WO2022044168A1 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
WO2022044168A1
WO2022044168A1 PCT/JP2020/032196 JP2020032196W WO2022044168A1 WO 2022044168 A1 WO2022044168 A1 WO 2022044168A1 JP 2020032196 W JP2020032196 W JP 2020032196W WO 2022044168 A1 WO2022044168 A1 WO 2022044168A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature side
refrigerant
high temperature
heat exchanger
low temperature
Prior art date
Application number
PCT/JP2020/032196
Other languages
English (en)
French (fr)
Inventor
智隆 石川
崇憲 八代
誠 江上
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/032196 priority Critical patent/WO2022044168A1/ja
Priority to JP2022544971A priority patent/JPWO2022044168A1/ja
Publication of WO2022044168A1 publication Critical patent/WO2022044168A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series

Definitions

  • This disclosure relates to refrigeration equipment.
  • the refrigerating operation is performed by exchanging heat between the heat of condensation due to the condensation of the refrigerant in the refrigerating cycle circuit on the low temperature side and the heat of vaporization due to the evaporation of the refrigerant in the refrigerating cycle circuit on the high temperature side (for example).
  • Patent Document 1 discloses a refrigerating apparatus.
  • the number of refrigeration cycle circuits on the high temperature side is increased or decreased depending on the object to be cooled.
  • it is required to modularize the refrigeration cycle circuit.
  • This disclosure was made under such development, and the purpose is to provide a freezing device that can be modularized.
  • the refrigerating apparatus includes a high temperature side refrigeration cycle circuit, a low temperature side refrigeration cycle circuit, and a plurality of cascade heat exchangers.
  • the high temperature side refrigerant circulates.
  • the low temperature side refrigerant circulates.
  • the plurality of cascade heat exchangers heat exchange is performed between the high temperature side refrigerant and the low temperature side refrigerant.
  • the high temperature side refrigeration cycle circuit includes a high temperature side first refrigeration cycle unit and a high temperature side second refrigeration cycle unit. In the high temperature side first refrigeration cycle unit, the high temperature side first refrigerant circulates as the high temperature side refrigerant.
  • the high temperature side second refrigerant circulates as the high temperature side refrigerant.
  • the plurality of cascade heat exchangers include a first cascade heat exchanger and a second cascade heat exchanger.
  • heat exchange is performed between the low temperature side refrigerant and the high temperature side first refrigerant.
  • heat exchange is performed between the low temperature side refrigerant and the high temperature side second refrigerant.
  • the first cascade heat exchanger and the second cascade heat exchanger are adjacent to each other in such a manner that the low temperature side refrigerant flowing through the first cascade heat exchanger and the low temperature side refrigerant flowing through the second cascade heat exchanger flow in series. Arranged to do.
  • the plurality of cascade heat exchangers are located between the low temperature side refrigerant circulating in the low temperature side refrigeration cycle circuit and the high temperature side first refrigerant circulating in the high temperature side first refrigeration cycle unit.
  • Heat exchange is performed between the first cascade heat exchanger in which heat exchange is performed, the low temperature side refrigerant circulating in the low temperature side refrigeration cycle circuit, and the high temperature side second refrigerant circulating in the high temperature side second refrigeration cycle unit. It is equipped with a second cascade heat exchanger.
  • the first cascade heat exchanger and the second cascade heat exchanger are adjacent to each other in such a manner that the low temperature side refrigerant flowing through the first cascade heat exchanger and the low temperature side refrigerant flowing through the second cascade heat exchanger flow in series. Arranged to do.
  • the first cascade heat exchanger and the second cascade heat exchanger can be modularized, and the number of the first cascade heat exchanger and the second cascade heat exchanger can be easily increased or decreased. As a result, it is possible to contribute to the reduction of the production cost of the refrigerating apparatus.
  • FIG. 1 shows an example of the refrigerant circuit of the refrigerating apparatus which concerns on embodiment. It is a figure for demonstrating the operation of the refrigerating apparatus in the same embodiment.
  • it is a partial perspective view schematically showing an example of the arrangement structure of the 1st cascade heat exchanger and the 2nd cascade heat exchanger.
  • it is a partially disassembled perspective view which shows an example of each structure of the 1st cascade heat exchanger and the 2nd cascade heat exchanger.
  • it is a partial perspective view schematically showing another example of the arrangement structure of the cascade heat exchanger in the refrigerating apparatus.
  • FIG. 1 it is a partial perspective view schematically showing still another example of the arrangement structure of the 1st cascade heat exchanger and the 2nd cascade heat exchanger.
  • FIG. 1 it is a figure which shows an example of the refrigerant circuit of the refrigerating apparatus which concerns on a modification.
  • the refrigerating apparatus 1 includes a high temperature side refrigerating cycle circuit 3 on the high temperature side and a low temperature side refrigerating cycle circuit 5 on the low temperature side.
  • the high temperature side refrigeration cycle circuit 3 includes a high temperature side first refrigeration cycle unit 3a and a high temperature side second refrigeration cycle unit 3b.
  • the high temperature side first refrigeration cycle unit 3a includes a high temperature side first compressor 7, a high temperature side first condenser 9, a high temperature side first expansion valve 11, and a high temperature side first evaporator 13.
  • the high temperature side first compressor 7, the high temperature side first condenser 9, the high temperature side first expansion valve 11, and the high temperature side first evaporator 13 are provided by the refrigerant pipe 51 so that the high temperature side first refrigerant circulates in this order. It is connected.
  • the high temperature side first refrigerant for example, either R1234fy or R290 (propane) is used.
  • the high temperature side second refrigeration cycle unit 3b includes a high temperature side second compressor 15, a high temperature side second condenser 17, a high temperature side second expansion valve 19, and a high temperature side second evaporator 21.
  • the high temperature side second compressor 15, the high temperature side second condenser 17, the high temperature side second expansion valve 19, and the high temperature side second evaporator 21 are provided by the refrigerant pipe 53 so that the high temperature side second refrigerant circulates in this order. It is connected.
  • the high temperature side second refrigerant for example, either R1234fy or R290 (propane) is used.
  • the low temperature side refrigeration cycle circuit 5 includes a low temperature side compressor 23, a low temperature side first condenser 25, a low temperature side second condenser 27, a low temperature side expansion valve 29, and a low temperature side evaporator 31.
  • the low temperature side compressor 23, the low temperature side first condenser 25, the low temperature side second condenser 27, the low temperature side expansion valve 29, and the low temperature side evaporator 31 are provided by the refrigerant pipe 55 so that the low temperature side refrigerant circulates in this order. It is connected.
  • CO 2 is used as the low temperature side refrigerant.
  • the high temperature side first evaporator 13 and the low temperature side first condenser 25 are between the high temperature side first refrigerant flowing through the high temperature side first evaporator 13 and the low temperature side refrigerant flowing through the low temperature side first condenser 25. It is integrally formed as a first cascade heat exchanger 41 that exchanges heat.
  • the first cascade heat exchanger 41 is, for example, a plate type heat exchanger in which plates are laminated. By sandwiching one plate and flowing the high temperature side first refrigerant on one side and the low temperature side refrigerant on the other side, heat exchange is performed between the high temperature side first refrigerant and the low temperature side refrigerant.
  • the high temperature side second evaporator 21 and the low temperature side second condenser 27 are between the high temperature side second refrigerant flowing through the high temperature side second evaporator 21 and the low temperature side refrigerant flowing through the low temperature side second condenser 27. It is integrally formed as a second cascade heat exchanger 43 that exchanges heat.
  • the second cascade heat exchanger 43 is, for example, a plate type heat exchanger in which plates are laminated. By sandwiching one plate and flowing the high temperature side second refrigerant on one side and the low temperature side refrigerant on the other side, heat exchange is performed between the high temperature side second refrigerant and the low temperature side refrigerant.
  • the number of high-temperature side refrigerating cycle units constituting the high-temperature side refrigerating cycle circuit 3 is increased or decreased depending on the cooling target or the like.
  • the modularization of the high temperature side refrigeration cycle unit to be arranged is planned. This will be described later.
  • the first refrigerant on the high temperature side which is gaseous at high temperature and high pressure, is discharged from the first compressor 7 on the high temperature side (see arrow Y1).
  • the discharged high temperature side first refrigerant (single phase) flows into the high temperature side first condenser 9.
  • the high temperature side first condenser 9 heat exchange between the high temperature side first refrigerant that has flowed in and the air sent from a blower or the like (not shown) or the water sent from a pump or the like (not shown). Is done.
  • the high-temperature and high-pressure first refrigerant on the high-temperature side is condensed to become a high-pressure liquid high-temperature side first refrigerant (single-phase), which is sent out from the high-temperature side first condenser 9.
  • the high-pressure high-temperature side first refrigerant sent out from the high-temperature side first condenser 9 is divided into a low-pressure gaseous high-temperature side first refrigerant and a liquid high-temperature side first refrigerant by the high-temperature side first expansion valve 11. It becomes the first refrigerant on the high temperature side in the phase state.
  • the high temperature side first refrigerant in the two-phase state flows into the first cascade heat exchanger 41 (high temperature side first evaporator 13).
  • the first cascade heat exchanger 41 heat exchange is performed between the high temperature side first refrigerant that has flowed in and the low temperature side refrigerant that flows through the low temperature side refrigeration cycle circuit 5.
  • the liquid high-temperature side first refrigerant evaporates to become a low-pressure gaseous high-temperature side first refrigerant (single phase), and the first cascade. It is sent out from the heat exchanger 41 (high temperature side first evaporator 13).
  • the low-pressure high-temperature side first refrigerant sent out from the first cascade heat exchanger 41 flows into the high-temperature side first compressor 7.
  • the low-pressure high-temperature side first refrigerant that has flowed into the high-temperature side first compressor 7 is compressed to become a high-temperature, high-pressure gaseous high-temperature side first refrigerant, and is discharged from the high-temperature side first compressor 7 again.
  • this operation will be repeated (see arrow Y2 for the flow of the second refrigerant on the high temperature side of the second refrigerating cycle unit 3b on the high temperature side).
  • the operation of the low temperature side refrigeration cycle circuit 5 will be described.
  • the high temperature and high pressure gaseous low temperature side refrigerant is discharged from the low temperature side compressor 23 (see arrow Y3).
  • the discharged low temperature side refrigerant (single phase) flows into the first cascade heat exchanger 41 (low temperature side first condenser 25).
  • first cascade heat exchanger 41 heat exchange is performed between the low temperature side refrigerant that has flowed in and the high temperature side first refrigerant that flows through the high temperature side first refrigeration cycle unit 3a.
  • the high temperature and high pressure low temperature side refrigerant is cooled to a constant temperature and sent out from the first cascade heat exchanger 41.
  • the low temperature side refrigerant sent out from the first cascade heat exchanger 41 flows into the second cascade heat exchanger 43 (low temperature side second condenser 27).
  • the second cascade heat exchanger 43 heat exchange is performed between the low temperature side refrigerant that has flowed in and the high temperature side second refrigerant that flows through the high temperature side second refrigeration cycle unit 3b.
  • the high-pressure low-temperature side refrigerant is cooled to a lower temperature and sent out from the second cascade heat exchanger 43.
  • the high-pressure low-temperature side refrigerant sent out from the second cascade heat exchanger 43 becomes a two-phase low-temperature side refrigerant of a low-pressure gaseous low-temperature side refrigerant and a liquid low-temperature side refrigerant by the low-temperature side expansion valve 29. ..
  • the low temperature side refrigerant in the two-phase state flows into the low temperature side evaporator 31.
  • the low temperature side evaporator 31 heat exchange is performed between the low temperature side refrigerant in the two-phase state that has flowed in and the cooling target. Due to this heat exchange, the low-temperature side refrigerant in the two-phase state evaporates the liquid low-temperature side refrigerant among the low-temperature side refrigerants in the two-phase state to become a low-pressure gaseous low-temperature side refrigerant (single-phase). It is sent out from the low temperature side evaporator 31.
  • the low-pressure low-temperature side refrigerant that has flowed into the low-temperature side compressor 23 is compressed to become a high-temperature and high-pressure gaseous low-temperature side refrigerant, and is discharged from the low-temperature side compressor 23 again. Hereinafter, this operation will be repeated.
  • the heat of condensation accompanying the condensation of the low temperature side refrigerant (CO 2 ) sent out from the low temperature side compressor 23 and the high temperature side first refrigeration cycle is performed with the heat of vaporization accompanying the evaporation of the high temperature side first refrigerant (R1234yf) circulating in the unit 3a.
  • the heat of condensation accompanying the condensation of the low temperature side refrigerant (CO 2 ) sent out from the first cascade heat exchanger 41 and flowing in is circulated in the high temperature side second refrigeration cycle unit 3b. Heat exchange is performed with the heat of evaporation accompanying the evaporation of the second refrigerant (R1234yf) on the high temperature side.
  • the low temperature side refrigerant (CO 2 ) sent out from the low temperature side compressor 23 exchanges heat in the first cascade heat exchanger 41 and heat exchange in the second cascade heat exchanger 43.
  • the low-temperature side refrigerant at that temperature flows into the low-temperature side evaporator 31, and heat exchange is performed between the low-temperature side refrigerant that has flowed in and the cooling target.
  • the object to be cooled is cooled to a desired temperature.
  • the high temperature side refrigeration cycle unit arranged in the high temperature side refrigeration cycle circuit 3 is modularized, and in particular, the cascade heat exchanger 40 is modularized.
  • the first cascade heat exchanger 41 and the second cascade heat exchanger 43 are arranged so as to be adjacent to each other in such a manner that the low temperature side refrigerant flowing through the low temperature side refrigeration cycle circuit 5 flows in series. ing. That is, in the first cascade heat exchanger 41 and the second cascade heat exchanger 43, the low temperature side refrigerant flowing through the first cascade heat exchanger 41 and the low temperature refrigerant flowing through the second cascade heat exchanger 43 flow in series. And they are arranged so as to be adjacent to each other.
  • the first cascade heat exchanger 41 has a pair of end face portions and side surface portions arranged between the pair of end faces.
  • the pair of end faces face each other at a distance in the X-axis direction, for example.
  • a refrigerant outflow port 63a of the low temperature side refrigeration cycle circuit 5 is arranged on one end face portion of the pair of end face portions.
  • the refrigerant outflow port 63b of the low temperature side refrigeration cycle circuit 5 is arranged on the other end face portion of the pair of end face portions.
  • a refrigerant pipe 51 of the high temperature side first refrigeration cycle unit 3a is connected to the side surface portion.
  • the second cascade heat exchanger 43 has a pair of end face portions and side surface portions arranged between the pair of end faces.
  • the pair of end faces face each other at a distance in the X-axis direction, for example.
  • a refrigerant outflow port 73a of the low temperature side refrigeration cycle circuit 5 is arranged on one end face portion of the pair of end face portions.
  • the refrigerant outflow port 73b of the low temperature side refrigeration cycle circuit 5 is arranged on the other end face portion of the pair of end face portions.
  • a refrigerant pipe 53 of the second refrigeration cycle unit 3b on the high temperature side is connected to the side surface portion.
  • the refrigerant outflow port 63a and the refrigerant outflow port 63b are arranged at positions where, for example, the coordinates on the YY plane are the same.
  • the refrigerant outflow port 73a and the refrigerant outflow port 73b are arranged at positions where, for example, the coordinates on the YZ plane are the same.
  • the refrigerant outflow port 63b of the first cascade heat exchanger 41 and the refrigerant outflow port 73a of the second cascade heat exchanger 43 face each other in the X-axis direction.
  • the refrigerant outflow port 63b and the refrigerant outflow port 73a can be easily connected, and are connected in series as a flow path of the low temperature side refrigerant.
  • the first cascade heat exchanger 41 and the second cascade heat exchanger 43 are arranged so as to be adjacent to each other. If the refrigerant outflow port 63b and the refrigerant outflow port 73a can be connected, the first cascade heat exchanger 41 and the second cascade heat exchanger 43 may be in contact with each other, and the connection work can be performed. It may be arranged in such a manner that a possible gap is secured.
  • the refrigerating apparatus 1 adopts an arrangement structure in which the two refrigerant inflow ports (refrigerant inflow port and refrigerant outflow port) of the low temperature side refrigerant in the cascade heat exchanger 40 are at the same position (YZ plane). There is. By modularizing the cascade heat exchanger 40 in this way, it is possible to easily cope with an increase or decrease in the number of high temperature side refrigeration cycle units constituting the high temperature side refrigeration cycle circuit 3.
  • the refrigerant outflow port 73b of the second cascade heat exchanger 43 (see FIG. 4).
  • the refrigerant outflow port (not shown) of the third cascade heat exchanger 45 may be connected.
  • the heat exchange areas of the first cascade heat exchanger 41 and the second cascade heat exchanger 43 will be described. As shown in FIG. 6, in the refrigerating apparatus 1 described above, the heat exchange area S2 contributing to heat exchange in the second cascade heat exchanger 43 is the heat exchange area S1 contributing to heat exchange in the first cascade heat exchanger 41. Is set larger than.
  • the low temperature side refrigerant flowing through the low temperature side refrigeration cycle circuit 5 be supercooled. More specifically, in the second cascade heat exchanger 43, it is desirable that the low temperature side refrigerant is supercooled by heat exchange with the high temperature side second refrigerant flowing through the high temperature side second refrigeration cycle unit 3b.
  • the temperature difference between the temperature of the low temperature side refrigerant and the high temperature side second refrigerant is reduced.
  • the first cascade heat exchanger 41 the high temperature low temperature side refrigerant discharged from the low temperature side compressor 23 flows into the first cascade heat exchanger 41. Therefore, the temperature difference between the temperature of the low temperature side refrigerant and the temperature of the high temperature side first refrigerant flowing through the high temperature side first refrigeration cycle unit 3a is larger than the temperature difference in the second cascade heat exchanger 43.
  • the heat exchange amount in the second cascade heat exchanger 43 is in the first cascade heat exchanger 41. It becomes smaller than the heat exchange amount, and the load of the cooling operation of the high temperature side second refrigeration cycle unit 3b and the load of the cooling operation of the high temperature side first refrigeration cycle unit 3a become unbalanced.
  • the heat exchange area S2 in the second cascade heat exchanger 43 is set to be larger than the heat exchange area S1 in the first cascade heat exchanger 41.
  • the second cascade heat exchange The length of the vessel 43 (in the X-axis direction) may be longer than the length of the first cascade heat exchanger 41 (in the X-axis direction).
  • the high-temperature side condenser is not limited to such an embodiment, and for example, as shown in FIG. 7, an integrated heat exchanger is used as the high-temperature side condenser of the high-temperature side refrigeration cycle circuit 3 in the refrigerating apparatus 1. 35 may be used. In this case, in the heat exchanger 35, the pipe through which the high temperature side first refrigerant circulating in the high temperature side first refrigeration cycle unit 3a flows and the high temperature side second refrigerant circulating in the high temperature side second refrigeration cycle unit 3b flow. It should be separated from the piping.
  • the high temperature side refrigeration cycle circuit 3 is modularized by modularizing the first cascade heat exchanger 41 and the second cascade heat exchanger 43.
  • modularizing the first cascade heat exchanger 41 and the second cascade heat exchanger 43 it is possible to reduce the production cost, the assembly cost, and the like.
  • the refrigerant piping of each high temperature side refrigeration cycle unit can be compared with the case where a plurality of high temperature side refrigeration cycle units are simply connected in parallel (tandem connection). It is not necessary to take oil leveling measures to prevent the refrigerating machine oil flowing with the refrigerant from becoming uneven.
  • the pressure of the high temperature side first refrigerant in the high temperature side first refrigeration cycle unit 3a in the high temperature side refrigeration cycle circuit 3 can be reduced.
  • the pressure loss of the high temperature side second refrigerant can be reduced.
  • the low temperature side refrigerant flows through the first cascade heat exchanger 41 and the second cascade heat exchanger 43 in series, so that the flow velocity of the low temperature side refrigerant is maintained and heat is transferred. (Heat exchange) can be promoted.
  • the high temperature side first refrigeration cycle unit 3a Due to the modularization of the high temperature side first refrigeration cycle unit 3a and the high temperature side second refrigeration cycle unit 3b, the high temperature side first refrigeration cycle unit 3a has the high temperature side first condenser 9 and the high temperature side second refrigeration cycle unit 3a. In 3b, the high temperature side second condenser 17 is provided.
  • the high temperature side refrigeration cycle circuit is 1 Compared to the case where two high temperature side condensers are arranged, the flow velocity of the high temperature side first refrigerant flowing through the high temperature side first refrigeration cycle unit 3a and the flow rate of the high temperature side second refrigerant flowing through the high temperature side second refrigeration cycle unit 3b Both flow velocities and flow velocities are secured.
  • the heat exchange performance (heat transfer performance) in the high temperature side first condenser 9 can be promoted, and the heat exchange performance (heat transfer performance) in the high temperature side second condenser 17 can be promoted.
  • the high temperature side refrigerant circulated in each of the high temperature side first refrigeration cycle unit 3a and the high temperature side second refrigeration cycle unit 3b.
  • the amount of (high temperature side first refrigerant and high temperature side second refrigerant) can be reduced.
  • R1234fy or R290 (propane) is taken as an example of the second refrigerant on the high temperature side that circulates in the high temperature side refrigeration cycle circuit 3 on the high temperature side, and the low temperature that circulates in the low temperature side refrigeration cycle circuit 5 is taken as an example.
  • the side refrigerant for example, CO 2 is taken as an example.
  • the type of the refrigerant is not limited to these, and the optimum refrigerant is appropriately used depending on the application and the like.
  • the plate type heat exchanger has been described as an example, but a fin type heat exchanger can also be applied.
  • This disclosure is effectively used for a refrigerating apparatus provided with a high temperature side refrigeration cycle circuit and a low temperature side refrigeration cycle circuit.

Abstract

冷凍装置(1)では、低温側冷凍サイクル回路(5)を循環する低温側冷媒と、高温側第1冷凍サイクルユニット(3a)を循環する高温側第1冷媒との間で熱交換が行われる第1カスケード熱交換器(41)と、低温側冷凍サイクル回路(5)を循環する低温側冷媒と、高温側第2冷凍サイクルユニット(3b)を循環する高温側第2冷媒との間で熱交換が行われる第2カスケード熱交換器(43)とを備えている。第1カスケード熱交換器(41)と第2カスケード熱交換器(43)とは、第1カスケード熱交換器(41)を流れる低温側冷媒と、第2カスケード熱交換器(43)を流れる低温側冷媒とが直列に流れる態様で、互いに隣接するように配置されている。

Description

冷凍装置
 本開示は、冷凍装置に関する。
 家庭用冷凍冷蔵庫、業務用冷凍冷蔵庫、超低温フリーザまたは冷凍冷蔵ショーケース冷却システム等では、成績係数の低下を防いで、低い蒸発温度を実現するために、たとえば、高温側(高元側)の冷凍サイクル回路と、低温側(低元側)の冷凍サイクル回路とによって構成された冷凍装置がある。
 このような冷凍装置では、低温側の冷凍サイクル回路における冷媒の凝縮による凝縮熱と、高温側の冷凍サイクル回路における冷媒の蒸発による蒸発熱とを熱交換させることによって、冷凍運転が行われる(たとえば、特許文献1)。
WO2012/066763A1
 冷凍装置では、冷却する対象に応じて、高温側の冷凍サイクル回路の数が増減される。冷凍サイクル回路の生産コストの低減を図るために、冷凍サイクル回路のモジュール化を図ることが求められている。
 本開示は、そのような開発のもとでなされたものであり、その目的は、モジュール化を図ることができる冷凍装置を提供することである。
 本開示に係る冷凍装置は、高温側冷凍サイクル回路と低温側冷凍サイクル回路と複数のカスケード熱交換器とを有する。高温側冷凍サイクル回路では、高温側冷媒が循環する。低温側冷凍サイクル回路では、低温側冷媒が循環する。複数のカスケード熱交換器では、高温側冷媒と低温側冷媒との間で熱交換が行われる。高温側冷凍サイクル回路は、高温側第1冷凍サイクルユニットと高温側第2冷凍サイクルユニットとを備えている。高温側第1冷凍サイクルユニットでは、高温側冷媒として高温側第1冷媒が循環する。高温側第2冷凍サイクルユニットでは、高温側冷媒として高温側第2冷媒が循環する。複数のカスケード熱交換器は、第1カスケード熱交換器と第2カスケード熱交換器とを備えている。第1カスケード熱交換器では、低温側冷媒と高温側第1冷媒との間で熱交換が行われる。第2カスケード熱交換器では、低温側冷媒と高温側第2冷媒との間で熱交換が行われる。第1カスケード熱交換器と第2カスケード熱交換器とは、第1カスケード熱交換器を流れる低温側冷媒と、第2カスケード熱交換器を流れる低温側冷媒とが直列に流れる態様で、互いに隣接するように配置されている。
 本開示に係る冷凍装置によれば、複数のカスケード熱交換器は、低温側冷凍サイクル回路を循環する低温側冷媒と、高温側第1冷凍サイクルユニットを循環する高温側第1冷媒との間で熱交換が行われる第1カスケード熱交換器と、低温側冷凍サイクル回路を循環する低温側冷媒と、高温側第2冷凍サイクルユニットを循環する高温側第2冷媒との間で熱交換が行われる第2カスケード熱交換器とを備えている。第1カスケード熱交換器と第2カスケード熱交換器とは、第1カスケード熱交換器を流れる低温側冷媒と、第2カスケード熱交換器を流れる低温側冷媒とが直列に流れる態様で、互いに隣接するように配置されている。
 これにより、第1カスケード熱交換器と第2カスケード熱交換器とのモジュール化が図られて、第1カスケード熱交換器と第2カスケード熱交換器とを容易に増減することができる。その結果、冷凍装置の生産コストの抑制に寄与することができる。
実施の形態に係る冷凍装置の冷媒回路の一例を示す図である。 同実施の形態において、冷凍装置の動作を説明するための図である。 同実施の形態において、第1カスケード熱交換器および第2カスケード熱交換器の配置構造の一例を模式的に示す部分斜視図である。 同実施の形態において、第1カスケード熱交換器および第2カスケード熱交換器のそれぞれの構造の一例を示す部分分解斜視図である。 同実施の形態において、冷凍装置におけるカスケード熱交換器の配置構造の他の例を模式的に示す部分斜視図である。 同実施の形態において、第1カスケード熱交換器および第2カスケード熱交換器の配置構造のさらに他の例を模式的に示す部分斜視図である。 同実施の形態において、変形例に係る冷凍装置の冷媒回路の一例を示す図である。
 実施の形態に係る冷凍装置の一例について説明する。はじめに、冷凍装置の冷媒回路の一例について説明する。
 図1に示すように、冷凍装置1は、高温側となる高温側冷凍サイクル回路3と、低温側となる低温側冷凍サイクル回路5とを備えている。高温側冷凍サイクル回路3は、高温側第1冷凍サイクルユニット3aと高温側第2冷凍サイクルユニット3bとを含む。
 高温側第1冷凍サイクルユニット3aは、高温側第1圧縮機7、高温側第1凝縮器9、高温側第1膨張弁11および高温側第1蒸発器13を備えている。高温側第1圧縮機7、高温側第1凝縮器9、高温側第1膨張弁11および高温側第1蒸発器13は、この順に高温側第1冷媒が循環するように、冷媒配管51によって接続されている。その高温側第1冷媒として、たとえば、R1234fyおよびR290(プロパン)のいずれかが使用されている。
 高温側第2冷凍サイクルユニット3bは、高温側第2圧縮機15、高温側第2凝縮器17、高温側第2膨張弁19および高温側第2蒸発器21を備えている。高温側第2圧縮機15、高温側第2凝縮器17、高温側第2膨張弁19および高温側第2蒸発器21は、この順に高温側第2冷媒が循環するように、冷媒配管53によって接続されている。その高温側第2冷媒として、たとえば、R1234fyおよびR290(プロパン)のいずれかが使用されている。
 低温側冷凍サイクル回路5は、低温側圧縮機23、低温側第1凝縮器25、低温側第2凝縮器27、低温側膨張弁29および低温側蒸発器31を備えている。低温側圧縮機23、低温側第1凝縮器25、低温側第2凝縮器27、低温側膨張弁29および低温側蒸発器31は、この順に低温側冷媒が循環するように、冷媒配管55によって接続されている。その低温側冷媒として、たとえば、COが使用されている。
 高温側第1蒸発器13と低温側第1凝縮器25とは、高温側第1蒸発器13を流れる高温側第1冷媒と、低温側第1凝縮器25を流れる低温側冷媒との間で熱交換を行う第1カスケード熱交換器41として一体的に形成されている。第1カスケード熱交換器41は、たとえば、プレートを積層させたプレート型熱交換器である。一つのプレートを挟んで、一方側に高温側第1冷媒を流し、他方側に低温側冷媒を流すことで、高温側第1冷媒と低温側冷媒との間で熱交換が行われる。
 高温側第2蒸発器21と低温側第2凝縮器27とは、高温側第2蒸発器21を流れる高温側第2冷媒と、低温側第2凝縮器27を流れる低温側冷媒との間で熱交換を行う第2カスケード熱交換器43として一体的に形成されている。第2カスケード熱交換器43は、たとえば、プレートを積層させたプレート型熱交換器である。一つのプレートを挟んで、一方側に高温側第2冷媒を流し、他方側に低温側冷媒を流すことで、高温側第2冷媒と低温側冷媒との間で熱交換が行われる。
 冷凍装置1では、たとえば、冷却対象等に応じて高温側冷凍サイクル回路3を構成する高温側冷凍サイクルユニットの数が増減される。上述した冷凍装置1では、配置される高温側冷凍サイクルユニットのモジュール化が図られている。これについては後述する。
 次に、上述した冷凍装置1の動作(冷却動作)について説明する。まず、高温側冷凍サイクル回路3の動作について説明する。高温側第1冷凍サイクルユニット3aと高温側第2冷凍サイクルユニット3bとは、冷却動作としては同じ動作を行うため、代表として、高温側第1冷凍サイクルユニット3aの動作について説明する。
 図2に示すように、高温側第1圧縮機7を駆動させることによって、高温側第1圧縮機7から高温高圧のガス状の高温側第1冷媒が吐出する(矢印Y1参照)。吐出した高温側第1冷媒(単相)は、高温側第1凝縮器9に流れ込む。高温側第1凝縮器9では、流れ込んだ高温側第1冷媒と、送風機等(図示せず)から送り込まれる空気、または、ポンプ等(図示せず)から送り込まれる水等との間で熱交換が行われる。この熱交換によって、高温高圧の高温側第1冷媒は凝縮し、高圧の液状の高温側第1冷媒(単相)となって、高温側第1凝縮器9から送り出される。
 高温側第1凝縮器9から送り出された高圧の高温側第1冷媒は、高温側第1膨張弁11によって、低圧のガス状の高温側第1冷媒と液状の高温側第1冷媒との二相状態の高温側第1冷媒になる。二相状態の高温側第1冷媒は、第1カスケード熱交換器41(高温側第1蒸発器13)に流れ込む。
 第1カスケード熱交換器41では、流れ込んだ高温側第1冷媒と、低温側冷凍サイクル回路5を流れる低温側冷媒との間で熱交換が行われる。この熱交換によって、二相状態の高温側第1冷媒のうち、液状の高温側第1冷媒が蒸発して、低圧のガス状の高温側第1冷媒(単相)となって、第1カスケード熱交換器41(高温側第1蒸発器13)から送り出される。
 第1カスケード熱交換器41から送り出された低圧の高温側第1冷媒は、高温側第1圧縮機7に流れ込む。高温側第1圧縮機7に流れ込んだ低圧の高温側第1冷媒は、圧縮されて高温高圧のガス状の高温側第1冷媒となって、再び高温側第1圧縮機7から吐出する。以下、この動作が繰り返されることになる(高温側第2冷凍サイクルユニット3bの高温側第2冷媒の流れについては、矢印Y2を参照)。
 次に、低温側冷凍サイクル回路5の動作について説明する。低温側圧縮機23を駆動させることによって、低温側圧縮機23から高温高圧のガス状の低温側冷媒が吐出する(矢印Y3参照)。吐出した低温側冷媒(単相)は、第1カスケード熱交換器41(低温側第1凝縮器25)に流れ込む。
 第1カスケード熱交換器41では、流れ込んだ低温側冷媒と、高温側第1冷凍サイクルユニット3aを流れる高温側第1冷媒との間で熱交換が行われる。この熱交換により、高温高圧の低温側冷媒は、一定の温度にまで冷却されて、第1カスケード熱交換器41から送り出される。第1カスケード熱交換器41から送り出された低温側冷媒は、第2カスケード熱交換器43(低温側第2凝縮器27)へ流れ込む。
 第2カスケード熱交換器43では、流れ込んだ低温側冷媒と、高温側第2冷凍サイクルユニット3bを流れる高温側第2冷媒との間で熱交換が行われる。この熱交換により、高圧の低温側冷媒は、さらに低い温度にまで冷却されて、第2カスケード熱交換器43から送り出される。
 第2カスケード熱交換器43から送り出された高圧の低温側冷媒は、低温側膨張弁29によって、低圧のガス状の低温側冷媒と液状の低温側冷媒との二相状態の低温側冷媒になる。二相状態の低温側冷媒は、低温側蒸発器31に流れ込む。
 低温側蒸発器31では、流れ込んだ二相状態の低温側冷媒と、冷却対象との間で熱交換が行われる。この熱交換により、二相状態の低温側冷媒は、二相状態の低温側冷媒のうち、液状の低温側冷媒が蒸発して、低圧のガス状の低温側冷媒(単相)となって、低温側蒸発器31から送り出される。
 低温側蒸発器31から送り出された低圧の低温側冷媒は、低温側圧縮機23に流れ込む。低温側圧縮機23に流れ込んだ低圧の低温側冷媒は、圧縮されて高温高圧のガス状の低温側冷媒となって、再び低温側圧縮機23から吐出する。以下、この動作が繰り返されることになる。
 冷凍装置1では、この一連の動作により、第1カスケード熱交換器41において、低温側圧縮機23から送り出された低温側冷媒(CO)の凝縮に伴う凝縮熱と、高温側第1冷凍サイクルユニット3aを循環する高温側第1冷媒(R1234yf)の蒸発に伴う蒸発熱との間で熱交換が行われる。さらに、第2カスケード熱交換器43において、第1カスケード熱交換器41から送り出されて流れ込んだ低温側冷媒(CO)の凝縮に伴う凝縮熱と、高温側第2冷凍サイクルユニット3bを循環する高温側第2冷媒(R1234yf)の蒸発に伴う蒸発熱との間で熱交換が行われる。
 こうして、低温側冷凍サイクル回路5では、低温側圧縮機23から送り出された低温側冷媒(CO)が、第1カスケード熱交換器41における熱交換と、第2カスケード熱交換器43における熱交換との二段階の熱交換によって、たとえば、マイナス数十℃程度の低温側冷媒となる。その温度となった低温側冷媒が、低温側蒸発器31に流れ込み、流れ込んだ低温側冷媒と冷却対象との間で熱交換が行われる。この熱交換により、冷却対象は所望の温度にまで冷却されることになる。
 上述した冷凍装置1では、高温側冷凍サイクル回路3に配置される高温側冷凍サイクルユニットのモジュール化が図られており、特に、カスケード熱交換器40のモジュール化が図られている。
 図3に示すように、第1カスケード熱交換器41と第2カスケード熱交換器43とは、低温側冷凍サイクル回路5を流れる低温側冷媒が直列に流れる態様で、互いに隣接するように配置されている。すなわち、第1カスケード熱交換器41と第2カスケード熱交換器43とは、第1カスケード熱交換器41を流れる低温側冷媒と第2カスケード熱交換器43を流れる低温冷媒とが直列に流れる態様で、互いに隣接するように配置されている。
 図4に示すように、第1カスケード熱交換器41は、一対の端面部と、その一対の端面間に配置された側面部とを有する。一対の端面部は、たとえば、X軸方向に距離を隔てて互いに対向する。一対の端面部のうちの一方の端面部には、低温側冷凍サイクル回路5の冷媒流出入口63aが配置されている。一対の端面部のうちの他方の端面部には、低温側冷凍サイクル回路5の冷媒流出入口63bが配置されている。側面部には、高温側第1冷凍サイクルユニット3aの冷媒配管51が接続される。
 第2カスケード熱交換器43は、一対の端面部と、その一対の端面間に配置された側面部とを有する。一対の端面部は、たとえば、X軸方向に距離を隔てて互いに対向する。一対の端面部のうちの一方の端面部には、低温側冷凍サイクル回路5の冷媒流出入口73aが配置されている。一対の端面部のうちの他方の端面部には、低温側冷凍サイクル回路5の冷媒流出入口73bが配置されている。側面部には、高温側第2冷凍サイクルユニット3bの冷媒配管53が接続される。
 第1カスケード熱交換器41では、冷媒流出入口63aと冷媒流出入口63bとは、たとえば、Y-Z平面における座標が同じ座標となる位置に配置されている。第2カスケード熱交換器43では、冷媒流出入口73aと冷媒流出入口73bとは、たとえば、Y-Z平面における座標が同じ座標となる位置に配置されている。
 このような配置関係により、第1カスケード熱交換器41と第2カスケード熱交換器43とを、たとえば、X軸方向に沿って配置させる場合に、第1カスケード熱交換器41の冷媒流出入口63bと、第2カスケード熱交換器43の冷媒流出入口73aとが、X軸方向に向かい合うことになる。これにより、冷媒流出入口63bと冷媒流出入口73aとを容易に接続することができ、低温側冷媒の流路として直列に接続される。
 X軸方向に向かい合う冷媒流出入口63bと冷媒流出入口73aとを接続することで、第1カスケード熱交換器41と第2カスケード熱交換器43とは、隣接するように配置されることになる。なお、冷媒流出入口63bと冷媒流出入口73aとを接続することができれば、第1カスケード熱交換器41と第2カスケード熱交換器43とは接触していてもよいし、接続作業を行うことが可能な隙間が確保される態様で配置されていてもよい。
 このように、冷凍装置1では、カスケード熱交換器40における低温側冷媒の2つの冷媒流出入口(冷媒流入口と冷媒流出口)を同じ位置(Y-Z平面)とする配置構造が採用されている。カスケード熱交換器40について、このようなモジュール化を図ることで、高温側冷凍サイクル回路3を構成する高温側冷凍サイクルユニットの数の増減に対して、容易に対応することができる。
 図5に示すように、たとえば、高温側冷凍サイクルユニットとして、さらに、高温側第3冷凍サイクル回路3cを設置する場合には、第2カスケード熱交換器43の冷媒流出入口73b(図4参照)と第3カスケード熱交換器45の冷媒流出入口(図示せず)とを接続すればよい。
 次に、第1カスケード熱交換器41および第2カスケード熱交換器43のそれぞれの熱交換面積について説明する。図6に示すように、上述した冷凍装置1では、第2カスケード熱交換器43において熱交換に寄与する熱交換面積S2は、第1カスケード熱交換器41において熱交換に寄与する熱交換面積S1よりも大きく設定されている。
 成績係数の向上のために、低温側冷凍サイクル回路5を流れる低温側冷媒は、過冷却となることが望ましい。より具体的には、第2カスケード熱交換器43において、低温側冷媒が、高温側第2冷凍サイクルユニット3bを流れる高温側第2冷媒との熱交換によって、過冷却となることが望ましい。
 ところが、第2カスケード熱交換器43では、低温側冷媒を過冷却にするため、低温側冷媒の温度と高温側第2冷媒との温度差が縮まることになる。一方、第1カスケード熱交換器41では、低温側圧縮機23から吐出した高温の低温側冷媒が流れ込む。このため、低温側冷媒の温度と、高温側第1冷凍サイクルユニット3aを流れる高温側第1冷媒の温度との温度差は、第2カスケード熱交換器43における温度差に比べて大きくなる。
 そうすると、第1カスケード熱交換器41および第2カスケード熱交換器43のそれぞれの熱交換面積が同じであれば、第2カスケード熱交換器43における熱交換量は、第1カスケード熱交換器41における熱交換量よりも少なくなり、高温側第2冷凍サイクルユニット3bの冷却運転の負荷と高温側第1冷凍サイクルユニット3aの冷却運転の負荷とが、アンバランスになる。
 そこで、第2カスケード熱交換器43における熱交換量を増加させて、高温側第2冷凍サイクルユニット3bの冷却運転の負荷を高温側第1冷凍サイクルユニット3aの冷却運転の負荷に近づけるために、第2カスケード熱交換器43における熱交換面積S2は、第1カスケード熱交換器41における熱交換面積S1よりも大きくなるように設定されている。
 たとえば、第1カスケード熱交換器41および第2カスケード熱交換器43のそれぞれにおける単位長さ(X軸方(図4参照))あたりの熱交換面積が同じであるとすると、第2カスケード熱交換器43の長さ(X軸方向)は、第1カスケード熱交換器41の長さ(X軸方向)よりも長くすればよい。
 (変形例)
 上述した冷凍装置1では、高温側第1冷凍サイクルユニット3aは、高温側第1凝縮器9を備え、高温側第2冷凍サイクルユニット3bは、高温側第2凝縮器17を備えた場合について説明した。すなわち、高温側冷凍サイクルユニットのそれぞれが、高温側凝縮器を備えた場合について説明した。
 高温側凝縮器としてはこのような態様に限られるものではなく、たとえば、図7に示すように、冷凍装置1における高温側冷凍サイクル回路3の高温側凝縮器として、一体化された熱交換器35を使用してもよい。この場合には、熱交換器35において、高温側第1冷凍サイクルユニット3aを循環する高温側第1冷媒が流れる配管と、高温側第2冷凍サイクルユニット3bを循環する高温側第2冷媒が流れる配管とを分けておけばよい。
 上述した実施の形態に係る冷凍装置1では、第1カスケード熱交換器41および第2カスケード熱交換器43のモジュール化によって、高温側冷凍サイクル回路3のモジュール化が図られている。第1カスケード熱交換器41および第2カスケード熱交換器43のモジュール化を図ることで、生産コストまたは組み立てコスト等の削減を図ることができる。
 また、高温側冷凍サイクル回路3のモジュール化を図ることで、複数の高温側冷凍サイクルユニットを、単に並列に接続(タンデム接続)させる場合と比べて、それぞれの高温側冷凍サイクルユニットの冷媒配管に冷媒とともに流れる冷凍機油が不均一になるのを防ぐ均油対策が不要になる。
 さらに、第1カスケード熱交換器41と第2カスケード熱交換器43とがモジュール化されることで、高温側冷凍サイクル回路3における高温側第1冷凍サイクルユニット3aでは、高温側第1冷媒の圧力損失を低減することができる。高温側第2冷凍サイクルユニット3bでは、高温側第2冷媒の圧力損失を低減ことができる。
 一方、低温側冷凍サイクル回路5では、低温側冷媒が、第1カスケード熱交換器41と第2カスケード熱交換器43とを直列に流れることで、低温側冷媒の流速が保持されて、伝熱(熱交換)を促進させることができる。
 高温側第1冷凍サイクルユニット3aと高温側第2冷凍サイクルユニット3bとのモジュール化により、高温側第1冷凍サイクルユニット3aでは高温側第1凝縮器9を有し、高温側第2冷凍サイクルユニット3bでは、高温側第2凝縮器17を有する。
 冷却運転が低負荷の場合において、高温側第1冷凍サイクルユニット3aおよび高温側第2冷凍サイクルユニット3bのいずれかを冷却運転させる場合(片サイクル運転時)においては、高温側冷凍サイクル回路において1つの高温側凝縮器が配置されている場合と比べると、高温側第1冷凍サイクルユニット3aを流れる高温側第1冷媒の流速と、高温側第2冷凍サイクルユニット3bを流れる高温側第2冷媒の流速との双方の流速が確保される。
 これにより、高温側第1凝縮器9における熱交換性能(伝熱性能)を促進させることができるとともに、高温側第2凝縮器17における熱交換性能(伝熱性能)を促進させることができる。
 また、高温側第1冷凍サイクルユニット3aと高温側第2冷凍サイクルユニット3bとのモジュール化により、高温側第1冷凍サイクルユニット3aおよび高温側第2冷凍サイクルユニット3bのそれぞれにおいて循環させる高温側冷媒(高温側第1冷媒および高温側第2冷媒)の量を減らすことができる。
 高温側第1冷凍サイクルユニット3aおよび高温側第2冷凍サイクルユニット3bのそれぞれにおいて循環させる高温側冷媒の量を減らすことができることで、たとえば、高温側冷媒を貯溜するアキュムレータが不要になる。
 また、高温側第1冷凍サイクルユニット3aおよび高温側第2冷凍サイクルユニット3bのそれぞれにおいて循環させる高温側冷媒の量を減らすことができることで、高温側冷媒として、上述したように、プロパン等の燃焼性の冷媒を使用することができる。
 なお、上述した冷凍装置1では、高温側となる高温側冷凍サイクル回路3を循環する高温側第2冷媒として、R1234fyまたはR290(プロパン)を例に挙げ、低温側冷凍サイクル回路5を循環する低温側冷媒として、たとえば、COを例に挙げた。冷媒の種類としては、これらに限られるものではなく、用途等に応じて最適な冷媒が適宜使用される。また、第1カスケード熱交換器41および第2カスケード熱交換器43として、プレート型熱交換器を例に挙げて説明したが、フィン型熱交換器も適用することが可能である。
 実施の形態において説明した冷凍装置の構成については、必要に応じて種々組み合わせることが可能である。
 今回開示された実施の形態は例示であってこれに制限されるものではない。本開示は上記で説明した範囲ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲でのすべての変更が含まれることが意図される。
 本開示は、高温側冷凍サイクル回路と低温側冷凍サイクル回路とを備えた冷凍装置に有効に利用される。
 1 冷凍装置、3 高温側冷凍サイクル回路、3a 高温側第1冷凍サイクルユニット、7 高温側第1圧縮機、9 高温側第1凝縮器、11 高温側第1膨張弁、13 高温側第1蒸発器、3b 高温側第2冷凍サイクルユニット、15 高温側第2圧縮機、17 高温側第2凝縮器、19 高温側第2膨張弁、21 高温側第2蒸発器、3c 高温側第3冷凍サイクルユニット、5 低温側冷凍サイクル回路、23 低温側圧縮機、25 低温側第1凝縮器、27 低温側第2凝縮器、29 低温側膨張弁、31 低温側蒸発器、35 一体型熱交換器、40 カスケード熱交換器、41 第1カスケード熱交換器、43 第2カスケード熱交換器、45 第3カスケード熱交換器、51、53、55 冷媒配管、61、63 冷媒流路、63a、63b 冷媒流出入口、71、73 冷媒流路、73a、73b 冷媒流出入口。

Claims (4)

  1.  高温側冷媒が循環する高温側冷凍サイクル回路と、
     低温側冷媒が循環する低温側冷凍サイクル回路と、
     前記高温側冷媒と前記低温側冷媒との間で熱交換が行われる複数のカスケード熱交換器と
    を有し、
     前記高温側冷凍サイクル回路は、
     前記高温側冷媒として高温側第1冷媒が循環する高温側第1冷凍サイクルユニットと、
     前記高温側冷媒として高温側第2冷媒が循環する高温側第2冷凍サイクルユニットと
    を備え、
     複数の前記カスケード熱交換器は、
     前記低温側冷媒と前記高温側第1冷媒との間で熱交換が行われる第1カスケード熱交換器と、
     前記低温側冷媒と前記高温側第2冷媒との間で熱交換が行われる第2カスケード熱交換器と
    を備え、
     前記第1カスケード熱交換器と前記第2カスケード熱交換器とは、前記第1カスケード熱交換器を流れる前記低温側冷媒と、前記第2カスケード熱交換器を流れる前記低温側冷媒とが直列に流れる態様で、互いに隣接するように配置された、冷凍装置。
  2.  前記低温側冷凍サイクル回路は、前記低温側冷媒を圧縮する低温側圧縮機を含み、
     前記低温側圧縮機から送り出される前記低温側冷媒の流れに対して、
     前記第1カスケード熱交換器は、前記低温側冷媒の流れの上流側に位置し、
     前記第2カスケード熱交換器は、前記低温側冷媒の流れの下流側に位置し、
     前記第1カスケード熱交換器は、前記低温側冷媒と前記高温側第1冷媒との間で行われる熱交換に寄与する第1熱交換面積を有し、
     前記第2カスケード熱交換器は、前記低温側冷媒と前記高温側第2冷媒との間で行われる熱交換に寄与する第2熱交換面積を有し、
     前記第2熱交換面積は前記第1熱交換面積よりも大きい、請求項1記載の冷凍装置。
  3.  前記低温側冷媒は、COであり、
     前記高温側冷媒は、R1234yfおよびR290のいずれかである、請求項1または2に記載の冷凍装置。
  4.  前記第1カスケード熱交換器および前記第2カスケード熱交換器は、プレートが積層されたプレート型である、請求項1~3のいずれか1項に記載の冷凍装置。
PCT/JP2020/032196 2020-08-26 2020-08-26 冷凍装置 WO2022044168A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/032196 WO2022044168A1 (ja) 2020-08-26 2020-08-26 冷凍装置
JP2022544971A JPWO2022044168A1 (ja) 2020-08-26 2020-08-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/032196 WO2022044168A1 (ja) 2020-08-26 2020-08-26 冷凍装置

Publications (1)

Publication Number Publication Date
WO2022044168A1 true WO2022044168A1 (ja) 2022-03-03

Family

ID=80352839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032196 WO2022044168A1 (ja) 2020-08-26 2020-08-26 冷凍装置

Country Status (2)

Country Link
JP (1) JPWO2022044168A1 (ja)
WO (1) WO2022044168A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7299395B1 (ja) 2022-09-09 2023-06-27 コベルコ・コンプレッサ株式会社 冷凍装置
WO2024023986A1 (ja) * 2022-07-27 2024-02-01 三菱電機株式会社 二元冷凍装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179949A (ja) * 1984-09-27 1986-04-23 株式会社東芝 空気調和機
WO2012066763A1 (ja) * 2010-11-15 2012-05-24 三菱電機株式会社 冷凍装置
WO2015133622A1 (ja) * 2014-03-07 2015-09-11 三菱電機株式会社 冷凍サイクル装置
DE102014018524A1 (de) * 2014-12-12 2015-12-03 Audi Ag Klimaanlage für Fahrzeuge
WO2016147389A1 (ja) * 2015-03-19 2016-09-22 三菱電機株式会社 ヒートポンプシステム
JP2018194183A (ja) * 2017-05-12 2018-12-06 株式会社ニシヤマ 冷却装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179949A (ja) * 1984-09-27 1986-04-23 株式会社東芝 空気調和機
WO2012066763A1 (ja) * 2010-11-15 2012-05-24 三菱電機株式会社 冷凍装置
WO2015133622A1 (ja) * 2014-03-07 2015-09-11 三菱電機株式会社 冷凍サイクル装置
DE102014018524A1 (de) * 2014-12-12 2015-12-03 Audi Ag Klimaanlage für Fahrzeuge
WO2016147389A1 (ja) * 2015-03-19 2016-09-22 三菱電機株式会社 ヒートポンプシステム
JP2018194183A (ja) * 2017-05-12 2018-12-06 株式会社ニシヤマ 冷却装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024023986A1 (ja) * 2022-07-27 2024-02-01 三菱電機株式会社 二元冷凍装置
JP7299395B1 (ja) 2022-09-09 2023-06-27 コベルコ・コンプレッサ株式会社 冷凍装置
WO2024053121A1 (ja) * 2022-09-09 2024-03-14 コベルコ・コンプレッサ株式会社 冷凍装置

Also Published As

Publication number Publication date
JPWO2022044168A1 (ja) 2022-03-03

Similar Documents

Publication Publication Date Title
KR101638675B1 (ko) 복합 이원 냉동 사이클 장치
KR101755456B1 (ko) 열교환기
WO2022044168A1 (ja) 冷凍装置
CN101939601A (zh) 制冷系统以及用于制冷的方法
KR20150051594A (ko) 냉장고의 냉각 사이클
JP2005077088A (ja) 凝縮機
JP6472379B2 (ja) エネルギー変換システム
KR101173157B1 (ko) 수냉식 응축기 및 과냉각용 수냉식 열교환기를 구비하는 차량용 공조 시스템
CN111801538A (zh) 热交换器单元和使用它的空气调节机
JP3438000B2 (ja) 空気調和機
JP2013242126A (ja) 熱交換器、および熱を移動させる方法
WO2017029534A1 (en) Reversible liquid suction gas heat exchanger
KR101138970B1 (ko) 공랭식 냉매 증발 응축기를 이용한 제상 시스템
US20230128871A1 (en) Heat exchanger, outdoor unit, and refrigeration cycle device
KR20210096521A (ko) 공기 조화 장치
CN115597130A (zh) 室外机及多功能水源机
KR20100032198A (ko) 공기조화기
WO2021106084A1 (ja) 冷凍サイクル装置
CN110285603B (zh) 热交换器和使用其的制冷系统
JP4814823B2 (ja) 冷凍装置
KR100805424B1 (ko) 이중 유로 응축기 및 이를 이용한 냉동장치
KR20150133966A (ko) 냉방 시스템
JP6827179B2 (ja) 熱交換器及びそれを用いた冷凍システム
JP7399286B2 (ja) 熱交換器および冷凍サイクル装置
CN216620339U (zh) 制冷及融霜系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951422

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022544971

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951422

Country of ref document: EP

Kind code of ref document: A1