WO2022044811A1 - レコメンド装置 - Google Patents
レコメンド装置 Download PDFInfo
- Publication number
- WO2022044811A1 WO2022044811A1 PCT/JP2021/029645 JP2021029645W WO2022044811A1 WO 2022044811 A1 WO2022044811 A1 WO 2022044811A1 JP 2021029645 W JP2021029645 W JP 2021029645W WO 2022044811 A1 WO2022044811 A1 WO 2022044811A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- insurance
- user
- information
- degree
- insurance products
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q40/00—Finance; Insurance; Tax strategies; Processing of corporate or income taxes
- G06Q40/08—Insurance
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/06—Buying, selling or leasing transactions
- G06Q30/0601—Electronic shopping [e-shopping]
- G06Q30/0631—Item recommendations
Definitions
- This disclosure relates to a recommendation device.
- Patent Document 1 the user's behavior information is acquired, the user's future risk is predicted based on the behavior information, and the combination of insurance-related products required by the user is determined based on the risk.
- An information processing device that distributes insurance premiums according to risk within the set insurance premiums and provides users with a combination of insurance-related products is described.
- the amount paid per unit (compensation amount) varies depending on the insurance product.
- the insurance premium is distributed without considering the compensation amount, there is a possibility that the damage amount cannot be sufficiently compensated.
- This disclosure describes a recommendation device that can optimize the combination of insurance products and insurance premiums.
- the recommendation device is a degree of risk indicating the degree of damage caused to the user due to an event covered by each of the plurality of insurance products, and a degree of compensation indicating the degree of compensation by each of the plurality of insurance products. Based on the above, a decision unit that determines the combination of insurance products and the insurance premium to be paid for the insurance product from among a plurality of insurance products, and an output unit that outputs recommendation information indicating the combination and insurance premiums. To prepare for.
- the combination of insurance products and the insurance premium to be paid to the insurance products are determined from among the plurality of insurance products based on the risk level and the compensation level of each of the multiple insurance products, and the recommendation information is determined. Is output. Since not only the degree of risk but also the degree of compensation is taken into consideration, for example, the combination of insurance products and the premium can be determined so as to be compensated in a well-balanced manner for various risks of the user. As a result, it becomes possible to optimize the combination of insurance products and insurance premiums.
- FIG. 1 is a schematic configuration diagram of a recommendation system including a recommendation device according to an embodiment.
- FIG. 2A is a diagram showing an example of user basic information stored in the user information DB (database) shown in FIG. 1.
- FIG. 2B is a diagram showing an example of position information stored in the user information DB shown in FIG. 1.
- FIG. 2C is a diagram showing an example of payment information stored in the user information DB shown in FIG. 1.
- FIG. 3 is a diagram showing an example of insurance coverage information stored in the insurance coverage information DB shown in FIG.
- FIG. 4 is a block diagram showing a functional configuration of the recommendation device shown in FIG.
- FIG. 5 is a sequence diagram showing a series of processes of the recommendation method performed by the recommendation system shown in FIG. FIG.
- FIG. 6 is a flowchart showing the determination process shown in FIG. 5 in detail.
- FIG. 7 is a diagram showing an example of a display screen of recommendation information.
- FIG. 8 is a diagram for explaining the degree of overlap between two insurance products.
- FIG. 9 is a diagram for explaining the compensation score.
- FIG. 10 is a diagram showing a hardware configuration of the recommendation device shown in FIG.
- FIG. 1 is a schematic configuration diagram of a recommendation system including a recommendation device according to an embodiment.
- FIG. 2A is a diagram showing an example of user basic information stored in the user information DB (database) shown in FIG. 1.
- FIG. 2B is a diagram showing an example of position information stored in the user information DB shown in FIG. 1.
- FIG. 2C is a diagram showing an example of payment information stored in the user information DB shown in FIG. 1.
- FIG. 3 is a diagram showing an example of insurance coverage information stored in the insurance coverage information DB shown in FIG.
- the recommendation system 1 shown in FIG. 1 is a system for recommending combinations of insurance products and insurance premiums (portfolio) to users.
- the recommendation system 1 includes a plurality of terminal devices 2, a user information DB 3, an insurance subscription information DB 4, and a recommendation device 10.
- the plurality of terminal devices 2, the user information DB 3, the insurance subscription information DB 4, and the recommendation device 10 are configured to be communicable with each other via the network NW.
- the network NW may be configured as either wired or wireless. Examples of network NWs include mobile communication networks, the Internet, and WAN (Wide Area Network). In the following description, the description mainly focuses on one terminal device 2, but the same applies to the other terminal devices 2.
- the terminal device 2 is a device used by the user.
- Examples of the terminal device 2 include a smartphone, a tablet terminal, a notebook PC (Personal Computer), and a desktop PC.
- the terminal device 2 acquires the position information (latitude and longitude) of the terminal device 2 using GPS (Global Positioning System) or the like.
- the terminal device 2 may acquire information on the installation position of the master station of the connected wireless network as position information. Examples of the installation position of the master station include a base station of a mobile network, a Wi-Fi access point, and the like.
- the terminal device 2 may acquire the position information of the terminal existing in the vicinity of the terminal device 2 as the position information of the terminal device 2. Examples of such a terminal include a Bluetooth (registered trademark) beacon terminal and the like. The details of the location information will be described later.
- the terminal device 2 periodically transmits the location information to the user information DB 3.
- the terminal device 2 generates payment information regarding payments made by the user using the terminal device 2. For example, when a user purchases a product using a payment application installed in the terminal device 2, the terminal device 2 generates payment information. Details of the payment information will be described later.
- the terminal device 2 transmits the payment information to the user information DB 3 every time the payment information is generated, for example.
- the user information DB 3 is a database that stores user information of each user.
- the user information is information about the user, and includes user basic information, location information, and payment information.
- the user information may include other information such as a usage history (log) of the terminal device 2.
- the user basic information is the user's basic information. As shown in FIG. 2A, the user basic information includes a user ID (identifier), a terminal ID, a gender, and an age.
- the user ID is information that can uniquely identify the user.
- the terminal ID is information that can uniquely identify the terminal device 2. Here, the terminal ID indicates the terminal device 2 used by the user identified by the user ID.
- the user basic information may further include other information.
- the user basic information is preset by the user, for example.
- the position information is information indicating the position of each terminal device.
- the position information includes a terminal ID, a time (time stamp) at which the position information was acquired, a latitude, and a longitude.
- the user information DB 3 receives the position information from each terminal device 2, the user information DB 3 stores the received position information.
- a plurality of position information of each terminal device 2 is stored as a history (log) of the position information.
- the payment information is information related to the payment made using each terminal device 2. As shown in FIG. 2 (c), the payment information includes the terminal ID, the time when the payment was made, the place where the payment was made, the amount of money, and the product name.
- the user information DB 3 receives the payment information from each terminal device 2, the user information DB 3 stores the received payment information. In the user information DB 3, a plurality of payment information of each terminal device 2 is stored as a history of payment information.
- the insurance enrollment information DB 4 is a database that stores the insurance enrollment information of each user.
- the insurance subscription information is information about the insurance products that each user has subscribed to. As shown in FIG. 3, the insurance enrollment information includes an insurance ID, a user ID, and an insurance premium.
- the insurance ID is information that can uniquely identify the insurance product.
- the insurance premium is the amount paid by the user identified by the user ID to the insurance product identified by the insurance ID.
- the insurance premium is, for example, the insurance premium per month.
- the insurance subscription information may include the number of purchased units instead of the insurance premium, or may include the number of purchased units together with the insurance premium.
- the recommendation device 10 is a device that recommends the optimum combination of insurance products and insurance premiums to the user from among a plurality of insurance products.
- An example of the recommendation device 10 is an information processing device such as a server device.
- FIG. 4 is a block diagram showing a functional configuration of the recommendation device shown in FIG.
- the recommendation device 10 includes an acquisition unit 11, a generation unit 12, a calculation unit 13, a risk score storage unit 14, a calculation unit 15, and a damage amount storage unit 16.
- a receiving unit 17, a determining unit 18, an output unit 19, and an insurance product information storage unit 20 are provided.
- the acquisition unit 11 is a functional unit that acquires user information and insurance subscription information.
- the acquisition unit 11 acquires user information from the user information DB 3 and acquires insurance subscription information from the insurance subscription information DB 4.
- the generation unit 12 is a functional unit that generates a subscription prediction model and an insurance premium prediction model.
- the enrollment prediction model is a machine learning model in which a feature amount generated from user information is used as an explanatory variable and an insurance product enrollment score is used as an objective variable, and is configured by, for example, a neural network.
- the enrollment score is a value indicating the possibility that the user will enroll in an insurance product.
- the enrollment score is, for example, a numerical value in the range of 0 to 1. For example, the higher the insurance product subscription score, the more likely the user will subscribe to the insurance product.
- the generation unit 12 generates a subscription prediction model for each insurance product by performing machine learning for each insurance product.
- the insurance premium prediction model is a machine learning model with the feature amount generated from the user information as the explanatory variable and the predicted insurance premium as the objective variable, and is configured by, for example, a neural network.
- the predicted insurance premium is a premium that the user is expected to pay for the insurance product, and is obtained by, for example, multiplying the insurance premium per unit by the number of purchased units.
- the generation unit 12 generates a premium prediction model for each insurance product by performing machine learning for each insurance product. The method of generating the feature amount, the method of generating the participation prediction model, and the method of generating the insurance premium prediction model will be described later.
- the calculation unit 13 is a functional unit that calculates a risk score for each of a plurality of insurance products based on user information.
- the risk score is a value indicating the possibility (probability of occurrence) that an event covered by insurance products occurs in the user.
- the enrollment score is considered to have a correlation with the risk score. Therefore, the calculation unit 13 calculates the risk score based on the enrollment score.
- the calculation unit 13 calculates the subscription score using the subscription prediction model.
- the calculation unit 13 generates a feature amount from the user information and inputs the generated feature amount to the subscription prediction model to obtain a subscription score from the subscription prediction model. For example, the calculation unit 13 may use the enrollment score as the risk score, or may calculate the risk score by multiplying the enrollment score by a predetermined coefficient.
- the risk score storage unit 14 is a functional unit that stores the risk score for each insurance product of each user.
- the risk score storage unit 14 stores, for example, a data set in which a user ID, an insurance ID, and a risk score are associated with each other.
- the calculation unit 15 is a functional unit that calculates the predicted average loss amount for each of the plurality of insurance products based on the user information.
- the estimated average loss amount is the average amount that is expected to be lost due to the event covered by the insurance product. Since the predicted premium is predicted as the amount of damage caused by the event covered by the insurance product, it is considered to have a correlation with the predicted average damage amount. Therefore, the calculation unit 15 calculates the predicted average loss amount based on the predicted insurance premium.
- the calculation unit 15 calculates the predicted insurance premium using the insurance premium prediction model.
- the calculation unit 15 generates a feature amount from the user information and inputs the generated feature amount into the insurance premium prediction model to obtain the predicted insurance premium from the insurance premium prediction model.
- the calculation unit 15 calculates the predicted average loss amount by, for example, multiplying the predicted insurance premium by a predetermined coefficient.
- the damage amount storage unit 16 is a functional unit that stores the predicted average damage amount for each user's insurance product.
- the damage amount storage unit 16 stores, for example, a data set in which a user ID, an insurance ID, and a predicted average damage amount are associated with each other.
- the receiving unit 17 is a functional unit that receives a recommendation request from the terminal device 2.
- a recommendation request is a directive for requesting recommendation information for an insurance product.
- the recommendation request includes a user ID of the user requesting the recommendation information and a payable amount Cost max .
- the payable amount Cost max is set by the user and is the upper limit amount that the user can pay for the insurance product.
- the payable amount Cost max is, for example, the upper limit amount that the user can pay for the insurance product per month.
- the decision unit 18 is a functional unit that determines a portfolio of insurance products recommended (recommended) to the user.
- the insurance product portfolio includes combinations of insurance products and premiums paid for each insurance product.
- the decision unit 18 determines a combination of insurance products recommended (recommended) to the user from among a plurality of (n) insurance products based on the risk level and the compensation level of each of the plurality of insurance products. , Determine the premium to be paid for each insurance product.
- the risk level is a value indicating the degree of damage caused to the user by the event covered by the insurance product. For example, the higher the degree of risk, the greater the degree of damage.
- the degree of compensation is a value indicating the degree of compensation by insurance products. For example, the greater the degree of compensation, the greater the degree of compensation.
- the decision unit 18 determines the portfolio of insurance products so that the total residual risk for the plurality of insurance products is minimized.
- the residual risk level is obtained, for example, by subtracting the compensation level from the risk level.
- the determination unit 18 determines the portfolio of insurance products within the range of the payable amount Cost max set by the user. Details on how to determine the portfolio of insurance products will be described later.
- the output unit 19 is a functional unit that outputs recommendation information indicating a portfolio of insurance products (combination of insurance products and insurance premiums).
- the output unit 19 outputs (transmits) the recommendation information to the terminal device 2, for example.
- the output unit 19 may output the recommendation information to a memory (not shown) in the recommendation device 10.
- the insurance product information storage unit 20 is a functional unit that stores insurance product information related to each insurance product.
- the insurance product information of each insurance product includes, for example, the insurance premium Cost i per unit, the compensation amount Ci per unit, the lower limit LB i and the upper limit UB i of the number of purchased units .
- the insurance product number i is an integer value of 1 or more and the total number of recommended insurance products n or less.
- FIG. 5 is a sequence diagram showing a series of processes of the recommendation method performed by the recommendation system shown in FIG.
- FIG. 6 is a flowchart showing the determination process shown in FIG. 5 in detail.
- FIG. 7 is a diagram showing an example of a display screen of recommendation information.
- the acquisition unit 11 of the recommendation device 10 transmits a user information acquisition request to the user information DB 3 (step S1).
- the acquisition unit 11 may transmit an acquisition request for acquiring user information of all users, or may transmit an acquisition request for acquiring user information of some users.
- the user information DB 3 receives the user information acquisition request from the recommendation device 10
- the user information DB 3 transmits the requested user information to the recommendation device 10 (step S2).
- the acquisition unit 11 of the recommendation device 10 transmits an insurance subscription information acquisition request to the insurance subscription information DB 4 (step S3).
- the acquisition unit 11 transmits, for example, an acquisition request for acquiring insurance coverage information for all recommended insurance products.
- the insurance subscription information DB 4 receives the insurance subscription information acquisition request from the recommendation device 10
- the insurance subscription information DB 4 transmits the requested insurance subscription information to the recommendation device 10 (step S4).
- the acquisition unit 11 of the recommendation device 10 receives the user information from the user information DB 3, and when the insurance subscription information is received from the insurance subscription information DB 4, outputs the user information and the insurance subscription information to the generation unit 12.
- the generation unit 12 generates the participation prediction model when it receives the user information and the insurance participation information from the acquisition unit 11 (step S5).
- the generation unit 12 generates a subscription prediction model for each insurance product by performing machine learning for each insurance product. Machine learning is performed using, for example, a GBDT (Gradient Boosting Decision Tree) algorithm.
- the generation unit 12 outputs the participation prediction model to the calculation unit 13.
- the generation unit 12 uses gender and age as feature quantities in the user information.
- the generation unit 12 may estimate the place and time of stay of the user from the time-series position information of the terminal device 2, and may use the place of stay and the time of stay as feature quantities. Further, a temporal change in the place of stay and the time of stay may be used as a feature quantity in order to reduce the influence of the place where the user happens to stay on the enrollment score, although the user does not usually visit.
- the generation unit 12 calculates from the payment information of the terminal device 2 the total of the number of payments, the number of stores where payments have been made, and the payment amount as feature quantities. The amount of money for each genre of the settled goods (services) may be used as a feature amount.
- the generation unit 12 generates an insurance premium prediction model (step S6).
- step S6 the generation unit 12 generates a premium prediction model for each insurance product by performing machine learning for each insurance product.
- Machine learning is performed using, for example, a GBDT algorithm.
- For machine learning for example, a set of a feature amount generated from user information of a user who has subscribed to an insurance product in the past and a premium paid by the user to the insurance product is used as correct answer data. The method for generating the feature amount is as described above. Then, the generation unit 12 outputs the insurance premium prediction model to the calculation unit 15.
- the acquisition unit 11 transmits an acquisition request for acquiring user information of all users to the user information DB 3 (step S7). Then, when the user information DB 3 receives the user information acquisition request from the recommendation device 10, the user information DB 3 transmits the requested user information to the recommendation device 10 (step S8). Then, when the acquisition unit 11 receives the user information from the user information DB 3, the acquisition unit 11 outputs the user information to the calculation unit 13 and the calculation unit 15.
- step S9 the calculation unit 13 first calculates the enrollment score using the enrollment prediction model. Specifically, the calculation unit 13 generates the feature amount from the user information of each user in the same manner as the method of generating the feature amount by the generation unit 12. Then, the calculation unit 13 inputs the feature amount into the subscription prediction model of each insurance product for each user, and obtains the subscription score output from each subscription prediction model. Then, the calculation unit 13 calculates the risk score by, for example, multiplying the participation score by a predetermined coefficient. Then, the calculation unit 13 outputs a data set in which the user ID, the insurance ID, and the risk score are associated with each other to the risk score storage unit 14, and stores the data set in the risk score storage unit 14.
- step S10 the calculation unit 15 first calculates the predicted insurance premium using the insurance premium prediction model. Specifically, the calculation unit 15 generates the feature amount from the user information of each user in the same manner as the method of generating the feature amount by the generation unit 12. Then, the calculation unit 15 inputs the feature amount into the insurance premium prediction model of each insurance product for each user, and obtains the predicted insurance premium output from each insurance premium prediction model. Then, the calculation unit 15 calculates the predicted average loss amount by multiplying the predicted insurance premium by a predetermined coefficient. Then, the calculation unit 15 outputs a data set in which the user ID, the insurance ID, and the predicted average damage amount are associated with each other to the damage amount storage unit 16 and stores the data set in the damage amount storage unit 16.
- the terminal device 2 transmits the recommendation request to the recommendation device 10 (step S11). Then, when the receiving unit 17 of the recommendation device 10 receives the recommendation request transmitted from the terminal device 2, the user ID and the payable amount Cost max included in the recommendation request are output to the determination unit 18.
- step S12 the determination unit 18 first acquires the risk score ri for each insurance product of the user identified by the user ID (step S21). Specifically, the determination unit 18 acquires a set of the insurance ID and the risk score ri associated with the user ID received from the reception unit 17 from the risk score storage unit 14.
- the determination unit 18 acquires the predicted average loss amount Loss i for each insurance product of the user identified by the user ID (step S22). Specifically, the determination unit 18 acquires a set of the insurance ID and the predicted average damage amount Loss i associated with the user ID received from the reception unit 17 from the damage amount storage unit 16. Then, the determination unit 18 acquires insurance product information regarding n insurance products that can be recommended to the user (step S23). Specifically, the determination unit 18 acquires insurance product information regarding n insurance products from the insurance product information storage unit 20.
- the determination unit 18 determines a portfolio of insurance products recommended (recommended) to the user (step S24).
- the determination unit 18 includes a set of insurance ID and risk score r i acquired from the risk score storage unit 14, an insurance ID acquired from the damage amount storage unit 16 and a set of expected average damage amount Loss i .
- the insurance product information acquired from the insurance product information storage unit 20 a combination of insurance products recommended to the user from among n insurance products based on the degree of risk and the degree of compensation for each insurance product. Determine the premium to be paid for each insurance product.
- the degree of risk is the predicted damage amount caused by the event covered by the insurance product
- the degree of compensation is the amount of compensation paid according to the insurance premium of the insurance product.
- the determination unit 18 minimizes the total residual damage amount obtained by subtracting the compensation amount from the predicted damage amount for n insurance products, as shown in the equation (1).
- the predicted loss amount is obtained by multiplying the risk score r i by the predicted average loss amount Loss i .
- the compensation amount is obtained by multiplying the compensation amount C i per unit by the number of purchased units x i .
- the determination unit 18 minimizes the equation (1) so as to satisfy the constraint conditions shown in the equations (2) to (4).
- Equation (2) defines the maximum number of insurance products that can be included in the portfolio, and indicates a constraint condition that the total of the selection flags ui of the 1st to nth insurance products is the maximum number K or less.
- the selection flag u i indicates whether or not the i-th insurance product is selected as an insurance product to be included in the portfolio. If the i-th insurance product is selected as the insurance product to be included in the portfolio, the selection flag ui is set to 1. If the i-th insurance product is not selected as an insurance product to be included in the portfolio, the selection flag ui is set to 0. Therefore, the determination unit 18 determines the number of insurance products so as to be within the upper limit number K.
- Equation (3) defines an upper limit of the total amount of insurance premiums, and indicates a constraint condition that the total amount of insurance premiums of the 1st to nth insurance products is equal to or less than the payable amount Cost max .
- the insurance premium for each insurance product is obtained by multiplying the insurance premium Cost i per unit by the number of purchased units x i . Therefore, the determination unit 18 determines the portfolio of insurance products within the range of the payable amount Cost max set by the user.
- Equation (4) defines the lower limit and the upper limit of the number of units purchased for each insurance product, and the constraint condition that the number of units purchased x i for each insurance product is within the range from the lower limit value LB i to the upper limit value UB i . Is shown. For insurance products that do not purchase even one unit, the number of units purchased x i becomes 0, so there is a risk that the insurance products will not fall within the range from the lower limit value LB i to the upper limit value UB i .
- the determination unit 18 determines the number of units to be purchased x i within the range from the multiplication result of the lower limit value LB i and the selection flag u i to the multiplication result of the upper limit value UB i and the selection flag u i .
- the decision unit 18 generates recommendation information indicating a portfolio of insurance products (step S25).
- the decision-making unit 18 generates recommendation information including the names of insurance products included in the portfolio and insurance premiums.
- the recommendation information may further include the payable amount Cost max and the total amount of insurance premiums (total payment amount).
- the recommendation information may further include the estimated damage amount and the compensation amount of each insurance product.
- the determination unit 18 outputs the recommendation information to the output unit 19.
- the output unit 19 transmits the recommendation information to the terminal device 2 (step S13). Then, when the terminal device 2 receives the recommendation information transmitted from the recommendation device 10, the terminal device 2 displays the recommendation information on the display. For example, as shown in FIG. 7, the names and premiums of insurance products included in the portfolio are displayed together with a graph showing the risk (estimated damage amount) and compensation (compensation amount) of each insurance product. Further, the total amount of insurance premiums (total payment amount) is displayed together with the payable amount Cost max set by the user.
- steps S1 to S10 are performed in advance before receiving a recommendation request from the terminal device 2 (offline processing).
- Step S3 and step S4 may be performed before step S1 and step S2, or may be performed in parallel with step S1 and step S2.
- Step S6 may be performed before step S5, or may be performed in parallel with step S5.
- Step S10 may be performed before step S9 or in parallel with step S9.
- Steps S21 to S23 may be performed in any order, or may be performed in parallel with each other.
- Steps S7 to S10 may be performed after step S11.
- the acquisition unit 11 transmits an acquisition request for acquiring the user information of the user identified by the user ID included in the recommendation request to the user information DB 3, and in step S8, the user information DB 3 , The user information of the requested user is transmitted to the recommendation device 10.
- the calculation unit 13 calculates the risk score of the user identified by the user ID included in the recommendation request, and outputs the risk score to the determination unit 18.
- the calculation unit 15 calculates the predicted average damage amount of the user identified by the user ID included in the recommendation request, and outputs the predicted average damage amount to the determination unit 18.
- the combination of the insurance products, the insurance premium paid to the insurance products, and the insurance premiums to be paid to the insurance products are selected from the n insurance products. Is determined and the recommendation information is output. Since not only the predicted damage amount but also the compensation amount is taken into consideration, for example, the combination of insurance products and the insurance premium can be determined so as to be compensated in a well-balanced manner for various risks of the user. As a result, it becomes possible to optimize the combination of insurance products and insurance premiums.
- the determination unit 18 determines the combination of insurance products and the insurance premium so that the total amount of residual damage obtained by subtracting the compensation amount from the predicted damage amount for n insurance products is minimized. do. Since it can be said that the smaller the total amount of residual damage is, the better the preparation for all risks is, it can be said that the combination of insurance products and the premium that minimizes the total amount of residual damage are optimal for the user. Therefore, according to the above configuration, it is possible to optimize the combination of insurance products and insurance premiums.
- the determination unit 18 calculates the predicted damage amount based on the risk score indicating the probability of occurrence of the event covered by the insurance product. According to Courtney's theory, risk is calculated by multiplying the probability of occurrence of risk and the degree of impact. The degree of impact can be regarded as the average amount of damage. Therefore, the predicted loss amount can be obtained by multiplying the risk score r i by the predicted average loss amount Loss i .
- the premium may be adjusted so that the user can pay the amount Cost max or less.
- the determination unit 18 determines the combination of insurance products and the insurance premium within the range of the payable amount Cost max set by the user. According to this configuration, the combination of insurance products and the insurance premium are determined and recommended to the user after considering the upper limit of the total payment amount. Therefore, the combination of insurance products and insurance premiums can be further optimized. Since the total payment amount is less than or equal to the payable amount Cost max , it is possible to increase the possibility that the user accepts the recommended content.
- the calculation unit 13 calculates the enrollment score indicating the possibility of enrolling in the insurance product for each of the n insurance products based on the user information, and the risk score for each of the n insurance products based on the enrollment score. calculate. Users who have similarities in gender, age, behavior, etc. are considered to be equally likely to subscribe to insurance products. Then, it is considered that the higher the possibility that the user subscribes to the insurance product, the higher the possibility that the event covered by the insurance product will occur in the user. That is, there is a correlation between the enrollment score and the risk score. Therefore, a risk score can be obtained based on the enrollment score. From the above, the risk score of each insurance product can be calculated accurately by using the user information.
- the recommendation device 10 may be configured by one device physically or logically coupled, or may be configured by a plurality of devices physically or logically separated from each other.
- the recommendation device 10 may be realized by a plurality of computers distributed on a network such as cloud computing.
- the configuration of the recommendation device 10 may include any configuration that can realize the function of the recommendation device 10.
- the generation unit 12 may generate a risk prediction model instead of the participation prediction model.
- the risk prediction model is a machine learning model in which a feature amount generated from user information is used as an explanatory variable and a risk score of an insurance product is used as an objective variable, and is configured by, for example, a neural network.
- the generation unit 12 may generate an average loss amount prediction model instead of the insurance premium prediction model.
- the average loss amount prediction model is a machine learning model in which the feature amount generated from the user information is used as an explanatory variable and the predicted average loss amount caused to the user by the event covered by the insurance product is used as the objective variable.
- a neural network It is composed of.
- the recommendation device 10 does not have to include the calculation unit 13 and the risk score storage unit 14.
- the determination unit 18 may acquire a set of the insurance ID and the risk score associated with the user ID included in the recommendation request from the external risk score storage unit.
- the recommendation device 10 may not include the calculation unit 15 and the damage amount storage unit 16.
- the determination unit 18 may acquire a set of the insurance ID and the predicted average damage amount associated with the user ID included in the recommendation request from the external damage amount storage unit.
- the recommendation device 10 does not have to include the insurance product information storage unit 20. In this case, the determination unit 18 may acquire the insurance product information from an external insurance product information storage unit.
- the recommendation device 10 does not have to include the generation unit 12.
- the calculation unit 13 calculates the enrollment score using the enrollment prediction model generated in advance, and calculates the risk score based on the enrollment score.
- the calculation unit 13 may calculate the enrollment score on a rule basis or the like based on the user information and calculate the risk score based on the enrollment score without using the enrollment prediction model.
- the calculation unit 13 may calculate the risk score using a risk prediction model generated in advance.
- the calculation unit 13 may calculate the risk score on a rule basis or the like based on the user information.
- the calculation unit 15 calculates the predicted insurance premium using the insurance premium prediction model generated in advance, and calculates the predicted average loss amount based on the predicted insurance premium.
- the calculation unit 15 may calculate the predicted insurance premium on a rule basis or the like based on the user information and calculate the predicted average loss amount based on the predicted insurance premium without using the insurance premium prediction model.
- the calculation unit 15 may calculate the predicted average damage amount using the average damage amount prediction model generated in advance.
- the calculation unit 15 may calculate the predicted average damage amount on a rule basis or the like based on the user information.
- the recommendation device 10 does not have to include the acquisition unit 11, the generation unit 12, the calculation unit 13, the risk score storage unit 14, the calculation unit 15, the damage amount storage unit 16, and the insurance product information storage unit 20.
- the determination unit 18 acquires the set of the insurance ID and the risk score associated with the user ID included in the recommendation request from the external risk score storage unit, and the insurance ID and the prediction associated with the user ID.
- the set of the average damage amount may be acquired from the external damage amount storage unit
- the insurance product information may be acquired from the external insurance product information storage unit.
- the coverage of insurance products varies depending on the insurance product, but the coverage may partially overlap among several insurance products. Therefore, the determination unit 18 may determine the combination of insurance products and the insurance premium based on the correlation coefficient ⁇ ij .
- the correlation coefficient ⁇ ij is a value indicating the degree of correlation between two insurance products (the i-th insurance product and the j-th insurance product) out of n insurance products.
- the correlation coefficient ⁇ ij is a numerical value in the range of 0 to 1. The larger the correlation coefficient ⁇ ij , the stronger the correlation between the i-th insurance product and the j-th insurance product.
- the correlation coefficient ⁇ ij is calculated and set in advance for each of the two insurance products out of the n insurance products.
- the correlation coefficient ⁇ ij is included in the insurance product information, for example, and is acquired from the insurance product information storage unit 20.
- Equation (5) shows a constraint that the total degree of overlap for all pairs of two insurance products selectable from n insurance products is less than the specified value Sa.
- the degree of overlap is a value indicating the degree of overlap of the indemnity targets of the two insurance products. The greater the degree of overlap, the greater the degree of overlap of coverage by the two insurance products.
- the determination unit 18 determines the multiplicity based on the compensation amount and the correlation coefficient ⁇ ij for all the sets of the two insurance products that can be selected from the n insurance products. Calculate and calculate the total multiplicity. As shown in FIG. 8, the larger the correlation coefficient, the larger the degree of overlap. Then, the determination unit 18 determines the portfolio of insurance products (combination and premium) so that the total of the multiplicities of all the pairs is smaller than the specified value Sa.
- the range of events that can be covered by the insurance products may be narrowed. That is, risk concentration can occur.
- the range of events that can be covered by the insurance products can be widened and the risk can be diversified. can. Therefore, it can be said that the smaller the total degree of overlap for all pairs of two insurance products selectable from n insurance products, the wider the coverage. Therefore, by determining the combination of insurance products and the insurance premium so that the total degree of duplication is smaller than the specified value Sa, it is possible to further optimize the combination of insurance products and the insurance premium.
- the degree of risk is not limited to the predicted damage amount.
- the degree of compensation is not limited to the amount of compensation.
- the risk score ri may be used as the degree of risk.
- the compensation score C i ( xi ) is used as the compensation degree.
- the compensation score C i ( xi ) is a value indicating the possibility (probability) that the predicted damage amount caused by the event covered by the insurance product can be fully compensated by the compensation amount paid according to the insurance premium.
- the compensation score C i (x i ) is preset for each insurance product.
- the compensation score C i ( xi ) is included in the insurance product information, for example, and is acquired from the insurance product information storage unit 20.
- the compensation score C i ( xi ) is represented by the area of the probability density function.
- the possibility of damage greater than the compensation amount decreases as the compensation amount increases. Therefore, as shown in FIG. 9, the amount of increase in the compensation score C i ( xi ) per unit insurance premium (number of units purchased) decreases as the insurance premium increases.
- the determination unit 18 uses the equation (6) instead of the equation (1), and minimizes the equation (6) so as to satisfy the constraint conditions shown in the equations (2) to (4). That is, as shown in the equation (6), the determination unit 18 has the minimum total residual risk score obtained by subtracting the compensation score C i ( xi ) from the risk score r i for n insurance products. The combination of insurance products and insurance premiums are determined so as to be. If the compensation score C i (x i ) is larger than the risk score r i , it means overcompensation, but in this case, the residual risk score is regarded as 0.
- the determination unit 18 may determine the combination of insurance products and the insurance premium based on the correlation coefficient ⁇ ij . Specifically, the determination unit 18 minimizes the equation (1) so as to further satisfy the constraint condition shown in the equation (7) instead of the equation (5). Equation (7) shows a constraint that the total degree of overlap for all pairs of two insurance products selectable from n insurance products is less than the specified value Sb. As shown on the left side of the equation (7), the determination unit 18 determines the multiplicity based on the compensation score and the correlation coefficient ⁇ ij for all the pairs of the two insurance products selectable from the n insurance products. Calculate and calculate the total degree of duplication. Then, the determination unit 18 determines the portfolio of insurance products (combination and premium) so that the total of the multiplicities of all the sets is smaller than the specified value Sb.
- the insurance product combination and the insurance product are paid from the n insurance products based on the risk score r i and the compensation score C i ( xi ) of each of the n insurance products.
- the insurance premium is determined and the recommendation information is output. Since not only the risk score r i but also the compensation score C i ( xi ) is taken into consideration, for example, the combination of insurance products and the insurance premium are determined so as to be compensated in a well-balanced manner for various risks of the user. can do. As a result, it becomes possible to optimize the combination of insurance products and insurance premiums.
- each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
- the functional block may be realized by combining the software with the one device or the plurality of devices.
- Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. These include broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assigning. Not limited to functions.
- a functional block (configuration unit) that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter).
- the realization method is not particularly limited.
- the recommendation device 10 in one embodiment of the present disclosure may function as a computer for processing the present disclosure.
- FIG. 10 is a diagram showing an example of the hardware configuration of the recommendation device 10 according to the embodiment of the present disclosure.
- the above-mentioned recommendation device 10 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
- the word “device” can be read as a circuit, device, unit, or the like.
- the hardware configuration of the recommendation device 10 may be configured to include one or more of each of the devices shown in the figure, or may be configured to include some of the devices.
- the processor 1001 For each function in the recommendation device 10, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation to control communication by the communication device 1004, or the memory 1002. And by controlling at least one of reading and writing of data in the storage 1003.
- predetermined software program
- the processor 1001 operates, for example, an operating system to control the entire computer.
- the processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic unit, a register, and the like.
- CPU Central Processing Unit
- each function of the above-mentioned recommendation device 10 may be realized by the processor 1001.
- the processor 1001 reads a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
- a program program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
- each function of the recommendation device 10 may be realized by a control program stored in the memory 1002 and operating in the processor 1001.
- Processor 1001 may be mounted by one or more chips.
- the program may be transmitted from the network via a telecommunication line.
- the memory 1002 is a computer-readable recording medium, for example, by at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. It may be configured.
- the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
- the memory 1002 can store a program (program code), a software module, or the like that can be executed to carry out the recommendation method according to the embodiment of the present disclosure.
- the storage 1003 is a computer-readable recording medium, and is, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one such as a (registered trademark) disk), a smart card, a flash memory (eg, a card, stick, key drive), a floppy (registered trademark) disk, and a magnetic strip.
- the storage 1003 may be referred to as an auxiliary storage device.
- the storage medium described above may be, for example, a database, server, or other suitable medium containing at least one of memory 1002 and storage 1003.
- the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, or a communication module.
- the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). It may be configured to include.
- FDD Frequency Division Duplex
- TDD Time Division Duplex
- the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
- the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside.
- the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
- Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
- the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
- the recommendation device 10 includes hardware such as a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array).
- DSP Digital Signal Processor
- ASIC Application Specific Integrated Circuit
- PLD Programmable Logic Device
- FPGA Field Programmable Gate Array
- the hardware may implement some or all of each functional block.
- processor 1001 may be implemented using at least one of these hardware.
- the notification of information is not limited to the embodiments / embodiments described in the present disclosure, and may be performed by other methods.
- Information and the like may be output from the upper layer to the lower layer, or may be output from the lower layer to the upper layer. Information and the like may be input / output via a plurality of network nodes.
- the input / output information and the like may be stored in a specific place (for example, a memory) or may be managed using a management table. Information to be input / output may be overwritten, updated, or added. The output information and the like may be deleted. The input information or the like may be transmitted to another device.
- the determination may be made by a value represented by 1 bit (0 or 1), by a true / false value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
- Notification of predetermined information is not limited to explicit notification, and may be implicitly (for example, by not notifying the predetermined information). ..
- Software whether referred to as software, firmware, middleware, microcode, hardware description language, or other names, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
- Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
- Software, instructions, information, etc. may be transmitted and received via a transmission medium.
- a transmission medium For example, a website where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.) and wireless technology (infrared, microwave, etc.).
- wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.
- wireless technology infrared, microwave, etc.
- the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
- data, instructions, commands, information, signals, bits, symbols, and chips that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or theirs. It may be represented by any combination.
- system and “network” used in this disclosure are used interchangeably.
- the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from a predetermined value, or other corresponding information. It may be represented.
- determining and “determining” used in this disclosure may include a wide variety of actions.
- Each of “judgment” and “decision” is, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigating (looking up, search), respectively. It may include inquiry) (eg, search in a table, database or another data structure), and ascertaining.
- Each of the "judgment” and “decision” is receiving (eg, receiving information), transmitting (eg, transmitting information), input, output, and It may include accessing (eg, accessing data in memory).
- Each of "judgment” and “decision” may include resolving, selecting, choosing, establishing, and comparing.
- the "judgment” may include some action that can be regarded as a "judgment”.
- a “decision” may include any action that can be considered a “decision”.
- "Judgment (decision)” may be read as "assuming", “expecting”, “considering”, or the like.
- connection means any direct or indirect connection or connection between two or more elements and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
- the connection or connection between the elements may be performed physically, logically, or may be realized by a combination thereof. For example, “connection” may be read as "access”.
- connection may be read as "access”.
- connection or “coupling” is used in the present disclosure, the two elements are “connected” or “coupled” to each other using at least one of one or more wires, cables and printed electrical connections.
- electromagnetic energy having wavelengths in the radio frequency domain, microwave domain and light (both visible and invisible) domain may be used. It may be considered to be “connected” or “bonded” to each other.
- references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Therefore, references to the first and second elements do not mean that only two elements can be adopted and that the first element must somehow precede the second element.
- each of the above devices may be replaced with a "circuit", a “device” or the like.
- the term "A and B are different” may mean “A and B are different from each other”.
- the term may mean that "A and B are different from C”.
- Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
Landscapes
- Business, Economics & Management (AREA)
- Accounting & Taxation (AREA)
- Finance (AREA)
- Engineering & Computer Science (AREA)
- Marketing (AREA)
- Economics (AREA)
- Development Economics (AREA)
- Strategic Management (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Technology Law (AREA)
- Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
Abstract
レコメンド装置は、複数の保険商品のそれぞれの補償対象である事象によってユーザに生じる損害の程度を示すリスク度と、複数の保険商品のそれぞれによる補償の程度を示す補償度と、に基づいて、複数の保険商品の中から、保険商品の組み合わせと、保険商品に支払う保険料と、を決定する決定部と、組み合わせ及び保険料を示すレコメンド情報を出力する出力部と、を備える。
Description
本開示は、レコメンド装置に関する。
ユーザに適切な保険商品の組み合わせを提供する技術が知られている。例えば、特許文献1には、ユーザの行動情報を取得し、行動情報に基づいて、ユーザの将来のリスクを予測し、リスクに基づいてユーザに必要な保険関連商品の組み合わせを決定し、ユーザが設定した保険料の範囲内で、リスクに応じて保険料を配分し、ユーザに保険関連商品の組み合わせを提供する情報処理装置が記載されている。
1口当たりに支払われる金額(補償額)は、保険商品によって異なる。しかしながら、特許文献1に記載の情報処理装置では、補償額を考慮することなく保険料を配分しているので、損害額を十分に補填することができないおそれがある。
本開示は、保険商品の組み合わせ及び保険料を最適化可能なレコメンド装置を説明する。
本開示の一側面に係るレコメンド装置は、複数の保険商品のそれぞれの補償対象である事象によってユーザに生じる損害の程度を示すリスク度と、複数の保険商品のそれぞれによる補償の程度を示す補償度と、に基づいて、複数の保険商品の中から、保険商品の組み合わせと、保険商品に支払う保険料と、を決定する決定部と、組み合わせ及び保険料を示すレコメンド情報を出力する出力部と、を備える。
このレコメンド装置においては、複数の保険商品のそれぞれのリスク度及び補償度に基づいて、複数の保険商品の中から、保険商品の組み合わせと、保険商品に支払う保険料と、が決定され、レコメンド情報が出力される。リスク度だけでなく、補償度が考慮されるので、例えば、ユーザの様々なリスクに対して、バランスよく補償されるように、保険商品の組み合わせ及び保険料を決定することができる。その結果、保険商品の組み合わせ及び保険料を最適化することが可能となる。
本開示によれば、保険商品の組み合わせ及び保険料を最適化することができる。
以下、添付図面を参照しながら本開示の実施形態を詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。
図1~図3を参照して、一実施形態に係るレコメンド装置を含むレコメンドシステムの構成を説明する。図1は、一実施形態に係るレコメンド装置を含むレコメンドシステムの概略構成図である。図2の(a)は、図1に示されるユーザ情報DB(database)に格納されているユーザ基礎情報の一例を示す図である。図2の(b)は、図1に示されるユーザ情報DBに格納されている位置情報の一例を示す図である。図2の(c)は、図1に示されるユーザ情報DBに格納されている決済情報の一例を示す図である。図3は、図1に示される保険加入情報DBに格納されている保険加入情報の一例を示す図である。
図1に示されるレコメンドシステム1は、保険商品の組み合わせ及び保険料(ポートフォリオ)をユーザに推薦するためのシステムである。
レコメンドシステム1は、複数の端末装置2と、ユーザ情報DB3と、保険加入情報DB4と、レコメンド装置10と、を含む。複数の端末装置2、ユーザ情報DB3、保険加入情報DB4、及びレコメンド装置10は、ネットワークNWを介して互いに通信可能に構成されている。ネットワークNWは、有線及び無線のいずれで構成されてもよい。ネットワークNWの例としては、移動体通信網、インターネット、及びWAN(Wide Area Network)が挙げられる。以下の説明では、主に1つの端末装置2に着目して説明を行うが、他の端末装置2についても同様である。
端末装置2は、ユーザによって用いられる装置である。端末装置2の例としては、スマートフォン、タブレット端末、ノートPC(Personal Computer)、及びデスクトップPCが挙げられる。
端末装置2は、GPS(Global Positioning System)等を用いて端末装置2の位置情報(緯度及び経度)を取得する。端末装置2は、接続されている無線ネットワークの親局の設置位置の情報を位置情報として取得してもよい。親局の設置位置の例としては、モバイルネットワークの基地局、及びWi-Fiのアクセスポイント等が挙げられる。端末装置2は、端末装置2の近傍に存在する端末の位置情報を端末装置2の位置情報として取得してもよい。このような端末としては、例えば、Bluetooth(登録商標)のビーコン端末等が挙げられる。位置情報の詳細については後述する。端末装置2は、定期的に位置情報をユーザ情報DB3に送信する。
端末装置2は、ユーザが端末装置2を用いて行った決済に関する決済情報を生成する。例えば、端末装置2にインストールされている決済アプリケーションを用いてユーザが商品を購入した場合、端末装置2は、決済情報を生成する。決済情報の詳細については後述する。端末装置2は、例えば、決済情報を生成するごとに、決済情報をユーザ情報DB3に送信する。
ユーザ情報DB3は、各ユーザのユーザ情報を格納するデータベースである。ユーザ情報は、ユーザに関する情報であって、ユーザ基礎情報、位置情報、及び決済情報を含む。ユーザ情報は、端末装置2の利用履歴(ログ)等、更に他の情報を含んでもよい。ユーザ基礎情報は、ユーザの基礎的な情報である。図2の(a)に示されるように、ユーザ基礎情報は、ユーザID(identifier)と、端末IDと、性別と、年齢と、を含む。ユーザIDは、ユーザを一意に識別可能な情報である。端末IDは、端末装置2を一意に識別可能な情報である。ここでは、端末IDは、ユーザIDによって識別されるユーザが使用している端末装置2を示す。ユーザ基礎情報は、更に他の情報を含んでもよい。ユーザ基礎情報は、例えば、ユーザによって予め設定されている。
位置情報は、各端末装置の位置を示す情報である。図2の(b)に示されるように、位置情報は、端末IDと、当該位置情報を取得した時刻(タイムスタンプ)と、緯度と、経度と、を含む。ユーザ情報DB3は、各端末装置2から位置情報を受信すると、受信した位置情報を格納する。ユーザ情報DB3には、各端末装置2の複数の位置情報が位置情報の履歴(ログ)として格納されている。
決済情報は、各端末装置2を用いて行われた決済に関する情報である。図2の(c)に示されるように、決済情報は、端末ID、決済が行われた時刻、決済が行われた場所、金額、及び商品名を含む。ユーザ情報DB3は、各端末装置2から決済情報を受信すると、受信した決済情報を格納する。ユーザ情報DB3には、各端末装置2の複数の決済情報が決済情報の履歴として格納されている。
保険加入情報DB4は、各ユーザの保険加入情報を格納するデータベースである。保険加入情報は、各ユーザが加入している保険商品に関する情報である。図3に示されるように、保険加入情報は、保険IDと、ユーザIDと、保険料と、を含む。保険IDは、保険商品を一意に識別可能な情報である。保険料は、ユーザIDによって識別されるユーザが、保険IDによって識別される保険商品に支払っている金額である。保険料は、例えば、1月当たりの保険料である。保険加入情報は、保険料に代えて購入口数を含んでもよく、又は保険料とともに購入口数を含んでもよい。
レコメンド装置10は、複数の保険商品の中から、ユーザに最適な保険商品の組み合わせ及び保険料を推薦する装置である。レコメンド装置10の例としては、サーバ装置等の情報処理装置が挙げられる。
図4を参照して、レコメンド装置10の機能構成を説明する。図4は、図1に示されるレコメンド装置の機能構成を示すブロック図である。図4に示されるように、レコメンド装置10は、機能的には、取得部11と、生成部12と、算出部13と、リスクスコア記憶部14と、算出部15と、損害額記憶部16と、受信部17と、決定部18と、出力部19と、保険商品情報記憶部20と、を備えている。
取得部11は、ユーザ情報及び保険加入情報を取得する機能部である。取得部11は、ユーザ情報DB3からユーザ情報を取得し、保険加入情報DB4から保険加入情報を取得する。
生成部12は、加入予測モデル及び保険料予測モデルを生成する機能部である。加入予測モデルは、ユーザ情報から生成した特徴量を説明変数とし、保険商品の加入スコアを目的変数とした機械学習モデルであり、例えば、ニューラルネットワークによって構成されている。加入スコアは、ユーザが保険商品に加入する可能性を示す値である。加入スコアは、例えば、0~1の範囲内の数値である。例えば、保険商品の加入スコアが大きいほど、ユーザがその保険商品に加入する可能性が高い。生成部12は、保険商品ごとに機械学習を行うことによって各保険商品の加入予測モデルを生成する。
保険料予測モデルは、ユーザ情報から生成した特徴量を説明変数とし、予測保険料を目的変数とした機械学習モデルであり、例えば、ニューラルネットワークによって構成されている。予測保険料は、ユーザが保険商品に支払うと予測される保険料であり、例えば、1口当たりの保険料と購入口数とを乗算することによって得られる。生成部12は、保険商品ごとに機械学習を行うことによって各保険商品の保険料予測モデルを生成する。なお、特徴量の生成方法、加入予測モデルの生成方法、及び保険料予測モデルの生成方法については、後述する。
算出部13は、ユーザ情報に基づいて、リスクスコアを複数の保険商品のそれぞれについて算出する機能部である。リスクスコアは、保険商品の補償対象である事象がユーザに生じる可能性(発生確率)を示す値である。加入スコアは、リスクスコアとの間に相関関係を有すると考えられる。したがって、算出部13は、加入スコアに基づいてリスクスコアを算出する。算出部13は、加入予測モデルを用いて、加入スコアを算出する。算出部13は、ユーザ情報から特徴量を生成し、生成した特徴量を加入予測モデルに入力することによって、加入予測モデルから加入スコアを得る。算出部13は、例えば、加入スコアをリスクスコアとしてもよく、加入スコアと所定の係数とを乗算することによってリスクスコアを算出してもよい。
リスクスコア記憶部14は、各ユーザの保険商品ごとのリスクスコアを記憶する機能部である。リスクスコア記憶部14は、例えば、ユーザIDと保険IDとリスクスコアとを対応付けたデータセットを記憶している。
算出部15は、ユーザ情報に基づいて、予測平均損害額を複数の保険商品のそれぞれについて算出する機能部である。予測平均損害額は、保険商品の補償対象である事象によって失われると予測される平均的な金額である。予測保険料は、当該保険商品の補償対象である事象によって生じた損害額を補償可能な金額として予測されるので、予測平均損害額との間に相関関係を有すると考えられる。したがって、算出部15は、予測保険料に基づいて予測平均損害額を算出する。算出部15は、保険料予測モデルを用いて、予測保険料を算出する。算出部15は、ユーザ情報から特徴量を生成し、生成した特徴量を保険料予測モデルに入力することによって、保険料予測モデルから予測保険料を得る。算出部15は、例えば、予測保険料と所定の係数とを乗算することによって予測平均損害額を算出する。
損害額記憶部16は、各ユーザの保険商品ごとの予測平均損害額を記憶する機能部である。損害額記憶部16は、例えば、ユーザIDと保険IDと予測平均損害額とを対応付けたデータセットを記憶している。
受信部17は、端末装置2からレコメンド要求を受信する機能部である。レコメンド要求は、保険商品のレコメンド情報を要求するための指令である。レコメンド要求は、レコメンド情報を要求するユーザのユーザIDと、支払い可能金額Costmaxと、を含む。支払い可能金額Costmaxは、ユーザによって設定され、ユーザが保険商品に支払うことができる上限の金額である。支払い可能金額Costmaxは、例えば、ユーザが1月当たりに保険商品に支払うことができる上限の金額である。
決定部18は、ユーザにレコメンド(推薦)する保険商品のポートフォリオを決定する機能部である。保険商品のポートフォリオは、保険商品の組み合わせと、各保険商品に支払う保険料と、を含む。具体的には、決定部18は、複数の保険商品のそれぞれのリスク度及び補償度に基づいて、複数(n個)の保険商品の中から、ユーザにレコメンド(推薦)する保険商品の組み合わせと、各保険商品に支払う保険料と、を決定する。リスク度は、保険商品の補償対象である事象によってユーザに生じる損害の程度を示す値である。例えば、リスク度が大きいほど、損害の程度が大きいことを示す。補償度は、保険商品による補償の程度を示す値である。例えば、補償度が大きいほど、補償の程度が大きいことを示す。
決定部18は、複数の保険商品に対する残存リスク度の合計が最小となるように、保険商品のポートフォリオを決定する。残存リスク度は、例えば、リスク度から補償度を減算することによって得られる。決定部18は、ユーザによって設定された支払い可能金額Costmaxの範囲内で、保険商品のポートフォリオを決定する。保険商品のポートフォリオを決定する方法の詳細は後述する。
出力部19は、保険商品のポートフォリオ(保険商品の組み合わせ及び保険料)を示すレコメンド情報を出力する機能部である。出力部19は、例えば、レコメンド情報を端末装置2に出力(送信)する。出力部19は、レコメンド装置10内のメモリ(不図示)にレコメンド情報を出力してもよい。
保険商品情報記憶部20は、各保険商品に関する保険商品情報を記憶する機能部である。各保険商品の保険商品情報は、例えば、1口当たりの保険料Costiと、1口当たりの補償額Ciと、購入口数の下限値LBi及び上限値UBiと、を含む。保険商品の番号iは、1以上、かつ、推薦可能な保険商品の総数n以下の整数値である。
次に、図5~図7を参照して、レコメンドシステム1(レコメンド装置10)が行うレコメンド方法を説明する。図5は、図1に示されるレコメンドシステムが行うレコメンド方法の一連の処理を示すシーケンス図である。図6は、図5に示される決定処理を詳細に示すフローチャートである。図7は、レコメンド情報の表示画面例を示す図である。
図5に示されるように、まず、レコメンド装置10の取得部11がユーザ情報DB3にユーザ情報の取得要求を送信する(ステップS1)。ステップS1において、取得部11は、すべてのユーザのユーザ情報を取得するための取得要求を送信してもよく、一部のユーザのユーザ情報を取得するための取得要求を送信してもよい。そして、ユーザ情報DB3は、レコメンド装置10からユーザ情報の取得要求を受信すると、要求されたユーザ情報をレコメンド装置10に送信する(ステップS2)。
続いて、レコメンド装置10の取得部11は、保険加入情報DB4に保険加入情報の取得要求を送信する(ステップS3)。ステップS3において、取得部11は、例えば、推薦可能なすべての保険商品に対する保険加入情報を取得するための取得要求を送信する。そして、保険加入情報DB4は、レコメンド装置10から保険加入情報の取得要求を受信すると、要求された保険加入情報をレコメンド装置10に送信する(ステップS4)。
そして、レコメンド装置10の取得部11は、ユーザ情報DB3からユーザ情報を受信し、保険加入情報DB4から保険加入情報を受信すると、ユーザ情報及び保険加入情報を生成部12に出力する。続いて、生成部12は、取得部11からユーザ情報及び保険加入情報を受け取ると、加入予測モデルを生成する(ステップS5)。ステップS5において、生成部12は、保険商品ごとに機械学習を行うことによって各保険商品の加入予測モデルを生成する。機械学習は、例えば、GBDT(Gradient Boosting Decision Tree)アルゴリズムを用いて行われる。機械学習には、例えば、過去に保険商品に加入したユーザのユーザ情報から生成された特徴量と、当該保険商品の加入スコア(=1)との組が正解データとして用いられ、保険商品に加入していないユーザのユーザ情報から生成された特徴量と、当該保険商品の加入スコア(=0)との組が不正解データとして用いられる。そして、生成部12は、加入予測モデルを算出部13に出力する。
ここで、特徴量の生成方法の一例を説明する。生成部12は、ユーザ情報のうち、性別及び年齢を特徴量とする。生成部12は、端末装置2の時系列の位置情報から、ユーザが滞在した場所及び滞在時間を推定し、滞在場所及び滞在時間を特徴量としてもよい。さらに、ユーザが通常は訪れないが、たまたま滞在した場所が、加入スコアに与える影響を軽減するために、滞在場所及び滞在時間の時間的な変化が特徴量として用いられてもよい。生成部12は、端末装置2の決済情報から、決済回数、決済が行われた店舗数、及び決済金額の合計を特徴量として算出する。決済された商品(サービス)のジャンルごとの金額が特徴量として用いられてもよい。
さらに、生成部12は、保険料予測モデルを生成する(ステップS6)。ステップS6において、生成部12は、保険商品ごとに機械学習を行うことによって各保険商品の保険料予測モデルを生成する。機械学習は、例えば、GBDTアルゴリズムを用いて行われる。機械学習には、例えば、過去に保険商品に加入したユーザのユーザ情報から生成された特徴量と、当該ユーザが保険商品に支払った保険料との組が正解データとして用いられる。特徴量の生成方法は、上述のとおりである。そして、生成部12は、保険料予測モデルを算出部15に出力する。
続いて、取得部11は、ユーザ情報DB3に、すべてのユーザのユーザ情報を取得するための取得要求を送信する(ステップS7)。そして、ユーザ情報DB3は、レコメンド装置10からユーザ情報の取得要求を受信すると、要求されたユーザ情報をレコメンド装置10に送信する(ステップS8)。そして、取得部11は、ユーザ情報DB3からユーザ情報を受信すると、ユーザ情報を算出部13及び算出部15に出力する。
続いて、算出部13は、取得部11からユーザ情報を受け取ると、複数の保険商品のそれぞれについて、各ユーザのリスクスコアを算出する(ステップS9)。ステップS9においては、算出部13は、まず加入予測モデルを用いて加入スコアを算出する。具体的には、算出部13は、生成部12による特徴量の生成方法と同様にして、各ユーザのユーザ情報から特徴量を生成する。そして、算出部13は、ユーザごとに、特徴量を各保険商品の加入予測モデルに入力し、各加入予測モデルから出力される加入スコアを得る。そして、算出部13は、例えば、加入スコアに所定の係数を掛け合わせることによって、リスクスコアを算出する。そして、算出部13は、ユーザIDと保険IDとリスクスコアとを対応付けたデータセットをリスクスコア記憶部14に出力し、リスクスコア記憶部14に記憶させる。
続いて、算出部15は、取得部11からユーザ情報を受け取ると、複数の保険商品のそれぞれについて、各ユーザの予測平均損害額を算出する(ステップS10)。ステップS10においては、算出部15は、まず保険料予測モデルを用いて予測保険料を算出する。具体的には、算出部15は、生成部12による特徴量の生成方法と同様にして、各ユーザのユーザ情報から特徴量を生成する。そして、算出部15は、ユーザごとに、特徴量を各保険商品の保険料予測モデルに入力し、各保険料予測モデルから出力される予測保険料を得る。そして、算出部15は、予測保険料に所定の係数を掛け合わせることによって、予測平均損害額を算出する。そして、算出部15は、ユーザIDと保険IDと予測平均損害額とを対応付けたデータセットを損害額記憶部16に出力し、損害額記憶部16に記憶させる。
続いて、端末装置2がレコメンド要求をレコメンド装置10に送信する(ステップS11)。そして、レコメンド装置10の受信部17は、端末装置2から送信されたレコメンド要求を受信すると、レコメンド要求に含まれるユーザID及び支払い可能金額Costmaxを決定部18に出力する。
続いて、決定部18は、受信部17からユーザID及び支払い可能金額Costmaxを受け取ると、決定処理を行う(ステップS12)。図6に示されるように、ステップS12の決定処理では、まず決定部18が、ユーザIDによって識別されるユーザの各保険商品に対するリスクスコアriを取得する(ステップS21)。具体的には、決定部18は、受信部17から受け取ったユーザIDに対応付けられた保険ID及びリスクスコアriの組をリスクスコア記憶部14から取得する。
そして、決定部18は、ユーザIDによって識別されるユーザの各保険商品に対する予測平均損害額Lossiを取得する(ステップS22)。具体的には、決定部18は、受信部17から受け取ったユーザIDに対応付けられた保険ID及び予測平均損害額Lossiの組を損害額記憶部16から取得する。そして、決定部18はユーザに推薦可能なn個の保険商品に関する保険商品情報を取得する(ステップS23)。具体的には、決定部18は、n個の保険商品に関する保険商品情報を保険商品情報記憶部20から取得する。
続いて、決定部18は、ユーザにレコメンド(推薦)する保険商品のポートフォリオを決定する(ステップS24)。ステップS24においては、決定部18は、リスクスコア記憶部14から取得した保険ID及びリスクスコアriの組と、損害額記憶部16から取得した保険ID及び予測平均損害額Lossiの組と、保険商品情報記憶部20から取得した保険商品情報と、を用いて、各保険商品に対するリスク度及び補償度に基づいて、n個の保険商品の中から、ユーザにレコメンドする保険商品の組み合わせと、各保険商品に支払う保険料と、を決定する。本実施形態では、リスク度は、保険商品の補償対象である事象によって生じる予測損害額であり、補償度は、保険商品の保険料に応じて支払われる補償額である。
具体的に説明すると、決定部18は、式(1)に示されるように、n個の保険商品に対する予測損害額から補償額を減算することによって得られる残存損害額の合計が最小となるように、保険商品の組み合わせ及び保険料を決定する。予測損害額は、リスクスコアriと予測平均損害額Lossiとを乗算することによって得られる。補償額は、1口当たりの補償額Ciと購入口数xiとを乗算することによって得られる。購入口数xiは、0以上の整数値である。なお、補償額(=Ci×xi)が予測損害額(=ri×Lossi)よりも大きい場合は、過補償を意味するが、この場合、残存損害額は0とみなされる。
式(2)は、ポートフォリオに含めることができる保険商品の上限数を規定しており、1~n番目の保険商品の選択フラグuiの合計が上限数K以下であるという制約条件を示す。選択フラグuiは、i番目の保険商品がポートフォリオに含められる保険商品として選択されているか否かを示す。i番目の保険商品がポートフォリオに含められる保険商品として選択されている場合には、選択フラグuiは1に設定される。i番目の保険商品がポートフォリオに含められる保険商品として選択されていない場合には、選択フラグuiは0に設定される。したがって、決定部18は、上限数K以内となるように、保険商品の数を決定する。
式(3)は、保険料の合計金額の上限を規定しており、1~n番目の保険商品の保険料の合計が支払い可能金額Costmax以下であるという制約条件を示す。各保険商品の保険料は、1口当たりの保険料Costiと購入口数xiとを乗算することによって得られる。したがって、決定部18は、ユーザによって設定された支払い可能金額Costmaxの範囲内で、保険商品のポートフォリオを決定する。
式(4)は、各保険商品の購入口数の下限及び上限を規定しており、各保険商品の購入口数xiが、下限値LBiから上限値UBiまでの範囲内であるという制約条件を示す。なお、1口も購入しない保険商品については、購入口数xiが0になるので、下限値LBiから上限値UBiまでの範囲内に収まらないおそれがある。したがって、決定部18は、下限値LBiと選択フラグuiとの乗算結果から、上限値UBiと選択フラグuiとの乗算結果までの範囲内で、購入口数xiを決定する。
続いて、決定部18は、保険商品のポートフォリオを示すレコメンド情報を生成する(ステップS25)。例えば、決定部18は、ポートフォリオに含まれる保険商品の名称と保険料とを含むレコメンド情報を生成する。レコメンド情報は、支払い可能金額Costmax及び保険料の合計額(支払い合計額)を更に含んでもよい。レコメンド情報は、各保険商品の予測損害額と補償額とを更に含んでもよい。そして、決定部18は、レコメンド情報を出力部19に出力する。
続いて、出力部19は、レコメンド情報を端末装置2に送信する(ステップS13)。そして、端末装置2は、レコメンド装置10から送信されたレコメンド情報を受信すると、レコメンド情報をディスプレイに表示する。例えば、図7に示されるように、ポートフォリオに含まれる保険商品の名称と保険料とが、各保険商品のリスク(予測損害額)と補償(補償額)とを示すグラフとともに表示される。さらに、保険料の合計額(支払合計額)が、ユーザによって設定された支払い可能金額Costmaxとともに表示される。
図7の表示画面例によれば、レコメンドされた保険商品がユーザの潜在リスクをどの程度補償しているのかが視覚的に示される。したがって、ユーザの納得感を高めることができる。ユーザは不足している補償を認識することができるので、ユーザが保険商品をカスタマイズする際に、どのような保険商品に加入すべきかが明確になる。
以上により、レコメンド方法の一連の処理が終了する。なお、ステップS1~S10は、端末装置2からレコメンド要求を受ける前に予め実施される(オフライン処理)。ステップS3及びステップS4は、ステップS1及びステップS2よりも前に行われてもよく、ステップS1及びステップS2と並行して行われてもよい。ステップS6は、ステップS5よりも前に行われてもよく、ステップS5と並行して行われてもよい。ステップS10は、ステップS9よりも前に行われてもよく、ステップS9と並行して行われてもよい。ステップS21~S23は、任意の順番で行われてもよく、互いに並行して行われてもよい。
ステップS11の後に、ステップS7~S10が行われてもよい。この場合、ステップS7において、取得部11は、レコメンド要求に含まれるユーザIDによって識別されるユーザのユーザ情報を取得するための取得要求をユーザ情報DB3に送信し、ステップS8において、ユーザ情報DB3は、要求されたユーザのユーザ情報をレコメンド装置10に送信する。さらに、ステップS9において、算出部13は、レコメンド要求に含まれるユーザIDによって識別されるユーザのリスクスコアを算出し、リスクスコアを決定部18に出力する。ステップS10において、算出部15は、レコメンド要求に含まれるユーザIDによって識別されるユーザの予測平均損害額を算出し、予測平均損害額を決定部18に出力する。
以上説明したレコメンド装置10においては、n個の保険商品のそれぞれの予測損害額及び補償額に基づいて、n個の保険商品の中から、保険商品の組み合わせと、保険商品に支払う保険料と、が決定され、レコメンド情報が出力される。予測損害額だけでなく、補償額が考慮されるので、例えば、ユーザの様々なリスクに対して、バランスよく補償されるように、保険商品の組み合わせ及び保険料を決定することができる。その結果、保険商品の組み合わせ及び保険料を最適化することが可能となる。
具体的には、決定部18は、n個の保険商品に対する予測損害額から補償額を減算することによって得られる残存損害額の合計が最小となるように、保険商品の組み合わせ及び保険料を決定する。残存損害額の合計が小さいほどあらゆるリスクに対する備えが十分であるといえるから、残存損害額の合計が最小となる保険商品の組み合わせ及び保険料は、ユーザにとって最適であるといえる。したがって、上記構成によれば、保険商品の組み合わせ及び保険料を最適化することが可能となる。
決定部18は、保険商品の補償対象である事象の発生確率を示すリスクスコアに基づいて予測損害額を算出する。コートニィ理論によれば、リスクはリスクの発生確率と影響度合いとの乗算によって求められる。影響度合いは、平均的な損害額とみなすことができる。したがって、予測損害額は、リスクスコアriと予測平均損害額Lossiとを乗算することによって求められ得る。
例えば、支払合計額を考慮することなく、保険商品の組み合わせ及び保険料がユーザに提示された後、ユーザが支払い可能金額Costmax以下となるように保険料を調整することが考えられる。しかしながら、保険料によって保険商品の補償内容が異なるので、最適な補償が得られないおそれがある。レコメンド装置10においては、決定部18は、ユーザによって設定された支払い可能金額Costmaxの範囲内で、保険商品の組み合わせ及び保険料を決定する。この構成によれば、支払合計額の上限が考慮された上で、保険商品の組み合わせ及び保険料が決定され、ユーザにレコメンドされる。したがって、保険商品の組み合わせ及び保険料をより一層最適化することができる。支払合計額が支払い可能金額Costmax以下であるので、ユーザがレコメンドされた内容を受け入れる可能性を高めることができる。
算出部13は、ユーザ情報に基づいて、保険商品に加入する可能性を示す加入スコアをn個の保険商品のそれぞれについて算出し、加入スコアに基づいてリスクスコアをn個の保険商品のそれぞれについて算出する。性別、年齢、及び行動等に共通点を有するユーザは、保険商品に加入する可能性も同程度であると考えられる。そして、ユーザが保険商品に加入する可能性が高いほど、その保険商品の補償対象である事象がユーザに発生する可能性が高いことを意味すると考えられる。つまり、加入スコアとリスクスコアとは相関関係を有する。したがって、加入スコアに基づいてリスクスコアを得ることができる。以上のことから、ユーザ情報を用いることによって、各保険商品のリスクスコアを精度良く算出することができる。
なお、ユーザ情報からリスクスコアを直接算出するためには、保険商品の補償対象である事象が実際に生じたユーザのユーザ情報を用いる必要がある。しかしながら、当該事象が頻繁に生じるとは限らないので、十分な数のユーザ情報が得られず、リスクスコアの算出精度が低下するおそれがある。一方、事象が生じたユーザの数よりも非常に多くのユーザが保険商品に加入していると考えられるので、ユーザ情報から加入スコアを算出する精度は、ユーザ情報からリスクスコアを算出する精度よりも高くなる。したがって、加入スコアを用いることによって、リスクスコアの算出精度を向上させることが可能となる。
以上、本開示の実施形態について説明したが、本開示は上記実施形態に限定されない。
レコメンド装置10は、物理的又は論理的に結合した1つの装置によって構成されていてもよく、互いに物理的又は論理的に分離している複数の装置によって構成されてもよい。例えば、レコメンド装置10は、クラウドコンピューティングのようにネットワーク上に分散された複数のコンピュータによって実現されてもよい。以上のように、レコメンド装置10の構成は、レコメンド装置10の機能を実現し得るいかなる構成をも含み得る。
生成部12は、加入予測モデルに代えて、リスク予測モデルを生成してもよい。リスク予測モデルは、ユーザ情報から生成した特徴量を説明変数とし、保険商品のリスクスコアを目的変数とした機械学習モデルであり、例えば、ニューラルネットワークによって構成されている。生成部12は、保険料予測モデルに代えて、平均損害額予測モデルを生成してもよい。平均損害額予測モデルは、ユーザ情報から生成した特徴量を説明変数とし、保険商品の補償対象である事象によってユーザに生じる予測平均損害額を目的変数とした機械学習モデルであり、例えば、ニューラルネットワークによって構成されている。
レコメンド装置10は、算出部13及びリスクスコア記憶部14を備えていなくてもよい。この場合、決定部18は、レコメンド要求に含まれるユーザIDに対応付けられた保険ID及びリスクスコアの組を外部のリスクスコア記憶部から取得してもよい。レコメンド装置10は、算出部15及び損害額記憶部16を備えていなくてもよい。この場合、決定部18は、レコメンド要求に含まれるユーザIDに対応付けられた保険ID及び予測平均損害額の組を外部の損害額記憶部から取得してもよい。レコメンド装置10は、保険商品情報記憶部20を備えていなくてもよい。この場合、決定部18は、保険商品情報を外部の保険商品情報記憶部から取得してもよい。
レコメンド装置10は、生成部12を備えていなくてもよい。この場合、算出部13は、予め生成された加入予測モデルを用いて加入スコアを算出し、加入スコアに基づいてリスクスコアを算出する。算出部13は、加入予測モデルを用いることなく、ユーザ情報に基づいて、ルールベース等で加入スコアを算出し、加入スコアに基づいてリスクスコアを算出してもよい。算出部13は、予め生成されたリスク予測モデルを用いてリスクスコアを算出してもよい。算出部13は、ユーザ情報に基づいて、ルールベース等でリスクスコアを算出してもよい。
同様に、算出部15は、予め生成された保険料予測モデルを用いて予測保険料を算出し、予測保険料に基づいて予測平均損害額を算出する。算出部15は、保険料予測モデルを用いることなく、ユーザ情報に基づいて、ルールベース等で予測保険料を算出し、予測保険料に基づいて予測平均損害額を算出してもよい。算出部15は、予め生成された平均損害額予測モデルを用いて予測平均損害額を算出してもよい。算出部15は、ユーザ情報に基づいて、ルールベース等で予測平均損害額を算出してもよい。
レコメンド装置10は、取得部11、生成部12、算出部13、リスクスコア記憶部14、算出部15、損害額記憶部16、及び保険商品情報記憶部20を備えていなくてもよい。この場合、決定部18は、レコメンド要求に含まれるユーザIDに対応付けられた保険ID及びリスクスコアの組を外部のリスクスコア記憶部から取得し、同ユーザIDに対応付けられた保険ID及び予測平均損害額の組を外部の損害額記憶部から取得するとともに、保険商品情報を外部の保険商品情報記憶部から取得してもよい。
保険商品の補償対象は、保険商品によって異なるが、いくつかの保険商品の間で補償対象が部分的に重複している場合がある。したがって、決定部18は、相関係数ρijに更に基づいて、保険商品の組み合わせ及び保険料を決定してもよい。相関係数ρijは、n個の保険商品のうちの2つの保険商品(i番目の保険商品とj番目の保険商品と)の間の相関の程度を示す値である。相関係数ρijは、0~1の範囲内の数値である。相関係数ρijが大きいほど、i番目の保険商品とj番目の保険商品との間の相関が強いことを示す。相関係数ρijは、n個の保険商品のうちの2つの保険商品ごとに、予め算出されて設定されている。相関係数ρijは、例えば、保険商品情報に含まれており、保険商品情報記憶部20から取得される。
具体的には、決定部18は、式(5)に示される制約条件を更に満たすように、式(1)を最小化する。式(5)は、n個の保険商品から選択可能な2つの保険商品のすべての組に対する重複度の合計が、規定値Sa未満であるという制約条件を示す。重複度は、2つの保険商品による補償対象の重なり具合を示す値である。重複度が大きいほど、2つの保険商品による補償対象の重なり具合が大きい。決定部18は、式(5)の左辺に示されるように、n個の保険商品から選択可能な2つの保険商品のすべての組について、補償額及び相関係数ρijに基づいて重複度を算出し、重複度の合計を算出する。図8に示されるように、相関係数が大きいと、重複度が大きくなる。そして、決定部18は、すべての組の重複度の合計が規定値Saよりも小さくなるように、保険商品のポートフォリオ(組み合わせ及び保険料)を決定する。
ポートフォリオに含められる保険商品の組み合わせとして、互いに相関が強いいくつかの保険商品が選択された場合には、保険商品によって補償できる事象の範囲が狭くなるおそれがある。つまり、リスク集中が生じ得る。一方、ポートフォリオに含められる保険商品の組み合わせとして、互いに相関が弱いいくつかの保険商品が選択された場合には、保険商品によって補償できる事象の範囲を広くすることができ、リスクを分散することができる。したがって、n個の保険商品から選択可能な2つの保険商品のすべての組に対する重複度の合計が小さいほど、補償対象が広範囲であるといえる。よって、重複度の合計が規定値Saよりも小さくなるように保険商品の組み合わせ及び保険料を決定することによって、保険商品の組み合わせ及び保険料をより一層最適化することが可能となる。
リスク度は、予測損害額に限られない。補償度は、補償額に限られない。例えば、リスク度として、リスクスコアriが用いられてもよい。この場合、補償度としては、補償スコアCi(xi)が用いられる。補償スコアCi(xi)は、保険料に応じて支払われる補償額によって、保険商品の補償対象である事象によって生じる予測損害額を全額補償できる可能性(確率)を示す値である。補償スコアCi(xi)は、保険商品ごとに予め設定されている。補償スコアCi(xi)は、例えば、保険商品情報に含まれており、保険商品情報記憶部20から取得される。
図9に示される例では、補償スコアCi(xi)は、確率密度関数の面積で表される。保険料が高くなるにつれて補償額も高くなるので、損害額を全額補償できる可能性は高まる。したがって、図9に示されるように、補償スコアCi(xi)は、保険料が高くなるにつれて、増加する。一方、補償額よりも大きい損害額が生じる可能性は、補償額が大きくなるにつれて減少する。したがって、図9に示されるように、補償スコアCi(xi)の単位保険料(購入口数)当たりの増加量は、保険料が高くなるにつれて、減少する。
この場合、決定部18は、式(1)に代えて式(6)を用い、式(2)~式(4)に示される制約条件を満たすように、式(6)を最小化する。つまり、決定部18は、式(6)に示されるように、n個の保険商品に対するリスクスコアriから補償スコアCi(xi)を減算することによって得られる残存リスクスコアの合計が最小となるように、保険商品の組み合わせ及び保険料を決定する。なお、補償スコアCi(xi)がリスクスコアriよりも大きい場合は、過補償を意味するが、この場合、残存リスクスコアは0とみなされる。
さらに、決定部18は、相関係数ρijに更に基づいて、保険商品の組み合わせ及び保険料を決定してもよい。具体的には、決定部18は、式(5)に代えて式(7)に示される制約条件を更に満たすように、式(1)を最小化する。式(7)は、n個の保険商品から選択可能な2つの保険商品のすべての組に対する重複度の合計が、規定値Sb未満であるという制約条件を示す。決定部18は、式(7)の左辺に示されるように、n個の保険商品から選択可能な2つの保険商品のすべての組について、補償スコア及び相関係数ρijに基づいて重複度を算出し、重複度の合計を算出する。そして、決定部18は、すべての組の重複度の合計が規定値Sbよりも小さくなるように、保険商品のポートフォリオ(組み合わせ及び保険料)を決定する。
この変形例においては、n個の保険商品のそれぞれのリスクスコアri及び補償スコアCi(xi)に基づいて、n個の保険商品の中から、保険商品の組み合わせと、保険商品に支払う保険料と、が決定され、レコメンド情報が出力される。リスクスコアriだけでなく、補償スコアCi(xi)が考慮されるので、例えば、ユーザの様々なリスクに対して、バランスよく補償されるように、保険商品の組み合わせ及び保険料を決定することができる。その結果、保険商品の組み合わせ及び保険料を最適化することが可能となる。
なお、上記実施形態の説明に用いられたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、及び割り振り(assigning)などがあるが、これらの機能に限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)又は送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
例えば、本開示の一実施形態におけるレコメンド装置10は、本開示の処理を行うコンピュータとして機能してもよい。図10は、本開示の一実施形態に係るレコメンド装置10のハードウェア構成の一例を示す図である。上述のレコメンド装置10は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、及びバス1007などを含むコンピュータ装置として構成されてもよい。
なお、以下の説明では、「装置」という文言は、回路、デバイス、及びユニットなどに読み替えることができる。レコメンド装置10のハードウェア構成は、図に示された各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
レコメンド装置10における各機能は、プロセッサ1001及びメモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、及びレジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のレコメンド装置10の各機能は、プロセッサ1001によって実現されてもよい。
プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、及びデータなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明された動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、レコメンド装置10の各機能は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、及びRAM(Random Access Memory)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、又はメインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係るレコメンド方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、及び磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバ、その他の適切な媒体であってもよい。
通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、又は通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、及び周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の取得部11、受信部17、及び出力部19などは、通信装置1004によって実現されてもよい。
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、及びセンサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、及びLEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
レコメンド装置10は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、及びFPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
情報の通知は、本開示において説明された態様/実施形態に限られず、他の方法を用いて行われてもよい。
本開示において説明された各態様/実施形態の処理手順、シーケンス、及びフローチャートなどにおいては、矛盾の無い限り、処理の順序が入れ替えられてもよい。例えば、本開示において説明された方法は、例示的な順序を用いて様々なステップの要素を提示しており、提示された特定の順序に限定されない。
情報等は、上位レイヤから下位レイヤへ出力されてもよく、又は下位レイヤから上位レイヤへ出力されてもよい。情報等は、複数のネットワークノードを介して入出力されてもよい。
入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理されてもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
本開示において説明された各態様/実施形態は単独で用いられてもよいし、組み合わせて用いられてもよいし、実行に伴って切り替えて用いられてもよい。所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗黙的に(例えば、当該所定の情報の通知を行わないことによって)行われてもよい。
以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明された実施形態に限定されないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に対して何ら制限的な意味を有しない。
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
ソフトウェア、命令、及び情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
本開示において説明された情報、及び信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、及びチップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
なお、本開示において説明された用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えられてもよい。
本開示において使用される「システム」及び「ネットワーク」という用語は、互換的に使用される。
本開示において説明された情報、及びパラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。
上述したパラメータに使用される名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示された数式等と異なる場合もある。
本開示で使用される「判断(determining)」、及び「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」及び「決定」のそれぞれは、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、及び確認(ascertaining)を含み得る。「判断」及び「決定」のそれぞれは、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、及びアクセス(accessing)(例えば、メモリ中のデータにアクセスすること)を含み得る。「判断」及び「決定」のそれぞれは、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、及び比較(comparing)を含み得る。つまり、「判断」は、「判断」とみなし得る何らかの動作を含み得る。「決定」は、「決定」とみなし得る何らかの動作を含み得る。「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、又は「みなす(considering)」などで読み替えられてもよい。
「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的に行われてもよく、論理的に行われてもよく、或いはこれらの組み合わせで実現されてもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で「接続」又は「結合」が使用される場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、互いに「接続」又は「結合」されると考えられてもよく、いくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えられてもよい。
本開示において使用される「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
本開示において使用される「第1の」、及び「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、及び何らかの形で第1の要素が第2の要素に先行しなければならないことのいずれも意味しない。
上記の各装置の構成における「部」は、「回路」、又は「デバイス」等に置き換えられてもよい。
本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
本開示において、例えば、英語での「a」,「an」及び「the」のように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、及び「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
1…レコメンドシステム、2…端末装置、3…ユーザ情報DB、4…保険加入情報DB、10…レコメンド装置、11…取得部、12…生成部、13…算出部、14…リスクスコア記憶部、15…算出部、16…損害額記憶部、17…受信部、18…決定部、19…出力部、20…保険商品情報記憶部、1001…プロセッサ、1002…メモリ、1003…ストレージ、1004…通信装置、1005…入力装置、1006…出力装置、1007…バス。
Claims (9)
- 複数の保険商品のそれぞれの補償対象である事象によってユーザに生じる損害の程度を示すリスク度と、前記複数の保険商品のそれぞれによる補償の程度を示す補償度と、に基づいて、前記複数の保険商品の中から、保険商品の組み合わせと、保険商品に支払う保険料と、を決定する決定部と、
前記組み合わせ及び前記保険料を示すレコメンド情報を出力する出力部と、
を備える、レコメンド装置。 - 前記決定部は、前記ユーザによって設定された支払い可能金額の範囲内で、前記組み合わせ及び前記保険料を決定する、請求項1に記載のレコメンド装置。
- 前記決定部は、前記複数の保険商品に対する前記リスク度から前記補償度を減算することによって得られる残存リスク度の合計が最小となるように、前記組み合わせ及び前記保険料を決定する、請求項1又は請求項2に記載のレコメンド装置。
- 前記リスク度は、保険商品の補償対象である事象によって生じる予測損害額であり、
前記補償度は、前記保険料に応じて支払われる補償額である、請求項1~請求項3のいずれか一項に記載のレコメンド装置。 - 前記決定部は、保険商品の補償対象である事象の発生確率に基づいて前記予測損害額を算出する、請求項4に記載のレコメンド装置。
- 前記リスク度は、保険商品の補償対象である事象の発生確率であり、
前記補償度は、前記保険料に応じて支払われる補償額によって、前記事象によって生じる予測損害額を全額補償できる確率である、請求項1~請求項3のいずれか一項に記載のレコメンド装置。 - 前記ユーザに関するユーザ情報に基づいて、保険商品に加入する可能性を示す加入スコアを前記複数の保険商品のそれぞれについて算出し、前記加入スコアに基づいて前記発生確率を前記複数の保険商品のそれぞれについて算出する算出部を更に備える、請求項5又は請求項6に記載のレコメンド装置。
- 前記決定部は、前記複数の保険商品のうちの2つの保険商品の間の相関の程度を示す相関係数に更に基づいて、前記組み合わせ及び前記保険料を決定する、請求項1~請求項7のいずれか一項に記載のレコメンド装置。
- 前記決定部は、前記補償度と前記相関係数とに基づいて、前記複数の保険商品から選択可能な2つの保険商品のすべての組について、前記2つの保険商品による補償対象の重なり度合いを示す重複度を算出し、前記すべての組の前記重複度の合計が規定値よりも小さくなるように前記組み合わせ及び前記保険料を決定する、請求項8に記載のレコメンド装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022545635A JPWO2022044811A1 (ja) | 2020-08-27 | 2021-08-11 | |
US18/041,027 US20230274365A1 (en) | 2020-08-27 | 2021-08-11 | Recommendation device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020143631 | 2020-08-27 | ||
JP2020-143631 | 2020-08-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022044811A1 true WO2022044811A1 (ja) | 2022-03-03 |
Family
ID=80353119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/029645 WO2022044811A1 (ja) | 2020-08-27 | 2021-08-11 | レコメンド装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230274365A1 (ja) |
JP (1) | JPWO2022044811A1 (ja) |
WO (1) | WO2022044811A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001319051A (ja) * | 2000-03-03 | 2001-11-16 | Fujitsu Ltd | 金融商品設計プログラム、装置及び方法並びに金融商品設計プログラムを格納したコンピュータ可読の記録媒体 |
JP2002056191A (ja) * | 2000-08-11 | 2002-02-20 | Nec Corp | 保険商品販売仲介方法、システム、ならびにコンピュータ読み取り可能な記録媒体 |
JP2002358424A (ja) * | 2001-03-29 | 2002-12-13 | Mitsui Sumitomo Insurance Co Ltd | 保険設定支援装置、保険設定支援方法及びプログラム |
JP2003030439A (ja) * | 2001-07-11 | 2003-01-31 | Toto Ltd | 建物設備機器関連情報提供方法及びシステム |
JP2015007840A (ja) * | 2013-06-24 | 2015-01-15 | 株式会社フィナンシャル・エージェンシー | 情報処理装置、情報処理方法及びプログラム |
JP2019109588A (ja) * | 2017-12-15 | 2019-07-04 | ヤフー株式会社 | 決定装置、決定方法、および決定プログラム |
US10535104B1 (en) * | 2015-02-03 | 2020-01-14 | State Farm Mutual Automobile Insurance Company | Methods and systems to automatically generate insurance policy data based upon life event data |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11556997B1 (en) * | 2014-05-08 | 2023-01-17 | Allstate Insurance Company | Connected home and alert notifications |
US9865016B2 (en) * | 2014-09-08 | 2018-01-09 | Leeo, Inc. | Constrained environmental monitoring based on data privileges |
US10832335B1 (en) * | 2017-05-01 | 2020-11-10 | State Farm Mutual Automobile Insurance Company | Systems and methods for generating usage-based insurance contracts for peer-to-peer transactions |
US11068991B2 (en) * | 2017-12-18 | 2021-07-20 | Hartford Fire Insurance Company | Closed-loop system incorporating risk analytic algorithm |
US10895463B1 (en) * | 2018-01-24 | 2021-01-19 | State Farm Mutual Automobile Insurance Company | Systems and methods of monitoring and analyzing multimodal transportation usage |
CN110060167A (zh) * | 2019-03-12 | 2019-07-26 | 中国平安财产保险股份有限公司 | 一种保险产品推荐方法、服务器及计算机可读介质 |
-
2021
- 2021-08-11 US US18/041,027 patent/US20230274365A1/en active Pending
- 2021-08-11 WO PCT/JP2021/029645 patent/WO2022044811A1/ja active Application Filing
- 2021-08-11 JP JP2022545635A patent/JPWO2022044811A1/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001319051A (ja) * | 2000-03-03 | 2001-11-16 | Fujitsu Ltd | 金融商品設計プログラム、装置及び方法並びに金融商品設計プログラムを格納したコンピュータ可読の記録媒体 |
JP2002056191A (ja) * | 2000-08-11 | 2002-02-20 | Nec Corp | 保険商品販売仲介方法、システム、ならびにコンピュータ読み取り可能な記録媒体 |
JP2002358424A (ja) * | 2001-03-29 | 2002-12-13 | Mitsui Sumitomo Insurance Co Ltd | 保険設定支援装置、保険設定支援方法及びプログラム |
JP2003030439A (ja) * | 2001-07-11 | 2003-01-31 | Toto Ltd | 建物設備機器関連情報提供方法及びシステム |
JP2015007840A (ja) * | 2013-06-24 | 2015-01-15 | 株式会社フィナンシャル・エージェンシー | 情報処理装置、情報処理方法及びプログラム |
US10535104B1 (en) * | 2015-02-03 | 2020-01-14 | State Farm Mutual Automobile Insurance Company | Methods and systems to automatically generate insurance policy data based upon life event data |
JP2019109588A (ja) * | 2017-12-15 | 2019-07-04 | ヤフー株式会社 | 決定装置、決定方法、および決定プログラム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022044811A1 (ja) | 2022-03-03 |
US20230274365A1 (en) | 2023-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105631698A (zh) | 用于策略部署的风险量化 | |
JP6910229B2 (ja) | 情報処理装置および信用度算出方法 | |
WO2019167684A1 (ja) | 在宅予測装置 | |
CN111666481A (zh) | 数据挖掘方法、装置、计算机可读介质及电子设备 | |
WO2021039797A1 (ja) | クリック率予測モデル構築装置 | |
Hong et al. | A divide-and-conquer method for sparse risk prediction and evaluation | |
JP2021163046A (ja) | 還元値設定システム及び還元値設定方法 | |
WO2022044811A1 (ja) | レコメンド装置 | |
US20170090914A1 (en) | Method and system for associating applications using parameter optimization | |
CN111460286A (zh) | 信息推荐方法、装置、电子设备及介质 | |
US12105759B2 (en) | Recommendation system that selects an optimal algorithm for making an appropriate content recommendation to a user | |
WO2022044812A1 (ja) | レコメンド装置 | |
CN115375434A (zh) | 一种界面布局的调整方法及相关装置 | |
CN112950239B (zh) | 用于生成用户信息的方法、装置、设备和计算机可读介质 | |
JP2022026687A (ja) | 情報提供装置 | |
CN109634500B (zh) | 一种用户资料填写方法、装置、终端设备及存储介质 | |
JP7572809B2 (ja) | 情報提供装置 | |
JP2019020979A (ja) | 情報処理装置および信用度算出方法 | |
CN114897569B (zh) | 基于营销服务平台的订单生成方法、装置、设备及介质 | |
JP2021165884A (ja) | トラブル解決装置 | |
WO2022044889A1 (ja) | 広告効果予測装置 | |
JP7489255B2 (ja) | 情報提供装置 | |
US20170091848A1 (en) | Method and system for recommendation of association of software applications | |
JP7370292B2 (ja) | 提案装置 | |
JP6876118B1 (ja) | 情報処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21861239 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022545635 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21861239 Country of ref document: EP Kind code of ref document: A1 |