WO2022044180A1 - 光モジュールのための支持構造、及び光モジュール - Google Patents

光モジュールのための支持構造、及び光モジュール Download PDF

Info

Publication number
WO2022044180A1
WO2022044180A1 PCT/JP2020/032292 JP2020032292W WO2022044180A1 WO 2022044180 A1 WO2022044180 A1 WO 2022044180A1 JP 2020032292 W JP2020032292 W JP 2020032292W WO 2022044180 A1 WO2022044180 A1 WO 2022044180A1
Authority
WO
WIPO (PCT)
Prior art keywords
bump
bumps
stage
optical module
support structure
Prior art date
Application number
PCT/JP2020/032292
Other languages
English (en)
French (fr)
Inventor
敬太 望月
清智 長谷川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/032292 priority Critical patent/WO2022044180A1/ja
Publication of WO2022044180A1 publication Critical patent/WO2022044180A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction

Definitions

  • the present disclosure relates to a support structure for an optical module and an optical module having the same support structure.
  • Non-Patent Document 1 a filtering circuit board that transmits a high-frequency electric signal and a terminating circuit board on which a terminating resistor is mounted are flip-chip mounted on an MZM (Mach-Zehunder Modulator) chip via Au bumps.
  • the optical module is disclosed. According to this optical module, since the filtering circuit board and the terminal circuit board are mounted on the MZM chip, the mounting area is reduced as compared with the case where these components are arranged in a plane. Further, since the filtering circuit board or the terminal circuit board and the MZM chip are connected via bumps, the parasitic inductance is suppressed and the high frequency signal is suppressed as compared with the case where these components are connected by wires. The transmission characteristics of the are improved.
  • the conventional optical module has a structure in which an optical semiconductor element supports a substrate on which the optical semiconductor element is placed. Therefore, when the optical semiconductor element is miniaturized, there arises a problem that it is difficult to use the miniaturized optical semiconductor element. That is, since the area in which the optical semiconductor element supports the substrate is reduced, there is a problem that the substrate on which the optical semiconductor element is mounted cannot be stably supported.
  • the present disclosure has been made to solve such problems, and one aspect of the embodiment provides a support structure for an optical module such that a miniaturized optical semiconductor device can be provided.
  • the purpose is to do.
  • One aspect of the support structure for an optical module is a mount on which an optical semiconductor element is mounted, a substrate with electrical wiring electrically connected to a driver IC, and the mount of the substrate.
  • a first bump portion electrically connected to the electrical wiring which is provided on a surface facing the electric wiring, is arranged between the board and the mount so as to be in contact with both the mount and the substrate, and the electrical wiring is provided.
  • the optical semiconductor element can be driven by arranging the optical semiconductor element so as to be in contact with the first bump portion. Further, since the second bump portion which is in contact with both the mount and the substrate and is not electrically connected to the electric wiring is provided, the portion where the substrate is not supported by the optical semiconductor element via the first bump portion is provided. , Can be supported by a mount via a second bump portion. Therefore, according to the support structure for this optical module, it is possible to provide a miniaturized optical semiconductor element.
  • FIG. 1 is a top view of the optical module according to the first embodiment.
  • FIG. 2 is a conceptual cross-sectional view of the optical module of FIG.
  • FIG. 3 is a side view of the optical module viewed so as to face the direction of the optical output of
  • FIG. 4A and 4B are diagrams showing a first arrangement example of bumps included in the optical module of the first embodiment.
  • 4A is a top view and FIG. 4B is a side view.
  • 4A and 4B are diagrams showing a first arrangement example of bumps included in the optical module of the first embodiment.
  • 4A is a top view and
  • FIG. 4B is a side view.
  • 5A and 5B are diagrams showing a second arrangement example of bumps included in the optical module of the first embodiment. 5A is a top view and FIG.
  • 5B is a side view.
  • 5A and 5B are diagrams showing a second arrangement example of bumps included in the optical module of the first embodiment.
  • 5A is a top view and
  • FIG. 5B is a side view.
  • FIG. 6 is a top view of the optical module according to the second embodiment. For ease of understanding, bumps that are not visible from the top of the optical module are shown through.
  • FIG. 1 is a top view of the optical module OM1.
  • FIG. 2 is a conceptual cross-sectional view drawn along the line 31a of the differential line pair 31 of the optical module OM1, the electrode 11a of the electrode arm pair 11, and the line 41a of the differential line pair 41.
  • FIG. 3 is a side view of the optical module OM1 viewed so as to face the direction of the optical output 101 in FIG.
  • the optical module OM1 roughly includes an optical semiconductor element 1, a mount 2, a high frequency electric signal transmission board 3, a terminating resistor board 4, and a driver IC 5.
  • the optical semiconductor device 1 is, for example, an optical semiconductor device made of indium phosphide (InP).
  • the optical semiconductor device 1 may be formed of another semiconductor such as silicon or gallium arsenide (GaAs), or a ferroelectric substance.
  • the shape of the optical semiconductor element 1 is a rectangular parallelepiped.
  • the length (length along the X direction) of the optical semiconductor element 1 is shorter than the length of the mount 2, and the width (length in the Y direction) is also shorter than the width of the mount 2.
  • Each electrode arm pair 11 to 14 is a traveling wave electrode provided so as to run in parallel with an optical waveguide (not shown) formed in the optical semiconductor element 1, and two optical waveguides and two electrode arm pairs are one Mach zender type modulation. It constitutes a device (MZ type modulator). Therefore, the optical module OM1 includes two MZ type modulators.
  • the electrode arm pairs 11 and 12 correspond to one polarization mode (for example, horizontal polarization mode), and either one of the electrode arm pairs 11 or 12 is an in-phase component of the polarization mode.
  • the other modulates the light of the orthogonal component of its polarization mode.
  • the electrode arm pairs 13 and 14 correspond to another polarization mode (for example, the vertical polarization mode), and either one of the electrode arm pairs 13 or 14 is in the polarization mode.
  • the light of the in-phase component is modulated by the light of the orthogonal component of the polarization mode of the other.
  • each electrode is electrically connected to a corresponding line of four differential line pairs 31 to 34, which will be described later, formed on the high frequency electric signal transmission substrate 3 via a bump.
  • the other end of each electrode is electrically connected to the corresponding lines of the four differential line pairs 41 to 44 described later, which are formed on the terminating resistance substrate 4, via bumps.
  • the mount 2 is a mount (not shown), for example, a sub-mount mounted on a thermoelectric cooler (TEC) made of a Pelche element, and is made of a material having good thermal conductivity such as aluminum nitride. Since the coefficient of thermal expansion of aluminum nitride is close to the coefficient of thermal expansion of the semiconductor material, by forming the mount 2 with aluminum nitride, it is possible to suppress the strain due to heat generated when the optical semiconductor element 1 performs optical modulation.
  • TEC thermoelectric cooler
  • a recess 2a is formed in the mount 2.
  • the recess 2a has walls at one end in the length direction (X direction) and both ends in the width direction (Y direction) of the mount 2, and the other end in the length direction (X direction) is opened. It has a shape that does not have a wall.
  • the optical semiconductor element 1 is mounted in the recess 2a using an adhesive (not shown).
  • an adhesive not shown.
  • the difference between the upper surface 1a of the optical semiconductor element 1 and the upper surface of the ridge portion 2b in which the concave portion 2a of the mount 2 is not formed is 30 to 80 ⁇ m.
  • the mount 2 is engraved to form a recess 2a.
  • the recess 2a is formed so that the upper surface 1a of the optical semiconductor element 1 is higher than the upper surface of the ridge portion 2b.
  • a one-stage bump is arranged between the optical semiconductor element 1 and the high-frequency electric signal transmission board 3 or the terminating resistance board 4, and the mount 2 and the high-frequency electric signal transmission board 3 or the terminating resistance board 4 are arranged.
  • the mount 2 and the high-frequency electric signal transmission board 3 or the terminating resistance board 4 are arranged.
  • the number of bumps provided between them is reduced to reduce the number of bumps provided between the optical semiconductor element 1 and the high-frequency electric signal.
  • An electrical connection with the electrical signal transmission board 3 or the terminating resistor board 4 can be ensured.
  • the mount 2 and the high frequency electric signal transmission board 3 or the terminating resistor board 4 are not electrically connected, the mount 2 and the high frequency electric signal transmission board 3 or the high frequency electric signal transmission board 3 or by increasing the number of bumps provided between them.
  • the mechanical connection with the terminating resistor substrate 4 can be enhanced.
  • the high-frequency electric signal transmission substrate 3 is a substrate that transmits a high-frequency signal to the optical semiconductor element 1, and is formed of, for example, aluminum nitride. Since the coefficient of thermal expansion of aluminum nitride is close to the coefficient of thermal expansion of the semiconductor material, by forming the high-frequency electric signal transmission substrate 3 from aluminum nitride, it is possible to suppress the distortion due to heat generated when the optical semiconductor element 1 performs optical modulation. ..
  • the high frequency electric signal transmission board 3 includes four differential line pairs 31 to 34 for transmitting high frequency signals.
  • the lines of the differential line pairs 31 to 34 are electrically connected to the corresponding electric output ports 51 to 58 of the driver IC 5 via wires 61 to 68.
  • the width of the entire differential line pairs 31 to 34 in the alignment direction (Y direction) is about the same as the width of the entire electrical output ports 51 to 58 of the driver IC 5 in the alignment direction (Y direction), whereas the optical semiconductor element 1
  • the width of the entire electrode arm pairs 11 to 14 in the alignment direction (Y direction) is smaller than the width of the entire electrical output ports 51 to 58 of the driver IC 5 in the alignment direction (Y direction).
  • the distance between the differential line pairs 31 to 34 is from the side facing the driver IC 5 toward the optical semiconductor element 1. It is formed to be narrow.
  • each line of the differential line pairs 31 to 34 is electrically connected to the corresponding electrodes of the electrode arm pairs 11 to 14 formed on the optical semiconductor element 1 via the upstream bump. Is connected. More specifically, between the high frequency electric signal transmission substrate 3 and the optical semiconductor element 1, both the lines of the differential line pairs 31 to 34 and the corresponding electrodes of the electrode arm pairs 11 to 14 are electrically connected. Eight one-stage upstream bumps, for example made of Au, are arranged to be connected. In addition to Au bumps, Cu bumps and SnAg bumps may be used. The same applies to the following bumps. In FIG.
  • each bump has, for example, an overall spherical shape and has a maximum diameter of, for example, 30 to 80 ⁇ m.
  • the shape of the bump may be another shape, for example, a columnar shape.
  • the bump is formed by a known technique such as a stud method or an electrolytic plating method. The same applies to the following bumps.
  • Each differential line pair 31 to 34 is formed on the front and back surfaces of the high frequency electric signal transmission board 3. This will be described in line with the line 31a, which is one line of the differential line pair 31.
  • the line 31a is formed from one end of the high frequency electric signal transmission board 3 facing the driver IC 5 of the high frequency electric signal transmission board 3 formed on the upper surface (the surface in the Z direction) of the high frequency electric signal transmission board 3.
  • the upper surface line 311 extending in the opposite direction (X direction) by a certain distance, and the direction of one end from the other end on the opposite side to the one end formed on the lower surface (the surface in the ⁇ Z direction) of the high frequency electric signal transmission substrate 3 (the surface in the ⁇ Z direction).
  • each of the differential line pairs 31 to 34 of the high-frequency electric signal transmission substrate 3 configured in this way has an electrode arm pair of the optical semiconductor element 1 via an upstream bump (for example, the upstream bump 71U in FIG. 2). It is electrically and mechanically connected to the corresponding electrodes 11-14.
  • none of the differential line pairs 31 to 34 or the electrode arm pairs 11 to 14 is electrically connected, for example, one made of Au.
  • the above one-stage bump (bump 81 in FIG. 2) is arranged.
  • the high-frequency electric signal transmission substrate 3 is mechanically connected to the optical semiconductor element 1 via such a bump (bump 81 in FIG. 2).
  • neither the differential line pairs 31 to 34 or the electrode arm pairs 11 to 14 are electrically connected between the high frequency electric signal transmission board 3 and the mount 2.
  • multi-stage bump portions 91 to 93 in which a plurality of bumps made of Au are laminated in at least two stages in the height direction (Z direction) are arranged.
  • the multi-stage bump portions 91 to 93 are arranged at arbitrary positions of the ridge portion 2b in which the recess 2a is not formed.
  • the multi-stage bump portions 91 to 93 are arranged between the driver IC 5 and the optical semiconductor element 1, but the multi-stage bumps 94 in FIG. 3 are formed on the ridge portions 2b at both ends in the width direction ( ⁇ Y direction) of the mount 2.
  • the high-frequency electric signal transmission substrate 3 is mechanically supported by the mount 2 via the multi-stage bump portions 91 to 93.
  • the terminating resistor substrate 4 is a substrate on which a terminating resistor is mounted, and is formed of, for example, aluminum nitride. Since the coefficient of thermal expansion of aluminum nitride is close to the coefficient of thermal expansion of the semiconductor material, by forming the terminating resistance substrate 4 from aluminum nitride, it is possible to suppress the strain due to heat generated when the optical semiconductor element 1 performs optical modulation.
  • the terminating resistor substrate 4 includes four differential line pairs 41 to 44 for transmitting high frequency signals, and terminating resistors 411 to 414 including, for example, a thin film resistor and a capacitor.
  • each line of the differential line pairs 41 to 44 is electrically connected to the corresponding electrodes of the electrode arm pairs 11 to 14 formed on the optical semiconductor element 1 via the downstream bump. Is connected.
  • FIG. 3 between the terminating resistor substrate 4 and the optical semiconductor element 1, each line of the differential line pair 41 to 44 and the electrode arm pair 11 to 14 correspond to each other.
  • the eight upstream bumps described above are located behind the downstream bumps 71D-78D shown in FIG.
  • Each differential line pair 41 to 44 is formed on the front and back surfaces of the terminating resistor substrate 4. This will be described in line with the line 41a, which is one line of the differential line pair 41.
  • the line 41a is constant from one end of the terminating resistance board 4 formed on the lower surface (the surface in the ⁇ Z direction) of the terminating resistance board 4 in the direction opposite to the one end (X direction).
  • a bottom line 401 extending a distance and one end formed on the upper surface (Z-direction surface) of the terminating resistance substrate 4 are electrically connected to the terminating resistance 411 and are constant in the direction opposite to the terminating resistance 411 (-X direction).
  • each line of the differential line pairs 41 to 44 of the terminating resistor substrate 4 configured in this way is electrically connected to the corresponding electrodes of the electrode arm pairs 11 to 14 of the optical semiconductor element 1 via the downstream bumps 71D to 78D. It is connected mechanically and mechanically.
  • none of the differential line pairs 41 to 44 or the electrode arm pairs 11 to 14 is electrically connected, for example, one or more made of Au.
  • One stage of bumps (bumps 82 and 83 in FIG. 2) are arranged.
  • the terminating resistor substrate 4 is mechanically connected to the optical semiconductor element 1 via such bumps (bumps 82 and 83 in FIG. 2).
  • the termination resistor substrate 4 and the mount 2 are not electrically connected to either the differential line pairs 41 to 44 or the electrode arm pairs 11 to 14, for example.
  • Multi-stage bump portions 94 and 95 in which a plurality of bumps made of Au are laminated in at least two stages in the height direction (Z direction) are arranged. These multi-stage bump portions 94 and 95 are arranged at ridge portions 2b located at both ends in the width direction ( ⁇ Y direction) of the mount 2. Two or more multi-stage bump portions may be provided on each ridge portion 2b.
  • the terminating resistor substrate 4 is mechanically supported by the mount 2 via the multi-stage bump portions 94 and 95.
  • the driver IC 5 is an IC that supplies a high-frequency electric signal that drives the optical semiconductor element 1, and is mounted on a base 6 made of metal, ceramic, or the like as shown in FIG.
  • the driver IC 5 includes electric output ports 51 to 58 that output high-frequency electric signals.
  • the driver IC 5 is a high-frequency electric signal transmission board so that the end of the driver IC 5 provided with the electric output ports 51 to 58 is close to one end of each line of the differential line pairs 31 to 34 of the high-frequency electric signal transmission board 3. It is arranged opposite to 3. More specifically, the bumps connecting the differential line pairs 31 to 34 and the electrode arm pairs 11 to 14 of each of the differential line pairs 31 to 34 (eight upstream bumps including the bump 71U in FIG.
  • the driver IC 5 is arranged to face the high frequency electric signal transmission board 3 so as to be close to one end not connected to the high frequency electric signal transmission board 3.
  • the electric output ports 51 to 58 and the lines of the differential line pairs 31 to 34 are electrically connected via wires 61 to 68.
  • each multi-stage bump portion may be turned upside down.
  • FIGS. 4A, 4B, 5A, and 5B show an embodiment in which the first stage (upper stage) of the multi-stage bump portion has a single bump 914 and the second stage (lower stage) has three bumps 911 to 913.
  • 4A is a top view and FIG. 4B is a side view.
  • the bumps 911 to 913 of the second stage are arranged so as to be in contact with each other. Therefore, the bumps 911 to 913 in the second stage have a triangular shape as shown in FIG. 4A when viewed from above.
  • the bump 914 of the first stage is arranged so as to be in contact with any of the bumps 911 to 913 of the second stage. Therefore, as shown in FIG. 4A, the center of the bump 914 in the first stage coincides with the geometric center of the triangle formed by connecting the centers of the bumps 911 to 913 in the second stage in a top view. Placed in.
  • 5A and 5B show an embodiment in which the first stage (upper stage) of the multi-stage bump portion has a single bump 925 and the second stage (lower stage) has four bumps 921 to 924.
  • 5A is a top view and FIG. 5B is a side view.
  • the bumps 921 to 924 of the second stage are arranged so as to have a quadrangular shape as shown in FIG. 5A when viewed from above.
  • Each of the bumps 921 to 924 in the second stage is arranged so as to be in contact with the two nearest bumps.
  • the bump 925 of the first stage is arranged so as to be in contact with any of the bumps 921 to 924 of the second stage. Therefore, as shown in FIG. 5A, the center of the bump 925 of the first stage coincides with the geometric center of the quadrangle formed by connecting the centers of the bumps 921 to 924 of the second stage in the top view. Is placed in.
  • the multi-stage bump portion may have three or more stages.
  • the new step to be added has a shape like a polygon having a larger number of strokes than the polygon of the second step.
  • the third stage has seven bumps and has a hexagonal shape when viewed from above.
  • the new step is arranged so that the center of the bump of the first step and the geometric center of the polygon of the added step coincide with each other in the top view.
  • the mounted member can be stably supported.
  • the bumps in the first stage of the present disclosure have three or four bumps in the second stage. Since it is supported by the bump, the stability of the bump portion is improved. Therefore, by arranging the multi-stage bump portion of the present disclosure as shown in FIG. 2 or 3, the high-frequency electric signal transmission board 3 or the terminating resistor board 4 can be stably supported by the mount 2.
  • the bumps in the first stage should be arranged so as to coincide with the geometric center of the polygon formed by connecting the centers of the bumps in the second stage in the top view.
  • the bumps in the first stage should be arranged so as to coincide with the geometric center of the polygon formed by connecting the centers of the bumps in the second stage in the top view.
  • the input 100 and the optical output 101 of the electric signal are schematically shown.
  • Externally input electrical signal pairs for example, in the first embodiment, four differential signals are input to the electrical input port of the driver IC5, amplified by the driver IC5, and then output from the electrical output ports 51 to 58. It is transmitted to the differential line pairs 31 to 34 on the high frequency electric signal transmission board 3 via the wires 61 to 68.
  • the MZ type modulation propagating through the upper surface line (311), via (312), and lower surface line (313) and formed on the optical semiconductor element 1 via the upstream bump (71U).
  • the refractive index of the optical waveguide changes due to the electro-optical effect (EO effect) of the optical semiconductor element 1, the light propagating in the optical waveguide is phase-modulated, and the phase-modulated light interferes. As a result, the light propagating through the optical waveguide is intensity-modulated.
  • the electric signal is transmitted to the differential line pairs 41 to 44 on the terminating resistor substrate 4 via the downstream bumps 71D to 78D, propagates through the bottom line (401), via (402), and top line (403), and finally. Is terminated with a terminating resistor 411.
  • the optical signal modulated by the electrode arm pairs 11 to 14 is taken out as an optical output 101 through an optical waveguide formed inside the optical semiconductor element 1.
  • the support structure for the optical module OM1 is a high-frequency electric signal including a mount 2 on which the optical semiconductor element 1 is mounted and a differential line pair 31 to 34 electrically connected to the driver IC 5.
  • the termination resistance board 4 provided with the transmission board 3 or the differential line pairs 41 to 44 is provided on the surface facing the mount 2 of the high frequency electric signal transmission board 3 or the termination resistance board 4, and the differential line pairs 31 to 34 or
  • the high-frequency electric signal transmission board 3 is in contact with both the mount 2 and the high-frequency electric signal transmission board 3 or the terminating resistor board 4 with the first bump portions (71U, 71D to 78D) electrically connected to 41 to 44.
  • a multi-stage bump portion 91 to 95 which is arranged between the terminating resistor board 4 and the mount 2 and is not electrically connected to the differential line pairs 31 to 34 or 41 to 44, is provided.
  • the optical semiconductor element can be driven by arranging the optical semiconductor element 1 so as to be in contact with the first bump portion (71U, 71D to 78D). can. Further, a multi-stage bump portion 91 to 95 which is in contact with both the mount 2 and the high frequency electric signal transmission board 3 or the terminating resistance board 4 and is not electrically connected to the differential line pairs 31 to 34 or 41 to 44 is provided. Therefore, the portion where the high-frequency electric signal transmission substrate 3 or the terminating resistor substrate 4 is not supported by the optical semiconductor element 1 via the first bump portion (71U, 71D to 78D) is mounted via the multi-stage bump portions 91 to 95. Can be supported by 2.
  • the support structure for the optical module OM1 it is possible to provide a miniaturized optical semiconductor element.
  • the optical semiconductor element 1 supports the entire high-frequency electric signal transmission board 3 or the terminating resistance board 4. In that there is no such thing, it is smaller than the MZM chip of Non-Patent Document 1.
  • the driver IC 5 for driving the optical semiconductor element 1 is located at a position away from the optical semiconductor element 1. It is possible to place it in. Therefore, the operation of the optical module OM1 provided with this support structure is more stable.
  • the support structure for the optical module OM1 when the optical semiconductor element is made smaller, the high frequency electric signal transmission substrate 3 or the terminating resistance substrate 4 can be supported by providing more multi-stage bump portions. Therefore, among the members of the optical module OM1, it is possible to adapt to a smaller optical semiconductor element while maintaining the specifications of the members other than the optical semiconductor element 1 as much as possible.
  • the multi-stage bump portions 91 to 95 are the first-stage bump portions having a single bump 914 or 925 and the second-stage bump portions having three bumps 911 to 913 or four bumps 921 to 924. It comprises at least one set of multi-stage bump portions with a bump portion, and the three or four bumps of the second-stage bump portion are arranged in a plane so as to be in contact with adjacent bumps.
  • the single bump of the bump portion of the second stage is arranged so as to be in contact with any of the three or four bumps of the bump portion of the second stage and to be in contact with the high frequency electric signal transmission board 3 or the terminating resistance board 4. ing. Therefore, mechanical stability can be improved as compared with the case where each of the plurality of stages has a single bump.
  • the mount 2, the high-frequency electric signal transmission substrate 3, and the terminating resistance substrate 4 may be made of alumina, glass such as quartz, or glass ceramics.
  • the coefficient of thermal expansion is different from that of the optical semiconductor material, so that the effect of strain due to heat is large, but since the thermal conductivity is small, there is an effect that the amount of heat flowing into the optical semiconductor material can be suppressed. ..
  • FIG. 6 is a top view of the optical module OM2.
  • bumps 261 and multi-stage bumps 262 which are not actually visible from above the optical module OM2, and bumps 271 and 272 are also shown.
  • the bump 261 and the multi-stage bump portion 262 are arranged so as to be circular in the top view with respect to the center of the high frequency electric signal transmission board 3.
  • the eight bumps 261 painted in black on the lower side of the high-frequency electric signal transmission board 3 are one-stage bumps that electrically and mechanically connect the high-frequency electric signal transmission board 3 and the optical semiconductor element 1.
  • the bumps 261 are arranged in a plane so as to draw an arc in a top view.
  • the multi-stage bump portion 262 shown by the dotted line under the high frequency electric signal transmission board 3 mechanically connects the high frequency electric signal transmission board 3 and the mount 2.
  • FIG. 6 shows only a single bump in the upper stage of the multi-stage bump portion 262. It is the same as the case of the first embodiment that the multi-stage bump portion does not electrically connect the high frequency electric signal transmission board 3 and the mount 2.
  • the multi-stage bump portion 262 is arranged in a plane so as to draw an arc when viewed from above.
  • the bumps 271 and 272 are arranged so as to be elliptical in the top view with respect to the center of the terminating resistor substrate 4.
  • the eight black-filled bumps 271 under the terminating resistor substrate 4 are one-stage bumps that electrically and mechanically connect the terminating resistor substrate 4 and the optical semiconductor element 1.
  • the bumps 271 are arranged in a plane so as to draw an arc when viewed from above.
  • the bump 272 shown by the dotted line under the terminating resistance board 4 is a one-stage bump that mechanically connects the terminating resistance board 4 and the optical semiconductor element 1.
  • the bumps 272 are arranged in a plane so as to draw an arc when viewed from above.
  • the multi-stage bumps 94 and 95 shown in FIG. 3 may be provided between the terminating resistor board 4 and the mount 2.
  • One aspect of the support structure for the optical module is the mount (2) on which the optical semiconductor element (1) is mounted and the electrical wiring (31 to 34, 41 to 44) electrically connected to the driver IC (5). ), And a first bump portion (71U, 71D to 78D; 261, 271) provided on the surface of the substrate facing the mount and electrically connected to the electrical wiring. ), And a second bump portion (91-93, 94-95; 262) and.
  • One aspect of the support structure for the optical module is the support structure for the optical module according to Appendix 1, wherein the second bump portion is a first with a single bump (914, 925).
  • the second step is provided with at least one set of multi-step bumps comprising a step bump portion and a second step bump portion comprising three or four bumps (911-913, 921-924).
  • the three or four bumps of the bump portion of the first step are arranged in a plane so as to be in contact with adjacent bumps, and the single bump of the bump portion of the first step is the second bump. It is arranged so as to be in contact with any of the three or four bumps of the bump portion of the step and to be in contact with the substrate.
  • One aspect of the support structure for the optical module is the support structure for the optical module according to Appendix 1 or 2, wherein the mount has a recess (2a) in which a recess is formed on a surface facing the substrate. And a ridge portion (2b) in which a dent is not formed, and the second bump portion is provided so as to be in contact with the ridge portion.
  • One aspect of the support structure for the optical module is the support structure for the optical module according to Appendix 2 or 3, wherein the at least one set of multi-stage bump portions includes a plurality of sets of multi-stage bump portions.
  • the plurality of sets of multi-stage bump portions are arranged in a plane so as to draw an arc.
  • One aspect of the support structure for the optical module is the support structure for the optical module according to any one of Supplementary note 1 to 4, wherein the first bump portion includes a plurality of bumps, and the first bump portion is provided.
  • the plurality of bumps of the bump portion of 1 are arranged in a plane so as to draw an arc.
  • One side surface of the optical module includes a support structure for the optical module according to any one of Supplementary note 1 to 5, an optical waveguide and electrodes (11 to 14), and is mounted on the mount. 1), and the electrode is electrically and mechanically connected to the first bump portion.
  • the support structure according to the embodiment of the present disclosure is provided with a second bump portion that is in contact with both the mount and the substrate and is not electrically connected to the electrical wiring of the substrate, so that the substrate is the first bump portion.
  • a portion that is not supported by the optical semiconductor element can be supported by a mount via a second bump portion. Therefore, this support structure can be used for an optical module including a miniaturized optical semiconductor element.
  • Optical semiconductor element 2 mount, 2a recess, 2b ridge part, 3 high frequency electric signal transmission board (board), 4 terminating resistance board (board), 11-14 electrode arm pair (electrode), 31-34 differential line pair (Electrical wiring), 41-44 differential line pair (electrical wiring), 71U upstream side bump (first bump part), 71D-78D downstream side bump (first bump part), 91-95 multi-stage bump part (1st bump part) 2nd bump part), 261 bump (1st bump part), 262 multi-stage bump part (2nd bump part), 271 bump (1st bump part) OM1 optical module, OM2 optical module.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

小型化された光半導体素子を備えることが可能となるような光モジュールのための支持構造を提供する。 光モジュールのための支持構造は、光半導体素子(1)が実装されるマウント(2)と、ドライバIC(5)に電気的に接続される電気配線(31~34、41~44)を備えた基板(3、4)と、前記基板の前記マウントと対向する面に設けられ、前記電気配線と電気的に接続された第1のバンプ部(71U、71D~78D;261、271)と、前記マウント及び前記基板の両方に接するように前記基板と前記マウントの間に配置され、前記電気配線と電気的に接続されていない第2のバンプ部(91~93、94~95)と、を備える。

Description

光モジュールのための支持構造、及び光モジュール
 本開示は、光モジュールのための支持構造、及び同支持構造を備えた光モジュールに関する。
 非特許文献1には、MZM(Mach-Zehnder Modulator)チップ上に、高周波電気信号を伝送するフィルタリング回路基板と、終端抵抗が搭載された終端回路基板とが、Auバンプを介してフリップチップ実装された光モジュールが開示されている。この光モジュールによれば、フィルタリング回路基板と終端回路基板がMZMチップに載置されているので、これらのコンポーネントが平面状に配置された場合と比べると実装面積が抑制されている。また、フィルタリング回路基板又は終端回路基板とMZMチップとはバンプを介して接続される構成となっているので、これらのコンポーネントがワイヤで接続された場合と比べると、寄生インダクタンスが抑制されて高周波信号の伝送特性が改善されている。
 このように、従来の光モジュールでは、光半導体素子がその上に載置された基板を支持する構造となっている。そのため、光半導体素子が小型化された場合、小型化された光半導体素子を用いることが困難であるという問題が生じる。すなわち、光半導体素子が基板を支持する面積が縮小されるので、載置される基板を安定して支持することができなくなってしまうという問題がある。
 本開示はこのような問題を解消するためになされたものであり、実施形態の一側面は、小型化された光半導体素子を備えることが可能となるような光モジュールのための支持構造を提供することを目的とする。
 本開示の実施形態による光モジュールのための支持構造の一側面は、光半導体素子が実装されるマウントと、ドライバICに電気的に接続される電気配線を備えた基板と、前記基板の前記マウントと対向する面に設けられ、前記電気配線と電気的に接続された第1のバンプ部と、前記マウント及び前記基板の両方に接するように前記基板と前記マウントの間に配置され、前記電気配線と電気的に接続されていない第2のバンプ部と、を備える。
 本開示の実施形態による光モジュールのための支持構造の前記一側面によれば、光半導体素子を第1のバンプ部に接するように配置することにより、光半導体素子を駆動することができる。また、マウント及び基板の両方に接し、電気配線と電気的に接続されていない第2のバンプ部が備えられているので、基板が第1のバンプ部を介して光半導体素子により支持されない部分について、第2のバンプ部を介してマウントにより支持することができる。したがって、この光モジュールのための支持構造によれば、小型化された光半導体素子を備えることが可能となる。
図1は、実施の形態1による光モジュールの上面図である。 図2は、図1の光モジュールの概念的な断面図である。 図3は、図2の光出力の方向と対向するように見た、光モジュールの側面図である。 図4A及び図4Bは、実施の形態1の光モジュールが備えるバンプの第1の配置例を示す図である。図4Aが上面図であり、図4Bが側面図である。 図4A及び図4Bは、実施の形態1の光モジュールが備えるバンプの第1の配置例を示す図である。図4Aが上面図であり、図4Bが側面図である。 図5A及び図5Bは、実施の形態1の光モジュールが備えるバンプの第2の配置例を示す図である。図5Aが上面図であり、図5Bが側面図である。 図5A及び図5Bは、実施の形態1の光モジュールが備えるバンプの第2の配置例を示す図である。図5Aが上面図であり、図5Bが側面図である。 図6は、実施の形態2による光モジュールの上面図である。理解を容易にするため、光モジュールの上面からは見えないバンプが透視されて示されている。
 以下、本開示の光モジュールのための支持構造、及び同構造を備えた光モジュールについて、添付の図面を参照しつつより詳細に説明する。特に明示的に述べられていない限り、図面において、部材のサイズ、位置、及び部材間の距離は必ずしも縮尺とおりでなく、理解しやすいように誇張されている。
実施の形態1.
1. 構成
 以下、図1から図5を参照して、実施の形態1による光モジュールOM1について説明する。まず、図1から図3を参照して、光モジュールOM1の全体的な構成について説明する。図1は光モジュールOM1の上面図である。図2は、光モジュールOM1の差動線路対31の線路31a、電極アーム対11の電極11a、及び差動線路対41の線路41aに沿って描かれた概念的な断面図である。図3は、図2における光出力101の方向と対向するように見た光モジュールOM1の側面図である。
 図1及び図2に示されているように、光モジュールOM1は、概略、光半導体素子1と、マウント2と、高周波電気信号伝送基板3と、終端抵抗基板4と、ドライバIC5とを備える。
<光半導体素子>
 光半導体素子1は、例えばインジウムリン(InP)からなる光半導体素子である。光半導体素子1は、シリコンやガリウムひ素(GaAs)などの他の半導体、又は強誘電体から形成されていてもよい。図1~図3から理解できるように、光半導体素子1の形状は直方体をしている。光半導体素子1の長さ(X方向に沿った長さ)はマウント2の長さよりも短く、幅(Y方向の長さ)もマウント2の幅よりも短い。
 光半導体素子1上には4つの電極アーム対11~14が備えられている。各電極アーム対は光半導体素子1に形成された不図示の光導波路と並走するように設けられた進行波電極であり、2つの光導波路と2つの電極アーム対が1つのマッハツェンダー型変調器(MZ型変調器)を構成する。したがって、光モジュールOM1は2つのMZ型変調器を備えている。
 電極アーム対11及び12(一方のMZ型変調器)が1つの偏波モード(例えば、水平偏波モード)に対応し、電極アーム対11又は12の何れか一方がその偏波モードの同相成分の光を、他方がその偏波モードの直交成分の光を変調する。また、電極アーム対13及び14(他方のMZ型変調器)が他の偏波モード(例えば、垂直偏波モード)に対応し、電極アーム対13又は14の何れか一方がその偏波モードの同相成分の光を、他方がその偏波モードの直交成分の光を変調する。
 各電極の一端は、高周波電気信号伝送基板3に形成された、後述する4つの差動線路対31~34の対応する線路とバンプを介して電気的に接続されている。各電極の他端は、終端抵抗基板4上に形成された、後述する4つの差動線路対41~44の対応する線路とバンプを介して電気的に接続されている。
<マウント>
 マウント2は、不図示のマウント、例えばペルチェ素子でできた熱電クーラ(TEC)に搭載されるサブマウントであり、例えば窒化アルミニウムなどの熱伝導性の良い材料から形成されている。窒化アルミニウムの熱膨張係数は半導体材料の熱膨張係数と近いため、マウント2を窒化アルミニウムで形成することにより、光半導体素子1が光変調を行う際に生じる熱による歪を抑制できる。
 図2及び図3に示されているように、マウント2には凹部2aが形成されている。凹部2aは、マウント2の長さ方向(X方向)の一方端部と幅方向(Y方向)の両端部とに壁を有し、長さ方向(X方向)の他端部が開放されて壁を有しない形状をしている。図2及び図3に示されているように、マウント2の高周波電気信号伝送基板3がマウントされる端部には凹部2aの壁があるが、終端抵抗基板4がマウントされる端部には壁がなく開放されている。
 凹部2aには、光半導体素子1が不図示の接着剤を用いて搭載されている。光半導体素子1が凹部2aに搭載された場合に、光半導体素子1の上面1aと、マウント2の凹部2aが形成されていないリッジ部2bの上面との差が30~80μmとなるように、マウント2が彫り込まれて凹部2aが形成されている。光半導体素子1の上面1aの方がリッジ部2bの上面よりも高くなるように、凹部2aが形成されている。このように凹部2aを形成することにより、光半導体素子1の厚みがばらついた場合であっても、高周波電気信号伝送基板3又は終端抵抗基板4を安定的に接続することができる。すなわち、後述するように、光半導体素子1と高周波電気信号伝送基板3又は終端抵抗基板4との間には1段のバンプを配置し、マウント2と高周波電気信号伝送基板3又は終端抵抗基板4との間には2段以上の多段バンプ部を配置することにより、高周波電気信号伝送基板3又は終端抵抗基板4を安定的に接続することができる。
 また、光半導体素子1と高周波電気信号伝送基板3又は終端抵抗基板4との間では高周波電気信号が伝搬されるので、これらの間に設けるバンプの数を少なくすることにより光半導体素子1と高周波電気信号伝送基板3又は終端抵抗基板4との間の電気的接続を確実にすることができる。一方、マウント2と高周波電気信号伝送基板3又は終端抵抗基板4との間は電気的に接続されないので、これらの間に設けるバンプの数を多くすることによりマウント2と高周波電気信号伝送基板3又は終端抵抗基板4との間の機械的接続を高めることができる。
<高周波電気信号伝送基板>
 高周波電気信号伝送基板3は光半導体素子1に高周波信号を伝送する基板であり、例えば窒化アルミニウムから形成されている。窒化アルミニウムの熱膨張係数は半導体材料の熱膨張係数と近いため、高周波電気信号伝送基板3を窒化アルミニウムで形成することにより、光半導体素子1が光変調を行う際に生じる熱による歪を抑制できる。
 高周波電気信号伝送基板3は、高周波信号を伝送する4つの差動線路対31~34を備える。差動線路対31~34の各線路は、ワイヤ61~68を介して、ドライバIC5の対応する電気出力ポート51~58と電気的に接続されている。差動線路対31~34全体の並び方向(Y方向)の幅はドライバIC5の電気出力ポート51~58全体の並び方向(Y方向)の幅と同程度であるのに対し、光半導体素子1の電極アーム対11~14全体の並び方向(Y方向)の幅は、ドライバIC5の電気出力ポート51~58全体の並び方向(Y方向)の幅よりも小さくなっている。これに応じて、高周波電気信号伝送基板3上に形成された差動線路対31~34は、差動線路対31~34間の間隔がドライバIC5に対面する側から光半導体素子1に向かって狭くなるように形成されている。
 図2に示されているように、差動線路対31~34の各線路は、上流側バンプを介して、光半導体素子1上に形成された電極アーム対11~14の対応する電極と電気的に接続されている。より詳しく説明すると、高周波電気信号伝送基板3と光半導体素子1の間には、差動線路対31~34の各線路と、電極アーム対11~14の対応する電極との両方に電気的に接続される、例えばAuでできた8つの1段の上流側バンプが配置されている。Auバンプ以外にも、Cuバンプ、SnAgバンプであってもよい。以下のバンプも同様である。図2では、これら8つの1段のバンプのうちの一つである上流側バンプ71Uだけが示されているが、差動線路対31~34の8つの線路(又は電極アーム対11~14の8つの電極)に対応して8つの上流側バンプが備えられている。各バンプは、例えば全体的に球の形状をしており、最大径が例えば30~80μmである。バンプの形状は、他の形状であってもよく、例えば円柱状であってもよい。バンプはスタッド法や電解めっき法などの公知の技術により形成される。以下のバンプも同様である。
 各差動線路対31~34は、高周波電気信号伝送基板3の表裏面に形成される。このことを、差動線路対31の一線路である線路31aに即して説明する。図2に示されているように、線路31aは、高周波電気信号伝送基板3の上面(Z方向の面)に形成された、高周波電気信号伝送基板3のドライバIC5と対向する一端からこの一端と反対方向(X方向)に一定距離延伸する上面線路311と、高周波電気信号伝送基板3の下面(-Z方向の面)に形成された、その一端と反対側の他端からその一端の方向(-X方向)に一定距離延伸する下面線路313と、上面線路311と下面線路313を電気的に接続するビア312とを備える。下面線路313に上流側バンプ71Uは接続される。差動線路対31~34の他の線路も、線路31aと同様の構成を有する。このように構成された高周波電気信号伝送基板3の差動線路対31~34の各線路は、上流側バンプ(例えば、図2の上流側バンプ71U)を介して光半導体素子1の電極アーム対11~14の対応する電極と電気的かつ機械的に接続されている。
 また、高周波電気信号伝送基板3と光半導体素子1の間には、差動線路対31~34又は電極アーム対11~14の何れとも電気的に接続されていない、例えばAuでできた1つ以上の1段のバンプ(図2のバンプ81)が配置されている。高周波電気信号伝送基板3は、このようなバンプ(図2のバンプ81)を介して光半導体素子1と機械的に接続されている。
 さらに、図2に示されているように、高周波電気信号伝送基板3とマウント2の間には、差動線路対31~34又は電極アーム対11~14の何れとも電気的に接続されていない、例えばAuでできた複数のバンプが高さ方向(Z方向)に少なくとも2段積層された多段バンプ部91~93が配置されている。多段バンプ部91~93は、凹部2aが形成されていないリッジ部2bの任意の位置に配置される。図2では多段バンプ部91~93はドライバIC5と光半導体素子1の間に配置されているが、マウント2の幅方向(±Y方向)の両端のリッジ部2bに、図3の多段バンプ94、95のような不図示の多段バンプ部が設けられていてもよい。多段バンプ部の数は3つより少なくても多くてもよい。高周波電気信号伝送基板3は、多段バンプ部91~93を介してマウント2により機械的に支持されている。
<終端抵抗基板>
 終端抵抗基板4は、終端抵抗が搭載された基板であり、例えば窒化アルミニウムから形成されている。窒化アルミニウムの熱膨張係数は半導体材料の熱膨張係数と近いため、終端抵抗基板4を窒化アルミニウムで形成することにより、光半導体素子1が光変調を行う際に生じる熱による歪を抑制できる。
 終端抵抗基板4は、高周波信号を伝送する4つの差動線路対41~44と、例えば薄膜抵抗やキャパシタからなる終端抵抗411~414とを備える。図2に示されているように、差動線路対41~44の各線路は、下流側バンプを介して、光半導体素子1上に形成された電極アーム対11~14の対応する電極と電気的に接続されている。より詳しく説明すると、図3に示されているように、終端抵抗基板4と光半導体素子1の間には、差動線路対41~44の各線路と、電極アーム対11~14の対応する電極との両方に電気的に接続される、例えばAuでできた8つの1段の下流側バンプ71D~78Dが配置されている。なお、図3では、下流側バンプ71D~78Dを図示するため、図2に示されているバンプ82、83は省略されている。上述した8つの上流側バンプは、図3で示されている下流側バンプ71D~78Dの背後に位置している。
 各差動線路対41~44は、終端抵抗基板4の表裏面に形成される。このことを、差動線路対41の一線路である線路41aに即して説明する。図2に示されているように、線路41aは、終端抵抗基板4の下面(-Z方向の面)に形成された、終端抵抗基板4の一端からこの一端と反対方向(X方向)に一定距離延伸する下面線路401と、終端抵抗基板4の上面(Z方向の面)に形成された、一端が終端抵抗411に電気的に接続され、終端抵抗411と反対方向(-X方向)に一定距離延伸する上面線路403と、下面線路401と上面線路403を電気的に接続するビア402とを備える。差動線路対41~44の他の線路も、線路41aと同様の構成を有する。このように構成された終端抵抗基板4の差動線路対41~44の各線路は、下流側バンプ71D~78Dを介して、光半導体素子1の電極アーム対11~14の対応する電極と電気的かつ機械的に接続されている。
 また、終端抵抗基板4と光半導体素子1の間には、差動線路対41~44又は電極アーム対11~14の何れとも電気的に接続されていない、例えばAuでできた1つ以上の1段のバンプ(図2のバンプ82、83)が配置されている。終端抵抗基板4は、このようなバンプ(図2のバンプ82、83)を介して光半導体素子1と機械的に接続されている。
 さらに、図3に示されているように、終端抵抗基板4とマウント2の間には、差動線路対41~44又は電極アーム対11~14の何れとも電気的に接続されていない、例えばAuでできた複数のバンプが高さ方向(Z方向)に少なくとも2段積層された多段バンプ部94及び95が配置されている。これらの多段バンプ部94及び95は、マウント2の幅方向(±Y方向)の両端に位置するリッジ部2bに配置されている。多段バンプ部は各リッジ部2bに2つ以上設けられていてもよい。終端抵抗基板4は、多段バンプ部94及び95を介してマウント2により機械的に支持されている。
<ドライバIC>
 ドライバIC5は光半導体素子1を駆動する高周波電気信号を供給するICであり、図2に示されているように金属やセラミックなどで構成される土台6上に実装されている。ドライバIC5は、高周波電気信号を出力する電気出力ポート51~58を備える。ドライバIC5の電気出力ポート51~58が設けられた端部が、高周波電気信号伝送基板3の差動線路対31~34の各線路の一端と近接するように、ドライバIC5は高周波電気信号伝送基板3と対向して配置されている。より具体的には、差動線路対31~34の各線路の、差動線路対31~34と電極アーム対11~14とを接続するバンプ(図2のバンプ71Uを含む8つの上流側バンプ)と接続されていない一端と近接するように、ドライバIC5は高周波電気信号伝送基板3と対向して配置されている。電気出力ポート51~58と差動線路対31~34の線路とは、ワイヤ61~68を介して電気的に接続されている。
<多段バンプ部>
 図2及び図3に示されている多段バンプ部91~95は、多段バンプ部の第1の段(上段)が単一のバンプを、第2の段(下段)が複数のバンプを備えている。他の形態では、各多段バンプ部が上下反転されていてもよい。
 以下、多段バンプ部が取り得る複数の態様について、図4A、図4B、図5A、及び図5Bを参照して説明する。図4A及び図4Bは、多段バンプ部の第1の段(上段)が単一のバンプ914を、第2の段(下段)が3つのバンプ911~913を備える態様を示す。図4Aが上面図、図4Bが側面図である。第2の段のバンプ911~913は互いに接するように配置されている。したがって、第2の段のバンプ911~913は、上面視では図4Aに示されているように三角形のような形状である。第1の段のバンプ914は、第2の段のバンプ911~913の何れとも接するように配置されている。したがって、図4Aに示されているように、第1の段のバンプ914の中心は、第2の段のバンプ911~913の各中心を結んでできる三角形の幾何中心と上面視で一致するように配置される。
 図5A及び図5Bは、多段バンプ部の第1の段(上段)が単一のバンプ925を、第2の段(下段)が4つのバンプ921~924を備える態様を示す。図5Aが上面図、図5Bが側面図である。第2の段のバンプ921~924は、上面視では図5Aに示されているように四角形のような形状となるように配置されている。第2の段のバンプ921~924の各バンプは、最近傍の2つのバンプと接するように配置されている。第1の段のバンプ925は、第2の段のバンプ921~924の何れとも接するように配置されている。したがって、図5Aに示されているように、第1の段のバンプ925の中心は、第2の段のバンプ921~924の各中心を結んでできる四角形の幾何中心と上面視で一致するように配置される。
 図4及び図5では、多段バンプ部が2段の場合の例について説明したが、多段バンプ部は3段以上であってもよい。3段以上になる場合は、追加される新たな段は、第2の段の多角形よりも多い画数の多角形のような形状を備える。例えば、図4A、図4Bに新たな第3段が追加される場合、この第3段は7つのバンプを備え、上面視で六角形のような形状となる。第1の段のバンプの中心と追加される段の多角形の幾何中心とが上面視で一致するように、新たな段は配置される。
 このような多段バンプ部によれば、マウントされる部材を安定して支持することができる。例えば、第1の段及び第2の段の何れも単一のバンプを備える不図示の多段バンプ部と比べると、本開示の第1の段のバンプは第2の段の3つ又は4つのバンプにより支持されているので、バンプ部の安定性が向上されている。したがって、本開示の多段バンプ部を図2又は図3のように配置することにより、高周波電気信号伝送基板3又は終端抵抗基板4をマウント2により安定して支持することができる。
 また、バンプの形状が球状である場合には、第1の段のバンプが第2の段のバンプの各中心を結んでできる多角形の幾何中心と上面視で一致するような配置とすることにより、実装位置にずれがあった場合でも、ある程度は自己補正して機械的に接合することができる。すなわち、球状の1つのバンプを、三角形状又は四角形状に配置された球状の複数のバンプ上であって三角形又は四角形の中心から少しずれた位置に載置した場合は、載置した1つのバンプは自然とその複数のバンプが形成する三角形又は四角形の中心に移動する。このような自己補正の効果が得られる。
2. 動作
 次に、図2を参照して、光モジュールOM1の動作について説明する。図2において、電気信号の入力100と光出力101が模式的に示されている。外部から入力された電気信号対、例えば実施の形態1では4つの差動信号は、ドライバIC5の電気入力ポートに入力され、ドライバIC5で増幅されたのち、電気出力ポート51~58から出力され、ワイヤ61~68を介して高周波電気信号伝送基板3上の差動線路対31~34に伝わる。差動線路対31~34では、上面線路(311)、ビア(312)、下面線路(313)を伝搬し、上流側バンプ(71U)を介して光半導体素子1上に形成されたMZ型変調器の電極アーム対11~14に入射する。電極アーム対11~14では、光半導体素子1がもつ電気光学効果(EO効果)により光導波路の屈折率が変化し、光導波路を伝搬する光が位相変調され、位相変調された光が干渉することにより光導波路を伝搬する光が強度変調される。電気信号は、下流側バンプ71D~78Dを介して終端抵抗基板4上の差動線路対41~44に伝わり、下面線路(401)、ビア(402)、上面線路(403)を伝搬し、最後は終端抵抗411で終端される。一方、電極アーム対11~14で変調された光信号は、光半導体素子1内部に形成された光導波路を通って光出力101として外部に取り出される。
3. 作用効果
 以上のとおり、光モジュールOM1のための支持構造は、光半導体素子1が実装されるマウント2と、ドライバIC5に電気的に接続される差動線路対31~34を備えた高周波電気信号伝送基板3又は差動線路対41~44を備えた終端抵抗基板4と、高周波電気信号伝送基板3又は終端抵抗基板4のマウント2と対向する面に設けられ、差動線路対31~34又は41~44と電気的に接続された第1のバンプ部(71U、71D~78D)と、マウント2及び高周波電気信号伝送基板3又は終端抵抗基板4の両方に接するように高周波電気信号伝送基板3又は終端抵抗基板4とマウント2の間に配置され、差動線路対31~34又は41~44と電気的に接続されていない多段バンプ部91~95と、を備える。
 このように、光モジュールOM1のための支持構造によれば、光半導体素子1を第1のバンプ部(71U、71D~78D)に接するように配置することにより、光半導体素子を駆動することができる。また、マウント2及び高周波電気信号伝送基板3又は終端抵抗基板4の両方に接し、差動線路対31~34又は41~44と電気的に接続されていない多段バンプ部91~95が備えられているので、高周波電気信号伝送基板3又は終端抵抗基板4が第1のバンプ部(71U、71D~78D)を介して光半導体素子1により支持されない部分について、多段バンプ部91~95を介してマウント2により支持することができる。したがって、この光モジュールOM1のための支持構造によれば、小型化された光半導体素子を備えることが可能となる。なお、非特許文献1に開示された光モジュールと本開示の光モジュールOM1との対比から明らかなように、光半導体素子1が高周波電気信号伝送基板3又は終端抵抗基板4の全体を支持していない点で、非特許文献1のMZMチップよりも小型化されている。
 また、多段バンプ部91~95は、差動線路対31~34又は41~44と電気的に接続されていないので、光半導体素子1を駆動するドライバIC5を、光半導体素子1から離れた位置に配置することが可能となる。したがって、本支持構造を備えた光モジュールOM1の動作がより安定する。
 また、この光モジュールOM1のための支持構造によれば、光半導体素子がより小型化された場合には多段バンプ部をより多く設けることにより高周波電気信号伝送基板3又は終端抵抗基板4を支持できるので、光モジュールOM1の部材のうち、光半導体素子1以外の部材の仕様を可及的に維持したまま、より小型化された光半導体素子に適応することができる。
 また、多段バンプ部91~95は、単一のバンプ914又は925を備えた第1の段のバンプ部と、3つのバンプ911~913又は4つのバンプ921~924を備えた第2の段のバンプ部と、を備えた少なくとも1組の多段バンプ部を備え、第2の段のバンプ部の3つ又は4つのバンプは、隣り合うバンプに接するように面状に配置されており、第1の段のバンプ部の単一のバンプは、第2の段のバンプ部の3つ又は4つのバンプの何れにも接し、かつ高周波電気信号伝送基板3又は終端抵抗基板4に接するように配置されている。したがって、複数の段の各々が単一のバンプを備える場合に比して、機械的安定性を向上することができる。
 なお、マウント2、高周波電気信号伝送基板3、終端抵抗基板4については、アルミナでできていてもよいし、石英のようなガラス、ガラスセラミックスでできていてもよい。これらの材料では、熱膨張係数は光半導体材料とは異なるため、熱による歪の影響は大きくなってしまうが、熱伝導率が小さいため、光半導体材料に流入する熱量を抑制できるという効果がある。
実施の形態2.
 次に、実施の形態1の変形例である実施の形態2について、図6を参照して説明する。実施の形態1の部材と同様の部材については同様の番号を付して重複する説明を省略する。図6は、光モジュールOM2の上面図である。理解を容易にするため、光モジュールOM2の上方からは実際には見えないバンプ261及び多段バンプ部262、並びにバンプ271、272についても併せて示されている。
 光モジュールOM2では、バンプ261及び多段バンプ部262は、高周波電気信号伝送基板3の中心を基準として、上面視で円形となるように配置されている。高周波電気信号伝送基板3の下側にある黒く塗りつぶされた8つのバンプ261は、高周波電気信号伝送基板3と光半導体素子1を、電気的かつ機械的に接続する1段のバンプである。バンプ261は、上面視で弧を描くように面状に配置されている。
 高周波電気信号伝送基板3の下側にある点線で示された多段バンプ部262は、高周波電気信号伝送基板3とマウント2を機械的に接続する。図6では、多段バンプ部262の上段の単一バンプのみを示している。多段バンプ部が高周波電気信号伝送基板3とマウント2を電気的に接続しないこと、実施の形態1の場合と同様である。多段バンプ部262は、上面視で弧を描くように面状に配置されている。
 また、バンプ271、272は、終端抵抗基板4の中心を基準として、上面視で楕円となるように配置されている。終端抵抗基板4の下側にある黒く塗りつぶされた8つのバンプ271は、終端抵抗基板4と光半導体素子1を、電気的かつ機械的に接続する1段のバンプである。バンプ271は、上面視で弧を描くように面状に配置されている。
 終端抵抗基板4の下側にある点線で示されたバンプ272は、終端抵抗基板4と光半導体素子1を機械的に接続する1段のバンプである。バンプ272は、上面視で弧を描くように面状に配置されている。
 なお、図示は省略しているが、終端抵抗基板4とマウント2の間に、図3に示した多段バンプ94、95が設けられていてもよい。
 熱による膨張又は収縮は部材の中心から放射状に広がるようにして生じるため、このようなバンプの配置構成とすることで、熱による歪に対して高い機械的安定性を得ることができる。
付記.
 上記で説明した光モジュールのための支持構造、及び光モジュールの態様の側面の幾つかについて、以下にて整理する。
<付記1>
 光モジュールのための支持構造の一側面は、光半導体素子(1)が実装されるマウント(2)と、ドライバIC(5)に電気的に接続される電気配線(31~34、41~44)を備えた基板(3、4)と、前記基板の前記マウントと対向する面に設けられ、前記電気配線と電気的に接続された第1のバンプ部(71U、71D~78D;261、271)と、前記マウント及び前記基板の両方に接するように前記基板と前記マウントの間に配置され、前記電気配線と電気的に接続されていない第2のバンプ部(91~93、94~95;262)と、を備える。
<付記2>
 光モジュールのための支持構造の一側面は、付記1に記載の光モジュールのための支持構造であって、前記第2のバンプ部は、単一のバンプ(914、925)を備えた第1の段のバンプ部と、3つ又は4つのバンプ(911~913、921~924)を備えた第2の段のバンプ部と、を備えた少なくとも1組の多段バンプ部を備え、前記第2の段のバンプ部の前記3つ又は4つのバンプは、隣り合うバンプに接するように面状に配置されており、前記第1の段のバンプ部の前記単一のバンプは、前記第2の段のバンプ部の前記3つ又は4つのバンプの何れにも接し、かつ前記基板に接するように配置されている。
<付記3>
 光モジュールのための支持構造の一側面は、付記1又は2に記載の光モジュールのための支持構造であって、前記マウントは、前記基板と対向する面に凹みが形成された凹部(2a)と、凹みが形成されていないリッジ部(2b)とを備え、前記第2のバンプ部は前記リッジ部に接するように設けられている。
<付記4>
 光モジュールのための支持構造の一側面は、付記2又は3に記載の光モジュールのための支持構造であって、前記少なくとも1組の多段バンプ部は、複数の組の多段バンプ部を備え、前記複数の組の多段バンプ部は、弧を描くように面状に配置されている。
<付記5>
 光モジュールのための支持構造の一側面は、付記1から4の何れか1つに記載の光モジュールのための支持構造であって、前記第1のバンプ部は複数のバンプを備え、前記第1のバンプ部の前記複数のバンプは、弧を描くように面状に配置されている。
<付記6>
 光モジュールの一側面は、付記1から5の何れか1つに記載の光モジュールのための支持構造と、光導波路と電極(11~14)を備え、前記マウントに実装された光半導体素子(1)と、を備え、前記電極は前記第1のバンプ部と電気的かつ機械的に接続されている。
 なお、各実施の形態を組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
 本開示の実施の形態による支持構造は、マウント及び基板の両方に接し、基板の電気配線と電気的に接続されていない第2のバンプ部が備えられているので、基板が第1のバンプ部を介して光半導体素子により支持されない部分について、第2のバンプ部を介してマウントにより支持することができる。したがって、この支持構造は、小型化された光半導体素子を備える光モジュールに利用することができる。
1 光半導体素子、2 マウント、2a 凹部、2b リッジ部、3 高周波電気信号伝送基板(基板)、4 終端抵抗基板(基板)、11~14 電極アーム対(電極)、31~34 差動線路対(電気配線)、41~44 差動線路対(電気配線)、71U 上流側バンプ(第1のバンプ部)、71D~78D 下流側バンプ(第1のバンプ部)、91~95 多段バンプ部(第2のバンプ部)、261 バンプ(第1のバンプ部)、262 多段バンプ部(第2のバンプ部)、271 バンプ(第1のバンプ部)OM1 光モジュール、OM2 光モジュール。

Claims (15)

  1.  光半導体素子が実装されるマウントと、
     ドライバICに電気的に接続される電気配線を備えた基板と、
     前記基板の前記マウントと対向する面に設けられ、前記電気配線と電気的に接続された第1のバンプ部と、
     前記マウント及び前記基板の両方に接するように前記基板と前記マウントの間に配置され、前記電気配線と電気的に接続されていない第2のバンプ部と、
    を備えた光モジュールのための支持構造。
  2.  前記第2のバンプ部は、単一のバンプを備えた第1の段のバンプ部と、3つ又は4つのバンプを備えた第2の段のバンプ部と、を備えた少なくとも1組の多段バンプ部を備え、
     前記第2の段のバンプ部の前記3つ又は4つのバンプは、隣り合うバンプに接するように面状に配置されており、
     前記第1の段のバンプ部の前記単一のバンプは、前記第2の段のバンプ部の前記3つ又は4つのバンプの何れにも接し、かつ前記基板に接するように配置されている、請求項1に記載の光モジュールのための支持構造。
  3.  前記マウントは、前記基板と対向する面に凹みが形成された凹部と、凹みが形成されていないリッジ部とを備え、
     前記第2のバンプ部は前記リッジ部に接するように設けられている、請求項1に記載の光モジュールのための支持構造。
  4.  前記マウントは、前記基板と対向する面に凹みが形成された凹部と、凹みが形成されていないリッジ部とを備え、
     前記第2のバンプ部は前記リッジ部に接するように設けられている、請求項2に記載の光モジュールのための支持構造。
  5.  前記少なくとも1組の多段バンプ部は、複数の組の多段バンプ部を備え、
     前記複数の組の多段バンプ部は、弧を描くように面状に配置されている、請求項2に記載の光モジュールのための支持構造。
  6.  前記少なくとも1組の多段バンプ部は、複数の組の多段バンプ部を備え、
     前記複数の組の多段バンプ部は、弧を描くように面状に配置されている、請求項3に記載の光モジュールのための支持構造。
  7.  前記少なくとも1組の多段バンプ部は、複数の組の多段バンプ部を備え、
     前記複数の組の多段バンプ部は、弧を描くように面状に配置されている、請求項4に記載の光モジュールのための支持構造。
  8.  前記第1のバンプ部は複数のバンプを備え、
     前記第1のバンプ部の前記複数のバンプは、弧を描くように面状に配置されている、請求項1に記載の光モジュールのための支持構造。
  9.  前記第1のバンプ部は複数のバンプを備え、
     前記第1のバンプ部の前記複数のバンプは、弧を描くように面状に配置されている、請求項2に記載の光モジュールのための支持構造。
  10.  前記第1のバンプ部は複数のバンプを備え、
     前記第1のバンプ部の前記複数のバンプは、弧を描くように面状に配置されている、請求項3に記載の光モジュールのための支持構造。
  11.  前記第1のバンプ部は複数のバンプを備え、
     前記第1のバンプ部の前記複数のバンプは、弧を描くように面状に配置されている、請求項4に記載の光モジュールのための支持構造。
  12.  前記第1のバンプ部は複数のバンプを備え、
     前記第1のバンプ部の前記複数のバンプは、弧を描くように面状に配置されている、請求項5に記載の光モジュールのための支持構造。
  13.  前記第1のバンプ部は複数のバンプを備え、
     前記第1のバンプ部の前記複数のバンプは、弧を描くように面状に配置されている、請求項6に記載の光モジュールのための支持構造。
  14.  前記第1のバンプ部は複数のバンプを備え、
     前記第1のバンプ部の前記複数のバンプは、弧を描くように面状に配置されている、請求項7に記載の光モジュールのための支持構造。
  15.  請求項1から14の何れか1項に記載の光モジュールのための支持構造と、
     光導波路と電極を備え、前記マウントに実装された光半導体素子と、
    を備え、
     前記電極は前記第1のバンプ部と電気的かつ機械的に接続されている、光モジュール。
PCT/JP2020/032292 2020-08-27 2020-08-27 光モジュールのための支持構造、及び光モジュール WO2022044180A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/032292 WO2022044180A1 (ja) 2020-08-27 2020-08-27 光モジュールのための支持構造、及び光モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/032292 WO2022044180A1 (ja) 2020-08-27 2020-08-27 光モジュールのための支持構造、及び光モジュール

Publications (1)

Publication Number Publication Date
WO2022044180A1 true WO2022044180A1 (ja) 2022-03-03

Family

ID=80352893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032292 WO2022044180A1 (ja) 2020-08-27 2020-08-27 光モジュールのための支持構造、及び光モジュール

Country Status (1)

Country Link
WO (1) WO2022044180A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001337242A (ja) * 2000-05-25 2001-12-07 Minolta Co Ltd 光結合回路の製造方法
JP2003179100A (ja) * 2001-10-05 2003-06-27 Nec Corp 電子部品の製造装置および電子部品の製造方法
JP2007134356A (ja) * 2005-11-08 2007-05-31 Matsushita Electric Ind Co Ltd 半導体実装装置
US20070279077A1 (en) * 2006-05-30 2007-12-06 Touchdown Technologies, Inc Stacked Contact Bump
JP2009260247A (ja) * 2008-03-19 2009-11-05 Fujitsu Ltd 電子部品及び電子部品の製造方法
JP2015055669A (ja) * 2013-09-10 2015-03-23 株式会社フジクラ 光変調器モジュール
US20150131940A1 (en) * 2012-04-16 2015-05-14 Hewlett-Packard Development Company, L.P. Integrated optical sub-assembly
JP2016034130A (ja) * 2014-07-30 2016-03-10 太陽誘電株式会社 弾性波デバイス及びその製造方法
US20170194308A1 (en) * 2016-01-04 2017-07-06 Infinera Corporation Photonic integrated circuit package
WO2019239683A1 (ja) * 2018-06-14 2019-12-19 三菱電機株式会社 光変調器及び光送信モジュール

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001337242A (ja) * 2000-05-25 2001-12-07 Minolta Co Ltd 光結合回路の製造方法
JP2003179100A (ja) * 2001-10-05 2003-06-27 Nec Corp 電子部品の製造装置および電子部品の製造方法
JP2007134356A (ja) * 2005-11-08 2007-05-31 Matsushita Electric Ind Co Ltd 半導体実装装置
US20070279077A1 (en) * 2006-05-30 2007-12-06 Touchdown Technologies, Inc Stacked Contact Bump
JP2009260247A (ja) * 2008-03-19 2009-11-05 Fujitsu Ltd 電子部品及び電子部品の製造方法
US20150131940A1 (en) * 2012-04-16 2015-05-14 Hewlett-Packard Development Company, L.P. Integrated optical sub-assembly
JP2015055669A (ja) * 2013-09-10 2015-03-23 株式会社フジクラ 光変調器モジュール
JP2016034130A (ja) * 2014-07-30 2016-03-10 太陽誘電株式会社 弾性波デバイス及びその製造方法
US20170194308A1 (en) * 2016-01-04 2017-07-06 Infinera Corporation Photonic integrated circuit package
WO2019239683A1 (ja) * 2018-06-14 2019-12-19 三菱電機株式会社 光変調器及び光送信モジュール

Similar Documents

Publication Publication Date Title
US9664979B2 (en) Hybrid integration using folded Mach-Zehnder modulator array block
US11940708B2 (en) Optical modulator
JP6567541B2 (ja) 電気光学変調器装置
US10558064B2 (en) Optical communication module and optical modulator used therein
WO2015122189A1 (ja) 光モジュール
JP2020178117A (ja) 光変調器キャリア組立体及び光モジュール
JP2014197054A (ja) 光変調器
JP6315041B2 (ja) 光変調器
JP5861724B2 (ja) 光デバイス
WO2022044180A1 (ja) 光モジュールのための支持構造、及び光モジュール
WO2014133193A1 (en) Optical module including semiconductor optical modulator
US7042306B2 (en) Three dimensional multimode and optical coupling devices
US20160216539A1 (en) Optical module
JP2015102686A (ja) 光変調器
CN114077009B (zh) 光波导器件
US11828995B2 (en) Silicon photonics based fiber coupler
JP2006072171A (ja) 光モジュール
US20220057661A1 (en) Optical waveguide element and optical waveguide device
JP2017181851A (ja) 光変調器
JP7468279B2 (ja) 光変調器とそれを用いた光送信装置
WO2021060087A1 (ja) 光変調器及びそれを用いた光送信装置
JP5745478B2 (ja) 光モジュール
JP7495359B2 (ja) 光モジュール
JP2017198908A (ja) 光送信装置及び光変調器
WO2023105641A1 (ja) 光回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP