的一种物联网通信方法的流程示意图;
图8为本申请实施例提供的一种物联网通信装置的组成结构示意图;
图9为本申请实施例提供的另一种物联网通信装置的组成结构示意图;
图10为本申请实施例提供的一种物联网通信设备的硬件实体示意图。
具体实施方式
下面将通过实施例并结合附图具体地对本申请的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。
需要说明的是:在本申请实例中,“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
另外,本申请实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
目前的物联网系统中,受控设备的调度和控制一般是比较简单的,例如,同一楼层 的空调通常是通过人工控制来统一开启和关闭。又例如,办公区域的灯控系统,通常需要人工按键触发某一盏或多盏灯的开关和/或调节亮度等。空调不能自动地根据当前区域的人数来进行开关,办公区域的灯控系统不能自动根据当前区域的人数来调节灯的开关和/或调节亮度。
在办公区域、餐厅、体育馆、展览馆或娱乐场所等人数较多的场景区域,这些区域的面积较大,用户很难找到用于控制场馆中相关区域的受控设备运行的控制按钮,即使找到了,也不知道这个按钮是不是控制某一个确定区域的按钮,从而用户很难针对实际情况对场馆中的受控设备进行相应的控制。另外,在这些场景区域中,常见的情况是,当人数很少时,但是却开启较多的受控设备,较多受控设备的开启,会导致受控设备的耗电量大;当人数很多时,但是却开启较少的受控设备,而较少的受控设备的运行,无法满足用户的需求。
图1a为本申请实施例提供的一种物联网通信架构示意图,如图1a所示,物联网通信架构100中可以包括:检测设备A、控制设备、受控设备A和B,其中:
检测设备A可以获取与其对应的第一区域中被检测对象的数量,然后将获取的被检测对象的数量向控制设备发送。其中,架构中还可以存在多个检测设备,不同的检测设备对应的第一区域范围可以相同或不同。
控制设备在接收到检测设备发送的被检测对象的数量后,可以控制与检测设备对应的受控设备运行。例如,控制设备可以控制检测设备A对应的受控设备A和B运行。
在实施本申请提供的物联网通信方法之前,控制设备可以对检测设备A和受控设备A和B进行订阅,例如,控制设备可以向检测设备发送第一订阅请求,检测设备可以向控制设备发送订阅成功的消息,第一订阅请求可以指示检测设备应向控制设备发送第一区域内的被检测对象的数量。控制设备还可以向每一受控设备发送第二订阅请求,每一受控设备可以向控制设备发送订阅成功的消息,第二订阅请求可以指示控制设备能够对每一受控设备进行控制。
在一些实施方式中,控制设备中可以存储检测设备的标识与受控设备的标识之间的对应关系。在另一些实施方式中,控制设备中可以存储检测设备的标识、第一区域标识以及受控设备的标识之间的对应关系。这些对应关系是在物联网通信架构布置完成之后,用户存储在控制设备中的。用户可以在控制设备上对这些对应关系进行修改,或者,用于可以通过其它设备对控制设备进行控制,以对这些对应关系进行修改。
图1b为本申请实施例提供的一种物联网通信方法的流程示意图,如图1b所示,该方法包括:
S101、检测设备获取第一区域中被检测对象的数量;第一区域在检测设备的探测范围内。
检测设备可以包括以下至少之一:毫米波雷达、超宽带生物雷达、超宽带检测设备、蓝牙设备、拍摄设备。
在一些实施例中,检测设备可以包括一个设备,该一个设备获取第一区域中被检测对象的数量。在另一些实施例中,检测设备可以包括至少两个设备;例如,至少两个设备中的每一个设备均可以检测第一区域中被检测对象的当前数量,然后对每一设备检测到的当前数量进行平均,从而得到被检测对象的数量;再例如,至少两个设备中的不同的设备可以检测第一区域中不同的子区域中被检测对象的当前数量,然后对每一设备检测到的当前数量进行相加,从而得到被检测对象的数量。
其中,在检测设备包括至少两个设备的情况下,至少两个设备可以是相同类型的设备,例如,至少两个设备可以均为毫米波雷达,或者,至少两个设备可以是不同类型的设备,例如,一部分设备为毫米波雷达,另一部分设备为超宽带生物雷达。
在一个物联网环境中,可以存在一个或至少两个第一区域,至少两个第一区域中的每一个第一区域与每一个检测设备相对应,从而不同的检测设备可以对应不同的第一区域中被检测对象的数量。
本申请实施例中的被检测对象可以是一个或至少两个,被检测对象的个数可以根据当前的第一区域中存在的被检测对象的数量来确定。在一些实施方式中,由于不同的被检测对象与检测设备之间的距离可以不同,检测设备可以确定检测设备与被检测对象之间的距离,通过距离确定第一区域中被检测对象的数量,在另一些实施方式中,检测设备可以通过拍摄至少针对第一区域的图像,确定第一区域中被检测对象的数量。
本申请实施例中的被检测设备的数量,可以是被检测设备的当前数量。在实际场景中,随着时间的变化,第一区域中的被检测对象的当前数量是可以发生变化的。检测设备可以每隔一个固定的时间长度,确定一次第一区域中被检测对象的当前数量,例如,被检测设备的数量可以为某一时刻第一区域中被检测对象的当前数量。固定的时间长度可以是用户提前设置的,固定的时间长度可以在1秒至1分钟之间,例如,可以为1秒、5秒、30秒、1分钟等。
检测设备的探测范围,可以是检测设备能够探测的范围。在一些实施方式中,第一区域的范围可以与检测设备能够探测的范围相同。在另一些实施方式中,第一区域的范围可以小于检测设备能够探测的范围。例如,当检测设备能够探测半径为100米的区域范围时,第一区域的可以为以检测设备为圆心,半径为3米至10米的范围,例如,第一区域可以为半径为3米、5米或10米的范围。在第一区域的半径为第一阈值时,第一区域可以是一个二维的圆形区域、三维的球形区域、圆锥形区域或者半球形区域等。在其它实施例中,第一区域还可以是多边形、锥形、柱形或椭圆形等形状的区域。
第一区域的范围可以是预先设定的,第一区域的范围的大小,可以与检测设备能够探测的区域范围、受控设备所在的区域环境、空间布局、检测准确度等中的至少一者相关。例如,在办公区域中,如果第一区域是球形区域,但是如果设定的半径过大,就会将楼上或楼下的被检测对象也检测进去,从而会导致对被检测对象数量的误判,从而会使得受控设备的工作数量较多。
在本申请实施例中,被检测对象可以是人。在其它实施例中,被检测对象还可以是其它动物或植物等具有生命的对象或机房中运行的例如工控机、服务器或机器人等设备。被检测对象可以是至少两种物体的结合。本申请对被检测对象的类型并不作具体限定。
S103、检测设备向控制设备发送第一消息;第一消息包括或指示被检测对象的数量,第一消息用于使控制设备基于被检测对象的数量,确定第一区域中第一受控设备的数量,第一受控设备为保持工作状态的受控设备或待切换至工作状态的受控设备。
本申请实施例中的控制设备可以是用于控制受控设备进行运行的设备。例如,在受控设备为空调时,控制设备可以为空调控制设备;在受控设备为电灯时,控制设备可以为电灯控制设备等。在其它实施例中,控制设备可以是调度系统、服务器或管理平台。
本申请实施例中的受控设备可以包括空调、风口百叶窗、照明设备、显示设备或网络设备等。例如,控制设备可以确定空调的即将处于工作状态的数量、确定风口百叶窗的即将处于工作状态的数量、确定照明设备的即将处于工作状态的数量、确定显示设备的即将处于工作状态的数量、确定网络设备的即将处于工作状态的数量中的至少一个。其中,即将处于工作状态,包括保持工作状态或者待切换至工作状态。
为了能够使得确定的当前受控设备的工作情况与用户的需求相匹配,检测设备可以获取一个或至少两个资源的属性信息,并将该一个或至少两个资源的属性信息发送给控制设备,从而控制设备可以基于被检测对象的数量,和一个或至少两个资源的属性信息,共同确定第一受控设备的数量。资源可以在与第一区域对应的某一受控设备或者其它设 备中,其中,资源的属性信息可以包括资源的属性值。在一种实施方式中,资源的属性信息还可以包括资源的状态信息、数据类别、位置信息、检测设备的参数信息中的至少一种。在实施过程中,资源的属性值可以为感测器测量的数值,例如,传感器的感测值。传感器的感测值例如是环境温度、环境湿度、环境光亮度或者环境噪声等感测值。
为了进一步使得受控设备的运行与被检测对象的需求相匹配,控制设备不仅可以确定第一受控设备的数量,还可以确定每一个第一受控设备的运行参数。运行参数可以包括但不限于以下至少一个:空调温度、空调出风量、空调运行模式(制冷、制热或除湿)、风口百叶窗的开启的大小(风口百叶窗开启的大,则出风量较大,风口百叶窗开启的小,则出风量较小)、照明设备的亮度、照明设备的色温、照明设备的颜色、显示设备显示的内容、显示设备显示的亮度、网络设备的配置参数等等,本申请实施例对此不作限制。例如,在一些实施方式中,受控设备为空调,控制设备确定的第一受控设备的数量为2个时,控制设备还可以确定第一个空调运行时的温度为25摄氏度,以及第二个空调运行时的温度为23摄氏度。从而在第一个空调的温度没有设定为25摄氏度的情况下,向第一个空调发送的控制指令可以携带25摄氏度;在第二个空调的温度没有设定为23摄氏度的情况下,向第二个空调发送的控制指令可以携带23摄氏度。在一些实施方式中,在第一空调的温度设定为25摄氏度,向第一个空调发送的控制指令可以不携带25摄氏度。
在本申请实施例中,由于控制设备确定的第一受控设备的数量,是基于检测设备确定的第一区域中被检测对象的数量确定的,而第一受控设备为保持工作状态的受控设备或待切换至工作状态的受控设备,从而不仅使得控制设备能够控制受控设备自动工作,无需用户通过复杂的按键完成相应地控制,提高了受控设备工作的自动化程度,还使得受控设备的工作数量能够根据被检测对象的数量自适应调整,从而工作的受控设备的数量能够满足被检测对象的需求。
图2为本申请实施例提供的另一种物联网通信方法的流程示意图,如图2所示,该方法包括:
S201、检测设备获取第一区域中被检测对象的数量;第一区域在检测设备的探测范围内。
在一些实施例中,检测设备可以检测检测设备与被检测对象之间的距离;将小于第一阈值的距离的数量,确定为被检测对象的数量。
第一区域可以为:以检测设备为圆心,半径为第一阈值的区域。第一区域可以是二维区域或三维区域。在一些实施例中的第一区域可以为球体、圆柱柱体、圆台或其它形状。检测设备可以将小于第一阈值的距离的数量,确定为被检测对象的数量,或者,检测设备可以将在半径范围内的被检测对象的数量,确定为被检测对象的数量。例如,第一阈值为3米,检测设备检测的当前的距离有1.5米、2.5米、3米和4.5米,检测设备可以确定被检测对象的数量为3。在这种实施方式中,检测设备可以只考虑第一区域中被检测对象的数量,对于第一区域外的数量不作考虑,从而可以使得检测的精度准确。
在另一些实施例中,检测设备至少对第一区域进行拍摄,得到第一图像;对第一图像进行分析,得到被检测对象的数量。
检测设备可以设置摄像头和图像处理模块,图像处理模块例如是图形处理器(Graphics Processing Unit,GPU),检测设备可以通过摄像头至少对第一区域进行拍摄得到第一图像,并将第一图像上传至图像处理模块,图像处理模块对第一图像分析,以确定第一图像的第一区域中被检测对象的数量。
在又一些实施例中,检测设备可以包括拍摄设备和图像处理设备,图像处理设备可以设置在云端,拍摄设备拍摄第一图像,并将第一图像发送到图像处理设备,以使图像 处理设备确定被检测对象的数量。
S203、检测设备向控制设备发送第一消息;控制设备接收检测设备发送的第一消息。
图像处理设备在确定到被检测对象的数量后,可以将被检测对象的数量发送给拍摄设备,以使拍摄设备发送第一消息给控制设备,或者,图像处理设备在确定到被检测对象的数量后,可以直接生成第一消息,并将第一消息发送给控制设备。
第一消息中还可以包括检测设备的标识;第一消息还用于使控制设备基于检测设备的标识,确定与检测设备对应的第一区域,进而确定第一区域中的全部受控设备。其中,检测设备包括拍摄设备和图像处理设备的情况下,检测设备的标识为拍摄设备的标识。
第一消息中还可以包括检测设备与被检测对象之间的距离。距离的个数与被检测对象的个数相同。
在实施过程中,一个空间区域中可以设置有至少两个检测设备,至少两个检测设备中每一个检测设备都可以都检测各自的第一区域中被检测对象的数量,至少两个检测设备中的每一个检测设备,可以将包括其标识和检测的被检测对象的数量的第一消息发送到控制设备,控制设备可以基于每个检测设备的标识,确定每个检测设备对应的第一区域,然后确定每个第一区域中第一受控设备的数量。至少两个检测设备对应的第一区域的范围可以相同或不同,至少两个检测设备对应的第一区域可以不重合、部分重合或完全重合。
通过这种方式,控制设备可以准确的确定每个第一区域中第一受控设备的数量,从而能够针对不同的第一区域有不同的受控设备的运行策略,从而能够使得控制设备能够针对不同的区域有不同的受控设备的控制,提高了控制的针对性。
在一些实施方式中,检测设备还可以检测第一区域中被检测对象的生理特征,进而检测设备向控制设备发送的第一消息中,可以包括被检测对象的生理特征。生理特征可以包括但不限于:身高、年龄、性别、心电、脑电、血氧、血压以及体温中的至少一种。通过这种方式,在一种实施方式中,控制设备可以基于被检测对象的数量和被检测对象的生理特征,共同确定第一区域中第一受控设备的数量。在另一种实施方式中,控制设备可以基于被检测对象的数量、被检测对象的生理特征以及一个或至少两个资源的属性信息,共同确定第一区域中第一受控设备的数量。
在一些实施例中,检测设备可以确定被检测对象的数量对应的第一受控设备的数量是否发生变化,即被检测对象的数量与第一受控设备的数量之间的对应关系是否发生变化,在发生变化的情况下,才向控制设备发送第一消息。在实施过程中,获取第一映射关系;第一映射关系包括被检测对象的预设数量与第一受控设备的预设数量之间的映射关系;在基于被检测对象的数量的变化和第一映射关系,确定第一受控设备的数量发生变化的情况下,向控制设备发送第一消息。例如,在被检测对象的数量由第一数量变化为第二数量,根据第一映射关系,确定第一受控设备的数量由第三数量变化为第四数量的情况下,向控制设备发送第一消息。在在被检测对象的数量由第一数量变化为第二数量,根据第一映射关系,确定第一受控设备的数量不发生变化的情况下,不向控制设备发送第一消息。
第一映射关系可以存储在检测设备的存储空间中。第一映射关系可以是初始设置的映射关系,或者,第一映射关系可以是对初始设置的映射关系或者其它映射关系更新得到的映射关系。在一种实施方式中,检测设备中可以存储初始设置的映射关系或者其它映射关系,用户设备可以向检测设备发送反馈信息或者,用户可以对检测设备进行操作以使检测设备生成反馈信息,检测设备可以基于反馈信息对初始设置的映射关系或者其它映射关系更新,从而得到第一映射关系。检测设备中存储的映射关系是随着用户的不断反馈而不断变化的,从而根据被检测对象的数量确定的第一受控设备的数量能够越来 越符合实际场景的需求。例如,在检测设备当前存储的映射关系为第一映射关系的情况下,可以基于用户的反馈信息,将第一映射关系改为第二映射关系,从而后续在基于被检测对象的数量确定第一受控设备的数量时,采用第二映射关系来确定。
在另一些实施例中,在第一时长内被检测对象的数量没有发生变化的情况下,向控制设备发送第一消息。通过这种方式,检测设备可以在第一区域中的人数稳定的时候,才向控制设备发送第一消息,以避免由于人数不稳定,导致控制设备使第一区域对应的至少部分受控设备的状态频繁发生变化。
在一些实施方式中,检测设备可以每隔特定时长,向控制设备发送第一消息。例如,检测设备可以每个特定时长,获取一次被检测对象的数量,并基于获取的被检测对象的数量生成第一消息,并向控制设备上报该第一消息。
在又一些实施方式中,检测设备可以在被检测对象的数量发生变化,且被检测对象的数量的变化量大于数量阈值的情况下,向控制设备发送第一消息。
在又一些实施方式中,检测设备可以在被检测对象的数量发生变化,被检测对象的数量的变化量大于数量阈值,且第一时长内变化后的被检测对象的数量没有发生变化的情况下,向控制设备发送第一消息。
S205、控制设备基于被检测对象的数量,确定第一区域中第一受控设备的数量;第一受控设备为保持工作状态的受控设备或待切换至工作状态的受控设备。
第一受控设备的数量可以小于或等于与第一区域对应的全部受控设备的数量。
在S205的确定数量之后,控制设备可以对第一区域中的全部受控设备中的至少部分受控设备进行控制,以使第一受控设备处于工作状态。
例如,控制设备可以从第一受控设备中,确定第五数量的子受控设备;子受控设备为待切换至工作状态的受控设备;向第五数量的子受控设备中的每一子受控设备发送第一控制指令,每一子控制设备响应第一控制指令,将自身的状态切换为工作状态。在这种方式中,至少部分受控设备为第五数量的子受控设备。
再例如,控制设备可以确定第一区域中当前处于工作状态的受控设备的数量,在第一受控设备的数量小于当前处于工作状态的受控设备的数量的情况下,从当前处于工作状态的受控设备中,确定第六数量的第二受控设备;第二受控设备为待切换至非工作状态的受控设备;向第六数量的第二受控设备中的每一个第二受控设备发送第二控制指令,每一第二受控设备响应第二控制指令,将自身的状态切换为非工作状态;其中,非工作状态包括以下之一:注销、待机、关机、休眠。在这种方式下,至少部分受控设备为第六数量的第二受控设备。
在一些实施例中,控制设备可以获取第一映射关系;第一映射关系包括被检测对象的预设数量与第一受控设备的预设数量之间的映射关系;基于被检测对象的数量和第一映射关系,确定第一受控设备的数量。
控制设备还可以接收用户设备发送的反馈信息;反馈信息包括或指示对第一映射关系的调整信息;基于反馈信息,将第一映射关系更新为第二映射关系;基于被检测对象的数量和第二映射关系,确定第一受控设备的数量。
第一映射关系可以是控制设备在进行系统初始设置的时候设定的关系。例如,第一映射关系可以是1到3个人开启1部空调分机和/或灯,3到6个人开启2部分机和/或灯等。第二映射关系可以是1到4个人开启1部空调分机和/或灯,5到10个人开启2部分机空调和/或灯。
用户设备可以包括终端、接入终端设备、用户单元、用户站、移动站、移动台、远方站、远程终端设备、移动设备、用户终端设备(User Equipment,UE)、无线通信设备、用户代理或用户装置。终端设备可以是服务器、手机、平板电脑、笔记本电脑、掌 上电脑、个人数字助理、便捷式媒体播放器、智能音箱、导航装置、显示设备、智能手环等可穿戴设备、虚拟现实(Virtual Reality,VR)设备、增强现实(Augmented Reality,AR)设备、计步器、数字TV或台式计算机等。用户设备可以以特定的身份进行登录(例如管理员),从而基于该登录的身份向控制设备发送反馈信息。
在一些实施方式中,反馈信息可以是人数与受控设备之间的对应关系,如此控制设备可以直接基于该对应关系更新第一映射关系,得到第二映射关系。在另一些实施方式中,反馈信息可以包括用户对当前受控设备运行时的感受信息,例如,反馈信息可以包括当前区域温度高、当前区域亮度低等信息。在又一些实施方式中,反馈信息还可以包括用户设备当前的位置信息,从而控制设备可以基于该位置信息,确定该用户设备所属的第一区域。
为了避免受控设备频繁切换状态导致受控设备容易损坏的问题,控制设备可以在被检测对象的数量满足预设的条件的情况下,对至少部分受控设备进行控制。在一些实施例中,在基于被检测对象的数量的变化和第一映射关系,确定第一受控设备的数量发生变化的情况下,确定第一受控设备的数量。在另一些实施例中,在第一时长内被检测对象的数量没有发生变化的情况下,基于被检测对象的数量,确定第一受控设备的数量。在又一些实施例中,控制设备可以在被检测对象的数量发生变化使得第一受控设备的数量发生变化,且第一时长内变化后的被检测对象的数量没有发生变化的情况下,确定第一受控设备的数量。应理解,在得到第一受控设备的数量时,控制设备可以向第一区域中的全部受控设备中的至少部分受控设备发送控制指令,以使第一受控设备处于工作状态。例如,向一些受控设备发送第一控制指令,第一控制指令用于指示受控设备切换至非工作状态,向另一些受控设备发送第二控制指令,第二控制指令用于指示受控设备切换至工作状态。
在检测设备每隔特定时长发送第一消息时,或者,检测设备在确定被检测对象的数量发生变化的情况下发送第一消息时,控制设备可以基于接收到检测设备发送至少两个第一消息,来确定被检测对象的数量满足预设的条件,这样,控制设备需要确定被检测对象的数量的变化情况。
检测设备在被检测对象的数量的变化和第一映射关系,确定第一受控设备的数量发生变化的情况下,和/或,在第一时长内被检测对象的数量没有发生变化的情况下,向控制设备发送第一消息,这样控制设备可以基于接收的第一消息,直接确定被检测对象的数量满足预设的条件,这样,控制设备无需确定被检测对象的数量的变化情况。
通过这种方式,在人数保持一段时间(例如5分钟)不变和/或在人数产生较大的变化之后才进行上述调节,防止人数频繁变更导致空调和/或灯的频繁开关。
在一些实施方式中,为了获取检测设备与被检测对象之间的距离,本申请实施例提供了以下几种实施方式:
图3为本申请实施例提供的又一种物联网通信方法的流程示意图,如图3所示,该方法包括:
S301、检测设备确定发送射频信号的第一时刻和接收反射信号的第二时刻;反射信号为射频信号经被检测对象反射得到的信号。
S303、检测设备基于第一时刻和第二时刻,确定检测设备与被检测对象之间的距离。
在这种实施方式中,检测设备可以基于第一时刻、第二时刻以及光速来确定距离。
例如,检测设备可以为毫米波雷达,毫米波雷达能够实现近距离内的被检测对象的检测与跟踪。其原理是毫米波雷达发射特定射频信号,被检测对象会反射该射频信号,毫米波雷达通过分析被检测对象反射的射频信号(即反射信号),来检测被检测对象的存在性及其运动轨迹。在一些实施方式中,毫米波雷达可以基于反射的射频信号确定被 检测对象的生理特征。
再例如,检测设备可以为超宽带(Ultra-WideBand,UWB)生物雷达,UWB生物雷达能够实现近距离内的被检测对象的检测与跟踪。其原理是UWB生物雷达发射脉冲序列,脉冲形式的微波束照射被检测对象会产生回波,该回波中脉冲序列的重复周期发生变化,UWB生物雷达通过分析回波序列,来检测被检测对象的存在性及其运动轨迹。
在采用UWB生物雷达对被检测对象进行检测和跟踪时,可以采用以下方法:设置超宽带雷达传感器发射固定周期的脉冲,采集基带回波信号(雷达帧);使用奇异值分解(Singular Value Decomposition,SVD)算法滤除杂波;采用基带CLEAN算法提取目标散射点,并通过散射点聚合算法得到量测;利用联合概率数据关联和卡尔曼滤波实现目标状态和轨迹的更新,获取每个目标的跟踪结果。在一些实施方式中,采集基带回波信号,距离分辨率在厘米级别,且收发帧率在每秒100~200帧。在一些实施方式中,SVD算法滤除杂波包括:将连续的每m个雷达帧组成二维数据矩阵,其中m取10~20;采用SVD算法提取奇异值和奇异向量,并将前n个奇异值置零后,重组奇异向量,其中n取1~2。在一些实施方式中,基带CLEAN算法,其输入波形模板同样属于基带信号,距离分辨率与输入的基带雷达帧相同。在一些实施方式中,采用的联合概率数据关联,步骤包括选取有效量测、构建确认矩阵、拆分联合事件、计算互联概率、更新状态。
S305、检测设备将小于第一阈值的距离的数量,确定为被检测对象的数量。
S307、检测设备向控制设备发送第一消息;控制设备接收检测设备发送的第一消息。
S309、控制设备基于被检测对象的数量,确定第一区域中第一受控设备的数量。
在本申请实施例中,检测设备通过确定发送射频信号的第一时刻和接收反射信号的第二时刻,不仅能够确定检测设备与被检测对象之间的距离,还能够确定被检测对象的生理特征,从而使得控制设备确定的受控设备的运行方式更符合被检测对象的需求。
图4为本申请实施例提供的再一种物联网通信方法的流程示意图,如图4所示,该方法包括:
S401、检测设备确定向第一便携设备发送第一信息的第三时刻,确定接收第一便携设备发送的响应于第一信息的第二信息的第四时刻;第二信息包括:第一便携设备接收检测设备发送的第一信息的第五时刻,和第一便携设备向检测设备发送第二信息的第六时刻。
S403、检测设备基于第三时刻、第四时刻、第五时刻以及第六时刻,确定检测设备与被检测对象之间的距离。
在这种实施方式中,检测设备可以利用第六时刻减去第三时刻得到的第一时间长度,利用第五时刻减去第四时刻得到的第二时间长度,利用第一时间长度减去第二时间长度得到之间的变化量和光速,确定该检测设备与被检测对象之间的距离。
在这种实施方式中,检测设备可以为UWB检测设备,例如,检测设备可以为UWB读卡器。第一便携设备可以为UWB智能设备。第一便携设备向检测设备发送的第二信息中,可以包括被检测对象的生理特征。第一便携设备可以与上述的用户设备为同一设备。
用户携带有UWB智能设备时(例如UWB标签/UWB身份卡/开启了UWB标签功能的手机),使用UWB读卡器可以与UWB智能设备进行通信并测量两者间的距离(误差小于30厘米)。UWB读卡器可以与近距离内多个UWB智能设备同时通信并测距,因此可以检测一定范围内(例如半径3米的球体空间内)存在的UWB智能设备的数量,从而可以推断用户的数量(一般用户只随身携带一个UWB标签/UWB身份卡/开启了UWB标签功能的手机)。如果用户携带有多个UWB智能设备则可以将位置坐标接近的(例如50厘米以内)多个UWB智能设备判定为同一用户拥有。
S405、检测设备将小于第一阈值的距离的数量,确定为被检测对象的数量。
S407、检测设备向控制设备发送第一消息;控制设备接收检测设备发送的第一消息。
S409、控制设备基于被检测对象的数量,确定第一区域中第一受控设备的数量。
在本申请实施例中,检测设备通过向第一便携设备发送第一信息,接收第一便携设备发送的第二信息,从而能够根据第一便携设备确定第一区域中被检测对象的个数,从而确定的被检测对象的数量的方式简单且准确。进一步,第二信息中可以包括被检测对象的生理特征,从而在检测设备将被检测对象的生理特征发送到控制设备的情况下,使得控制设备能够基于被检测对象的生理特征对受控设备进行控制,从而使得控制设备确定的受控设备的运行方式更符合被检测对象的需求。
图5为本申请另一实施例提供的一种物联网通信方法的流程示意图,如图5所示,该方法包括:
S501、检测设备确定接收第二便携设备发送的第三信息的信号强度。
检测设备可以是信标基站,第二便携设备可以是蓝牙设备,蓝牙设备发送信息,信标基站可以基于蓝牙设备发送的信息的信号强度(Received Signal Strength Indication,RSSI),确定距离蓝牙设备的距离。蓝牙设备向信标基站发送的第三消息,可以是对应信标基站发送的信标的反馈消息。
S503、检测设备基于信号强度,确定检测设备与被检测对象之间的距离。
检测设备可以基于公式d=10^((abs(RSSI)-A)/(10*n))确定检测设备与被检测对象之间的距离。其中:d为计算所得的检测设备与被检测对象之间的距离;RSSI为接收信号强度(负值);A为发射端和接收端相隔1米时的信号强度;n为环境衰减因子。
在其它还实施例中,检测设备可以为网络设备,网络设备例如是4G基站、5G基站、无线保真(Wireless Fidelity,WiFi)接入点或紫峰(ZigBee)基站等,第二便携设备可以是移动终端,移动终端例如是手机、电脑、WIFI设备或ZigBee设备等。在这种实施方式中,网络设备可以基于移动终端发送的射频信号的信号强度、WiFi信号的信号强度或者Zigbee信号的信号强度,确定检测设备与被检测对象之间的距离。
为了使得检测设备确定的距离更加准确,在一些实施方式中,网络设备可以采用蓝牙信号的信号强度(即第三信息的信号强度)、射频信号的信号强度、WiFi信号的信号强度以及Zigbee信号的信号强度中的至少两者,确定检测设备与被检测对象之间的距离。检测设备可以采用取均值、中位数、众数或其它数学方式,从至少两个距离中确定一个确定且准确的距离。
S505、检测设备将小于第一阈值的距离的数量,确定为被检测对象的数量。
S507、检测设备向控制设备发送第一消息;控制设备接收检测设备发送的第一消息。
S509、控制设备基于被检测对象的数量,确定第一区域中第一受控设备的数量。
在本申请实施方式中,通过接收信号的信号强度,确定检测设备与被检测对象之间的距离,给出了另一种确定第一区域中被检测对象的数量的方式。
图6为本申请又一实施例提供的一种物联网通信方法的流程示意图,如图6所示,该方法包括:
S601、检测设备至少针对第一区域进行拍摄得到拍摄图像,对拍摄图像进行分析,确定被检测对象的数量。
S603、检测设备向控制设备发送第一消息;控制设备接收检测设备发送的第一消息。
S605、控制设备基于被检测对象的数量,确定第一区域中第一受控设备的数量。
在本申请实施例中,检测设备通过对拍摄图像进行分析得到被检测对象的数量,从 而提供了又一种确定第一区域中被检测对象的数量的方法。
为了说明第一受控设备的运行分布,图7为本申请再一实施例提供的一种物联网通信方法的流程示意图,如图7所示,该方法包括:
S701、检测设备确定第一区域中被检测对象的数量;第一区域在检测设备的探测范围内。
S703、检测设备向控制设备发送第一消息;控制设备接收检测设备发送的第一消息。
S705、控制设备划分第一区域为至少两个子区域。
S707、控制设备确定至少两个子区域的每一子区域中被检测对象的子数量。
在一些实施例中,第一消息还包括检测设备与被检测对象之间的距离。控制设备可以基于距离,确定被检测对象的位置信息;基于位置信息,确定被检测对象的子数量。
控制设备可以接收包括检测设备的至少三个设备中每一设备发送的距离,每一设备发送的距离为:每一设备检测的每一设备与被检测对象之间的距离;基于每一设备发送的距离,采用三点定位法,确定被检测对象的位置信息。
确定被检测对象的位置信息,可以是确定被检测对象中每一被检测对象的位置信息。位置信息可以是位置坐标信息,位置坐标信息可以是二维位置坐标,或者,位置坐标信息可以是三维位置坐标。
S709、控制设备基于每一子区域中被检测对象的子数量,确定与每一子区域对应的第一受控设备的子数量。
在另一些实施例中,检测设备可以包括至少两个设备,至少两个设备可以分别检测至少两个子区域的中每一子区域中被检测对象的子数量。
S711、控制设备基于第一受控设备的子数量,确定第一受控设备的分布信息。
分布信息可以包括以下至少之一:每一第一受控设备的分布位置、每一第一受控设备的标识、每一第一受控设备的运行参数等。在一些实施例中,S707之后,控制设备可以基于分布信息,对至少部分受控设备进行控制,以使与分布信息对应的第一受控设备处于工作状态。其中,对至少部分受控设备进行控制,可以是向至少部分受控设备中每一受控设备发送第一控制指令或第二控制指令。
在一种实施场景中,每一子区域对应的第一受控设备可以均匀分布。例如,第一区域为A时,控制设备可以将第一区域A划分为子区域A1、子区域A2和子区域A3,并确定子区域A1的子工作数量为5,5个受控设备可以均匀设置并将处于工作状态,确定子区域A2的子工作数量为4,4个受控设备可以均匀设置并将处于工作状态,确定子区域A3的子工作数量为6,6个受控设备可以均匀设置并将处于工作状态。
在本申请实施例中,控制设备基于被检测对象的位置信息,确定第一受控设备的分布信息;基于分布信息,控制第一受控设备运行,从而能够使得第一区域中,不同的区域有不同方式的受控设备的运行,进而能够为第一区域中不同的区域提供不同的服务。
基于前述的实施例,本申请实施例提供一种物联网通信装置,该装置包括所包括的各单元、以及各单元所包括的各模块,可以通过终端设备中的处理器来实现;当然也可通过具体的逻辑电路实现。
图8为本申请实施例提供的一种物联网通信装置的组成结构示意图,如图8所示,物联网通信装置800包括:获取单元801,用于检测设备获取第一区域中被检测对象的数量;第一区域在检测设备的探测范围内;
发送单元802,用于向控制设备发送第一消息;第一消息包括或指示被检测对象的数量,第一消息用于使控制设备基于被检测对象的数量,确定第一区域中第一受控设备的数量,第一受控设备为保持工作状态的受控设备或待切换至工作状态的受控设备。
在一些实施例中,物联网通信装置800包括:确定单元803,用于检测设备检测检测设备与被检测对象之间的距离;将小于第一阈值的距离的数量,确定为被检测对象的数量。
在一些实施例中,确定单元803,还用于检测设备至少对第一区域进行拍摄,得到第一图像;对第一图像进行分析,得到被检测对象的数量。
在一些实施例中,发送单元802,还用于获取第一映射关系;第一映射关系包括被检测对象的预设数量与第一受控设备的预设数量之间的映射关系;在基于被检测对象的数量的变化和第一映射关系,确定第一受控设备的数量发生变化的情况下,向控制设备发送第一消息。
在一些实施例中,发送单元802,还用于在第一时长内被检测对象的数量没有发生变化的情况下,向控制设备发送第一消息。
在一些实施例中,检测设备包括以下至少之一:毫米波雷达、超宽带生物雷达、超宽带检测设备、蓝牙设备、拍摄设备。
图9为本申请实施例提供的另一种物联网通信装置的组成结构示意图,如图9所示,物联网通信装置900包括:接收单元901,用于控制设备接收检测设备发送的第一消息;第一消息包括或指示与检测设备对应的第一区域中被检测对象的数量;第一区域在检测设备的探测范围内;
确定单元902,用于基于被检测对象的数量,确定第一区域中第一受控设备的数量;第一受控设备为保持工作状态的受控设备或待切换至工作状态的受控设备。
在一些实施例中,确定单元902,还用于划分第一区域为至少两个子区域;确定至少两个子区域的每一子区域中被检测对象的子数量;基于每一子区域中被检测对象的子数量,确定与每一子区域对应的第一受控设备的子数量;基于第一受控设备的子数量,确定第一受控设备的分布信息。
在一些实施例中,第一消息还包括检测设备与被检测对象之间的距离;确定单元902,还用于基于距离,确定被检测对象的位置信息;基于位置信息,确定被检测对象的子数量。
在一些实施例中,确定单元902,还用于获取第一映射关系;第一映射关系包括被检测对象的预设数量与第一受控设备的预设数量之间的映射关系;基于被检测对象的数量和第一映射关系,确定第一受控设备的数量。
在一些实施例中,接收单元901,还用于接收用户设备发送的反馈信息;反馈信息包括或指示对第一映射关系的调整信息;
确定单元902,还用于基于反馈信息,将第一映射关系更新为第二映射关系;基于被检测对象的数量和第二映射关系,确定第一受控设备的数量。
在一些实施例中,确定单元902,还用于在基于被检测对象的数量的变化和第一映射关系,确定第一受控设备的数量发生变化的情况下,确定第一受控设备的数量。
在一些实施例中,确定单元902,还用于确定单元,还用于在第一时长内被检测对象的数量没有发生变化的情况下,基于被检测对象的数量,确定第一受控设备的数量。
以上装置实施例的描述,与上述方法实施例的描述是类似的,具有同方法实施例相似的有益效果。对于本申`请装置实施例中未披露的技术细节,请参照本申请方法实施例的描述而理解。
需要说明的是,本申请实施例中,如果以软件功能模块的形式实现上述的物联网通信方法,并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指 令用以使得一台检测设备/控制设备执行本申请各个实施例所述方法的全部或部分。
图10为本申请实施例提供的一种物联网通信设备的硬件实体示意图,如10所示,该物联网通信设备1000的硬件实体包括:处理器1001和存储器1002,其中,存储器1002存储有可在处理器1001上运行的计算机程序,处理器1001执行程序时实现上述任一实施例的检测设备执行的方法中的步骤;或者,处理器1001执行程序时实现上述任一实施例的控制设备执行的方法中的步骤。
本申请实施例提供一种计算机存储介质,计算机存储介质存储有一个或者多个程序,一个或者多个程序可被一个或者多个处理器执行,以实现上述任一实施例的检测设备执行的方法中的步骤;或者,以实现上述任一实施例的控制设备执行的方法中的步骤。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器或存储空间可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是寄存器,随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
这里需要指出的是:以上物联网通信设备、计算机存储介质、芯片和计算机程序产品实施例的描述,与上述方法实施例的描述是类似的,具有同方法实施例相似的有益效 果。对于本申请物联网通信设备、计算机存储介质、芯片和计算机程序产品实施例中未披露的技术细节,请参照本申请方法实施例的描述而理解。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”或“本申请实施例”或“前述实施例”或“一些实施例”或“一些实施方式”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“一个实施例”或“一实施例”或“本申请实施例”或“前述实施例”或“一些实施例”或“一些实施方式”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
在未做特殊说明的情况下,检测设备/控制设备执行本申请实施例中的任一步骤,可以是检测设备/控制设备的处理器执行该步骤。除非特殊说明,本申请实施例并不限定检测设备/控制设备执行下述步骤的先后顺序。另外,不同实施例中对数据进行处理所采用的方式可以是相同的方法或不同的方法。还需说明的是,本申请实施例中的任一步骤是检测设备/控制设备可以独立执行的,即检测设备/控制设备执行下述实施例中的任一步骤时,可以不依赖于其它步骤的执行。在本申请所提供的几个实施例中,应该理解到,所揭露的检测设备/控制设备和方法,可以通过其它的方式实现。以上所描述的检测设备/控制设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,资源设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
本申请所提供的几个方法实施例中所揭露的方法,在不冲突的情况下可以任意组合,得到新的方法实施例。本申请所提供的几个产品实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的产品实施例。本申请所提供的几个方法或检测设备/控制设备实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的方法实施例或检测设备/控制设备实施例。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储资源设备、只读存储器(Read Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。
或者,本申请上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得检测设备/控制设备执行本申请各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储资源设备、ROM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
工业实用性
本申请实施例提供了一种物联网通信方法、装置、设备及计算机存储介质,采用本申请中的物联网通信方法的方案,提高了受控设备工作的自动化程度,还使得受控设备的工作数量能够根据被检测对象的数量自适应调整,从而工作的受控设备的数量能够满足被检测对象的需求。

Claims (28)

  1. 一种物联网通信方法,包括:
    检测设备获取第一区域中被检测对象的数量;所述第一区域在所述检测设备的探测范围内;
    向控制设备发送第一消息;所述第一消息包括或指示所述被检测对象的数量,所述第一消息用于使所述控制设备基于所述被检测对象的数量,确定所述第一区域中第一受控设备的数量,所述第一受控设备为保持工作状态的受控设备或待切换至工作状态的受控设备。
  2. 根据权利要求1所述的方法,其中,所述检测设备获取第一区域中被检测对象的数量,包括:
    所述检测设备检测所述检测设备与所述被检测对象之间的距离;
    将小于第一阈值的所述距离的数量,确定为所述被检测对象的数量。
  3. 根据权利要求1所述的方法,其中,所述检测设备获取第一区域中被检测对象的数量,包括:
    所述检测设备至少对所述第一区域进行拍摄,得到第一图像;
    对所述第一图像进行分析,得到所述被检测对象的数量。
  4. 根据权利要求1至3任一项所述的方法,其中,所述向控制设备发送第一消息,包括:
    获取第一映射关系;所述第一映射关系包括所述被检测对象的预设数量与所述第一受控设备的预设数量之间的映射关系;
    在基于所述被检测对象的数量的变化和所述第一映射关系,确定所述第一受控设备的数量发生变化的情况下,向所述控制设备发送所述第一消息。
  5. 根据权利要求1至3任一项所述的方法,其中,所述向控制设备发送第一消息,包括:
    在第一时长内所述被检测对象的数量没有发生变化的情况下,向所述控制设备发送所述第一消息。
  6. 根据权利要求1至3任一项所述的方法,其中,所述检测设备包括以下至少之一:毫米波雷达、超宽带生物雷达、超宽带检测设备、蓝牙设备、拍摄设备。
  7. 一种物联网通信方法,包括:
    控制设备接收检测设备发送的第一消息;所述第一消息包括或指示与所述检测设备对应的第一区域中被检测对象的数量;所述第一区域在所述检测设备的探测范围内;
    基于所述被检测对象的数量,确定所述第一区域中第一受控设备的数量;所述第一受控设备为保持工作状态的受控设备或待切换至工作状态的受控设备。
  8. 根据权利要求7所述的方法,其中,所述方法还包括:
    划分所述第一区域为至少两个子区域;
    确定所述至少两个子区域的每一子区域中被检测对象的子数量;
    基于所述每一子区域中被检测对象的子数量,确定与所述每一子区域对应的第一受控设备的子数量;
    基于所述第一受控设备的子数量,确定所述第一受控设备的分布信息。
  9. 根据权利要求8所述的方法,其中,所述第一消息还包括所述检测设备与所述被检测对象之间的距离;所述确定所述至少两个子区域的每一子区域中被检测对象的子数量,包括:
    基于所述距离,确定所述被检测对象的位置信息;
    基于所述位置信息,确定所述被检测对象的子数量。
  10. 根据权利要求7至9任一项所述的方法,其中,所述基于所述被检测对象的数量,确定所述第一区域中第一受控设备的数量,包括:
    获取第一映射关系;所述第一映射关系包括所述被检测对象的预设数量与所述第一受控设备的预设数量之间的映射关系;
    基于所述被检测对象的数量和所述第一映射关系,确定所述第一受控设备的数量。
  11. 根据权利要求10所述的方法,其中,所述方法还包括:
    接收用户设备发送的反馈信息;所述反馈信息包括或指示对所述第一映射关系的调整信息;
    基于所述反馈信息,将所述第一映射关系更新为第二映射关系;
    基于所述被检测对象的数量和所述第二映射关系,确定所述第一受控设备的数量。
  12. 根据权利要求10所述的方法,其中,所述基于所述被检测对象的数量和所述第一映射关系,确定所述第一受控设备的数量,包括:
    在基于所述被检测对象的数量的变化和所述第一映射关系,确定所述第一受控设备的数量发生变化的情况下,确定所述第一受控设备的数量。
  13. 根据权利要求7至9任一项所述的方法,其中,所述基于所述被检测对象的数量,确定所述第一区域中第一受控设备的数量,包括:
    在第一时长内所述被检测对象的数量没有发生变化的情况下,基于所述被检测对象的数量,确定所述第一受控设备的数量。
  14. 一种物联网通信装置,包括:
    获取单元,用于检测设备获取第一区域中被检测对象的数量;所述第一区域在所述检测设备的探测范围内;
    发送单元,用于向控制设备发送第一消息;所述第一消息包括或指示所述被检测对象的数量,所述第一消息用于使所述控制设备基于所述被检测对象的数量,确定所述第一区域中第一受控设备的数量,所述第一受控设备为保持工作状态的受控设备或待切换至工作状态的受控设备。
  15. 根据权利要求14所述的装置,其中,所述装置还包括:
    确定单元,用于所述检测设备检测所述检测设备与所述被检测对象之间的距离;将小于第一阈值的所述距离的数量,确定为所述被检测对象的数量。
  16. 根据权利要求14所述的装置,其中,
    所述确定单元,还用于所述检测设备至少对所述第一区域进行拍摄,得到第一图像;对所述第一图像进行分析,得到所述被检测对象的数量。
  17. 根据权利要求14至16任一项所述的装置,其中,
    所述发送单元,还用于获取第一映射关系;所述第一映射关系包括所述被检测对象的预设数量与所述第一受控设备的预设数量之间的映射关系;在基于所述被检测对象的数量的变化和所述第一映射关系,确定所述第一受控设备的数量发生变化的情况下,向所述控制设备发送所述第一消息。
  18. 根据权利要求14至16任一项所述的装置,其中,
    所述发送单元,还用于在第一时长内所述被检测对象的数量没有发生变化的情况下,向所述控制设备发送所述第一消息。
  19. 根据权利要求14至16任一项所述的装置,其中,所述检测设备包括以下至少之一:毫米波雷达、超宽带生物雷达、超宽带检测设备、蓝牙设备、拍摄设备。
  20. 一种物联网通信装置,包括:
    接收单元,用于控制设备接收检测设备发送的第一消息;所述第一消息包括或指示与所述检测设备对应的第一区域中被检测对象的数量;所述第一区域在所述检测设备的探测范围内;
    确定单元,用于基于所述被检测对象的数量,确定所述第一区域中第一受控设备的数量;所述第一受控设备为保持工作状态的受控设备或待切换至工作状态的受控设备。
  21. 根据权利要求20所述的装置,其中,
    所述确定单元,还用于划分所述第一区域为至少两个子区域;确定所述至少两个子区域的每一子区域中被检测对象的子数量;基于所述每一子区域中被检测对象的子数量,确定与所述每一子区域对应的第一受控设备的子数量;基于所述第一受控设备的子数量,确定所述第一受控设备的分布信息。
  22. 根据权利要求21所述的装置,其中,所述第一消息还包括所述检测设备与所述被检测对象之间的距离;
    所述确定单元,还用于基于所述距离,确定所述被检测对象的位置信息;基于所述位置信息,确定所述被检测对象的子数量。
  23. 根据权利要求20至22任一项所述的装置,其中,
    所述确定单元,还用于获取第一映射关系;所述第一映射关系包括所述被检测对象的预设数量与所述第一受控设备的预设数量之间的映射关系;基于所述被检测对象的数量和所述第一映射关系,确定所述第一受控设备的数量。
  24. 根据权利要求23所述的装置,其中,
    所述接收单元,还用于接收用户设备发送的反馈信息;所述反馈信息包括或指示对所述第一映射关系的调整信息;
    所述确定单元,还用于基于所述反馈信息,将所述第一映射关系更新为第二映射关系;基于所述被检测对象的数量和所述第二映射关系,确定所述第一受控设备的数量。
  25. 根据权利要求23所述的装置,其中,
    所述确定单元,还用于在基于所述被检测对象的数量的变化和所述第一映射关系,确定所述第一受控设备的数量发生变化的情况下,确定所述第一受控设备的数量。
  26. 根据权利要求20至22任一项所述的装置,其中,
    所述确定单元,还用于在第一时长内所述被检测对象的数量没有发生变化的情况下,基于所述被检测对象的数量,确定所述第一受控设备的数量。
  27. 一种物联网通信设备,包括:存储器和处理器,
    所述存储器存储有可在处理器上运行的计算机程序,
    所述处理器执行所述程序时实现权利要求1至6任一项所述方法中的步骤,或者,所述处理器执行所述程序时实现权利要求7至13任一项所述方法中的步骤。
  28. 一种计算机存储介质,所述计算机存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现权利要求1至6任一项所述方法中的步骤;
    或者,所述一个或者多个程序可被一个或者多个处理器执行,以实现权利要7至13任一项所述方法中的步骤。
PCT/CN2021/079307 2020-09-04 2021-03-05 一种物联网通信方法、装置、设备及计算机存储介质 WO2022048123A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010922305.3 2020-09-04
CN202010922305.3A CN114157521A (zh) 2020-09-04 2020-09-04 一种物联网通信方法、装置、设备及计算机存储介质

Publications (1)

Publication Number Publication Date
WO2022048123A1 true WO2022048123A1 (zh) 2022-03-10

Family

ID=80460588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079307 WO2022048123A1 (zh) 2020-09-04 2021-03-05 一种物联网通信方法、装置、设备及计算机存储介质

Country Status (2)

Country Link
CN (1) CN114157521A (zh)
WO (1) WO2022048123A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459994A (zh) * 2007-12-11 2009-06-17 卫勇 一种照明自动控制系统
WO2013080809A1 (en) * 2011-11-29 2013-06-06 Ricoh Company, Limited Device control system, device control method, and computer-readable recording medium
CN106325250A (zh) * 2016-09-12 2017-01-11 珠海格力电器股份有限公司 基于信息检测的电器联动控制方法及系统
CN107168092A (zh) * 2017-07-07 2017-09-15 郑文坚 基于阵列远红外的智慧节能控制系统
CN208579472U (zh) * 2017-12-29 2019-03-05 广州市互邻空调设备有限公司 基于人体感应的空调集中智能控制系统
CN208580200U (zh) * 2018-07-31 2019-03-05 北京博锐尚格节能技术股份有限公司 监控装置及监控系统
CN109842984A (zh) * 2019-03-07 2019-06-04 北京交通大学 智慧教室照明控制系统及智慧教室照明自适应控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459994A (zh) * 2007-12-11 2009-06-17 卫勇 一种照明自动控制系统
WO2013080809A1 (en) * 2011-11-29 2013-06-06 Ricoh Company, Limited Device control system, device control method, and computer-readable recording medium
CN106325250A (zh) * 2016-09-12 2017-01-11 珠海格力电器股份有限公司 基于信息检测的电器联动控制方法及系统
CN107168092A (zh) * 2017-07-07 2017-09-15 郑文坚 基于阵列远红外的智慧节能控制系统
CN208579472U (zh) * 2017-12-29 2019-03-05 广州市互邻空调设备有限公司 基于人体感应的空调集中智能控制系统
CN208580200U (zh) * 2018-07-31 2019-03-05 北京博锐尚格节能技术股份有限公司 监控装置及监控系统
CN109842984A (zh) * 2019-03-07 2019-06-04 北京交通大学 智慧教室照明控制系统及智慧教室照明自适应控制方法

Also Published As

Publication number Publication date
CN114157521A (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
JP6765414B2 (ja) Bluetooth Low Energy迅速入室システム及び方法
EP3404504B1 (en) Method and device for drawing room layout
CN111736147B (zh) 检测设备、检测方法及装置、存储介质
KR101898101B1 (ko) Iot 상호작용 시스템
KR20160049759A (ko) 주변 기기 탐색 방법 및 그 전자 장치
KR102481486B1 (ko) 오디오 제공 방법 및 그 장치
KR102328673B1 (ko) 로케이션 기반 스마트홈 제어 방법 및 시스템
US20150134145A1 (en) Method and apparatus for controlling movement of medical device
DE102022134316A1 (de) UWB-Automatisierungserfahrungssteuerung
Cinefra An adaptive indoor positioning system based on Bluetooth Low Energy RSSI
CN113870390A (zh) 目标标注处理方法、装置、电子设备及可读存储介质
CN109507904B (zh) 家居设备管理方法、服务器、及管理系统
WO2022048123A1 (zh) 一种物联网通信方法、装置、设备及计算机存储介质
KR20210000974A (ko) 영역(zone)을 형성하여 전자 장치에 관한 서비스를 제공하는 방법 및 그 장치
CN114125719B (zh) 一种移动轨迹生成方法和装置
US20230171298A1 (en) Digital Media Playback Based on UWB Radios
US20220113401A1 (en) Radar-based localization from interference
CN115220024A (zh) 对象检测方法、装置、电子设备以及存储介质
US20230093394A1 (en) Detection fields of view
CN114466304A (zh) 智能家居设备的控制方法、移动终端及智能家居平台
WO2023071484A1 (zh) 一种基于人体感知的自动控制方法、电子设备及系统
US11990012B2 (en) Object contextual control based on UWB radios
EP4062386B1 (en) Allocating different tasks to a plurality of presence sensor systems
WO2023071498A1 (zh) 一种基于人体感知的自动控制方法、第一电子设备及系统
WO2024061062A1 (zh) 通信方法、电子设备,以及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21863194

Country of ref document: EP

Kind code of ref document: A1