WO2022044696A1 - 接合用組成物 - Google Patents
接合用組成物 Download PDFInfo
- Publication number
- WO2022044696A1 WO2022044696A1 PCT/JP2021/028305 JP2021028305W WO2022044696A1 WO 2022044696 A1 WO2022044696 A1 WO 2022044696A1 JP 2021028305 W JP2021028305 W JP 2021028305W WO 2022044696 A1 WO2022044696 A1 WO 2022044696A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solvent
- bonding composition
- silver
- boiling point
- bonding
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
- B22F1/0545—Dispersions or suspensions of nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/06—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
- B22F7/062—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
- B22F7/064—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts using an intermediate powder layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
- H01L24/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L24/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
Definitions
- the present invention relates to a bonding composition.
- a joining material has been used to mechanically, electrically and / or thermally join a metal part to another.
- the bonding material include solder, a conductive adhesive, a silver paste, an anisotropic conductive film and the like. These joining materials may be used not only for joining metal parts to each other but also for joining metal parts to ceramic parts, resin parts and the like.
- a bonding material may be used for bonding a light emitting element such as a light emitting diode (LED), a semiconductor chip, or the like to a substrate, or for further bonding these substrates to a heat radiating member.
- LED light emitting diode
- Patent Document 1 As a new bonding material having high heat resistance and not containing lead, a bonding material formed by firing a bonding composition containing metal nanoparticles has been studied (see, for example, Patent Document 1 and the like).
- a porous metal layer is formed by firing a coating film formed by applying a metal particle dispersion containing metal particles, a dispersant, and a solvent by flash lamp annealing. It is stated that.
- the conventional bonding composition containing metal nanoparticles has a large amount of adhesion to the squeegee during printing and a small amount of remaining on the plate, so that it cannot be continuously printed by an automatic printing machine. There was room for improvement.
- the present invention has been made in view of the above situation, and an object of the present invention is to provide a bonding composition capable of continuous printing by an automatic printing machine and having high bonding strength.
- the bonding composition of the present invention is a bonding composition containing silver particles and an organic component, and the organic component has two or more primary amines, an ether solvent, and two hydroxyl groups.
- Each of the above two or more primary amines, which comprises a solvent and a polymer dispersant, is characterized by having 4 to 12 carbon atoms and a boiling point of 300 ° C. or lower.
- the ether solvent is a glycol ester solvent or a glycol ether solvent, and the boiling point is preferably 210 ° C. or higher and 300 ° C. or lower.
- the solvent having two hydroxyl groups is a diol solvent, and the boiling point is preferably 210 ° C. or higher and 300 ° C. or lower.
- the two or more primary amines preferably contain three or more primary amines having 4 to 12 carbon atoms and a boiling point of 300 ° C. or lower.
- the bonding composition of the present invention continuous printing by an automatic printing machine is possible, and high bonding strength can be obtained.
- the bonding composition of the present invention is a bonding composition containing silver particles and an organic component, and the organic component has two or more primary amines, an ether solvent, and two hydroxyl groups.
- Each of the above two or more primary amines, which comprises a solvent and a polymer dispersant, is characterized by having 4 to 12 carbon atoms and a boiling point of 300 ° C. or lower.
- the "boiling point" is a value at 1 atm (under atmospheric pressure).
- the bonding composition is not particularly limited as long as it contains silver particles and an organic component, but it is preferably in the form of a paste so that it can be easily applied. Further, in order to make migration less likely to occur, in addition to silver particles, a metal whose ionization series is noble than hydrogen, that is, particles such as gold, copper, platinum, and palladium may be used in combination.
- the average particle size of the silver particles is preferably 10 to 500 nm.
- silver particles having an average particle size of 10 to 500 nm volume shrinkage due to sintering can be reduced, and a homogeneous and dense bonding material can be obtained.
- sintering proceeds at a low temperature, but as the sintering of the particles progresses, the volume shrinkage increases as the average particle size increases, and the bonded object shrinks in volume. May not be able to follow. In such a case, defects such as voids occur in the bonding material, and the bonding strength and reliability of the bonding material are lowered.
- particles having an average particle size of more than 500 nm are used, sintering at a low temperature is difficult to proceed, and large voids formed between the particles may remain even after sintering.
- an arithmetic average value of the particle size of about 100 to 200 particles can be calculated from a photograph taken with a scanning electron microscope or a transmission electron microscope.
- Other methods for measuring the average particle size include a dynamic light scattering method, a small-angle X-ray scattering method, and a wide-angle X-ray diffraction method.
- the "average particle size” means an arithmetic mean diameter.
- the bonding composition may contain metal fine particles having a diameter smaller than that of silver particles.
- the metal fine particles may be separated from the silver particles and dispersed in the bonding composition, or may be attached to at least a part of the surface of the silver particles.
- Examples of such metals include gold, copper, nickel, bismuth, tin, iron and platinum group elements (ruthenium, rhodium, palladium, osmium, iridium and platinum). These metals may be used alone or in combination of two or more.
- the average particle size of the metal fine particles is not particularly limited as long as it does not impair the effect of the present invention, but is preferably a nanometer size in which the melting point of the metal fine particles is lowered, and is 20 to 300 nm. Is more preferable.
- the average particle size of the metal fine particles is 20 nm or more, the production of the metal fine particles does not increase the cost and is practical.
- the thickness is 300 nm or less, a bonding composition capable of forming a good bonding structure can be obtained, which is preferable.
- the organic component includes (A) two or more kinds of primary amines, (B) an ether solvent, (C) a solvent having two hydroxyl groups, and (D) a polymer dispersant.
- (A) Primary amine The above two or more primary amines may be used as a dispersant that binds to the surface of silver particles to form a colloid, or may be used as a dispersion medium that does not adhere to the silver particles. It may be used as a solvent).
- the silver particles By being coated with the primary amine, the silver particles have improved dispersion stability and can prevent aggregation. If the organic component remains during firing of the bonding composition, fusion between the silver particles is hindered, but the primary amine is removed from the silver particles even in firing in an atmosphere where the organic matter does not burn and the oxygen concentration is low. It has the advantage of being easy to separate.
- the primary amine having 4 to 12 carbon atoms and a boiling point of 300 ° C.
- the carbon number of the primary amine refers to the total carbon number of the main chain and the side chain. Further, even when the primary amine is not attached to the silver particles, it easily volatilizes (evaporates or decomposes) at the time of firing, so that fusion between the silver particles can be promoted.
- the bonding composition contains two or more primary amines, and each of the two or more primary amines has 4 to 12 carbon atoms and a boiling point of 300 ° C. or lower.
- the bonding composition contains three or more primary amines, and each of the three or more primary amines has 4 to 12 carbon atoms and a boiling point of 300 ° C. or lower. ..
- the above two or more kinds of primary amines preferably have different carbon atoms, and preferably have different boiling points. According to these, since each amine can be desorbed and volatilized stepwise during firing, it is possible to control the sintering of silver particles and form a dense sintered layer.
- the preferred lower limit of the boiling point of the primary amine is 100 ° C, and the more preferred upper limit is 250 ° C.
- the primary amine may be linear or split chain, and may have a side chain. Further, the primary amine may be any of diamine, alkoxyamine, aminoalcohol, alkylamine (linear alkylamine, may have a side chain), and cycloalkylamine. Specific examples of the primary amines include 1,4-butanedimine, 1,5-pentanedimine, pentanolamine, aminoisobutanol, butylamine, pentylamine, hexylamine, heptylamine, octylamine, nonylamine and decylamine.
- the primary amine may contain a functional group other than the amine, such as a hydroxyl group, a carboxyl group, an alkoxy group, a carbonyl group, an ester group, and a mercapto group.
- a functional group other than the amine such as a hydroxyl group, a carboxyl group, an alkoxy group, a carbonyl group, an ester group, and a mercapto group.
- the ether-based solvent has a low viscosity, it is easy to reduce the viscosity of the bonding composition (paste) by including the ether-based solvent in the bonding composition.
- the ether solvent preferably has a boiling point of 210 to 300 ° C., more preferably 230 to 290 ° C., and further preferably 230 to 290 ° C. from the viewpoint of suppressing drying during printing and easily volatilizing at the time of joining.
- the temperature is 240 to 260 ° C.
- ether solvent a glycol ester solvent and a glycol ether solvent are preferably used. These solvents have good compatibility with the primary amine having 4 to 12 carbon atoms used as a dispersant for adhering to the silver particles in the bonding composition, and can improve the dispersibility of the silver particles.
- the octanol / water partition coefficient of the ether solvent is preferably close to the octanol / water partition coefficient of a primary amine having 4 to 12 carbon atoms which functions as a dispersant adhering to silver particles, specifically -1. It is preferably ⁇ +6.
- the ether-based solvent examples include hexyl ether, butyl carbitol, hexyl carbitol, dipropylene glycol-n-butyl ether, tersolve THA-90, tripropylene glycol methyl ether, triethylene glycol monomethyl ether, and diethylene glycol dibutyl ether.
- examples thereof include diethylene glycol monohexyl ether, triethylene glycol butyl methyl ether, dipropylene glycol monobutyl ether, tetraethylene glycol dimethyl ether, Telsolve TOE-100, butyl carbitol acetate, and triethylene glycol methyl ether acetate.
- (C) Solvent having two hydroxyl groups The solvent having two hydroxyl groups has a high viscosity of the solvent itself by having two hydroxyl groups, and can suppress and control the aggregation of silver particles. Further, by having two hydroxyl groups, it is easy to repel the carbon chain of the primary amine adhering to the silver particles, and the cohesive force of the bonding composition (paste) can be controlled. Due to these actions, the paste moves (rolls) while rolling on the plate due to the movement of the squeegee during printing, which makes it easier to fill the opening of the metal mask, thus improving printability. Further, since the cohesive force of the paste can be controlled, it is possible to suppress the adhesion to the squeegee and leave the paste on the plate.
- the solvent having two hydroxyl groups is preferably a diol solvent. Further, from the viewpoint of suppressing drying during printing, the boiling point of the solvent having two hydroxyl groups is preferably 210 to 300 ° C, more preferably 230 to 290 ° C, still more preferably 240 to 260 ° C. Is.
- the solvent having two hydroxyl groups include 2-ethyl-1,3-hexanediol, ethylene glycol, diethylene glycol, propylene glycol, polyethylene glycol, polypropylene glycol, 1,3-butanediol, and 1,4-butane.
- the polymer dispersant By containing the polymer dispersant in the bonding composition, the viscosity and cohesive force that can be printed can be adjusted even if the amount of the solvent in the bonding composition (paste) is reduced. Will be possible.
- the polymer dispersant preferably has an acid value in order to disperse by an acid-base interaction with a primary amine adhering to silver particles. Further, the polymer dispersant preferably has no basicity.
- polymer dispersant a commercially available polymer dispersant can be used.
- examples of commercially available polymer dispersants include SOLSPERSE 11200, SOLSPERS 13940, SOLSPASE 16000, SOLSPASE 17000, SOLSPASE 18000, SOLSPASE 20000, SOLSPARS 21000, SOLSPERS 24000, SOLSPERS 26000, SOLSPARSE 27000, SOLSPASE 28000, SOLSPARSE 41000, and so on.
- Disperbic 166 Disperbic 170, Disperbic 180, Disparbic 182, Disperbic 184, Disperbic 190, Disperbic 2155 (all manufactured by Big Chemie Japan); EFKA-46, EFKA-47, EFKA- 48, EFKA-49 (above, manufactured by EFKA Chemical); Polymer 100, Polymer 120, Polymer 150, Polymer 400, Polymer 401, Polymer 402, Polymer 403, Polymer 450, Polymer 451, Polymer 452, Polymer 453 (above, EFKA).
- Ajispar PB711, Ajispar PA111, Ajispar PB811, Ajispar PW911 all manufactured by Ajinomoto Co., Ltd.
- Floren DOPA-15B, Floren DOPA-22, Floren DOPA-17, Floren TG-730W, Floren G-700, Floren TG-720W (all manufactured by Kyoeisha Chemical Industry Co., Ltd.) and the like can be mentioned.
- the bonding composition can be continuously printed by suppressing adhesion to the squeegee by using a solvent that is a combination of a solvent having two hydroxyl groups and a polymer dispersant. ing.
- a solvent that is a combination of a solvent having two hydroxyl groups and a polymer dispersant.
- problems such as bleeding around the printed paste, poor plate separation of the paste, and generation of voids at the time of joining appear.
- by further combining an ether solvent having a relatively low viscosity the paste is further imparted with cohesive force. As a result, when the paste drips and stretches, it becomes easy to cut, and the above-mentioned problems of bleeding and plate separation can be solved.
- the solvent obtained by combining the solvent having two hydroxyl groups, the polymer dispersant and the ether-based solvent has good compatibility with the amine dispersant, silver is used in the process of desorbing the dispersant from the solvent volatilization during firing. It is possible to control the agglomeration of particles and the behavior during sintering, and to realize a bonding state without voids (in other words, a bonding state with a low void ratio). As described above, according to the above-mentioned bonding composition, the porosity can be lowered. Therefore, for example, even when non-pressure bonding is performed with a solid copper plate in a nitrogen atmosphere, high bonding strength is achieved. Is possible.
- the content of silver particles in the bonding composition is preferably 90% by mass or more and 96% by mass or less, and the content of organic components is 4% by mass or more and 10% by mass. % Or less is preferable.
- the content of the primary amine with respect to the entire organic component is preferably 1% by mass or more and 50% by mass or less.
- the content of the ether solvent is preferably 5% by mass or more and 90% by mass or less.
- the content of the solvent having two hydroxyl groups with respect to the entire organic component is preferably 5% by mass or more and 90% by mass or less.
- the content of the polymer dispersant with respect to the entire organic component is preferably 0.1% by mass or more and 5% by mass or less.
- the organic component may contain unsaturated hydrocarbons. As a result, the dispersibility of the silver particles is improved, and even when the content of the organic component in the entire bonding composition is small, the paste can be formed.
- Examples of the unsaturated hydrocarbon include acetylene, benzene, 1-hexene, 1-octene, 4-vinylcyclohexene, terpene-based alcohol, allyl alcohol, oleyl alcohol, 2-palmitoleic acid, petroselinic acid, oleic acid, and elaidic acid. , Thianthic acid, ricinoleic acid, linoleic acid, linoleic acid, linolenic acid, arachidonic acid, acrylic acid, methacrylic acid, petroselinic acid, salicylic acid and the like.
- unsaturated hydrocarbons having a hydroxyl group are preferable.
- unsaturated hydrocarbons having a hydroxyl group include terpene alcohols, allyl alcohols, oleyl alcohols, thiancic acid, lysynolic acid, gallic acid and salicylic acid.
- it is an unsaturated fatty acid having a hydroxyl group, and examples thereof include thiancic acid, ricinoleic acid, gallic acid and salicylic acid.
- the unsaturated hydrocarbon is preferably ricinoleic acid.
- Ricinoleic acid has a carboxyl group and a hydroxyl group, and is adsorbed on the surface of silver particles to uniformly disperse the silver particles, and promotes fusion of the silver particles and bonding to the object to be bonded.
- the above-mentioned bonding composition has dispersibility of silver particles and appropriate viscosity, adhesion, drying property, and coatability (printing) according to the purpose of use, as long as the effects of the present invention are not impaired.
- arbitrary components such as a binder, a thickener, a surfactant, and a surface tension adjusting agent may be added.
- the optional component is not particularly limited.
- the bonding composition preferably has a solid content concentration of 93 to 96% by mass remaining when the temperature is raised to 550 ° C. in the atmosphere.
- the solid content concentration is less than 93% by mass, the amount of organic components is relatively large, so that the amount volatilized at the time of joining increases, and voids and voids are likely to occur.
- the solid content concentration exceeds 96% by mass, the fluidity of the bonding composition (paste) may deteriorate and the printability may deteriorate.
- the higher the solid content concentration the denser the bonding layer obtained by firing the bonding composition, and it is possible to obtain a strong bonding strength.
- the bonding composition of the present invention is different from the one that obtains the bonding strength after firing by utilizing the conventional thermosetting of an epoxy resin or the like, and as described above, sufficient bonding strength is obtained by sintering silver particles. It is what you get. Therefore, even if the remaining organic matter deteriorates, decomposes or disappears after being placed in a usage environment higher than the joining temperature after joining, there is no risk of the joining strength decreasing and the heat resistance is excellent. ing.
- Example 1 3.0 g of 3-methoxypropylamine (4 carbon atoms, boiling point 116 ° C.) was added with 3.0 g of silver oxalate while sufficiently stirring with a magnetic stirrer to thicken the viscosity.
- the obtained viscous substance was placed in a constant temperature bath at 100 ° C. and reacted for about 15 minutes.
- 10 ml of methanol was added and stirred, and then the silver fine particles were precipitated and separated by centrifugation, and the supernatant was discarded. The operation of discarding the supernatant was repeated twice to obtain silver fine particles A. ..
- Example 2 A bonding composition was prepared in the same manner as in Example 1 except that Solsperse 16000 was changed to Solsperse 41000 (manufactured by Japan Lubrizol).
- Example 3 A bonding composition was prepared in the same manner as in Example 1 except that Solsperse 16000 was changed to Solsperse 21000 (manufactured by Japan Lubrizol).
- Example 4 Add 3.0 g of silver oxalate while sufficiently stirring 15.0 g of 3-methoxypropylamine and 1.0 g of 3-ethoxypropylamine (carbon number 5, boiling point 130 ° C.) with a magnetic stirrer to thicken the viscosity. rice field.
- the obtained viscous substance was placed in a constant temperature bath at 100 ° C. and reacted for about 15 minutes.
- 10 ml of methanol was added and stirred, and then the silver fine particles were precipitated and separated by centrifugation, and the supernatant was discarded. The operation of discarding the supernatant was repeated twice to obtain silver fine particles C. ..
- Example 5 15.0 g of 3-methoxypropylamine and 1.5 g of 3-ethoxypropylamine were added with 3.0 g of silver oxalate while sufficiently stirring with a magnetic stirrer to thicken the viscosity.
- the obtained viscous substance was placed in a constant temperature bath at 100 ° C. and reacted for about 15 minutes.
- 10 ml of methanol was added and stirred, and then the silver fine particles were precipitated and separated by centrifugation, and the supernatant was discarded. The operation of discarding the supernatant was repeated twice to obtain silver fine particles D. ..
- Example 6 A bonding composition was prepared in the same manner as in Example 4 except that octylamine was not added.
- Example 7 For 4 g of silver fine particles D, 0.1 g of 2-ethyl-1,3-hexanediol, 0.1 g of butyl carbitol acetate, and 0.02 g of 3- (2-ethylhexyloxy) propylamine (carbon number). 11., boiling point 235 ° C.), 0.02 g of octylamine, 0.01 g of sol sparse 21000, and 0.01 g of lysynoleic acid were added and mixed by stirring to prepare a bonding composition.
- Example 8 15.0 g of 3-methoxypropylamine and 1.5 g of 3-ethoxypropylamine were added with 3.0 g of silver oxalate while sufficiently stirring with a magnetic stirrer to thicken the viscosity.
- the obtained viscous substance was placed in a constant temperature bath at 100 ° C. and reacted for about 15 minutes.
- 2 g of octylamine and 10 ml of methanol were added, and the mixture was stirred for 1 hour, and then the silver fine particles were precipitated and separated by centrifugation, and the supernatant was discarded. Further, 10 ml of methanol was added and stirred, and then the silver fine particles were precipitated and separated by centrifugation, and the supernatant was discarded to obtain silver fine particles E to which octylamine was attached.
- ⁇ Comparative Example 1> 3.0 g of 3-methoxypropylamine was added with 3.0 g of silver oxalate while sufficiently stirring with a magnetic stirrer to thicken the viscosity.
- the obtained viscous substance was placed in a constant temperature bath at 100 ° C. and reacted for about 15 minutes. 20 g of dodecylamine was added thereto, and the mixture was reacted at the same temperature for 15 minutes.
- 10 ml of methanol was added and stirred, and then the silver fine particles were precipitated and separated by centrifugation, and the supernatant was discarded. The operation of discarding the supernatant was repeated twice to obtain silver fine particles E. ..
- the obtained viscous substance was placed in a constant temperature bath at 100 ° C. and reacted for about 15 minutes. 20 g of octylamine was added thereto, and the mixture was reacted at the same temperature for 15 minutes.
- 10 ml of methanol was added and stirred, and then the silver fine particles were precipitated and separated by centrifugation, and the supernatant was discarded. The operation of discarding the supernatant was repeated twice to obtain silver fine particles G. ..
- the obtained bonding composition was applied to a solid oxygen-free copper plate (20 mm square) from which the oxide film had been removed to a 6 mm square using a metal mask, and a gold-plated Si chip (bottom) was applied. Area 5 mm ⁇ 5 mm) was laminated and pressed with 0.1 kgf (0.98N). Then, the obtained laminate was placed in a reflow furnace (manufactured by Synapex), nitrogen was allowed to flow, the temperature was raised from room temperature to 70 ° C. when the oxygen concentration reached 300 ppm, and the mixture was held at 70 ° C. for 30 minutes. The firing process was performed by raising the temperature to a maximum temperature of 250 ° C.
- the laminated body was measured using a bond tester (manufactured by Reska) of a load cell of 100 kgf at room temperature. Since the 5 mm square chip was measured with a load cell of 100 kgf, the upper limit of measurement of the joint strength was about 40 MPa.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Dispersion Chemistry (AREA)
- Nanotechnology (AREA)
- Mechanical Engineering (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Conductive Materials (AREA)
Abstract
本発明は、自動印刷機による連続印刷が可能であり、高い接合強度が得られる接合用組成物を提供する。本発明の接合用組成物は、銀粒子及び有機成分を含有する接合用組成物であって、上記有機成分は、2種以上の第1級アミンと、エーテル系溶剤と、水酸基を2つ有する溶剤と、高分子分散剤とを含み、上記2種以上の第1級アミンの各々は、炭素数が4~12であり、かつ沸点が300℃以下であり、好ましくは、上記エーテル系溶剤は、グリコールエステル系溶剤又はグリコールエーテル系溶剤であり、沸点が210℃以上300℃以下である。
Description
本発明は、接合用組成物に関する。
従来、金属部品と金属部品とを機械的、電気的及び/又は熱的に接合するために、接合材が用いられている。上記接合材としては、例えば、はんだ、導電性接着剤、銀ペースト、異方導電性フィルム等が挙げられる。これらの接合材は、金属部品同士の接合だけではなく、金属部品と、セラミック部品、樹脂部品等との接合にも用いられることがある。例えば、近年、発光ダイオード(LED)等の発光素子、半導体チップ等を基板に接合する用途や、これらの基板を更に放熱部材に接合する用途に接合材が用いられることがある。
LED等の発光素子を備えた高輝度の照明デバイスや発光デバイス、パワーデバイスと言われる高温で高効率の動作をする半導体素子を備えた半導体デバイス等は、デバイス使用時の駆動温度が高い傾向にある。はんだは、これらのデバイスの駆動温度よりも融点が低いため、LED等の発光素子、半導体チップ等の接合には適さない。更に、近年、環境保全や「電気・電子機器に含まれる特定有害物質の使用制限に関する欧州議会及び理事会指令」(RoHS)の規制の観点から、鉛を含まない接合材が求められている。
耐熱性が高く、鉛を含有しない新たな接合材として、金属ナノ粒子を含有する接合用組成物を焼成して形成する接合材が検討されている(例えば、特許文献1等参照)。例えば、特許文献1には、金属粒子と、分散剤と、溶剤とを含有する金属粒子分散体を塗布して形成した塗膜を、フラッシュランプアニールにより焼成することにより多孔性金属層を形成することが記載されている。
ところで、従来の金属ナノ粒子を含有する接合用組成物は、印刷時にスキージに付着する量が多く、版上に残る量が少なくなることから、自動印刷機によって連続的に印刷することができない点で改善の余地があった。
また、近年、LED等の発光素子、半導体チップ等を備えたデバイスには、出力を高める要請があり、高集積化したり、投入電力を増大したりすることがある。そのため、これらのデバイスの駆動温度はより高くなり、接合材の使用環境がより過酷になる傾向にあるため、LED等の発光素子、半導体チップ等の接合には、耐熱信頼性を確保することができるように、高い接合強度が求められていた。
本発明は、上記現状に鑑みてなされたものであり、自動印刷機による連続印刷が可能であり、高い接合強度が得られる接合用組成物を提供することを目的とする。
本発明の接合用組成物は、銀粒子及び有機成分を含有する接合用組成物であって、上記有機成分は、2種以上の第1級アミンと、エーテル系溶剤と、水酸基を2つ有する溶剤と、高分子分散剤とを含み、上記2種以上の第1級アミンの各々は、炭素数が4~12であり、かつ沸点が300℃以下であることを特徴とする。
上記エーテル系溶剤は、グリコールエステル系溶剤又はグリコールエーテル系溶剤であり、沸点が210℃以上300℃以下であることが好ましい。
上記水酸基を2つ有する溶剤は、ジオール系溶剤であり、沸点が210℃以上300℃以下であることが好ましい。
上記2種以上の第1級アミンは、炭素数が4~12であり、かつ沸点が300℃以下である第1級アミンを3種以上含むものであることが好ましい。
本発明の接合用組成物によれば、自動印刷機による連続印刷が可能であり、高い接合強度が得られる。
本発明の接合用組成物は、銀粒子及び有機成分を含有する接合用組成物であって、上記有機成分は、2種以上の第1級アミンと、エーテル系溶剤と、水酸基を2つ有する溶剤と、高分子分散剤とを含み、上記2種以上の第1級アミンの各々は、炭素数が4~12であり、かつ沸点が300℃以下であることを特徴とする。なお、本明細書において「沸点」とは、1気圧(大気圧下)での値である。
上記接合用組成物は、銀粒子及び有機成分を含有するものであれば特に限定されないが、塗布しやすいようにペースト状であることが好ましい。また、マイグレーションを起こりにくくするために、銀粒子以外に、イオン化列が水素より貴である金属、すなわち金、銅、白金、パラジウム等の粒子が併用されてもよい。
上記銀粒子の平均粒径は10~500nmであることが好ましい。平均粒径が10~500nmの銀粒子を用いることで焼結による体積収縮を低減することができ、均質かつ緻密な接合材を得ることができる。平均粒径が10nm未満の小さな粒子を用いると、低温で焼結が進行するが、粒子同士の焼結が進むと平均粒径の増加に伴い体積収縮が大きくなり、被接合体が当該体積収縮に追従できなくなるおそれがある。そのような場合には、接合材にボイド等の欠陥が発生し、接合材の接合強度及び信頼性が低下してしまう。一方、平均粒径が500nmより大きな粒子を用いると、低温での焼結が進行しづらく、粒子間に形成される大きな空隙が焼結後も残存してしまうおそれがある。
上記銀粒子の平均粒径は、走査型電子顕微鏡や透過型電子顕微鏡を用いて撮影した写真から、100~200個程度の粒子の粒径の算術平均値を算出することができる。なお、平均粒径を測定するその他の手法としては、動的光散乱法(Dynamic Light Scattering)、小角X線散乱法、広角X線回折法で測定する方法が挙げられる。本明細書中、「平均粒径」とは、算術平均径をいう。
上記接合用組成物は、銀粒子よりも小径の金属微粒子を含有していてもよい。金属微粒子は、銀粒子とは分離して接合用組成物中に分散されていてもよいし、銀粒子の表面の少なくとも一部に付着していてもよい。かかる金属としては、例えば、金、銅、ニッケル、ビスマス、スズ、鉄及び白金族元素(ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金)が挙げられる。これらの金属は単独で用いても、2種以上を併用して用いてもよい。
上記金属微粒子の平均粒径は、本発明の効果を損なわない範囲であれば特に制限されるものではないが、金属微粒子において融点降下が生じるナノメートルサイズであることが好ましく、20~300nmであることがより好ましい。金属微粒子の平均粒径が20nm以上であれば、金属微粒子の製造がコスト高とならず実用的である。また、300nm以下であれば、良好な接合組織を形成可能な接合用組成物が得られ、好ましい。
上記有機成分は、(A)2種以上の第1級アミンと、(B)エーテル系溶剤と、(C)水酸基を2つ有する溶剤と、(D)高分子分散剤とを含む。
(A)第1級アミン
上記2種以上の第1級アミンは、銀粒子の表面に結合してコロイドを形成する分散剤として用いられてもよいし、銀粒子に付着していない分散媒(溶媒)として用いられてもよい。上記第1級アミンに被覆されることで銀粒子は、分散安定性が向上し、凝集を防止できる。接合用組成物の焼成時に有機成分が残存すると、銀粒子同士の融着が阻害されるが、第1級アミンは、有機物の燃焼が発生しない酸素濃度が低い雰囲気の焼成においても銀粒子から脱離しやすいという利点を有する。なかでも、炭素数が4~12であり、かつ沸点が300℃以下である第1級アミンは、焼成時に銀粒子から容易に脱離させることができる。ここで、第1級アミンの炭素数とは、主鎖及び側鎖の炭素数の合計を指す。また、上記第1級アミンは、銀粒子に付着していない場合においても、焼成時に揮発(蒸発又は分解)しやすいことで、銀粒子同士の融着を促進することができる。
上記2種以上の第1級アミンは、銀粒子の表面に結合してコロイドを形成する分散剤として用いられてもよいし、銀粒子に付着していない分散媒(溶媒)として用いられてもよい。上記第1級アミンに被覆されることで銀粒子は、分散安定性が向上し、凝集を防止できる。接合用組成物の焼成時に有機成分が残存すると、銀粒子同士の融着が阻害されるが、第1級アミンは、有機物の燃焼が発生しない酸素濃度が低い雰囲気の焼成においても銀粒子から脱離しやすいという利点を有する。なかでも、炭素数が4~12であり、かつ沸点が300℃以下である第1級アミンは、焼成時に銀粒子から容易に脱離させることができる。ここで、第1級アミンの炭素数とは、主鎖及び側鎖の炭素数の合計を指す。また、上記第1級アミンは、銀粒子に付着していない場合においても、焼成時に揮発(蒸発又は分解)しやすいことで、銀粒子同士の融着を促進することができる。
上記接合用組成物は、第1級アミンを2種以上含有し、2種以上の第1級アミンの各々について、炭素数が4~12であり、かつ沸点が300℃以下である。好ましくは、上記接合用組成物は、第1級アミンを3種以上含有し、3種以上の第1級アミンの各々について、炭素数が4~12であり、かつ沸点が300℃以下である。また、上記2種以上の第1級アミンは、互いに炭素数が異なることが好ましく、互いに沸点が異なることが好ましい。これらによれば、焼成時の各アミンの脱離及び揮発を段階的に行うことができるので、銀粒子の焼結を制御し、緻密な焼結層にすることが可能である。第1級アミンの沸点の好ましい下限は100℃であり、より好ましい上限は250℃である。
上記第1級アミンは、直鎖状であっても分鎖状であってもよく、側鎖を有していてもよい。また、上記第1級アミンは、ジアミン、アルコキシアミン、アミノアルコール、アルキルアミン(直鎖状アルキルアミン、側鎖を有していてもよい。)、シクロアルキルアミンのいずれであってもよい。上記第1級アミンの具体例としては、1,4-ブタンジアミン、1,5-ペンタンジアミン、ペンタノールアミン、アミノイソブタノール、ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、シクロペンチルアミン、シクロヘキシルアミン、3-メトキシプロピルアミン、ジグリコールアミン、アニリン、アリルアミン、3-エトキシプロピルアミン、3-(2-エチルヘキシルオキシ)プロピルアミン等が挙げられる。
なお、上記第1級アミンは、例えば、ヒドロキシル基、カルボキシル基、アルコキシ基、カルボニル基、エステル基、メルカプト基等の、アミン以外の官能基を含んでいてもよい。
(B)エーテル系溶剤
上記エーテル系溶剤は、溶剤自体の粘度が低いことから、上記接合用組成物がエーテル系溶剤を含むことにより、上記接合用組成物(ペースト)の粘度を下げることが容易である。また、上記エーテル系溶剤は、印刷中の乾燥を抑制し、接合時に揮発させやすいという観点から、沸点が210~300℃であることが好ましく、より好ましくは230~290℃であり、更に好ましくは240~260℃である。
上記エーテル系溶剤は、溶剤自体の粘度が低いことから、上記接合用組成物がエーテル系溶剤を含むことにより、上記接合用組成物(ペースト)の粘度を下げることが容易である。また、上記エーテル系溶剤は、印刷中の乾燥を抑制し、接合時に揮発させやすいという観点から、沸点が210~300℃であることが好ましく、より好ましくは230~290℃であり、更に好ましくは240~260℃である。
上記エーテル系溶剤としては、グリコールエステル系溶剤及びグリコールエーテル系溶剤が好適に用いられる。これらの溶剤は、上記接合用組成物が銀粒子に付着する分散剤として用いる炭素数4~12の第1級アミンと相性が良く、銀粒子の分散性を向上させることができる。上記エーテル系溶剤のオクタノール/水分配係数は、銀粒子に付着する分散剤として機能する炭素数4~12の第1級アミンのオクタノール/水分配係数に近いことが好ましく、具体的には-1~+6であることが好ましい。
上記エーテル系溶剤の具体例としては、ヘキシルエーテル、ブチルカルビトール、ヘキシルカルビトール、ジプロピレングリコール-n-ブチルエーテル、テルソルブTHA-90、トリプロピレングリコールメチルエーテル、トリエチレングリコールモノメチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールモノヘキシルエーテル、トリエチレングリコールブチルメチルエーテル、ジプロピレングリコールモノブチルエーテル、テトラエチレングリコールジメチルエーテル、テルソルブTOE-100、ブチルカルビトールアセテート、トリエチレングリコールメチルエーテルアセテート等が挙げられる。
(C)水酸基を2つ有する溶剤
上記水酸基を2つ有する溶剤は、水酸基を2つ有することで溶剤自体の粘度が高く、銀粒子の凝集を抑制し制御することが可能である。また、水酸基を2つ有することで、銀粒子に付着する第1級アミンの炭素鎖と反発しやすく、上記接合用組成物(ペースト)の凝集力を制御することができる。これらの作用により、印刷時のスキージの移動によりペーストが版上を転がりながら移動(ローリング)し、メタルマスクの開口部を埋めやすくなるので、印刷性が向上する。また、ペーストの凝集力を制御できるため、スキージへの付着も抑制し、版上にペーストを残すことが可能である。
上記水酸基を2つ有する溶剤は、水酸基を2つ有することで溶剤自体の粘度が高く、銀粒子の凝集を抑制し制御することが可能である。また、水酸基を2つ有することで、銀粒子に付着する第1級アミンの炭素鎖と反発しやすく、上記接合用組成物(ペースト)の凝集力を制御することができる。これらの作用により、印刷時のスキージの移動によりペーストが版上を転がりながら移動(ローリング)し、メタルマスクの開口部を埋めやすくなるので、印刷性が向上する。また、ペーストの凝集力を制御できるため、スキージへの付着も抑制し、版上にペーストを残すことが可能である。
上記水酸基を2つ有する溶剤は、ジオール系溶剤であることが好ましい。また、印刷中の乾燥を抑制するという観点から、上記水酸基を2つ有する溶剤の沸点は210~300℃であることが好ましく、より好ましくは230~290℃であり、更に好ましくは240~260℃である。
上記水酸基を2つ有する溶剤の具体例としては、2-エチル-1,3-ヘキサンジオール、エチレングリコール、ジエチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,2-ヘキサンジオール、1,2-オクタンジオール、3-メチルー1,5-ペンタンジオール、3-メチルー1,3-ブタンジオール、2,4-ジエチルー1,5-ペンタンジオール等が挙げられる。
(D)高分子分散剤
上記接合用組成物が高分子分散剤を含むことにより、上記接合用組成物(ペースト)中の溶媒量を少なくしても印刷可能な粘度及び凝集力に調整することが可能になる。上記高分子分散剤は、銀粒子に付着する第1級アミンとの酸塩基相互作用によって分散させるために、酸価を有するものが好ましい。また、上記高分子分散剤は、塩基度が無いものが好ましい。
上記接合用組成物が高分子分散剤を含むことにより、上記接合用組成物(ペースト)中の溶媒量を少なくしても印刷可能な粘度及び凝集力に調整することが可能になる。上記高分子分散剤は、銀粒子に付着する第1級アミンとの酸塩基相互作用によって分散させるために、酸価を有するものが好ましい。また、上記高分子分散剤は、塩基度が無いものが好ましい。
上記高分子分散剤としては、市販されている高分子分散剤を使用することができる。市販の高分子分散剤としては、例えば、ソルスパース(SOLSPERSE)11200、ソルスパース13940、ソルスパース16000、ソルスパース17000、ソルスパース18000、ソルスパース20000、ソルスパース21000、ソルスパース24000、ソルスパース26000、ソルスパース27000、ソルスパース28000、ソルスパース41000、ソルスパース44000、ソルスパース53095、ソルスパース54000(以上、日本ルーブリゾール社製);ディスパービック(DISPERBYK)102、ディスパービック111、ディスパービック118、ディスパービック142、ディスパービック160、ディスパービック161、ディスパービック162、ディスパービック163、ディスパービック166、ディスパービック170、ディスパービック180、ディスパービック182、ディスパービック184、ディスパービック190、ディスパービック2155(以上、ビックケミー・ジャパン社製);EFKA-46、EFKA-47、EFKA-48、EFKA-49(以上、EFKAケミカル社製);ポリマー100、ポリマー120、ポリマー150、ポリマー400、ポリマー401、ポリマー402、ポリマー403、ポリマー450、ポリマー451、ポリマー452、ポリマー453(以上、EFKAケミカル社製);アジスパーPB711、アジスパーPA111、アジスパーPB811、アジスパーPW911(以上、味の素社製);フローレンDOPA-15B、フローレンDOPA-22、フローレンDOPA-17、フローレンTG-730W、フローレンG-700、フローレンTG-720W(以上、共栄社化学工業社製)等を挙げることができる。低温焼結性及び分散安定性の観点からは、ソルスパース11200、ソルスパース13940、ソルスパース16000、ソルスパース17000、ソルスパース18000、ソルスパース28000、ソルスパース54000、ディスパービック142又はディスパービック2155を用いることが好ましい。
以上のように、上記接合用組成物(ペースト)は、水酸基を2つ有する溶剤と高分子分散剤とを組み合わせた溶媒を用いることで、スキージへの付着を抑制し連続印刷することを可能にしている。しかしながら、印刷したペースト周囲のにじみ、ペーストの版離れの悪さ、接合時のボイドの発生という問題が現れる。これに対して、比較的粘度の低いエーテル系溶剤を更に組み合わせることで、ペーストに凝集力を更に付与している。これにより、ペーストが垂れて伸びたときに切れやすくなり、上述したにじみと版離れの問題を解決することができる。また、水酸基を2つ有する溶剤、高分子分散剤及びエーテル系溶剤を組み合わせた溶媒は、アミン分散剤との相性が良いことから、焼成時の溶媒揮発から分散剤の脱離の過程において、銀粒子の凝集及び焼結時挙動を制御し、ボイドの無い接合状態(言い換えれば、空隙率の低い接合状態)を実現することができる。このように、上記接合用組成物によれば、空隙率を低くすることができることから、例えば、窒素雰囲気で、無垢の銅板との無加圧接合を行った場合であっても、高い接合強度を得ることが可能である。
上記した効果を得る観点から、上記接合用組成物における銀粒子の含有量は、90質量%以上、96質量%以下であることが好ましく、有機成分の含有量は、4質量%以上、10質量%以下であることが好ましい。
また、上記有機成分全体に対する第1級アミンの含有量は、1質量%以上、50質量%以下であることが好ましい。上記エーテル系溶剤の含有量は、5質量%以上、90質量%以下であることが好ましい。上記有機成分全体に対する上記水酸基を2つ有する溶剤の含有量は、5質量%以上、90質量%以下であることが好ましい。上記有機成分全体に対する上記高分子分散剤の含有量は、0.1質量%以上、5質量%以下であることが好ましい。
上記有機成分は、不飽和炭化水素を含んでいてもよい。これにより、銀粒子の分散性が向上し、上記接合用組成物全体に対する有機成分の含有量が少ない場合においても、ペースト状とすることが可能となる。
上記不飽和炭化水素としては、例えば、アセチレン、ベンゼン、1-ヘキセン、1-オクテン、4-ビニルシクロヘキセン、テルペン系アルコール、アリルアルコール、オレイルアルコール、2-パルミトレイン酸、ペトロセリン酸、オレイン酸、エライジン酸、チアンシ酸、リシノール酸、リノール酸、リノエライジン酸、リノレン酸、アラキドン酸、アクリル酸、メタクリル酸、没食子酸及びサリチル酸等が挙げられる。
なかでも、水酸基を有する不飽和炭化水素が好ましい。水酸基を有する不飽和炭化水素としては、例えば、テルペン系アルコール、アリルアルコール、オレイルアルコール、チアンシ酸、リシノール酸、没食子酸及びサリチル酸等が挙げられる。好ましくは、水酸基を有する不飽和脂肪酸であり、例えば、チアンシ酸、リシノール酸、没食子酸及びサリチル酸等が挙げられる。
上記不飽和炭化水素はリシノール酸であることが好ましい。リシノール酸はカルボキシル基とヒドロキシル基とを有し、銀粒子の表面に吸着して当該銀粒子を均一に分散させると共に、銀粒子の融着と被接合体への接合とを促進する。
上記接合用組成物は、上記の成分に加えて、本発明の効果を損なわない範囲で、銀粒子の分散性や、使用目的に応じた適度な粘性、密着性、乾燥性、塗布性(印刷性)を調整するために、バインダー、増粘剤、界面活性剤、表面張力調整剤等の任意成分を添加してもよい。かかる任意成分としては、特に限定されない。
上記接合用組成物は、大気中で550℃まで昇温した際に残存する固形分濃度が93~96質量%であることが好ましい。上記固形分濃度が93質量%未満であると、相対的に有機成分が多くなるため、接合時に揮発させる量が増え、ボイドや空隙が発生しやすくなる。上記固形分濃度が96質量%を超えると、接合用組成物(ペースト)としての流動性が悪くなり印刷性が悪化するおそれがある。上記固形分濃度が高いほど、上記接合用組成物を焼成して得られる接合層が緻密になり、強固な接合強度を得ることが可能である。
なお、本発明の接合用組成物は、従来のエポキシ樹脂等の熱硬化を利用し、焼成後の接合強度を得るものとは異なり、上述したように銀粒子の焼結によって充分な接合強度が得られるものである。そのため、接合後において、接合温度よりも高温の使用環境に置かれて、残存した有機物が劣化したり、分解・消失した場合であっても、接合強度の低下するおそれはなく、耐熱性に優れている。
以下、本発明について実施例を掲げて更に詳しく説明するが、本発明はこれらの実施例のみに限定されるものではない。
<実施例1>
3-メトキシプロピルアミン(炭素数4、沸点116℃)3.0gをマグネティックススターラーで充分に撹拌を行いながらシュウ酸銀3.0gを添加し、増粘させた。得られた粘性物質を100℃の恒温槽に入れ、約15分間反応させた。得られた懸濁液の分散媒を置換するため、メタノール10mlを加えて撹拌後、遠心分離により銀微粒子を沈殿させて分離し、上澄みを捨てるという操作を2度繰り返し、銀微粒子Aを得た。
3-メトキシプロピルアミン(炭素数4、沸点116℃)3.0gをマグネティックススターラーで充分に撹拌を行いながらシュウ酸銀3.0gを添加し、増粘させた。得られた粘性物質を100℃の恒温槽に入れ、約15分間反応させた。得られた懸濁液の分散媒を置換するため、メタノール10mlを加えて撹拌後、遠心分離により銀微粒子を沈殿させて分離し、上澄みを捨てるという操作を2度繰り返し、銀微粒子Aを得た。
次に、ジグリコールアミン(炭素数4、沸点220℃)6.0gとドデシルアミン(炭素数12、沸点249℃)0.5gをマグネティックススターラーで充分に撹拌を行いながらシュウ酸銀3.0gを添加し、増粘させた。得られた粘性物質を100℃の恒温槽に入れ、約15分間反応させた。得られた懸濁液の分散媒を置換するため、メタノール10mlを加えて撹拌後、遠心分離により銀微粒子を沈殿させて分離し、上澄みを捨てるという操作を2度繰り返し、銀微粒子Bを得た。
2gの銀微粒子Aと2gの銀微粒子Bに対して、0.1gの2-エチル-1,3-ヘキサンジオール(沸点243℃)、0.1gのブチルカルビトールアセテート(グリコールエステル系溶剤、沸点247℃)、0.02gのオクチルアミン(炭素数8、沸点175~177℃)、0.01gのソルスパース(SOLSPERSE(登録商標))16000(日本ルーブリゾール社製)、及び、0.01gのリシノール酸を加えて撹拌混合し、接合用組成物を得た。
<実施例2>
ソルスパース16000をソルスパース41000(日本ルーブリゾール社製)に変更したこと以外は実施例1と同様にして接合用組成物を調製した。
ソルスパース16000をソルスパース41000(日本ルーブリゾール社製)に変更したこと以外は実施例1と同様にして接合用組成物を調製した。
<実施例3>
ソルスパース16000をソルスパース21000(日本ルーブリゾール社製)に変更したこと以外は実施例1と同様にして接合用組成物を調製した。
ソルスパース16000をソルスパース21000(日本ルーブリゾール社製)に変更したこと以外は実施例1と同様にして接合用組成物を調製した。
<実施例4>
3-メトキシプロピルアミン15.0gと3-エトキシプロピルアミン(炭素数5、沸点130℃)1.0gをマグネティックススターラーで充分に撹拌を行いながらシュウ酸銀3.0gを添加し、増粘させた。得られた粘性物質を100℃の恒温槽に入れ、約15分間反応させた。得られた懸濁液の分散媒を置換するため、メタノール10mlを加えて撹拌後、遠心分離により銀微粒子を沈殿させて分離し、上澄みを捨てるという操作を2度繰り返し、銀微粒子Cを得た。
3-メトキシプロピルアミン15.0gと3-エトキシプロピルアミン(炭素数5、沸点130℃)1.0gをマグネティックススターラーで充分に撹拌を行いながらシュウ酸銀3.0gを添加し、増粘させた。得られた粘性物質を100℃の恒温槽に入れ、約15分間反応させた。得られた懸濁液の分散媒を置換するため、メタノール10mlを加えて撹拌後、遠心分離により銀微粒子を沈殿させて分離し、上澄みを捨てるという操作を2度繰り返し、銀微粒子Cを得た。
4gの銀微粒子Cに対して、0.1gの2-エチル-1,3-ヘキサンジオール、0.1gのヘキシルカルビトール(グリコールエーテル系溶剤、沸点258℃)、0.02gのオクチルアミン、0.01gのソルスパース16000、及び、0.01gのリシノール酸を加えて撹拌混合し、接合用組成物を得た。
<実施例5>
3-メトキシプロピルアミン15.0gと3-エトキシプロピルアミン1.5gをマグネティックススターラーで充分に撹拌を行いながらシュウ酸銀3.0gを添加し、増粘させた。得られた粘性物質を100℃の恒温槽に入れ、約15分間反応させた。得られた懸濁液の分散媒を置換するため、メタノール10mlを加えて撹拌後、遠心分離により銀微粒子を沈殿させて分離し、上澄みを捨てるという操作を2度繰り返し、銀微粒子Dを得た。
3-メトキシプロピルアミン15.0gと3-エトキシプロピルアミン1.5gをマグネティックススターラーで充分に撹拌を行いながらシュウ酸銀3.0gを添加し、増粘させた。得られた粘性物質を100℃の恒温槽に入れ、約15分間反応させた。得られた懸濁液の分散媒を置換するため、メタノール10mlを加えて撹拌後、遠心分離により銀微粒子を沈殿させて分離し、上澄みを捨てるという操作を2度繰り返し、銀微粒子Dを得た。
4gの銀微粒子Dに対して、0.1gの2-エチル-1,3-ヘキサンジオール、0.1gのブチルカルビトールアセテート、0.02gのオクチルアミン、0.01gのソルスパース21000、及び、0.01gのリシノール酸を加えて撹拌混合し、接合用組成物を得た。
<実施例6>
オクチルアミンを加えなかったこと以外は実施例4と同様にして接合用組成物を調製した。
オクチルアミンを加えなかったこと以外は実施例4と同様にして接合用組成物を調製した。
<実施例7>
4gの銀微粒子Dに対して、0.1gの2-エチル-1,3-ヘキサンジオール、0.1gのブチルカルビトールアセテート、0.02gの3-(2-エチルヘキシルオキシ)プロピルアミン(炭素数11、沸点235℃)、0.02gのオクチルアミン、0.01gのソルスパース21000、及び、0.01gのリシノール酸を加えて撹拌混合し、接合用組成物を調製した。
4gの銀微粒子Dに対して、0.1gの2-エチル-1,3-ヘキサンジオール、0.1gのブチルカルビトールアセテート、0.02gの3-(2-エチルヘキシルオキシ)プロピルアミン(炭素数11、沸点235℃)、0.02gのオクチルアミン、0.01gのソルスパース21000、及び、0.01gのリシノール酸を加えて撹拌混合し、接合用組成物を調製した。
<実施例8>
3-メトキシプロピルアミン15.0gと3-エトキシプロピルアミン1.5gをマグネティックススターラーで充分に撹拌を行いながらシュウ酸銀3.0gを添加し、増粘させた。得られた粘性物質を100℃の恒温槽に入れ、約15分間反応させた。得られた懸濁液の分散媒を置換するため、オクチルアミン2gとメタノール10mlを加えて1時間撹拌後、遠心分離により銀微粒子を沈殿させて分離し、上澄みを捨てた。さらにメタノール10mlを加えて撹拌後、遠心分離により銀微粒子を沈殿させて分離し、上澄みを捨て、オクチルアミンが付着した銀微粒子Eを得た。
3-メトキシプロピルアミン15.0gと3-エトキシプロピルアミン1.5gをマグネティックススターラーで充分に撹拌を行いながらシュウ酸銀3.0gを添加し、増粘させた。得られた粘性物質を100℃の恒温槽に入れ、約15分間反応させた。得られた懸濁液の分散媒を置換するため、オクチルアミン2gとメタノール10mlを加えて1時間撹拌後、遠心分離により銀微粒子を沈殿させて分離し、上澄みを捨てた。さらにメタノール10mlを加えて撹拌後、遠心分離により銀微粒子を沈殿させて分離し、上澄みを捨て、オクチルアミンが付着した銀微粒子Eを得た。
4gの銀微粒子Eに対して、0.1gの2-エチル-1,3-ヘキサンジオール、0.1gのブチルカルビトールアセテート、0.02gの3-(2-エチルヘキシルオキシ)プロピルアミン、0.01gのソルスパース21000、及び、0.01gのリシノール酸を加えて撹拌混合し、接合用組成物を調製した。
<比較例1>
3-メトキシプロピルアミン3.0gをマグネティックススターラーで充分に撹拌を行いながらシュウ酸銀3.0gを添加し、増粘させた。得られた粘性物質を100℃の恒温槽に入れ、約15分間反応させた。そこへドデシルアミンを20g添加して同温度で15分間反応させた。得られた懸濁液の分散媒を置換するため、メタノール10mlを加えて撹拌後、遠心分離により銀微粒子を沈殿させて分離し、上澄みを捨てるという操作を2度繰り返し、銀微粒子Eを得た。
3-メトキシプロピルアミン3.0gをマグネティックススターラーで充分に撹拌を行いながらシュウ酸銀3.0gを添加し、増粘させた。得られた粘性物質を100℃の恒温槽に入れ、約15分間反応させた。そこへドデシルアミンを20g添加して同温度で15分間反応させた。得られた懸濁液の分散媒を置換するため、メタノール10mlを加えて撹拌後、遠心分離により銀微粒子を沈殿させて分離し、上澄みを捨てるという操作を2度繰り返し、銀微粒子Eを得た。
次に、ジグリコールアミン6.0gをマグネティックススターラーで充分に撹拌を行いながらシュウ酸銀3.0gを添加し、増粘させた。得られた粘性物質を100℃の恒温槽に入れ、約15分間反応させた。そこへドデシルアミンを20g添加して同温度で15分間反応させた。得られた懸濁液の分散媒を置換するため、メタノール10mlを加えて撹拌後、遠心分離により銀微粒子を沈殿させて分離し、上澄みを捨てるという操作を2度繰り返し、銀微粒子Fを得た。
1gの銀微粒子Eと1gの銀微粒子Fに対して、0.1gの2-エチル-1,3-ヘキサンジオール、0.1gのブチルカルビトールアセテート、及び、0.01gのリシノール酸を加えて撹拌混合し、接合用組成物を得た。
<比較例2>
ソルスパース16000を添加しなかったこと以外は実施例1と同様にして接合用組成物を調製した。
ソルスパース16000を添加しなかったこと以外は実施例1と同様にして接合用組成物を調製した。
<比較例3>
ブチルカルビトールアセテートを添加せず、2-エチル-1,3-ヘキサンジオールの添加量を0.2gとしたこと以外は実施例2と同様にして接合用組成物を調製した。
ブチルカルビトールアセテートを添加せず、2-エチル-1,3-ヘキサンジオールの添加量を0.2gとしたこと以外は実施例2と同様にして接合用組成物を調製した。
<比較例4>
2-エチル-1,3-ヘキサンジオールを添加せず、ブチルカルビトールアセテートの添加量を0.2gとしたこと以外は実施例4と同様にして接合用組成物を調製した。
2-エチル-1,3-ヘキサンジオールを添加せず、ブチルカルビトールアセテートの添加量を0.2gとしたこと以外は実施例4と同様にして接合用組成物を調製した。
<比較例5>
3-メトキシプロピルアミン3.0gをマグネティックススターラーで充分に撹拌を行いながらシュウ酸銀3.0gを添加し、増粘させた。得られた粘性物質を100℃の恒温槽に入れ、約15分間反応させた。そこへオクチルアミンを20g添加して同温度で15分間反応させた。得られた懸濁液の分散媒を置換するため、メタノール10mlを加えて撹拌後、遠心分離により銀微粒子を沈殿させて分離し、上澄みを捨てるという操作を2度繰り返し、銀微粒子Gを得た。
3-メトキシプロピルアミン3.0gをマグネティックススターラーで充分に撹拌を行いながらシュウ酸銀3.0gを添加し、増粘させた。得られた粘性物質を100℃の恒温槽に入れ、約15分間反応させた。そこへオクチルアミンを20g添加して同温度で15分間反応させた。得られた懸濁液の分散媒を置換するため、メタノール10mlを加えて撹拌後、遠心分離により銀微粒子を沈殿させて分離し、上澄みを捨てるという操作を2度繰り返し、銀微粒子Gを得た。
次に、ジグリコールアミン6.0gをマグネティックススターラーで充分に撹拌を行いながらシュウ酸銀3.0gを添加し、増粘させた。得られた粘性物質を100℃の恒温槽に入れ、約15分間反応させた。そこへオクチルアミンを20g添加して同温度で15分間反応させた。得られた懸濁液の分散媒を置換するため、メタノール10mlを加えて撹拌後、遠心分離により銀微粒子を沈殿させて分離し、上澄みを捨てるという操作を2度繰り返し、銀微粒子Hを得た。
1gの銀微粒子Gと1gの銀微粒子Hに対して、0.05gのヘキシルカルビトール、0.05gのブチルカルビトールアセテート、及び、0.005gのリシノール酸を加えて撹拌混合し、接合用組成物を得た。
[評価試験]
実施例及び比較例で作製した接合用組成物について、下記評価試験を行い、結果を下記表1及び2に示した。
実施例及び比較例で作製した接合用組成物について、下記評価試験を行い、結果を下記表1及び2に示した。
(1)接合強度の測定
得られた接合用組成物を、酸化膜を除去した無垢の無酸素銅板(20mm角)にメタルマスクを用いて6mm角に塗布し、金メッキを施したSiチップ(底面積5mm×5mm)を積層し、0.1kgf(0.98N)で押し付けた。
そして、得られた積層体を、リフロー炉(シンアペックス社製)に入れ、窒素を流し、酸素濃度が300ppmになったところで室温から70℃まで昇温し、70℃で30分間保持した後、昇温速度3.3℃/minで最大温度250℃まで昇温し、250℃で30分間保持することにより焼成処理を行った。焼成処理の際、積層体への加圧は行わず無加圧とした。焼成処理後、積層体を自然冷却し取り出した。冷却中も窒素を流し続けた。その後、常温にて100kgfのロードセルのボンドテスター(レスカ社製)を用いて積層体の接合強度を測定した。5mm角のチップを100kgfのロードセルで測定したので、接合強度の測定上限は約40MPaであった。
得られた接合用組成物を、酸化膜を除去した無垢の無酸素銅板(20mm角)にメタルマスクを用いて6mm角に塗布し、金メッキを施したSiチップ(底面積5mm×5mm)を積層し、0.1kgf(0.98N)で押し付けた。
そして、得られた積層体を、リフロー炉(シンアペックス社製)に入れ、窒素を流し、酸素濃度が300ppmになったところで室温から70℃まで昇温し、70℃で30分間保持した後、昇温速度3.3℃/minで最大温度250℃まで昇温し、250℃で30分間保持することにより焼成処理を行った。焼成処理の際、積層体への加圧は行わず無加圧とした。焼成処理後、積層体を自然冷却し取り出した。冷却中も窒素を流し続けた。その後、常温にて100kgfのロードセルのボンドテスター(レスカ社製)を用いて積層体の接合強度を測定した。5mm角のチップを100kgfのロードセルで測定したので、接合強度の測定上限は約40MPaであった。
(2)ボイドの測定
上記(1)で作製した接合強度測定前の積層体を、超音波探傷装置(日本クラウトクレーマー社製)にて測定した。測定は、銅板側から周波数25MHzで行った。ボイドが多い場合を「×」、ボイドが少しある場合を「△」、ボイドが無い又はほとんど無い場合を「○」と判定した。
上記(1)で作製した接合強度測定前の積層体を、超音波探傷装置(日本クラウトクレーマー社製)にて測定した。測定は、銅板側から周波数25MHzで行った。ボイドが多い場合を「×」、ボイドが少しある場合を「△」、ボイドが無い又はほとんど無い場合を「○」と判定した。
(3)自動印刷性の評価
自動印刷機(セリア社製)に、板厚70μmで版中央に6mm角の開口部を有するメタルマスクをセットし、メタルマスク上に得られた接合用組成物のペーストを10g置いた。厚み0.2mmのメタルスキージを50mm/sで移動させ、ペーストを版中央の開口部に移動させることにより、無垢の無酸素銅板(20mm角)上への印刷を行った。その後、ペーストの継ぎ足しはせずにメタルスキージを199回往復移動させることにより、最初に配置した場所と開口部との間でペーストを繰り返し往復移動させ、ペーストが開口部に200回目に到達した際に再度印刷した。最初の印刷と200回目の移動時の印刷とで塗膜の形状が開口部と同じであれば「○」、200回目の移動時の印刷で塗膜の形状に欠けがあれば「△」、最初の印刷から塗膜の形状に欠けがあれば「×」と判定した。
自動印刷機(セリア社製)に、板厚70μmで版中央に6mm角の開口部を有するメタルマスクをセットし、メタルマスク上に得られた接合用組成物のペーストを10g置いた。厚み0.2mmのメタルスキージを50mm/sで移動させ、ペーストを版中央の開口部に移動させることにより、無垢の無酸素銅板(20mm角)上への印刷を行った。その後、ペーストの継ぎ足しはせずにメタルスキージを199回往復移動させることにより、最初に配置した場所と開口部との間でペーストを繰り返し往復移動させ、ペーストが開口部に200回目に到達した際に再度印刷した。最初の印刷と200回目の移動時の印刷とで塗膜の形状が開口部と同じであれば「○」、200回目の移動時の印刷で塗膜の形状に欠けがあれば「△」、最初の印刷から塗膜の形状に欠けがあれば「×」と判定した。
Claims (4)
- 銀粒子及び有機成分を含有する接合用組成物であって、
前記有機成分は、2種以上の第1級アミンと、エーテル系溶剤と、水酸基を2つ有する溶剤と、高分子分散剤とを含み、
前記2種以上の第1級アミンの各々は、炭素数が4~12であり、かつ沸点が300℃以下であることを特徴とする接合用組成物。 - 前記エーテル系溶剤は、グリコールエステル系溶剤又はグリコールエーテル系溶剤であり、沸点が210℃以上300℃以下であることを特徴とする請求項1に記載の接合用組成物。
- 前記水酸基を2つ有する溶剤は、ジオール系溶剤であり、沸点が210℃以上300℃以下であることを特徴とする請求項1又は2に記載の接合用組成物。
- 前記2種以上の第1級アミンは、炭素数が4~12であり、かつ沸点が300℃以下である第1級アミンを3種以上含むものであることを特徴とする請求項1~3のいずれかに記載の接合用組成物。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021545418A JP7015415B1 (ja) | 2020-08-26 | 2021-07-30 | 接合用組成物 |
EP21861124.2A EP4205880A1 (en) | 2020-08-26 | 2021-07-30 | Joining composition |
CN202180051338.8A CN115916431B (zh) | 2020-08-26 | 2021-07-30 | 接合用组合物 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-142824 | 2020-08-26 | ||
JP2020142824 | 2020-08-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022044696A1 true WO2022044696A1 (ja) | 2022-03-03 |
Family
ID=80352236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/028305 WO2022044696A1 (ja) | 2020-08-26 | 2021-07-30 | 接合用組成物 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP4205880A1 (ja) |
JP (1) | JP7015415B1 (ja) |
CN (1) | CN115916431B (ja) |
TW (1) | TW202219217A (ja) |
WO (1) | WO2022044696A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016063931A1 (ja) * | 2014-10-24 | 2016-04-28 | ナミックス株式会社 | 導電性組成物及びそれを用いた電子部品 |
WO2016067599A1 (ja) * | 2014-10-31 | 2016-05-06 | バンドー化学株式会社 | 接合用組成物 |
JP2016110691A (ja) | 2014-12-01 | 2016-06-20 | 大日本印刷株式会社 | 導電性基板の製造方法、及び導電性基板 |
WO2020040184A1 (ja) * | 2018-08-23 | 2020-02-27 | バンドー化学株式会社 | 接合用組成物 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101623449B1 (ko) * | 2009-07-14 | 2016-05-23 | 도와 일렉트로닉스 가부시키가이샤 | 금속 나노 입자를 이용한 접합재 및 접합 방법 |
WO2011155055A1 (ja) * | 2010-06-11 | 2011-12-15 | Dowaエレクトロニクス株式会社 | 低温焼結性接合材および該接合材を用いた接合方法 |
KR102675888B1 (ko) * | 2012-10-29 | 2024-06-14 | 알파 어셈블리 솔루션스 인크. | 소결 분말 |
CN106660129B (zh) * | 2014-06-11 | 2019-08-13 | 阪东化学株式会社 | 银微粒子分散体、银微粒子及其制造方法及接合用组合物 |
US20180133847A1 (en) * | 2015-04-17 | 2018-05-17 | Bando Chemical Industries, Ltd. | Fine silver particle composition |
-
2021
- 2021-07-30 WO PCT/JP2021/028305 patent/WO2022044696A1/ja unknown
- 2021-07-30 EP EP21861124.2A patent/EP4205880A1/en active Pending
- 2021-07-30 JP JP2021545418A patent/JP7015415B1/ja active Active
- 2021-07-30 CN CN202180051338.8A patent/CN115916431B/zh active Active
- 2021-08-12 TW TW110129826A patent/TW202219217A/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016063931A1 (ja) * | 2014-10-24 | 2016-04-28 | ナミックス株式会社 | 導電性組成物及びそれを用いた電子部品 |
WO2016067599A1 (ja) * | 2014-10-31 | 2016-05-06 | バンドー化学株式会社 | 接合用組成物 |
JP2016110691A (ja) | 2014-12-01 | 2016-06-20 | 大日本印刷株式会社 | 導電性基板の製造方法、及び導電性基板 |
WO2020040184A1 (ja) * | 2018-08-23 | 2020-02-27 | バンドー化学株式会社 | 接合用組成物 |
Also Published As
Publication number | Publication date |
---|---|
TW202219217A (zh) | 2022-05-16 |
CN115916431B (zh) | 2024-10-01 |
EP4205880A1 (en) | 2023-07-05 |
JPWO2022044696A1 (ja) | 2022-03-03 |
JP7015415B1 (ja) | 2022-02-02 |
CN115916431A (zh) | 2023-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102084435B (zh) | 金属糊料和油墨 | |
KR101867978B1 (ko) | 금속 나노 입자 페이스트, 금속 나노 입자 페이스트를 이용한 전자 부품 접합체, led 모듈, 및 프린트 배선판의 회로 형성 방법 | |
JP6462715B2 (ja) | 電子部品の導電性接合体及びこれを用いた半導体装置、並びに導電性接合体の製造方法 | |
EP2645408A1 (en) | Binding material, binding body, and binding method | |
TWI790258B (zh) | 金屬接合用組成物、金屬接合積層體及電控制機器 | |
JP6736782B2 (ja) | 接合用組成物 | |
WO2014175417A1 (ja) | 金属ナノ粒子分散体、金属ナノ粒子分散体の製造方法および接合方法 | |
JP6659026B2 (ja) | 銅粒子を用いた低温接合方法 | |
Zhao et al. | Effect of silver flakes in silver paste on the joining process and properties of sandwich power modules (IGBTs chip/silver paste/bare Cu) | |
JP6467114B1 (ja) | 金属接合積層体の製造方法 | |
JP2017155166A (ja) | 接合用組成物 | |
JP7025603B1 (ja) | 接合用組成物の製造方法 | |
WO2017006531A1 (ja) | 接合用組成物及び接合方法 | |
JP7015415B1 (ja) | 接合用組成物 | |
JP6669420B2 (ja) | 接合用組成物 | |
JP2021190621A (ja) | 金属粒子フィルム、金属粒子フィルムの製造方法、及び、貫通電極を有する基体の製造方法 | |
WO2020017065A1 (ja) | 組成物、接合材料、焼結体、接合体及び接合体の製造方法 | |
JP7487011B2 (ja) | 接合材、接合材の製造方法及び接合方法 | |
KR20220065886A (ko) | 임시 고정용 조성물 및 접합 구조체의 제조 방법 | |
EP4306234A1 (en) | Sintering paste and method for producing a sintering paste | |
WO2020017064A1 (ja) | 組成物、接合材料、焼結体、接合体及び接合体の製造方法 | |
JP6355949B2 (ja) | 金属接合材料 | |
JP2017064725A (ja) | Au系はんだ粉末及びこの粉末を含むはんだ用ペースト |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021545418 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021861124 Country of ref document: EP Effective date: 20230327 |