WO2022045109A1 - 崩壊性単細胞性紅藻の製造方法、及び崩壊性単細胞性紅藻用培地 - Google Patents

崩壊性単細胞性紅藻の製造方法、及び崩壊性単細胞性紅藻用培地 Download PDF

Info

Publication number
WO2022045109A1
WO2022045109A1 PCT/JP2021/030931 JP2021030931W WO2022045109A1 WO 2022045109 A1 WO2022045109 A1 WO 2022045109A1 JP 2021030931 W JP2021030931 W JP 2021030931W WO 2022045109 A1 WO2022045109 A1 WO 2022045109A1
Authority
WO
WIPO (PCT)
Prior art keywords
disintegrating
cells
medium
red algae
unicellular red
Prior art date
Application number
PCT/JP2021/030931
Other languages
English (en)
French (fr)
Inventor
夢 國分
岳 江原
進也 宮城島
俊亮 廣岡
崇之 藤原
Original Assignee
Dic株式会社
大学共同利用機関法人情報・システム研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社, 大学共同利用機関法人情報・システム研究機構 filed Critical Dic株式会社
Priority to JP2022527679A priority Critical patent/JP7233667B2/ja
Publication of WO2022045109A1 publication Critical patent/WO2022045109A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor

Definitions

  • the invention relates to a method for producing a disintegrating unicellular red algae and a medium for disintegrating unicellular red algae.
  • microalgae Since microalgae have a high carbon dioxide fixation capacity compared to land plants, and because their habitat does not compete with agricultural products, some species are mass-cultured to feed, functional foods, and cosmetic materials. It is used industrially as such. When microalgae are used industrially, it is desirable that they are microalgaes that can be mass-cultured outdoors from the viewpoint of cost. However, in order to be a microalgae that can be mass-cultured outdoors, it must be resistant to environmental changes (light, temperature, etc.), can be cultivated under conditions where other organisms cannot survive, and can grow to high densities. Conditions such as that are required.
  • unicellular red algae preferentially grow in sulfuric acid acidic hot springs. Such unicellular red algae are characterized in that they can be cultivated in an environment in which other organisms such as high salt concentration, high temperature, and low pH are difficult to grow. Therefore, such unicellular red algae are considered to be suitable for industrial use.
  • Patent Document 1 describes that in the algae of Cyanidiophyceae, which are unicellular red algae, disintegrating cells having a strong cell wall could be produced from non-disintegrating cells having a strong cell wall. There is.
  • Patent Document 1 With the method described in Patent Document 1, it is difficult to stably maintain disintegrating cells produced from non-disintegrating cells for a long period of time. Therefore, a technique capable of stably maintaining disintegrating cells for a long period of time is required.
  • the present invention includes the following aspects.
  • a method for producing a disintegrating unicellular red alga which comprises culturing unicellular red algae in a medium containing an osmotic pressure regulator of 80 mM or more.
  • a method for producing a disintegrating unicellular red alga which comprises culturing unicellular red algae cells in a medium having an osmotic pressure of 150 mOsm / kg or more.
  • [4] The method for producing a disintegrating unicellular red alga according to any one of [1] to [3], wherein the unicellular red alga is a non-disintegrating cell.
  • [5] The method for producing a disintegrating unicellular red alga according to [4], wherein the unicellular red alga is a polyploid cell.
  • [6] The method for producing a disintegrating single-celled red alga according to any one of [1] to [3], wherein the single-celled red alga is a disrupting cell.
  • the method for producing a disintegrating unicellular red alga according to [6] which is a method for maintaining a disintegrating unicellular red algae cell as a disintegrating cell.
  • a method for producing a disintegrating unicellular red alga which can stably maintain disintegrating cells, and a medium for disintegrating unicellular red algae.
  • FIG. 1 An example of a disintegrating cell colony resulting from a non-disintegrating unicellular red algae cell is shown.
  • the photograph of the agar plate in which the disintegrating cells of CCCryo127-00 strain were subcultured and cultured in 18% sorbitol + Gross 1.5% agar medium is shown.
  • the photograph of the plate which cultured the disintegrating cells of CCCryo127-00 strain for one month in 18% sorbitol + Gross 1.5% agar medium is shown.
  • the photograph of the plate which cultured the disintegrating cells of CCCryo127-00 strain for 2 weeks in 1% sorbitol + Gross 1.5% agar medium is shown. Restoration to non-disintegrating cells was confirmed.
  • disintegrating cells of CCCryo127-00 strain proliferated in 18% sorbitol + Gross 1.5% agar medium is shown. The photo on the left is the plate at the start of culture, and the photo on the right is the plate after 3 weeks of culture.
  • An example in which disintegrating cells were produced from a non-disintegrating CCCryo127-00 strain on 18% sorbitol + Gloss 1.5% agar medium is shown. Disintegrating cells were also maintained on the inoculated agar medium.
  • An example of growing disintegrating cells of CCCryo127-00 strain in 18% sorbitol + Gross liquid medium is shown.
  • isolated means a state isolated from the natural state.
  • a first aspect of the present invention is a method for producing a disintegrating unicellular red alga, which comprises culturing unicellular red algae cells in a medium containing an osmotic pressure regulator of 80 mM or more.
  • the term "disintegrating cell” means a cell that can be easily destroyed even by mild treatment because it does not have a strong cell wall.
  • Non-disintegrating cell means a cell that cannot be easily destroyed by mild treatment, for example because it has a strong cell wall. Examples of the mild treatment referred to here include a neutralization treatment, a hypotonic treatment, a freeze-thaw treatment, and a surfactant treatment.
  • An object of the present invention is to provide a method for producing a disintegrating unicellular red alga that can stably maintain a disintegrating cell.
  • the disintegrating cells when the disintegrating cells can be maintained for more than 2 weeks, it can be determined that "the disintegrating cells can be stably maintained”.
  • Unicellular red algae refers to algae belonging to the phylum Red algae (Rhodophyta), which are unicellular. Examples of single-celled red algae include Cyanidiophyceae, Stylonematophyceae, Porphyridiophyceae, and Rhodellophyceae. Among these, Cyanidiophyceae is preferable because it is easy to stably maintain disintegrating cells.
  • the genus Cyanidioschyzon, the genus Cyanidio, and the genus Galdieria are known as Cyanidiophyceae.
  • the genera Sianidium and Garderia exist as non-destructive cells in nature.
  • the genus Cyanidium and the genus Garderia are preferable, and the genus Garderia is more preferable.
  • the genus Garderia includes, for example, G.I. sulphuraria, G.M. Partita, G.M. daedala, G.M. Examples include, but are not limited to, maxima and the like.
  • G. Sulfuraria is particularly preferred.
  • Examples of the genus Cianidium include C.I. Caldarium, C.I. sp. Examples include, but are not limited to, Monte Rotaro.
  • Examples of the algae strain of Cyanidiophyceae include those shown in FIG. 10 of International Publication No. 2019/107385.
  • the unicellular red algae cells used at the start of culture may be non-disintegrating cells or disintegrating cells.
  • the non-disintegrating cell may be a polyploid (eg, diploid) cell.
  • disintegrating cells may be generated during the culture.
  • the method of this embodiment includes a method for producing a disintegrating unicellular red alga from non-disintegrating unicellular red algae cells.
  • the method of this embodiment includes a method of maintaining a disintegrating unicellular red algae cell.
  • the disintegrating unicellular red algae cells proliferate as disintegrating cells during culture. Therefore, the method of this embodiment includes a method of growing a disintegrating unicellular red alga.
  • the medium used in the method of this embodiment is a medium containing 80 mM or more of an osmotic pressure adjusting agent.
  • "Osmotic pressure regulator” refers to a chemical substance that can adjust the osmotic pressure.
  • the osmotic pressure adjusting agent is not particularly limited as long as it is a chemical substance whose osmotic pressure can be adjusted by adding it to the medium.
  • Examples of the osmotic pressure adjusting agent include sugars, sugar alcohols, amino acids, metal salts, ureas, proteins, betaines, inositol, polysaccharides and the like. Among these, sugars, sugar alcohols, amino acids, and metal salts are preferable.
  • sugars include dihydroxyacetone, glyceraldehyde, elittlerose, erythrose, treose, ribulose, xylrose, ribose, arabinose, xylose, liquisource, deoxyribose, psicose, fructose, sucrose, tagatose, allose, slaughterose, glucose and mannose. , Growth, idose, galactose, tarose, fucose, fructose, ramnorse, sedhepturose and other monosaccharides (either D-form or L-form, or a mixture of D-form and L-form); sucrose, lactose.
  • Sugars such as nigerotriose, maltotriose, meregitos, maltotriulose, raffinose, kestose; tetrasaccharides such as nistose, nigerotetraose, stakiose; and lactose-fructose oligosaccharides, lactosucrose, maltooligosaccharides, isomaltooligo Examples thereof include, but are not limited to, sugars, genthio-oligosaccharides, nigerooligosaccharides, fructose-oligosaccharides, galactooligosaccharides, mannan oligosaccharides, xylooligosaccharides, soybean oligosaccharides and the like.
  • Monosaccharides include dihydroxyacetone, glyceraldehyde, erythrose, erythrose, treose, ribulose, xylrose, ribose, arabinose, xylose, lyxose, deoxyribose, psicose, fructose, sorbose, tagatose, allose, altrose, glucose, mannose, Growth, idose, galactose, tarose, fucose, fuclos, ramnorse, sedoheptulose are preferred, dihydroxyacetone, glyceraldehyde, elittlerose, erythrose, ribulose, ribose, arabinose, xylose, deoxyribose, fructose, glucose, mannose, galactose, or sedoheptulose.
  • Disaccharides include sucrose, lacturose, lactose, maltose, trehalose, cellobiose, cozybiose, nigerose, isomaltose, ⁇ , ⁇ -trehalose, ⁇ , ⁇ -trehalose, sophorose, laminaribiose, gentiobiose, turanoth, malturose, palatinose, Genthioviulose, Mannoviose, Meribiose, Meribiulose, Neolactos, Galac sucrose, Syrabios, Neohesperidos, Lucinose, Lucinulose, Visianose, Xylobiose, Primeberose, Trehalosemin, Martinol, Cerobionic acid, Lactosamine, Lactosediamine, Lactobionic acid. , Hyalobiuronic acid, or sucrose is preferred, sucrose, lacturose, lactose, sucrose, trehalose, or cell
  • sugar alcohol examples include trivalent sugar alcohols such as glycerol; tetravalent sugar alcohols such as erythritol, D-trateol, and L-treitol; D-arabinitol, L-arabinitol, xylitol, rivitol, adonitol and the like.
  • Pentavalent sugar alcohols such as D-iditol, galactitol, darsitol, D-glucitol, sorbitol, mannitol; Examples include, but are not limited to, octavalent sugar alcohols such as octitol; 9-valent sugar alcohols such as isomalt, lactitol, and martitol; and mixtures of sugar alcohols such as HSH and reduced water candy sugar.
  • sugar alcohol a trivalent sugar alcohol, a tetravalent sugar alcohol, a pentavalent sugar alcohol, a hexavalent sugar alcohol, a nine-valent sugar alcohol, or a mixture of sugar alcohols is preferable, and a trivalent sugar alcohol or a mixture of sugar alcohols is preferable. Valuable sugar alcohols are more preferred, and hexavalent sugar alcohols are even more preferred.
  • sugar alcohol glycerol, erythritol, xylitol, sorbitol, mannitol, isomalt, lactitol, maltitol, HSH, or reduced water candy are preferable, and mannitol or sorbitol is more preferable.
  • the amino acid may be either D-form or L-form, or may be a mixture of D-form and L-form.
  • the amino acid may be any of ⁇ -amino acid, ⁇ -amino acid, ⁇ -amino acid, and ⁇ -amino acid.
  • Amino acids include, for example, alanine, aspartic acid, aspartic acid, cysteine, glutamic acid, glutamine, phenylalanine, glycine, histidine, isoleucine, lysine, leucine, methionine, proline, arginine, serine, treonine, serenocysteine, valine, tryptophan, tyrosine, 2-aminoadipic acid, 3-aminoadipic acid, 2-aminobutanoic acid, 2,4-diaminobutanoic acid, 2-aminohexanoic acid, 6-aminohexanoic acid, ⁇ -alanine, 2-aminopentanoic acid, 2,3 -Diaminopropanoic acid, 2-aminopimeric acid, 2,6-diaminopimeric acid, citrulin, cysteine acid, 4-carboxyglutamic acid, 5-oxoproline, pyroglutamic acid,
  • Amino acids are preferably alanine, aspartic acid, aspartic acid, cysteine, glutamic acid, glutamine, phenylalanine, glycine, histidine, isoleucine, lysine, leucine, methionine, proline, arginine, serine, treonine, selenocysteine, valine, tryptophan, or tyrosine.
  • Glycine, proline, or arginine are more preferred.
  • metal salts examples include alkali metals (sodium, potassium, etc.) or alkaline earth metals (magnesium, calcium, etc.) and inorganic acids (hydrogen, sulfuric acid, carbonic acid, sulfite, nitrate, etc.) or organic acids (lactic acid, succinic acid, etc.). , Acetic acid, etc.) and salts.
  • alkali metals sodium, potassium, etc.
  • alkaline earth metals magnesium, calcium, etc.
  • inorganic acids hydroogen, sulfuric acid, carbonic acid, sulfite, nitrate, etc.
  • organic acids lactic acid, succinic acid, etc.
  • Acetic acid, etc. a salt of an alkali metal or an alkaline earth metal and an inorganic acid
  • potassium chloride, sodium sulfate or the like is more preferable
  • potassium chloride is further preferable.
  • the osmotic pressure adjusting agent is preferably at least one selected from the group consisting of sugars, sugar alcohols, and amino acids because it is easy to add to the medium to adjust the osmotic pressure.
  • Suitable sugars include glucose and sucrose.
  • Suitable sugar alcohols include hexavalent sugar alcohols (eg, mannitol, sorbitol).
  • Suitable amino acids include glycine, proline and arginine.
  • the osmotic pressure adjusting agent may be used alone or in combination of two or more.
  • the medium is not particularly limited as long as it contains 80 mM or more of the osmotic pressure adjusting agent.
  • the medium can be prepared, for example, by adding an osmotic pressure adjusting agent to a medium known as a medium for unicellular algae so as to be 80 mM or more.
  • the medium for single-celled algae is not particularly limited, and examples thereof include an inorganic salt medium containing a nitrogen source, a phosphorus source, and trace elements (zinc, boron, cobalt, copper, manganese, molybdenum, iron, etc.).
  • examples of the nitrogen source include ammonium salts, nitrates, nitrites and the like
  • examples of the phosphorus source include phosphates and the like.
  • Examples of such a medium include Gross medium, 2 ⁇ Allen medium (Allen MB. Arch. Microbiol. 1959 32: 270-277.), M-Alllen medium (Minoda A et al. Plant Cell Physiol. 2004 45: 667-71.), MA2 medium (Ohnuma M et al. Plant Cell Physiol. 2008 Jan; 49 (1): 117-20.), Modified M-Alllen medium, etc., but is not limited thereto.
  • the single-celled red algae may be autotrophically cultured under light irradiation, or may be heterotrophically cultured in the dark.
  • a carbon source (glucose or the like) may be added to the above-mentioned inorganic salt medium.
  • the concentration of the osmotic pressure regulator in the medium is not particularly limited as long as it is 80 mM or more. By setting the concentration of the osmotic pressure adjusting agent to 80 mM or more, disintegrating cells can be stably maintained regardless of the type of the osmotic pressure adjusting agent.
  • the concentration of the osmotic pressure regulator is 100 mM or more, 110 mM or more, 120 mM or more, 130 mM or more, 140 mM or more, 150 mM or more, 160 mM or more, 170 mM or more, 180 mM or more, 190 mM or more, 200 mM or more, 210 mM or more, 220 mM or more, 230 mM or more, 240 mM or more, 250 mM or more, 260 mM or more, 270 mM or more, 280 mM or more, 290 mM or more, 300 mM or more, 310 mM or more, 320 mM or more, 330 mM or more, 340 mM or more, 350 mM or more, 360 mM or more, 370 mM or more, 380 mM or more, 390 mM or more, or 400 mM It may be the above.
  • the upper limit concentration of the osmotic pressure adjusting agent is not particularly limited and may be a limit value that can be dissolved in the medium. From the viewpoint of cell growth rate, the upper limit concentration of the osmotic pressure regulator is, for example, 2M or less, 1.5M or less, 1.4M or less, 1.3M or less, 1.2M or less, 1.1M or less, or 1M. It can be as follows. The lower limit value and the upper limit value can be arbitrarily combined. Examples of the concentration range of the osmotic pressure adjusting agent in the medium include 80 mM to 2 M.
  • the concentration range of the osmotic pressure adjusting agent is, for example, preferably 100 mM to 1.5 M, more preferably 200 mM to 1.4 M, further preferably 300 mM to 1.3 M, and particularly preferably 400 mM to 1.3 M.
  • the concentration of the osmotic pressure regulator in the medium is the concentration before the start of culture.
  • the total content of the two or more kinds of osmotic pressure adjusting agents may be 80 mM or more. The same applies to the range exemplified as the concentration of the osmotic pressure adjusting agent.
  • the glucose concentration in the medium includes, for example, 200 mM to 2 M, preferably 250 mM to 1.7 M, and more preferably 270 mM to 1.5 M.
  • the glucose concentration in the medium is preferably 4 to 40% by mass, more preferably 5 to 30% by mass, based on the total mass (100% by mass) of the medium.
  • the sucrose concentration in the medium includes, for example, 80 mM to 1.1 M, preferably 80 mM to 800 mM, and more preferably 80 mM to 600 M.
  • the concentration of sucrose in the medium is preferably 2 to 40% by mass, more preferably 3 to 30% by mass, still more preferably 3 to 20% by mass, based on the total mass (100% by mass) of the medium.
  • the osmotic pressure adjusting agent is glycerol
  • the glycerol concentration in the medium may be, for example, 200 mM to 800 mM, preferably 300 mM to 600 mM.
  • the glycerol concentration in the medium is preferably 3 to 6% by mass with respect to the total mass (100% by mass) of the medium.
  • the mannitol concentration in the medium includes, for example, 180 mM to 1.5 M, preferably 200 mM to 1.2 M, and more preferably 250 mM to 1 M. Alternatively, 4 to 20% by mass is preferable, and 5 to 18% by mass is more preferable.
  • the sorbitol concentration in the medium includes, for example, 200 mM to 2 M, preferably 400 mM to 1.5 M, and more preferably 430 mM to 1.5 M.
  • the sorbitol concentration in the medium is preferably 5 to 40% by mass, more preferably 8 to 27% by mass, based on the total mass (100% by mass) of the medium.
  • the glycine concentration in the medium includes, for example, 100 mM to 2 M, preferably 120 mM to 1.5 M, and more preferably 130 mM to 1 M.
  • the glycine concentration in the medium is preferably 0.5 to 10% by mass, more preferably 1 to 8% by mass, based on the total mass (100% by mass) of the medium.
  • the proline concentration in the medium includes, for example, 80 mM to 2 M, preferably 500 mM to 1.5 M, and more preferably 600 mM to 1.5 M.
  • the proline concentration in the medium is preferably 1 to 20% by mass, more preferably 7 to 10% by mass, based on the total mass (100% by mass) of the medium.
  • the osmotic pressure adjusting agent is arginine
  • the arginine concentration in the medium includes, for example, 20 mM to 2 M, preferably 30 mM to 1.5 M, and more preferably 50 mM to 1 M.
  • the arginine concentration in the medium is preferably 0.5 to 30% by mass, more preferably 1 to 20% by mass, based on the total mass (100% by mass) of the medium.
  • the potassium chloride concentration in the medium includes, for example, 50 mM to 1.5 M, preferably 100 mM to 1 M, and more preferably 130 mM to 500 mM.
  • the potassium chloride concentration in the medium is preferably 0.5 to 10% by mass, more preferably 1 to 5% by mass, based on the total mass (100% by mass) of the medium.
  • the medium preferably has an osmotic pressure of 150 mOsm / kg or more.
  • osmotic pressure of the medium By setting the osmotic pressure of the medium to 150 mOsm / kg or more, disintegrating cells can be stably maintained regardless of the type of osmotic pressure adjusting agent.
  • the osmotic pressure is 200 mOsm / kg or more, 210 mOsm / kg or more, 220 mOsm / kg or more, 230 mOsm / kg or more, 240 mOsm / kg or more, 250 mOsm / kg or more, 260 mOsm / kg or more, 270 mOsm / kg or more, 280 mOsm / kg or more, 290 mOsm.
  • / Kg or more 300 mOsm / kg or more, 310 mOsm / kg or more, 320 mOsm / kg or more, 330 mOsm / kg or more, 340 mOsm / kg or more, 350 mOsm / kg or more, 360 mOsm / kg or more, 370 mOsm / kg or more, 380 mOsm / kg or more, 390 mOsm It may be / kg or more, or 400 mOsm / kg or more.
  • the upper limit of the osmotic pressure is not particularly limited, and may be a limit value at which the osmotic pressure adjusting agent can be dissolved in the medium.
  • the upper limit of the osmotic pressure can be, for example, 2000 mOsm / kg or less, 1500 mOsm / kg or less, and 1400 mOsm / kg or less.
  • the lower limit value and the upper limit value can be arbitrarily combined.
  • the range of osmotic pressure of the medium includes, for example, 150 to 2000 mOsm / kg.
  • the osmotic pressure range for example, 200 to 1500 mOsm / kg is preferable, 250 to 1400 mOsm / kg is more preferable, 300 to 1400 mOsm / kg is further preferable, and 400 to 1400 mOsm / kg is particularly preferable.
  • the osmotic pressure of the medium is a value before the start of culture unless otherwise specified.
  • the osmotic pressure of the medium can be measured using an osmometer.
  • the medium may be a liquid medium or a solid medium.
  • the solid medium for example, an agar medium can be used.
  • the concentration and osmotic pressure of the above-mentioned osmotic pressure adjusting agent may be those in the liquid medium before the addition of the solidifying agent (for example, agar).
  • the above-exemplified medium can be used for producing disintegrating cells from non-disintegrating cells, maintaining disintegrating cells, and proliferating disintegrating cells.
  • the concentration of the osmotic pressure regulator is preferably 50 mM to 2 M, more preferably 100 mM to 1.5 M.
  • the osmotic pressure of the medium is preferably 150 to 2610 mOsm / kg, more preferably 300 to 1700 mOsm / kg.
  • the medium may be a liquid medium or a solid medium, but it is preferable to use a solid medium because it is easy to determine that disintegrating cells have been generated.
  • the concentration of the osmotic pressure regulator is preferably 50 mM to 2 M, more preferably 100 mM to 1.5 M.
  • the osmotic pressure of the medium is preferably 150 to 2610 mOsm / kg, more preferably 300 to 1700 mOsm / kg.
  • the medium may be a liquid medium or a solid medium, but it is preferable to use a solid medium because it is easy to maintain a stable medium for a long period of time.
  • the concentration of the osmotic pressure regulator is preferably 50 mM to 2 M, more preferably 100 mM to 1.5 M.
  • the osmotic pressure of the medium is preferably 150 to 2610 mOsm / kg, more preferably 300 to 1700 mOsm / kg.
  • the medium may be a liquid medium or a solid medium, but it is preferable to use a liquid medium because cells can easily grow.
  • the method of this embodiment comprises culturing unicellular red algae cells in a medium containing 80 mM or more of an osmotic pressure regulator.
  • the culture conditions in the above culture are not particularly limited, and conditions usually used as culture conditions for unicellular red algae can be used. Examples of the culture conditions include pH 1 to 8, temperature 10 to 50 ° C., CO 2 concentration 0.3 to 3%, and the like.
  • Light conditions may be dark when heterotrophic culturing. In the case of autotrophic culture, the light conditions include, for example, 5 to 2000 ⁇ mol / m 2 s.
  • the culture conditions are not limited to those exemplified above, and can be appropriately selected depending on the type of unicellular red algae.
  • the pH conditions include pH 1.0 to 6.0, preferably pH 1.0 to 5.0, and more preferably pH 1.0 to 3.0.
  • the temperature condition include 15 to 50 ° C, preferably 30 to 50 ° C, and more preferably 35 to 50 ° C.
  • the light intensity include 5 to 2000 ⁇ mol / m 2 s, and 5 to 1500 ⁇ mol / m 2 s is preferable. It may be cultured with continuous light, or a light-dark cycle (10L: 14D, etc.) may be provided. In addition, in the case of heterotrophic culture, it can also be cultured in a dark place.
  • the culture period is not particularly limited. If the unicellular red algae cells used at the start of culture are non-disintegrating cells, culture them at least until disintegrating cells are generated.
  • disintegrating cells can be generated in a short period of time by using a medium containing 80 mM or more of an osmotic pressure regulator.
  • the culture period is preferably, for example, 5 days or more, more preferably 10 days or more, still more preferably 14 days or 15 days or more.
  • the disintegrating cells generated during the culture are stably maintained as the disintegrating cells. Therefore, the upper limit of the culture period is not particularly limited.
  • the culture period is not particularly limited.
  • the culture since the disintegrating cells are stably maintained, the culture may be continued for a period in which the disintegrating cells need to be maintained.
  • unicellular red algae cells may be subcultured as appropriate.
  • disintegrating cells can be stably maintained in the same medium for 2 weeks or more. Therefore, the interval between passages can be two weeks or more. For example, by subculturing the disintegrating unicellular red algae cells once every 1 to 3 months, the disintegrating cells can be maintained more stably.
  • the passage interval is preferably 1 to 1.5 months.
  • passage may be performed at shorter intervals in order to increase the growth efficiency.
  • the passage interval for proliferation is preferably 14 to 60 days, more preferably 14 to 42 days.
  • destructive cells can be produced from non-disintegrating unicellular red algae cells, and the destructive cells can be stably maintained for 2 weeks or more.
  • the method for confirming that the unicellular red algae cells are disruptive cells is not particularly limited, but for example, the methods listed below can be used.
  • Non-disintegrating cells have a strong cell wall, whereas destructive cells do not have a strong cell wall. Therefore, disintegrating cells can be identified by observing the morphology of the cells. For example, in disintegrating cells, the cell wall is usually not observed when observed with an optical microscope (for example, at a magnification of 600 times). Therefore, when the cell wall is not observed by the optical microscope, it can be determined that the cell is a disintegrating cell. In addition, disintegrating cells can be destroyed by relatively mild treatment (neutralization treatment, hypotonic treatment, freeze-thaw treatment, surfactant treatment, etc.).
  • the cells are suspended in a medium containing 2% by mass of the surfactant and the cells disintegrate immediately to 5 minutes after the addition of the surfactant, it can be determined that the cells are disintegrating cells.
  • the surfactant include sodium dodecyl sulfate. More specifically, sodium dodecyl sulfate is added to the culture medium of unicellular red algae cells so as to be 2% by mass, and if the cells are disrupted within 5 minutes after the addition, the cells are considered to be disruptive cells. It can be determined. Whether or not the cells have collapsed can be confirmed by observing the cells with an optical microscope.
  • Disintegrating cells when culturing in a solid medium, it is possible to determine whether the cells are disintegrating cells based on the shape of the colonies. Disintegrating cells usually do not have a strong cell wall, so that they are flatter and spread over the surface of a solid medium as compared to colonies of non-disintegrating cells. When a colony having such a shape appears on a solid medium, it can be determined to be a colony of disintegrating cells.
  • a disintegrating unicellular red alga can be produced from a non-disintegrating unicellular red alga, and a disintegrating unicellular red alga can be stably maintained.
  • the disintegrating unicellular red algae can be propagated as the disintegrating cells.
  • disintegrating unicellular red algae are cultured in a normal medium, cells that return to non-disintegrating cells appear, and non-disintegrating cells proliferate. Therefore, it is necessary to select disintegrating cells at intervals of about 5 days and repeat the passage.
  • the appearance of cells returning to non-disintegrating cells is suppressed, and the disintegrating cells are allowed to grow for more than 2 weeks (preferably 1 month or more) without subculture. Can be maintained.
  • the disintegrating unicellular red alga produced, maintained or propagated by the method of this embodiment can easily destroy cells under mild conditions. Therefore, cell components can be easily extracted. Further, the disintegrating unicellular red alga produced, maintained or propagated by the method of this embodiment can be efficiently digested and absorbed by intracellular components even if it is blended as it is into a food or a functional food without performing cell wall destruction treatment or the like. Will be done.
  • a second aspect of the present invention is a medium for disintegrating unicellular red algae containing 80 mM or more of an osmotic pressure regulator.
  • the medium of this embodiment is the same as that described in the above " ⁇ Method for producing disintegrating unicellular red algae>".
  • the medium of this embodiment can be used to produce disintegrating unicellular red algae cells from non-disintegrating unicellular red algae cells.
  • disintegrating unicellular red algae cells can be used to maintain disintegrating cells.
  • disintegrating unicellular red algae cells can be used for proliferation.
  • CCCryo127-00 strain Galdia sulphuraria CCCryo127-00 strain
  • ⁇ Medium> Gross medium was used as the basal medium.
  • the composition of the Gloss medium is shown in Table 1.
  • the compositions of Fe-EDTA Solution and Trace Elements used in the Gross medium are shown in Tables 2 and 3, respectively.
  • ⁇ Method of confirming disintegrating cells The cells were suspended in a Gross medium containing 2% by mass of a surfactant (sodium dodecyl sulfate (SDS)), and the cells that collapsed were judged to be disintegrating cells. Cell disintegration was confirmed by observation using an optical microscope. Observation with a light microscope was performed immediately after the addition of SDS. In addition, colonies dominated by disintegrating cells are flatter than colonies formed from non-disintegrating cells, and have a shape that spreads on the surface of the agar medium (see Fig. 1: Arrows indicate disintegrating cell colonies). . Some non-destructive cells remain in the central part). Therefore, the morphology of the colonies on the agar medium was also used to determine whether the cells were disintegrating cells.
  • a surfactant sodium dodecyl sulfate
  • FIG. 3 An example in which colonies of disintegrating cells are maintained is shown in FIG.
  • FIG. 4 An example of regressing to a colony of non-disintegrating cells is shown in FIG.
  • FIG. 4 is a plate cultured in 1% sorbitol + Gloss 1.5% agar medium for 2 weeks.
  • FIG. 5 shows an example in which a colony of disintegrating cells proliferated.
  • FIG. 5 is a plate cultured on 18% sorbitol + Gloss 1.5% agar medium. The photo on the left is the plate at the start of culture, and the photo on the right is the plate after 3 weeks of culture.
  • Table 5 shows the results of measuring the osmotic pressure of the medium before the addition of agar for each medium shown in Table 4.
  • the osmotic pressure of the medium was measured with an osmotic meter (product name: automatic osmotic pressure analyzer Ozmo Station OM-6060, manufacturer: Arcley Co., Ltd.).
  • the values in [] indicate the osmotic pressure (mOsm / kg).
  • the disintegrating cells could be maintained in more than 2 weeks in the medium to which the osmotic pressure regulator was added at about 80 mM or more.
  • concentration of the osmotic pressure regulator was high, the growth tended to be slowed down, but even when the osmotic pressure regulator was added up to the upper limit of the solubility, the disintegrating cells could be maintained for generally more than 2 weeks.
  • the upper limit of the concentration of the osmotic pressure regulator was about 1.5 M.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Botany (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

単細胞性紅藻細胞を、浸透圧調整剤を80mM以上含有する培地中で培養することを含む、崩壊性単細胞性紅藻の製造方法。また、浸透圧調整剤を80mM以上含有する、崩壊性単細胞性紅藻用培地。

Description

崩壊性単細胞性紅藻の製造方法、及び崩壊性単細胞性紅藻用培地
 発明は、崩壊性単細胞性紅藻の製造方法、及び崩壊性単細胞性紅藻用培地に関する。
 本願は、2020年8月24日に、日本に出願された特願2020-141202号に基づき優先権を主張し、その内容をここに援用する。
 微細藻類は、陸上植物と比較して、高い二酸化炭素固定能力を有すること、及び農産物と生育場所が競合しないことから、いくつかの種は、大量培養されて、飼料、機能性食品、化粧品材料等として産業的に利用されている。
 微細藻類を産業利用する場合には、コスト面等から、屋外で大量培養可能な微細藻類であることが望ましい。しかしながら、屋外で大量培養可能な微細藻類であるためには、環境変動(光、温度等)に耐性を有すること、他の生物が生存できないような条件で培養できること、高密度まで増殖可能であること、等の条件が求められる。
 単細胞性紅藻の中には、硫酸酸性温泉において優先増殖するものがある。そのような単細胞性紅藻は、高塩濃度、高温、低pH等の他の生物が生育困難な環境で培養可能である点に特徴を有する。そのため、そのような単細胞性紅藻は、産業利用に適していると考えられる。
 一般的に、細胞壁を有する微細藻類の場合、細胞内成分の抽出に際して細胞壁を破壊する必要がある。細胞壁を破壊する方法としては、物理的処理、化学的処理、又は酵素的処理等があるが、手間がかかり、必要な細胞内成分が分解される恐れもある。そのため、細胞壁がほとんどない細胞を作出することができれば、細胞内成分の抽出が容易になると考えられる。例えば、特許文献1には、単細胞性紅藻であるイデユコゴメ綱の藻類において、強固な細胞壁を有する非崩壊性細胞から、強固な細胞壁を有さない崩壊性細胞を作出できたことが記載されている。
国際公開第2019/107385号
 特許文献1に記載の方法では、非崩壊性細胞から作出された崩壊性細胞を長期に安定して維持することが難しい。そのため、崩壊性細胞を長期に安定して維持できる技術が求められる。
 そこで、本発明は、崩壊性細胞を安定して維持可能な、崩壊性単細胞性紅藻の製造方法、及び崩壊性単細胞性紅藻用培地を提供することを課題とする。
 本発明は、以下の態様を含む。
[1]単細胞性紅藻細胞を、浸透圧調整剤を80mM以上含有する培地中で培養することを含む、崩壊性単細胞性紅藻の製造方法。
[2]単細胞性紅藻細胞を、浸透圧が150mOsm/kg以上である培地中で培養することを含む、崩壊性単細胞性紅藻の製造方法。
[3]浸透圧調整剤が、糖、糖アルコール、及びアミノ酸からなる群より選択される少なくとも一種である、[1]又は[2]に記載の崩壊性単細胞性紅藻の製造方法。
[4]前記単細胞性紅藻細胞が、非崩壊性細胞である、[1]~[3]のいずれか1つに記載の崩壊性単細胞性紅藻の製造方法。
[5]前記単細胞性紅藻細胞が、倍数体の細胞である、[4]に記載の崩壊性単細胞性紅藻の製造方法。
[6]前記単細胞性紅藻細胞が、崩壊性細胞である、[1]~[3]のいずれか1つに記載の崩壊性単細胞性紅藻の製造方法。
[7]崩壊性単細胞性紅藻細胞を、崩壊性細胞のまま維持する方法である、[6]に記載の崩壊性単細胞性紅藻の製造方法。
[8]崩壊性単細胞性紅藻細胞を、増殖させる方法である、[6]に記載の崩壊性単細胞性紅藻の製造方法。
[9]浸透圧調整剤を80mM以上含有する、崩壊性単細胞性紅藻用培地。
[10]浸透圧が150mOsm/kg以上である、崩壊性単細胞性紅藻用培地。
[11]浸透圧調整剤が、糖、糖アルコール、及びアミノ酸からなる群より選択される少なくとも一種である、[9]又は[10]に記載の崩壊性単細胞性紅藻用培地。
[12]非崩壊性単細胞性紅藻細胞から崩壊性単細胞性紅藻細胞を作出するために用いられる、[9]~[11]のいずれか1つに記載の崩壊性単細胞性紅藻用培地。
[13]前記非崩壊性単細胞性紅藻細胞が、倍数体の単細胞性紅藻細胞である、[12]に記載の崩壊性単細胞性紅藻用培地。
[14]崩壊性の単細胞性紅藻細胞を、崩壊性細胞のまま維持するために用いられる、[9]~[11]のいずれか1つに記載の崩壊性単細胞性紅藻用培地。
[15]崩壊性単細胞性紅藻細胞を、増殖させるために用いられる、[9]~[11]のいずれか1つに記載の崩壊性単細胞性紅藻用培地。
 本発明によれば、崩壊性細胞を安定して維持可能な、崩壊性単細胞性紅藻の製造方法、及び崩壊性単細胞性紅藻用培地が提供される。
非崩壊性単細胞性紅藻細胞から生じた崩壊性細胞コロニーの例を示す。 CCCryo127-00株の崩壊性細胞を、18%ソルビトール+Gross 1.5%寒天培地に植え継ぎ培養した寒天プレートの写真を示す。 18%ソルビトール+Gross 1.5%寒天培地で、CCCryo127-00株の崩壊性細胞を1カ月間培養したプレートの写真を示す。 1%ソルビトール+Gross 1.5%寒天培地で、CCCryo127-00株の崩壊性細胞を2週間培養したプレートの写真を示す。非崩壊性細胞への復帰が確認された。 18%ソルビトール+Gross 1.5%寒天培地で、CCCryo127-00株の崩壊性細胞が増殖した例を示す。左の写真は培養開始時のプレートであり、右の写真は培養3週間後のプレートである。 18%ソルビトール+Gross 1.5%寒天培地で、非崩壊性のCCCryo127-00株から崩壊性細胞を作出した例を示す。崩壊性細胞は、植え継いだ寒天培地上でも維持された。 18%ソルビトール+Gross液体培地で、CCCryo127-00株の崩壊性細胞を増殖させた例を示す。
 本明細書に記載される細胞は、単離されたものであり得る。「単離された」とは、天然状態から分離された状態を意味する。
<崩壊性単細胞性紅藻の製造方法>
 本発明の第1の態様は、単細胞性紅藻細胞を、浸透圧調整剤を80mM以上含有する培地中で培養することを含む、崩壊性単細胞性紅藻の製造方法である。
 本明細書において、「崩壊性細胞」とは、強固な細胞壁を有さないなどの理由により、温和な処理によっても容易に破壊しうる細胞を意味する。「非崩壊性細胞」とは、強固な細胞壁を有するなどの理由により、温和な処理によって容易には破壊しえない細胞を意味する。ここで言う温和な処理としては、例えば、中和処理、低張処理、凍結融解処理、界面活性剤処理などが挙げられる。
 本発明は、崩壊性細胞を安定して維持可能な崩壊性単細胞性紅藻の製造方法を提供することを目的とする。本発明では、2週間を超えて崩壊性細胞を維持できた場合に「崩壊性細胞を安定して維持可能」と判断し得る。
(単細胞性紅藻)
 「単細胞性紅藻」とは、紅色植物門(Rhodophyta)に属する藻類であって、単細胞性である藻類を指す。単細胞性紅藻としては、イデユコゴメ綱(Cyanidiophyceae)、ベニミドロ綱(Stylonematophyceae)、チノリモ綱(Porphyridiophyceae)、及びロデラ綱(Rhodellophyceae)が挙げられる。これらの中でも、崩壊性細胞を安定に維持しやすいことから、イデユコゴメ綱(Cyanidiophyceae)が好ましい。イデユコゴメ綱には、シアニディオシゾン(Cyanidioschyzon)属、シアニジウム(Cyanidium)属、及びガルデリア(Galdieria)属が知られている。シアニジウム属、及びガルデリア属は、自然界で非崩壊性細胞として存在する。そのため、イデユコゴメ綱の中でも、シアニジウム属、及びガルデリア属が好ましく、ガルデリア属がより好ましい。
 ガルデリア属としては、例えば、G.sulphuraria、G.partita、G.daedala、G.maxima等が挙げられるが、これらに限定されない。ガルデリア属としては、G.sulphurariaが特に好ましい。
 シアニジウム属としては、例えば、C.caldarium、C.sp.Monte Rotaro等が挙げられるが、これらに限定されない。
 イデユコゴメ綱の藻類株としては、例えば、国際公開第2019/107385号の図10に記載されるもの等が挙げられる。
 本態様の方法において、培養開始時に用いる単細胞性紅藻細胞は、非崩壊性細胞であってもよく、崩壊性細胞であってもよい。非崩壊性細胞は、倍数体(例えば、2倍体)の細胞であってもよい。
 本態様の方法により、単細胞性紅藻細胞として非崩壊性細胞を培養した場合、培養中に、崩壊性細胞を生じることがある。本態様の方法による培養を継続することにより、崩壊性細胞が非崩壊性細胞に回帰することなく、崩壊性細胞のまま維持することができる。したがって、本態様の方法は、非崩壊性単細胞性紅藻細胞から、崩壊性単細胞性紅藻を作出する方法を包含する。
 本態様の方法により、単細胞性紅藻細胞として崩壊性細胞を培養した場合、培養中に、非崩壊性細胞に回帰することなく、崩壊性細胞のまま維持される。したがって、本態様の方法は、崩壊性単細胞性紅藻細胞を維持する方法を包含する。
 本態様の方法により、崩壊性単細胞性紅藻細胞は、培養中に崩壊性細胞のまま増殖する。したがって、本態様の方法は、崩壊性単細胞性紅藻を増殖させる方法を包含する。
(培地)
 本態様の方法で用いる培地は、浸透圧調整剤を80mM以上含有する培地である。
 「浸透圧調整剤」とは、浸透圧を調整可能な化学物質を指す。浸透圧調整剤は、培地に添加することにより浸透圧を調整可能な化学物質であれば、特に限定されない。浸透圧調整剤としては、例えば、糖、糖アルコール、アミノ酸、金属塩、尿素、タンパク質、ベタイン、イノシトール、多糖等が挙げられる。これらの中でも、糖、糖アルコール、アミノ酸、及び金属塩が好ましい。
 糖としては、例えば、ジヒドロキシアセトン、グリセルアルデヒド、エリトルロース、エリトロース、トレオース、リブロース、キシルロース、リボース、アラビノース、キシロース、リキソース、デオキシリボース、プシコース、フルクトース、ソルボース、タガトース、アロース、アルトロース、グルコース、マンノース、グロース、イドース、ガラクトース、タロース、フコース、フクロース、ラムノース、セドヘプツロース等の単糖(D体及びL体のいずれであてもよく、D体及びL体の混合物であってもよい);スクロース、ラクツロース、ラクトース、マルトース、トレハロース、セロビオース、コージビオース、ニゲロース、イソマルトース、β,β―トレハロース、α,β―トレハロース、ソホロース、ラミナリビオース、ゲンチオビオース、ツラノース、マルツロース、パラチノース、ゲンチオビウロース、マンノビオース、メリビオース、メリビウロース、ネオラクトース、ガラクトスクロース、シラビオース、ネオヘスペリドース、ルチノース、ルチヌロース、ビシアノース、キシロビオース、プリメベロース、トレハロサミン、マルチトール、セロビオン酸、ラクトサミン、ラクトースジアミン、ラクトビオン酸、ラクチトール、ヒアロビウロン酸、スクラロース糖の二糖;ニゲロトリオース、マルトトリオース、メレジトース、マルトトリウロース、ラフィノース、ケストース等の三糖;ニストース、ニゲロテトラオース、スタキオース等の四糖;及び乳糖果糖オリゴ糖、ラクトスクロース、マルトオリゴ糖、イソマルトオリゴ糖、ゲンチオオリゴ糖、ニゲロオリゴ糖、フラクトオリゴ糖、ガラクトオリゴ糖、マンナンオリゴ糖、キシロオリゴ糖、大豆オリゴ糖等のオリゴ糖等が挙げられるが、これらに限定されない。糖としては、単糖又は二糖が好ましい。
 単糖としては、ジヒドロキシアセトン、グリセルアルデヒド、エリトルロース、エリトロース、トレオース、リブロース、キシルロース、リボース、アラビノース、キシロース、リキソース、デオキシリボース、プシコース、フルクトース、ソルボース、タガトース、アロース、アルトロース、グルコース、マンノース、グロース、イドース、ガラクトース、タロース、フコース、フクロース、ラムノース、セドヘプツロースが好ましく、ジヒドロキシアセトン、グリセルアルデヒド、エリトルロース、エリトロース、リブロース、リボース、アラビノース、キシロース、デオキシリボース、フルクトース、グルコース、マンノース、ガラクトース、又はセドヘプツロースがより好ましく、グルコースがさらに好ましい。
 二糖としては、スクロース、ラクツロース、ラクトース、マルトース、トレハロース、セロビオース、コージビオース、ニゲロース、イソマルトース、β,β―トレハロース、α,β―トレハロース、ソホロース、ラミナリビオース、ゲンチオビオース、ツラノース、マルツロース、パラチノース、ゲンチオビウロース、マンノビオース、メリビオース、メリビウロース、ネオラクトース、ガラクトスクロース、シラビオース、ネオヘスペリドース、ルチノース、ルチヌロース、ビシアノース、キシロビオース、プリメベロース、トレハロサミン、マルチトール、セロビオン酸、ラクトサミン、ラクトースジアミン、ラクトビオン酸、ラクチトール、ヒアロビウロン酸、又はスクラロースが好ましく、スクロース、ラクツロース、ラクトース、マルトース、トレハロース、又はセロビオースがより好ましく、スクロースがさらに好ましい。
 糖アルコールとしては、例えば、グリセロール等の3価の糖アルコール;エリトリトール、D-トレイトール、L-トレイトール等の4価の糖アルコール;D-アラビニトール、L-アラビニトール、キシリトール、リビトール、アドニトール等の5価の糖アルコール;D-イジトール、ガラクチトール、ダルシトール、D-グルシトール、ソルビトール、マンニトール等の6価の糖アルコール;、ボレミトール、ペルセイトール等の7価の糖アルコール;D-エリトロ-D-ガラクト-オクチトール等の8価の糖アルコール;イソマルト、ラクチトール、マルチトール等の9価の糖アルコール;及びHSH、還元水飴糖等の糖アルコールの混合物等が挙げられるが、これらに限定されない。糖アルコールとしては、3価の糖アルコール、4価の糖アルコール、5価の糖アルコール、6価の糖アルコール、9価の糖アルコール、又は糖アルコールの混合物が好ましく、3価の糖アルコール又は6価の糖アルコールがより好ましく、6価の糖アルコールがさらに好ましい。
 糖アルコールとしては、グリセロール、エリトリトール、キシリトール、ソルビトール、マンニトール、イソマルト、ラクチトール、マルチトール、HSH、又は還元水飴が好ましく、マンニトール、又はソルビトールがより好ましい。
 アミノ酸は、D体及びL体のいずれであってもよく、D体及びL体の混合物であってもよい。アミノ酸は、α-アミノ酸、β-アミノ酸、γ-アミノ酸、及びδ-アミノ酸のいずれであってもよい。アミノ酸としては、例えば、アラニン、アスパラギン酸、アスパラギン、システイン、グルタミン酸、グルタミン、フェニルアラニン、グリシン、ヒスチジン、イソロイシン、リシン、ロイシン、メチオニン、プロリン、アルギニン、セリン、トレオニン、セレノシステイン、バリン、トリプトファン、チロシン、2-アミノアジピン酸、3-アミノアジピン酸、2-アミノブタン酸、2,4-ジアミノブタン酸、2-アミノヘキサン酸、6-アミノヘキサン酸、β-アラニン、2-アミノペンタン酸、2,3-ジアミノプロパン酸、2-アミノピメリン酸、2,6-ジアミノピメリン酸、シトルリン、システイン酸、4-カルボキシグルタミン酸、5-オキソプロリン、ピログルタミン酸、ホモシステイン、ホモセリン、ホモセリンラクトン、5-ヒドロキシリシン、アロヒドロキシリシン、3-ヒドロキシプロリン、4-ヒドロキシプロリン、アロイソロイシン、ノルロイシン、ノルバリン、オルニチン、サルコシン、アロトレオニン、チロキシン等が挙げられる。アミノ酸としては、アラニン、アスパラギン酸、アスパラギン、システイン、グルタミン酸、グルタミン、フェニルアラニン、グリシン、ヒスチジン、イソロイシン、リシン、ロイシン、メチオニン、プロリン、アルギニン、セリン、トレオニン、セレノシステイン、バリン、トリプトファン、又はチロシンが好ましく、グリシン、プロリン、又はアルギニンがより好ましい。
 金属塩としては、例えば、アルカリ金属(ナトリウム、カリウムなど)又はアルカリ土類金属(マグネシウム、カルシウムなど)と、無機酸(塩酸、硫酸、炭酸、亜硫酸、硝酸等)又は有機酸(乳酸、コハク酸、酢酸等)との塩等が挙げられる。金属塩としては、アルカリ金属又はアルカリ土類金属と、無機酸との塩が好ましく、塩化カリウム、又は硫酸ナトリウム等がより好ましく、塩化カリウムがさらに好ましい。
 これらの中でも、培地に添加して浸透圧を調整しやすいことから、浸透圧調整剤は、糖、糖アルコール、及びアミノ酸からなる群より選択される少なくとも1種であることが好ましい。好適な糖としては、グルコース、スクロースが挙げられる。好適な糖アルコールとしては、6価の糖アルコール(例えば、マンニトール、ソルビトール)が挙げられる。好適なアミノ酸としては、グリシン、プロリン、アルギニンが挙げられる。
 浸透圧調整剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いでもよい。
 培地は、浸透圧調整剤を80mM以上含有する培地であれば、特に限定されない。培地は、例えば、単細胞性藻類用の培地として公知な培地に、浸透圧調整剤を80mM以上となるように添加して調製することができる。単細胞性藻類用の培地としては、特に限定されないが、窒素源、リン源、及び微量元素(亜鉛、ホウ素、コバルト、銅、マンガン、モリブデン、鉄など)等を含む無機塩培地が例示される。例えば、窒素源としては、アンモニウム塩、硝酸塩、亜硝酸塩等が挙げられ、リン源としては、リン酸塩等が挙げられる。そのような培地としては、例えば、Gross培地、2×Allen培地(Allen MB. Arch. Microbiol. 1959 32: 270-277.)、M-Allen培地(Minoda A et al. Plant Cell Physiol. 2004 45: 667-71.)、MA2培地(Ohnuma M et al. Plant Cell Physiol. 2008 Jan;49(1):117-20.)、改変M-Allen培地等が挙げられるが、これらに限定されない。
 単細胞性紅藻は、光照射下で、独立栄養的に培養してもよく、暗所で、従属栄養的に培養してもよい。従属栄養的に培養する場合には、上記のような無機塩培地に、炭素源(グルコース等)を添加してもよい。
 培地中の浸透圧調整剤の濃度は、80mM以上であれば、特に限定されない。浸透圧調整剤の濃度を80mM以上とすることにより、浸透圧調整剤の種類によらず、崩壊性細胞を安定に維持することができる。浸透圧調整剤の濃度は、100mM以上、110mM以上、120mM以上、130mM以上、140mM以上、150mM以上、160mM以上、170mM以上、180mM以上、190mM以上、200mM以上、210mM以上、220mM以上、230mM以上、240mM以上、250mM以上、260mM以上、270mM以上、280mM以上、290mM以上、300mM以上、310mM以上、320mM以上、330mM以上、340mM以上、350mM以上、360mM以上、370mM以上、380mM以上、390mM以上、又は400mM以上であってもよい。浸透圧調整剤の上限濃度は、特に限定されず、培地に溶解可能な限界値であってもよい。細胞の増殖速度の観点からは、浸透圧調整剤の上限濃度は、例えば、2M以下、1.5M以下、1.4M以下、1.3M以下、1.2M以下、1.1M以下、又は1M以下とすることができる。前記下限値及び上限値は、任意に組合せ可能である。培地中の浸透圧調整剤の濃度範囲としては、例えば、80mM~2Mが挙げられる。浸透圧調整剤の濃度範囲としては、例えば、100mM~1.5Mが好ましく、200mM~1.4Mがより好ましく、300mM~1.3Mがさらに好ましく、400mM~1.3Mが特に好ましい。
 培地中の浸透圧調整剤の濃度は、特記しない限り、培養開始前の濃度である。また、浸透圧調整剤を2種以上組み合わせて用いる場合は、前記2種以上の浸透圧調整剤の合計含有量が80mM以上になればよい。上記浸透圧調整剤の濃度として例示した範囲についても同様である。
 例えば、浸透圧調整剤がグルコースである場合、培地中のグルコース濃度としては、例えば、200mM~2Mが挙げられ、250mM~1.7Mが好ましく、270mM~1.5Mがより好ましい。あるいは、培地中のグルコース濃度は、培地の全質量(100質量%)に対して、4~40質量%が好ましく、5~30質量%がより好ましい。
 例えば、浸透圧調整剤がスクロースである場合、培地中のスクロース濃度としては、例えば、80mM~1.1Mが挙げられ、80mM~800mMが好ましく、80mM~600Mがより好ましい。あるいは、培地中のスクロースの濃度は、培地の全質量(100質量%)に対して、2~40質量%が好ましく、3~30質量%がより好ましく、3~20質量%がさらに好ましい。
 例えば、浸透圧調整剤がグリセロールである場合、培地中のグリセロール濃度としては、例えば、200mM~800mMが挙げられ、300mM~600mMが好ましい。あるいは、培地中のグリセロール濃度は、培地の全質量(100質量%)に対して、3~6質量%が好ましい。
 例えば、浸透圧調整剤がマンニトールである場合、培地中のマンニトール濃度としては、例えば、180mM~1.5Mが挙げられ、200mM~1.2Mが好ましく、250mM~1Mがより好ましい。あるいは、4~20質量%が好ましく、5~18質量%がより好ましい。
 例えば、浸透圧調整剤がソルビトールである場合、培地中のソルビトール濃度としては、例えば、200mM~2Mが挙げられ、400mM~1.5Mが好ましく、430mM~1.5Mがより好ましい。あるいは、培地中のソルビトール濃度は、培地の全質量(100質量%)に対して、5~40質量%が好ましく、8~27質量%がより好ましい。
 例えば、浸透圧調整剤がグリシンである場合、培地中のグリシン濃度としては、例えば、100mM~2Mが挙げられ、120mM~1.5Mが好ましく、130mM~1Mがより好ましい。あるいは、培地中のグリシン濃度は、培地の全質量(100質量%)に対して、0.5~10質量%が好ましく、1~8質量%がより好ましい。
 例えば、浸透圧調整剤がプロリンである場合、培地中のプロリン濃度としては、例えば、80mM~2Mが挙げられ、500mM~1.5Mが好ましく、600mM~1.5Mがより好ましい。あるいは、培地中のプロリン濃度は、培地の全質量(100質量%)に対して、1~20質量%が好ましく、7~10質量%がより好ましい。
 例えば、浸透圧調整剤がアルギニンである場合、培地中のアルギニン濃度としては、例えば、20mM~2Mが挙げられ、30mM~1.5Mが好ましく、50mM~1Mがより好ましい。あるいは、培地中のアルギニン濃度は、培地の全質量(100質量%)に対して、0.5~30質量%が好ましく、1~20質量%がより好ましい。
 例えば、浸透圧調整剤が塩化カリウムである場合、培地中の塩化カリウム濃度としては、例えば、50mM~1.5Mが挙げられ、100mM~1Mが好ましく、130mM~500mMがより好ましい。あるいは、培地中の塩化カリウム濃度は、培地の全質量(100質量%)に対して、0.5~10質量%が好ましく、1~5質量%がより好ましい。
 培地は、浸透圧が、150mOsm/kg以上であることが好ましい。培地の浸透圧を150mOsm/kg以上とすることにより、浸透圧調整剤の種類によらず、崩壊性細胞を安定に維持することができる。浸透圧は、200mOsm/kg以上、210mOsm/kg以上、220mOsm/kg以上、230mOsm/kg以上、240mOsm/kg以上、250mOsm/kg以上、260mOsm/kg以上、270mOsm/kg以上、280mOsm/kg以上、290mOsm/kg以上、300mOsm/kg以上、310mOsm/kg以上、320mOsm/kg以上、330mOsm/kg以上、340mOsm/kg以上、350mOsm/kg以上、360mOsm/kg以上、370mOsm/kg以上、380mOsm/kg以上、390mOsm/kg以上、又は400mOsm/kg以上であってもよい。浸透圧の上限値は、特に限定されず、浸透圧調整剤を培地中に溶解可能な限界値であってもよい。細胞の増殖速度の観点からは、浸透圧の上限値は、例えば、2000mOsm/kg以下、1500mOsm/kg以下、1400mOsm/kg以下とすることができる。前記下限値及び上限値は、任意に組合せ可能である。培地の浸透圧の範囲としては、例えば、150~2000mOsm/kgが挙げられる。浸透圧の範囲としては、例えば、200~1500mOsm/kgが好ましく、250~1400mOsm/kgがより好ましく、300~1400mOsm/kgがさらに好ましく、400~1400mOsm/kgが特に好ましい。
 培地の浸透圧は、特記しない限り、培養開始前の値である。培地の浸透圧は浸透圧計を用いて測定することができる。
 培地は、液体培地であってもよく、固体培地であってもよい。固体培地としては、例えば、寒天培地を用いることができる。固体培地である場合、上記の浸透圧調整剤の濃度及び浸透圧は、固化剤(例えば、寒天)を添加する前の液体培地におけるものであってもよい。
 非崩壊性細胞から崩壊性細胞を作出する場合、崩壊性細胞を維持する場合、及び崩壊性細胞を増殖させる場合のいずれも上記の例示した培地を用いることができる。
 非崩壊性細胞から崩壊性細胞を作出する場合には、例えば、浸透圧調整剤の濃度を50mM~2Mとすることが好ましく、100mM~1.5Mとすることがより好ましい。また、培地の浸透圧を150~2610mOsm/kgとすることが好ましく、300~1700mOsm/kgとすることがより好ましい。培地は、液体培地であってもよく、固体培地であってもよいが、崩壊性細胞が生じたことが判別しやすいことから、固体培地を用いることが好ましい。
 崩壊性細胞を維持する場合には、例えば、浸透圧調整剤の濃度を50mM~2Mとすることが好ましく、100mM~1.5Mとすることがより好ましい。また、培地の浸透圧を150~2610mOsm/kgとすることが好ましく、300~1700mOsm/kgとすることがより好ましい。培地は、液体培地であってもよく、固体培地であってもよいが、長期間安定に維持しやすいことから、固体培地を用いることが好ましい。
 崩壊性細胞を増殖させる場合には、例えば、浸透圧調整剤の濃度を50mM~2Mとすることが好ましく、100mM~1.5Mとすることがより好ましい。また、培地の浸透圧を150~2610mOsm/kgとすることが好ましく、300~1700mOsm/kgとすることがより好ましい。培地は、液体培地であってもよく、固体培地であってもよいが、細胞が増殖しやすいことから、液体培地を用いることが好ましい。
(培養条件)
 本態様の方法は、単細胞性紅藻細胞を、浸透圧調整剤を80mM以上含有する培地で培養する工程を含む。前記培養における培養条件は、特に限定されず、単細胞性紅藻の培養条件として通常用いられる条件を使用することができる。培養条件としては、例えば、pH1~8、温度10~50℃、及びCO濃度0.3~3%等が挙げられる。光条件は、従属栄養的に培養する場合、暗所であってもよい。独立栄養的に培養する場合、光条件は、例えば、5~2000μmol/msが挙げられる。
 培養条件は、上記例示したものに限定されず、単細胞性紅藻の種類に応じて適宜選択可能である。例えば、単細胞性紅藻がイデユコゴメ綱である場合、pH条件としては、pH1.0~6.0が挙げられ、pH1.0~5.0が好ましく、pH1.0~3.0がより好ましい。温度条件としては、15~50℃が挙げられ、30~50℃が好ましく、35~50℃がより好ましい。光強度としては、5~2000μmol/msが挙げられ、5~1500μmol/msが好ましい。連続光で培養してもよく、明暗周期(10L:14Dなど)を設けてもよい。また、従属栄養的に培養する場合には、暗所で培養することもできる。
 培養期間は、特に限定されない。培養開始時に用いる単細胞性紅藻細胞が非崩壊性細胞である場合、少なくとも崩壊性細胞が生じるまで培養する。本態様の方法では、浸透圧調整剤を80mM以上含有する培地を用いることにより、崩壊性細胞を短期間で生じさせることができる。非崩壊性細胞から崩壊性細胞を作出する場合、培養期間としては、例えば、5日以上が好ましく、10日以上がより好ましく、14日又は15日以上がさらに好ましい。本態様の方法では、培養中に生じた崩壊性細胞は、崩壊性細胞のまま安定して維持される。そのため、培養期間の上限は特に限定されない。
 培養開始時に用いる単細胞性紅藻細胞が崩壊性細胞である場合、培養期間は特に限定されない。本態様の方法では、崩壊性細胞が安定して維持されるため、崩壊性細胞を維持する必要がある期間、培養を継続すればよい。
 培養期間中、単細胞性紅藻細胞は、適宜継代してもよい。本態様の方法では、同じ培地で2週間以上安定して崩壊性細胞を維持できる。そのため、継代の間隔は、2週間以上とすることができる。例えば、1カ月~3カ月に1回の間隔で崩壊性単細胞性紅藻細胞を継代することにより、より安定に崩壊性細胞を維持することができる。継代の間隔は、1カ月~1.5カ月が好ましい。崩壊性細胞を増殖させる場合には、増殖効率を上げるために、より短い間隔で継代を行ってもよい。例えば、増殖のための継代の間隔としては、14日~60日が好ましく、14日~42日がより好ましい。
(崩壊性細胞の確認方法)
 本態様の方法では、非崩壊性単細胞性紅藻細胞から崩壊性細胞を作出することができ、さらに、崩壊性細胞を2週間以上安定に維持することができる。単細胞性紅藻細胞が崩壊性細胞であることの確認方法は、特に限定されないが、例えば、下記に挙げる方法を用いることができる。
 非崩壊性細胞は強固な細胞壁を有するが、崩壊性細胞は強固な細胞壁を有さない。そのため、細胞の形態を観察することにより、崩壊性細胞を見分けることができる。例えば、崩壊性細胞は、光学顕微鏡による観察(例えば、倍率600倍)において、通常、細胞壁が観察されない。そのため、光学顕微鏡により細胞壁が観察されない場合、崩壊性細胞であると判定することができる。
 また、崩壊性細胞は、比較的温和な処理(中和処理、低張処理、凍結融解処理、界面活性剤処理など)により、細胞を破壊することができる。例えば、2質量%の界面活性剤を含む培地に細胞を懸濁し、界面活性剤の添加後すぐ~5分経過後に細胞が崩壊した場合には、崩壊性細胞であると判定することができる。前記界面活性剤としては、ドデシル硫酸ナトリウムが挙げられる。より具体的には、単細胞性紅藻細胞の培養培地に、2質量%となるようにドデシル硫酸ナトリウムを添加し、添加後5分以内に細胞が崩壊した場合には、崩壊性細胞であると判定することができる。細胞が崩壊したか否かは、光学顕微鏡で細胞を観察することにより確認することができる。
 また、固体培地で培養している場合、コロニーの形状により崩壊性細胞であるかを判定することもできる。崩壊性細胞は、通常、強固な細胞壁を有さないため、非崩壊性細胞のコロニーと比較して、扁平で、固体培地の表面に広がる形状となる。固体培地上で、このような形状のコロニーが出現した場合には、崩壊性細胞のコロニーであると判定することができる。
 本態様の方法によれば、非崩壊性単細胞性紅藻から崩壊性単細胞性紅藻を作出できるとともに、崩壊性単細胞性紅藻を安定して維持することができる。また、崩壊性細胞のまま、崩壊性単細胞性紅藻を増殖させることができる。
 崩壊性単細胞性紅藻を通常の培地で培養した場合、非崩壊性細胞に回帰する細胞が出現し、非崩壊性細胞が増殖してくる。そのため、5日程度の間隔で崩壊性細胞を選択して継代を繰り返す必要がある。一方、本態様の方法によれば、非崩壊性細胞に回帰する細胞の出現を抑制して、継代を行わなくても、崩壊性細胞を、2週間を超えて(好ましくは1カ月以上)維持することができる。
 本態様の方法で作出、維持又は増殖された崩壊性単細胞性紅藻は、マイルドな条件で容易に細胞を破壊することができる。そのため、容易に細胞成分を抽出することができる。また、本態様の方法で作出、維持又は増殖された崩壊性単細胞紅藻は、細胞壁破壊処理等を行わずそのまま食品、又は機能性食品等に配合しても、細胞内成分が効率よく消化吸収される。
<崩壊性単細胞性紅藻用培地>
 本発明の第2の態様は、浸透圧調整剤を80mM以上含有する、崩壊性単細胞性紅藻用培地である。
 本態様の培地は、上記「<崩壊性単細胞性紅藻の製造方法>」で説明したものと同様である。本態様の培地は、非崩壊性単細胞性紅藻細胞から崩壊性単細胞性紅藻細胞を作出するために用いることができる。また、崩壊性単細胞性紅藻細胞を、崩壊性細胞のまま維持するために用いることができる。また、崩壊性単細胞性紅藻細胞を、増殖させるために用いることができる。
 以下、実施例により本発明を説明するが、本発明は以下の実施例に限定されるものではない。
<単細胞性紅藻>
 単細胞性紅藻として、Galdieria sulphuraria CCCryo127-00株(以下、「CCCryo127-00株」ともいう)を用いた。
<培地>
 基礎培地として、Gross培地を用いた。Gross培地の組成を表1に示す。また、Gross培地に用いるFe-EDTA Solution及びTrace Elementsの組成を、表2及び表3にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
<崩壊性細胞の確認方法>
 2質量%の界面活性剤(ドデシル硫酸ナトリウム(SDS))を含むGross培地に細胞を懸濁し、崩壊する細胞を崩壊性細胞と判断した。細胞の崩壊は、光学顕微鏡を用いた観察により確認した。光学顕微鏡による観察は、SDSの添加後すぐに行った。また、崩壊性細胞が多数を占めるコロニーは、非崩壊性細胞から形成されるコロニーと比較して、扁平で、寒天培地の表面に広がる形状となる(図1参照:矢印が崩壊性細胞のコロニー。その中心部分には非崩壊性細胞が一部残っている)。そこで、寒天培地上のコロニーの形態も、崩壊性細胞であるかの判断に用いた。
(1)崩壊性単細胞性紅藻細胞の培養
 崩壊性細胞の安定的な維持に、浸透圧が影響する可能性を検討するために、浸透圧調整剤としてソルビトールを用いて、培地の浸透圧を調整した。CCCryo127-00株の崩壊性細胞のコロニーから崩壊性細胞を採取し、18%ソルビトール+Gross 1.5%寒天培地に植え継いだ。その後、40℃、暗所、大気雰囲気下で1~2カ月培養した。培養期間中、崩壊性細胞のコロニーは維持されていた(図2)。この結果から、培地中の浸透圧を高くすることにより、崩壊性細胞を2週間超安定して維持できることが確認された。
(2)崩壊性細胞を維持できる培地の検討
 表4に示す浸透圧調整剤を1~50質量%となるようにGross培地又は1%グルコース+Gross培地に添加した。さらに、前記各培地に1.5質量%の寒天を添加して、1.5%寒天培地をそれぞれ作製した。これらの寒天培地に、CCCryo127-00株の崩壊性細胞を播種し、40℃、暗所、大気雰囲気下で1カ月間以上培養した。培養期間中、寒天培地上のコロニーの形態を観察し、崩壊性細胞のコロニーが維持されているかを確認した。また、コロニーの大きさに基づいて、崩壊性細胞の増殖を評価した。その結果を、以下の評価基準に基づいて、表4に示した。
<評価基準>
 A:崩壊性細胞の維持期間が1カ月以上
 B:崩壊性細胞の維持期間が2週間超1カ月未満
 C:崩壊性細胞の維持期間が2週間以内
 N:増殖しない
 D:培養できない(死滅)
 -:未実施
 崩壊性細胞のコロニーが維持されている例を図3に示す。図3は、18%ソルビトール+Gross 1.5%寒天培地で、1カ月間培養したプレートである。
 非崩壊性細胞のコロニーに回帰した例を図4に示す。図4は、1%ソルビトール+Gross 1.5%寒天培地で、2週間培養したプレートである。
 崩壊性細胞のコロニーが増殖した例を図5に示す。図5は、18%ソルビトール+Gross 1.5%寒天培地で培養したプレートである。左の写真は培養開始時のプレートであり、右の写真は培養3週間後のプレートである。
Figure JPOXMLDOC01-appb-T000004
 表4中、「Gross」はGross培地を示し、「1%Glc+Gross」は1%グルコースGross培地を示す。()内の数値は浸透圧調整剤のモル濃度を表す。
 表4に示す各培地について、寒天添加前の培地の浸透圧を測定した結果を表5に示す。培地の浸透圧は、浸透圧計(製品名:自動浸透圧分析装置オズモステーションOM-6060、メーカー:アークレイ株式会社)で測定した。表5中、[]内の数値は浸透圧(mOsm/kg)を示す。
Figure JPOXMLDOC01-appb-T000005
 表4の結果より、浸透圧調整剤を約80mM以上添加した培地では、2週間超で崩壊性細胞を維持できることが確認された。浸透圧調整剤の濃度が高くなると、増殖が遅くなる傾向があるが、浸透圧調整剤を溶解度の上限まで添加した場合でも、概ね、2週間を超えて崩壊性細胞を維持できた。増殖速度を考慮すると、浸透圧調整剤の濃度の上限値は、1.5M程度が適切であると考えられた。
 表5の結果より、浸透圧が約150mOsm/kg以上である培地では、2週間を超えて崩壊性細胞を維持できることが確認された。浸透圧が高くなると、増殖が遅くなる傾向があったが、浸透圧が高い場合でも、概ね、1カ月以上崩壊性細胞を維持できた。増殖速度を考慮すると、培地の浸透圧の上限値は、1500Osm/kg程度が適切であると考えられた。
(3)(2)で検討した培地による崩壊性単細胞性紅藻細胞の作出
 CCCryo127-00株の非崩壊性細胞を、18%ソルビトール+Gross 1.5%寒天培地に播種した。その後、40℃、暗所、大気雰囲気下で培養した。培養期間中、崩壊性細胞のコロニーが出現するかを確認した。
 その結果、2週間程度で、崩壊性細胞のコロニーが出現した(図6、矢印が崩壊性細胞のコロニー)。崩壊性細胞のコロニーから細胞を採取し、18%ソルビトール+Gross 1.5%寒天培地に植え継いだ。植え継いだ培地でも、1カ月以上崩壊性細胞のコロニーが維持できることが確認された(図6)。
 この結果から、(2)で検討した培地を用いることにより、非崩壊性細胞から崩壊性細胞を効率よく作出できることが示された。
(4)(2)で検討した培地による液体培養
 CCCryo127-00株の崩壊性細胞を、18%ソルビトール+Gross液体培地に播種した。その後、40℃、暗所、大気雰囲気下で培養した。その結果、崩壊性細胞を維持したまま良好に増殖することが確認された(図7)。
 以上、本発明の好ましい実施形態を説明および図示してきたが、これらは本発明を例示するものであり、限定的なものとみなされるべきではないことを理解すべきである。本発明の精神または範囲から逸脱することなく、追加、省略、置換、およびその他の変更を行うことができる。したがって、本発明は、前述の説明によって限定されるものとはみなされず、添付の請求項の範囲によってのみ限定される。

Claims (15)

  1.  単細胞性紅藻細胞を、浸透圧調整剤を80mM以上含有する培地中で培養することを含む、崩壊性単細胞性紅藻の製造方法。
  2.  単細胞性紅藻細胞を、浸透圧が150mOsm/kg以上である培地中で培養することを含む、崩壊性単細胞性紅藻の製造方法。
  3.  浸透圧調整剤が、糖、糖アルコール、及びアミノ酸からなる群より選択される少なくとも一種である、請求項1又は2に記載の崩壊性単細胞性紅藻の製造方法。
  4.  前記単細胞性紅藻細胞が、非崩壊性細胞である、請求項1~3のいずれか一項に記載の崩壊性単細胞性紅藻の製造方法。
  5.  前記非崩壊性細胞が、倍数体の細胞である、請求項4に記載の崩壊性単細胞性紅藻の製造方法。
  6.  前記単細胞性紅藻細胞が、崩壊性細胞である、請求項1~3のいずれか一項に記載の崩壊性単細胞性紅藻の製造方法。
  7.  崩壊性単細胞性紅藻細胞を、崩壊性細胞のまま維持する方法である、請求項6に記載の崩壊性単細胞性紅藻の製造方法。
  8.  崩壊性単細胞性紅藻細胞を、増殖させる方法である、請求項6に記載の崩壊性単細胞性紅藻の製造方法。
  9.  浸透圧調整剤を80mM以上含有する、崩壊性単細胞性紅藻用培地。
  10.  浸透圧が150mOsm/kg以上である、崩壊性単細胞性紅藻用培地。
  11.  浸透圧調整剤が、糖、糖アルコール、及びアミノ酸からなる群より選択される少なくとも一種である、請求項9又は10に記載の崩壊性単細胞性紅藻用培地。
  12.  非崩壊性単細胞性紅藻細胞から崩壊性単細胞性紅藻細胞を作出するために用いられる、請求項9~11のいずれか一項に記載の崩壊性単細胞性紅藻用培地。
  13.  前記非崩壊性単細胞性紅藻細胞が、倍数体の単細胞性紅藻細胞である、請求項12に記載の崩壊性単細胞性紅藻用培地。
  14.  崩壊性単細胞性紅藻細胞を、崩壊性細胞のまま維持するために用いられる、請求項9~11のいずれか一項に記載の崩壊性単細胞性紅藻用培地。
  15.  崩壊性単細胞性紅藻細胞を、増殖させるために用いられる、請求項9~11のいずれか一項に記載の崩壊性単細胞性紅藻用培地。
PCT/JP2021/030931 2020-08-24 2021-08-24 崩壊性単細胞性紅藻の製造方法、及び崩壊性単細胞性紅藻用培地 WO2022045109A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022527679A JP7233667B2 (ja) 2020-08-24 2021-08-24 崩壊性単細胞性紅藻の製造方法、及び崩壊性単細胞性紅藻用培地

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-141202 2020-08-24
JP2020141202 2020-08-24

Publications (1)

Publication Number Publication Date
WO2022045109A1 true WO2022045109A1 (ja) 2022-03-03

Family

ID=80353372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030931 WO2022045109A1 (ja) 2020-08-24 2021-08-24 崩壊性単細胞性紅藻の製造方法、及び崩壊性単細胞性紅藻用培地

Country Status (2)

Country Link
JP (1) JP7233667B2 (ja)
WO (1) WO2022045109A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018529343A (ja) * 2015-09-25 2018-10-11 フェルメンタル 単細胞紅藻類を培養するための新規な方法
WO2019107385A1 (ja) * 2017-11-28 2019-06-06 国立研究開発法人科学技術振興機構 新規微細藻類、及びその使用
WO2020071444A1 (ja) * 2018-10-02 2020-04-09 国立研究開発法人科学技術振興機構 淡水産微細藻類の培養方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210151827A (ko) * 2019-03-15 2021-12-14 폴리스코프 랩스 하나 이상의 병원체의 검출을 위한 선택 강화 브로스

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018529343A (ja) * 2015-09-25 2018-10-11 フェルメンタル 単細胞紅藻類を培養するための新規な方法
WO2019107385A1 (ja) * 2017-11-28 2019-06-06 国立研究開発法人科学技術振興機構 新規微細藻類、及びその使用
WO2020071444A1 (ja) * 2018-10-02 2020-04-09 国立研究開発法人科学技術振興機構 淡水産微細藻類の培養方法

Also Published As

Publication number Publication date
JPWO2022045109A1 (ja) 2022-03-03
JP7233667B2 (ja) 2023-03-07

Similar Documents

Publication Publication Date Title
Larsen Biochemical aspects of extreme halophilism
Herriott et al. Defined medium for growth of Haemophilus influenzae
US7399615B2 (en) Animal component free meningococcal polysaccharide fermentation and seedbank development
ES2681993T3 (es) Método para producir antígenos de Haemophilus influenzae de tipo b
US11639491B2 (en) Microorganism lyophilized composition
CN102782145A (zh) 制备含有月桂酸的油脂的方法
CN101911914A (zh) 一种适于蕨类植物孢子萌发与育苗的培养基
WO2020071444A1 (ja) 淡水産微細藻類の培養方法
WO2022045109A1 (ja) 崩壊性単細胞性紅藻の製造方法、及び崩壊性単細胞性紅藻用培地
WO2022045110A1 (ja) 1倍体単細胞性紅藻の製造方法、及び1倍体単細胞性紅藻用培地
Morton et al. Electron Microscopic Studies of Biological Reactions. I. Reduction of Potassium Tellurite by Corynebacterium diphtheriae.
Almestrand Growth and metabolism of isolated cereal roots.
CN112094770A (zh) 一株高地芽孢杆菌及其活性物质复配液与菌剂在防治根结线虫病中的应用
Yadav et al. Role of cyanobacteria in germination and growth of paddy seedlings
Burrows Growth of Clostridium botulinum on synthetic mediums
CN105409780B (zh) 一种无需灭菌的植物组培培养基及其制备方法
JP4180059B2 (ja) 紅藻のシアニジウム属を培養する培地
Watanabe et al. Cryopreservation of a water‐bloom forming cyanobacterium, Microcystis aeruginosa f. aeruginosa
CN111961592A (zh) 一种rna病毒保存液及其制备方法和应用
JP4180060B2 (ja) シゾンを選択的に培養する培地
US9909100B2 (en) Plant extract based composition useful for leishman IA promastigotes
US11898139B2 (en) Culturing method for genus Rhizobium bacteria
Jarvis et al. Production of Vi antigen on a chemically defined medium by a coliform bacterium
AR126176A1 (es) Composición y método para descomponer residuos de cosechas y añadir nutrientes al suelo
CR20220302A (es) Composición y método para descomponer residuos de cosechas y añadir nutrientes al suelo

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861534

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022527679

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861534

Country of ref document: EP

Kind code of ref document: A1