WO2022042521A1 - 显示屏幕的检测方法及检测装置 - Google Patents

显示屏幕的检测方法及检测装置 Download PDF

Info

Publication number
WO2022042521A1
WO2022042521A1 PCT/CN2021/114229 CN2021114229W WO2022042521A1 WO 2022042521 A1 WO2022042521 A1 WO 2022042521A1 CN 2021114229 W CN2021114229 W CN 2021114229W WO 2022042521 A1 WO2022042521 A1 WO 2022042521A1
Authority
WO
WIPO (PCT)
Prior art keywords
display screen
light source
value
color
color channel
Prior art date
Application number
PCT/CN2021/114229
Other languages
English (en)
French (fr)
Inventor
黄灿
高洪成
鲍建东
史大为
杨璐
王文涛
马炜涛
Original Assignee
京东方科技集团股份有限公司
重庆京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 重庆京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US18/042,857 priority Critical patent/US20240027343A1/en
Priority to EP21860356.1A priority patent/EP4206639A1/en
Publication of WO2022042521A1 publication Critical patent/WO2022042521A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/504Goniometric colour measurements, for example measurements of metallic or flake based paints
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/005Testing of complete machines, e.g. washing-machines or mobile phones
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/70Testing, e.g. accelerated lifetime tests
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/506Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors measuring the colour produced by screens, monitors, displays or CRTs

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a detection method and detection device of a display screen, and more particularly, to a quantitative evaluation method for color separation and hue of reflected light in a screen-off state of a display screen.
  • the display screen such as LCD display screen, OLED display screen, etc.
  • the reflected light will have color separation phenomenon, which affects the use experience of the display screen.
  • the human vision is used to roughly judge the degree of color separation phenomenon.
  • the color separation and hue quantization values of the reflected light are calculated In the step of calculating multiple color separation and hue quantization values
  • the detection method further includes: calculating the plurality of color separation and hue quantization values average value and in judging the color separation and hue quantization values based on Whether it is in the preset range of the quantified value, in the step of determining whether the display screen is qualified, based on judging the average value Whether it is within the preset range of the quantization value, it is determined whether the display screen is qualified.
  • the color separation and hue quantization values of the reflected light are calculated In the step of calculating multiple color separation and hue quantization values
  • the detection method further includes: determining the plurality of color separation and hue quantization values the maximum value of and in judging the color separation and hue quantization values based on Whether it is in the preset range of the quantization value, in the step of determining whether the display screen is qualified, based on judging the maximum value Whether it is within the preset range of the quantization value, it is determined whether the display screen is qualified.
  • the light source is a point light source
  • the display screen includes at least one test point located on the surface of the display screen
  • the using the light source to incident light on the surface of the display screen includes: using the point light source to emit the light Incident on the at least one test point
  • the using the detector to measure the first color channel value a and the second color channel value b of the reflected light includes: for each test point, at the point light source and where the test point is located in a plane perpendicular to the display screen, rotating the detector around the test point to obtain a plurality of measurement positions; and using the detector to obtain the first color channel of the reflected light at the plurality of measurement positions respectively value a and second color channel value b, which computes multiple color separation and hue quantization values
  • the method includes: calculating the color separation and hue quantization values respectively for the first color channel value a and the second color channel value b of the reflected light at the plurality of measurement positions to obtain the plurality of color separation and hue quantization values
  • the incident angle of the light emitted by the point light source to the display screen is 30° ⁇ 60°.
  • the at least one test point includes a plurality of test points, and the plurality of test points are distributed in a matrix, and the center of the matrix coincides with the center of the display screen.
  • the orthographic projection of the light emitted by the point light source incident on the display screen on the display screen is parallel to, perpendicular to, or at a predetermined acute angle with the length direction of the display screen.
  • the light source is a line light source parallel to the display screen
  • the display screen includes at least one test line located on the surface of the display screen, and each test line includes a plurality of test points
  • the use of a light source Incident light on the surface of the display screen includes: using the line light source to inject the light on the at least one test line
  • using a detector to measure the first color channel value a and the second color channel value b of the reflected light includes: : For each test line, move the detector along the extending direction parallel to the test line, and for each test point on each test line, at the test line where the test point is located and perpendicular to the test line and rotate the detector around the test point to obtain a plurality of measurement positions
  • the method includes: calculating the color separation and hue quantization values respectively for the first color channel value a and the
  • the incident angle of the light emitted by the line light source to the display screen is 30° ⁇ 60°.
  • the at least one test line includes a plurality of test lines, and the plurality of test lines are parallel to each other and are evenly distributed on the display screen.
  • test line and the length direction of the display screen are parallel, perpendicular, and/or form a predetermined acute angle.
  • the light source is a surface light source parallel to the display screen, and the orthographic projection of the center of the surface light source on the display screen coincides with the center of the display screen surface;
  • Incident light on the surface of the display screen includes: using the surface light source to make the light incident on the entire surface of the display screen; using a detector to measure the first color channel value a and the second color channel value b of the reflected light includes: : in a plane parallel to the display screen surface, rotate the detector around the line connecting the center of the surface light source and the center of the display screen surface to obtain a plurality of rotational positions, and for each rotational position , in the rotation position and the center of the display screen surface and in a plane perpendicular to the display screen, rotate the detector around the center of the display screen surface to obtain a plurality of measurement positions;
  • the device obtains the first color channel value a and the second color channel value b of the reflected light at the plurality of measurement positions respectively, and calculates the plurality of color separation and hue quantization values
  • the light source is a color mixing light source including at least two different colors.
  • the light source is a white light source.
  • Some embodiments of the present disclosure provide a detection apparatus for a display screen, including: a light source configured to incident light on a surface of the display screen to form diffuse reflection, the light source including an initial first color channel value a1 and an initial second color a channel b1; a detector configured to measure the first color channel value a and the second color channel value b of the reflected light; and a processor configured to perform each step of the detection method described in the foregoing embodiments.
  • Some embodiments of the present disclosure provide a detection system for a display screen, including the detection device and the display screen described in the foregoing embodiments.
  • the display screen includes an OLED display panel
  • the OLED display panel includes: a substrate; a plurality of pixels, arranged in an array on the substrate; an encapsulation layer, which is located away from the substrate from the plurality of pixels one side of the material and cover the plurality of pixels; the color filter layer is disposed on the side of the encapsulation layer away from the plurality of pixels.
  • FIG. 1 is a schematic structural diagram of an OLED display using COE technology according to some embodiments of the present disclosure
  • FIG. 2 is a flowchart of a method for quantitative evaluation of reflected light color separation and hue according to some embodiments of the present disclosure
  • Fig. 3 is the plan view of Lab color space
  • FIG. 4 is a flow chart of measuring and determining the color separation and hue of reflected light at a single measurement location according to some embodiments of the present disclosure
  • FIG. 5 is a schematic diagram of a scene for measuring the a-value and b-value of the Lab color space of reflected light reflected by a display screen according to some embodiments of the present disclosure, wherein a point light source is used to illuminate the display screen;
  • FIG. 6 is a schematic plan view of a plurality of test points distributed on a display screen according to some embodiments of the present disclosure
  • FIG. 7 shows that the light of the point light source is incident on the display screen and the orthographic projection of the incident path on the display screen is at multiple angles with respect to the length direction of the display screen;
  • FIG. 8 is a schematic diagram of a scene for measuring a-value and b-value of the Lab color space of reflected light reflected by a display screen according to some embodiments of the present disclosure, wherein a line light source is used to illuminate the display screen;
  • FIG. 9 is a schematic plan view of a plurality of test lines distributed on a display screen according to some embodiments of the present disclosure.
  • FIG. 10 shows a schematic diagram of a scene for measuring the a-value and b-value of the Lab color space of reflected light reflected by a display screen according to some embodiments of the present disclosure, wherein a surface light source is used to illuminate the display screen;
  • FIG. 11 is a structural block diagram of an apparatus for detecting a display screen according to some embodiments of the present disclosure.
  • the expressions “located on the same layer” and “disposed on the same layer” generally mean that the first part and the second part may use the same material and may be formed by the same patterning process.
  • the expressions “located on different layers”, “disposed of different layers” generally mean that the first part and the second part are formed by different patterning processes.
  • FIG. 1 shows a schematic structural diagram of an OLED display using COE technology according to some embodiments of the present disclosure. As shown in FIG. 1 , the display panel is used as a display panel.
  • the screen includes a substrate 10 and pixels P arranged on the substrate 10 in an array, and each pixel P includes a first electrode 11 , a light-emitting functional layer 12 and a second electrode 13 arranged away from the substrate in sequence.
  • the first electrode 11 is, for example, an anode, which can be made of a metal material
  • the light-emitting functional layer 12 includes, for example, a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer disposed away from the first electrode 11 in sequence.
  • the display panel further includes an encapsulation layer 14 , and the encapsulation layer 14 covers the pixels P on the substrate 10 .
  • the array of color filter layers 16 is disposed on the encapsulation layer 14 and includes a first color filter layer 161 , a second color filter layer 162 and a third color filter layer 163 .
  • the first color film layer 161 , the second color film layer 162 and the third color film layer 163 are, for example, a red color film layer, a green color film layer, and a blue color film layer, respectively.
  • Each color filter layer corresponds to a pixel P.
  • the orthographic projection of the color filter layer 16 on the substrate 10 falls within the orthographic projection of the corresponding pixel P on the substrate 10, or the corresponding pixel P is on the substrate.
  • the orthographic projections on 10 coincide.
  • a black matrix 15 is disposed between adjacent color filter layers 16 .
  • the display panel further includes a protective layer 17 disposed on the side of the black matrix 15 and the color filter layer 16 away from the substrate 10 .
  • a protective layer 17 disposed on the side of the black matrix 15 and the color filter layer 16 away from the substrate 10 .
  • FIG. 2 is a quantitative evaluation of reflected light color separation and hue according to some embodiments of the present disclosure. Flowchart of the method. As shown in Figure 2, the quantitative evaluation method of reflected light color separation and hue includes the following steps:
  • whether the display screen is qualified may be determined based on judging whether the color separation value l ab of the reflected light is within a preset range of color separation values.
  • Figure 3 is a plan view of the Lab color space.
  • the abscissa a represents the value of the first color channel
  • the positive direction represents red
  • the negative direction represents green
  • the ordinate b represents the second color channel value
  • its positive direction represents yellow
  • its negative direction represents blue
  • the first color channel value a and the second color channel value b representing colors are involved, and the L value representing bright colors is not involved.
  • lab is used to quantify the severity of the color separation phenomenon, where Its mathematical meaning is the distance from the color coordinate point to the color coordinate of the light source, as shown in FIG. 3 .
  • the incident light source in this embodiment may be a color-mixing light source including at least two different colors, and the color coordinates of the color-mixing light source are (a1, b1).
  • the light source may be a white light source, and the first color of the white light source The channel value a1 is about 0, and the second color channel value b1 of the white light source is about 0. At this time, the color coordinate of the white light source can be considered as (0, 0).
  • the color separation and hue of the reflected light reflected by the display screen can be quantitatively evaluated.
  • the positive or negative value of the value indicates the hue information, If the value is positive, it means that the reflected light is warm light, If the value is negative, it means that the reflected light is cool light;
  • the magnitude of the value indicates the degree of color separation, Larger values indicate more severe color separation. In practical applications, it is only necessary to give By setting the value to a preset range, the color separation and hue of the reflected light on the display screen can be quantitatively controlled at the same time.
  • set N is the upper limit value set according to product requirements, and the range can be [0, 128], so that the severity of color separation can be controlled within the range of less than N, and it can also be set or In this way, the hue can also be controlled, which can ensure that the reflected light of the product is cool or warm, and the severity of color separation is within the range of less than N.
  • the incident light source is a white light source as an example for explanation.
  • the incident light source is a white light source as an example for explanation.
  • FIG. 4 is a flow chart of measuring and determining the color separation and hue of reflected light at a single measurement location according to some embodiments of the present disclosure.
  • the specified color separation is controlled within N and the reflected light is a cool color to meet the product specification.
  • a light source is used to irradiate light on the display screen in the off-screen state
  • a detector is used to measure the reflected light from the display screen at a single measurement position.
  • the first color channel value a and the second color channel value b of the reflected light measured at a single measurement position in the above preprocessing stage are the quantitative evaluation of the color separation and hue of the reflected light under special circumstances. Normally, a, b, and a+b of the measured reflected light are not zero.
  • the above preprocessing stage is to remove the above-mentioned special cases and avoid problems in subsequent numerical calculations.
  • the first color channel value a and the second color channel value b of the reflected light measured from a single measurement location are based on the formula Calculate value. judge does it fall into If the conclusion is no, it can be determined that the color separation of the reflected light at the single measurement position is unqualified; if the conclusion is yes, it is further judged Is it less than 0, if Then the hue of the reflected light at the single measurement position is cool and qualified. Otherwise, the hue of the reflected light at the single measurement position is warm, which is unqualified.
  • the quantitative evaluation of the color separation and hue of the reflected light of the display screen is generally judged comprehensively for multiple measurement positions.
  • the calculated values at multiple measurement positions can be value average
  • it is only necessary to give By setting a preset range you can quantitatively control the color separation and hue of the display screen as a whole.
  • it is only necessary to give By setting a preset range you can quantitatively control the color separation and hue of the display screen as a whole. The latter case is suitable for relatively strict control of color separation and hue quantification.
  • the following embodiment focuses on how to measure the first color channel value a and the second color channel value b of the Lab color space of the reflected light reflected by the display screen.
  • FIG. 5 illustrates a schematic diagram of a scene for measuring a and b values of the Lab color space of reflected light reflected by a display screen, wherein a point light source is used to illuminate the display screen, according to some embodiments of the present disclosure.
  • the light emitted by the point light source 20 is incident on the test point T of the display screen to form a light spot, and diffuse reflection is formed at the test point, and the reflected light is reflected in all directions.
  • the test point is, for example, the center of the display screen. It can be understood by those skilled in the art that the test point can also be located at other positions on the display screen.
  • the above-mentioned light spot usually covers a plurality of pixels.
  • the point light source 20 is, for example, a standard C light source or a D65 light source.
  • the incident angle of the light incident from the point light source 20 on the display screen is a predetermined angle, for example, 30° ⁇ 60°, and specifically, for example, 45°.
  • the detector 30 can rotate around the test point T in a plane perpendicular to the display screen, and both the point light source 20 and the test point T are located in this plane.
  • the detector 30 is, for example, a multi-angle spectrophotometer or a colorimeter, which can directly measure the a and b values of the reflected light in the Lab color space.
  • the detector 30 by rotating the detector 30 around the test point T in the above-mentioned plane, it is possible to measure a plurality of measurement positions, that is, the first color channel value a and the second color channel value of the reflected light at a plurality of measurement angles b.
  • the direction perpendicular to the display screen is defined as the 0° direction
  • the measurement angle is defined as the angle between the light exit path of the reflected light measured at the measurement position and the direction perpendicular to the display screen
  • the measurement angle is used to represent its the corresponding measurement location.
  • the measurement angle When the light exit path of the reflected light measured at the measurement position is in the clockwise direction of the 0° direction, the measurement angle is a positive value, and when the reflected light exit path measured at the measurement position is in the counterclockwise direction of the 0° direction, the measurement angle is a negative value.
  • the first color channel value a and the second color channel value b of the reflected light at multiple measurement angles can be measured sequentially, and the multiple measurement angles are, for example, 60° , 45°, 30°, 20°, 0°, -30° and -65°, etc.
  • the calculated value average Based on the judgment of the average Whether the display screen is qualified or not is determined by determining whether the display screen is within a preset range, so that the color separation and hue of the display screen can be quantitatively controlled as a whole.
  • the calculated value to maximum based on judging the maximum value Whether the display screen is qualified or not is determined by determining whether the display screen is within a preset range, so that the color separation and hue of the display screen can be quantitatively controlled as a whole.
  • the point light source 20 is used to illuminate a single test point to quantitatively evaluate the color separation and hue of the reflected light.
  • a plurality of test points may be selected for a display screen to perform reflected light color separation and hue quantitative evaluation.
  • the number of test points is, for example, nine or more.
  • FIG. 6 shows a schematic plan view of a plurality of test points distributed on a display screen according to some embodiments of the present disclosure, wherein the plurality of test points are evenly distributed on the display screen.
  • the number of test points is 9, and the 9 test points are arranged in a matrix, and the center of the matrix coincides with the center of the display screen, for example.
  • measurements of the first color channel value a and the second color channel value b of the reflected light at a plurality of measurement angles as shown in FIG. 5 are performed.
  • the incident angle of the light incident on the display screen from the point light source 20 is a predetermined angle, for example, 30° ⁇ 60°, specifically, for example, 45°.
  • the point light source 20 is irradiated to a test point
  • the detector 30 can rotate around the test point in a plane perpendicular to the display screen, the point light source 20 and the test point are both located in this plane,
  • the detector 30 is rotated for one test point, and the first color channel value a and the second color channel value b of the reflected light at a plurality of measurement angles are measured for the one test point.
  • the point light source 20 is then translated relative to the display screen so that the point light source illuminates another test point, and the first color channel value a and the second color channel value of the reflected light at a plurality of measurement angles are measured in a similar manner for the other test point b.
  • calculated at multiple measurement angles for multiple test points value average Based on the judgment of the average Whether the display screen is qualified or not is determined by determining whether the display screen is within a preset range, so that the color separation and hue of the display screen can be quantitatively controlled as a whole.
  • calculated at multiple measurement angles for multiple measurement points value to maximum based on judging the maximum value Whether the display screen is qualified or not is determined by determining whether the display screen is within a preset range, so that the color separation and hue of the display screen can be quantitatively controlled as a whole.
  • the intersection angle of the orthographic projection of the incident path on the display screen relative to the length direction of the display screen is fixed when the light emitted by the point light source is incident on the display screen.
  • the length direction L of the display screen is parallel, vertical or at a predetermined acute angle.
  • the point light source in order to evaluate the color separation and hue of the reflected light of the display screen more accurately, for each test point of a plurality of test points on a display screen, the point light source may be moved relative to the display screen to obtain a Make the light emitted by the point light source incident on the display screen and the orthographic projection of the incident path on the display screen is at multiple angles with respect to the length direction of the display screen, and at each angle, measure multiple measurements on the test point The first color channel value a and the second color channel value b of the reflected light at the angle.
  • the point light source is moved relative to the display screen so that the light emitted by the point light source is incident on the display screen and the orthographic projection of the incident path on the display screen is at multiple angles relative to the length direction of the display screen.
  • the center of the circle is achieved by rotating the display screen in the plane where the display screen is located.
  • FIG. 7 shows that the orthographic projection of the incident path of the point light source incident on the display screen on the display screen is at multiple angles with respect to the length direction of the display screen.
  • the orthographic projection of the incident path of the point light source incident on the display screen on the display screen can be parallel to the length direction of the display screen, that is, at 0° or 180° with the length direction L of the display screen.
  • the orthographic projection of the incident path of the light from the point light source on the display screen on the display screen may also be perpendicular to the length direction of the display screen, that is, at 90° to the length direction L of the display screen.
  • the orthographic projection of the incident path of the point light source incident on the display screen on the display screen may also form an acute angle with the length direction L of the display screen, eg, ⁇ 45°.
  • the incident angle of the light incident on the display screen from the point light source 20 is a predetermined angle, for example, 30° ⁇ 60°, specifically, for example, 45°.
  • the point light source 20 is irradiated to a test point, and the light of the point light source 20 is incident on the display screen.
  • the orthographic projection of the incident path on the display screen is parallel to the length direction of the display screen.
  • the detector 30 can be perpendicular to the display screen.
  • the screen rotates around the one test point in the plane, and the point light source 20 and the test point are all located in the plane. By rotating the detector 30 around the one test point in the above-mentioned plane, the one test point is measured at multiple measurement angles.
  • the first color channel value a and the second color channel value b of the reflected light are obtained by taking the test point as the center of the circle, so that the light of the point light source 20 is incident on the display screen and the orthographic projection of the incident path on the display screen is perpendicular to the length direction of the display screen.
  • the one test point measures the first color channel value a and the second color channel value b of the reflected light at multiple measurement angles, and uses the above-mentioned method to traverse the incident path of the point light source 20 incident on the display screen.
  • the orthographic projection on the screen displays multiple angles relative to the length of the screen.
  • the point light source 20 is translated relative to the display screen so that the point light source illuminates the next test point, and in a similar manner as described above until all test points are traversed. And for each measured first color channel value a and second color channel value b to calculate the corresponding value.
  • the orthographic projection of the incident path on the display screen is at multiple angles with respect to the length direction of the display screen. calculated at each measurement angle value average Based on the judgment of the average Whether the display screen is qualified or not is determined by determining whether the display screen is within a preset range, so that the color separation and hue of the display screen can be quantitatively controlled as a whole.
  • the multiple measurement points of the multiple measurement points calculated at each measurement angle value to maximum based on judging the maximum value Whether the display screen is qualified or not is determined by determining whether the display screen is within a preset range, so that the color separation and hue of the display screen can be quantitatively controlled as a whole.
  • FIG. 8 shows a schematic diagram of a scene for measuring a and b values of the Lab color space of reflected light reflected by a display screen, wherein a line light source is used to illuminate the display screen, according to some embodiments of the present disclosure.
  • the light emitted by the line light source 40 is incident on the test line M of the display screen to form a bright line
  • the test line M is parallel to the line light source 40 .
  • Diffuse reflection is formed at the test line, and the reflected light is reflected in all directions.
  • the test line passes through the center of the display screen.
  • the test line may also be located at other positions on the display screen.
  • the above-mentioned bright lines can generally cover a plurality of pixels in the width direction.
  • the line light source 40 is, for example, a standard C light source or a D65 light source.
  • the incident angle of the light incident on the display screen from the line light source 40 is a predetermined angle, for example, 30° ⁇ 60°, and specifically, for example, 45°.
  • the test line M includes a plurality of test points. For each test point, the detector 30 can be rotated about the test line in a plane perpendicular to the test line M in which the test point lies.
  • the detector 30 is, for example, a multi-angle spectrophotometer or a colorimeter, which can directly measure the a and b values of the reflected light in the Lab color space.
  • the first color channel value a and the second color channel value b of the reflected light at multiple measurement angles can be measured by rotating the detector 30 around the test line in the above-mentioned plane, similar to that shown in FIG. 5 . the way shown.
  • the test line M all the test points on the test line can be measured by moving the detector along the extending direction of the test line M and traversing the test points on the test line M in sequence. And for each measured first color channel value a and second color channel value b to calculate the corresponding value.
  • calculated at multiple measurement angles for multiple test points on the test line value average Based on the judgment of the average Whether the display screen is qualified or not is determined by determining whether the display screen is within a preset range, so that the color separation and hue of the display screen can be quantitatively controlled as a whole.
  • calculated at multiple measurement angles for multiple test points on the test line value to maximum based on judging the maximum value Whether the display screen is qualified or not is determined by determining whether the display screen is within a preset range, so that the color separation and hue of the display screen can be quantitatively controlled as a whole.
  • the line light source 40 is used to illuminate a single test line M to quantitatively evaluate the color separation and hue of the reflected light.
  • a plurality of test lines may be selected for one display screen to perform reflected light color separation and hue quantitative evaluation.
  • the number of test lines is, for example, 3 or more.
  • FIG. 9 shows a schematic plan view of a plurality of test lines distributed on a display screen according to some embodiments of the present disclosure, wherein the plurality of test lines are evenly distributed and arranged in parallel on the display screen.
  • the number of test lines is, for example, three
  • the three test lines M1 , M2 , and M3 are distributed in parallel and at equal intervals
  • the test line M2 located in the middle passes through the center of the display screen.
  • the first color channel value a and the second color channel value b of the reflected light at a plurality of measurement angles can be measured by rotating the detector 30 around the test line in the above-mentioned plane, Similar to the way shown in Figure 5.
  • test points on the test line can be measured by moving the detector along the extending direction of the test line and traversing the test points on the test line in turn. And for each measured first color channel value a and second color channel value b to calculate the corresponding value.
  • the three test lines shown in FIG. 9 are all parallel to the length direction L of the display screen. Those skilled in the art can understand that, in other embodiments, the three test lines may all be perpendicular to the length direction L of the display screen, or It forms a predetermined acute angle with the length direction L of the display screen.
  • calculated at multiple measurement angles for multiple test points on multiple test lines value average Based on the judgment of the average Whether the display screen is qualified or not is determined by determining whether the display screen is within a preset range, so that the color separation and hue of the display screen can be quantitatively controlled as a whole.
  • calculated at multiple measurement angles for multiple test points on multiple test lines value to maximum based on judging the maximum value Whether the display screen is qualified or not is determined by determining whether the display screen is within a preset range, so that the color separation and hue of the display screen can be quantitatively controlled as a whole.
  • the three test lines shown in FIG. 9 are all parallel to the length direction L of the display screen.
  • the length direction perpendicular to the display screen can also be increased.
  • the predetermined acute angle is, for example, ⁇ 45°.
  • FIG. 10 shows a schematic diagram of a scene for measuring the a-value and b-value of the Lab color space of reflected light reflected by a display screen according to some embodiments of the present disclosure, wherein a surface light source is used to illuminate the display screen.
  • the surface light source 50 is arranged in parallel with the display screen, and the orthographic projection of the center of the surface light source 50 on the display screen coincides with the center of the display screen.
  • Light emitted from the surface light source 50 is incident vertically and illuminates the entire screen.
  • the light incident on the display screen forms diffuse reflection on the surface of the display screen, and the reflected light is reflected in all directions.
  • the surface light source 50 is, for example, a standard C light source or a D65 light source.
  • the detector 30 can be rotated in a plane parallel to the display screen about a line passing through the midpoint of the display screen and perpendicular to the display screen, and the detector 30 can be rotated at each of a plurality of rotation angles by being perpendicular to the display screen. And by rotating the detector 30 around the test line in the plane of the midpoint of the display screen, the first color channel value a and the second color channel value b of the reflected light at multiple measurement angles are measured, similar to the method shown in FIG. 5 .
  • the detector 30 performs measurement at a plurality of measurement positions, and the measurement positions are distributed on the hemisphere protruding toward the surface light source 50 with the center of the display screen as the sphere center, and the detector is used at each measurement position.
  • the first color channel value a and the second color channel value b of the reflected light are measured. And for each measured first color channel value a and second color channel value b to calculate the corresponding value.
  • the calculated value average Based on the judgment of the average Whether the display screen is qualified or not is determined by determining whether the display screen is within a preset range, so that the color separation and hue of the display screen can be quantitatively controlled as a whole.
  • the calculated value to maximum based on judging the maximum value Whether the display screen is qualified or not is determined by determining whether the display screen is within a preset range, so that the color separation and hue of the display screen can be quantitatively controlled as a whole.
  • FIG. 11 is a structural block diagram of an apparatus for detecting a display screen according to some embodiments of the present disclosure.
  • the detection device of the display screen includes: a light source S, a detector 30 and a processor 60 .
  • the light source S is, for example, the aforementioned point light source 20, line light source 40, or surface light source 50, configured to incident light on the surface of the display screen to form diffuse reflection; the detector 30, configured to measure the first color channel value of the reflected light a and the second color channel value b; the processor 60, configured to perform each step of the detection method described in the foregoing embodiments.
  • steps S10-S50 shown in FIG. 2 are specifically executed.
  • Some embodiments of the present disclosure further include a detection system for a display screen, including a detection device and a display screen.
  • the detection device is, for example, the detection device shown in FIG. 11
  • the display screen is, for example, the OLED display panel shown in FIG. 1 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

一种显示屏幕的检测方法及检测装置,所述检测方法包括:采用光源将光入射至显示屏幕表面上,以形成漫反射,所述光源包括初始第一颜色通道值a1和初始第二颜色通道b1;采用探测器测量反射光的第一颜色通道值a和第二颜色通道值b;计算所述反射光的色分离值(I);当a+b不等于0时,计算色相值ε=|a+b|/(a+b);计算所述反射光的色分离及色相量化值(II);以及基于判断所述色分离及色相量化值(III)是否位于量化值预设范围,确定所述显示屏幕是否合格。

Description

显示屏幕的检测方法及检测装置
相关申请的交叉引用
本申请要求于2020年08月31日递交中国专利局的、申请号为202010900699.2的中国专利申请的权益,该申请的全部公开内容以引用方式并入本文。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示屏幕的检测方法及检测装置,更具体地,涉及一种显示屏幕息屏状态下反射光色分离及色相的量化评价方法。
背景技术
环境光照射到显示屏幕,例如LCD显示屏幕、OLED显示屏幕等上反射后的光会存在色分离现象,影响显示屏幕的使用体验,当前对于上述色分离现象不存在量化评价方法,仅仅是靠检测人员的视觉来粗略的判断色分离现象的程度。
发明内容
本公开一些实施例提供一种显示屏幕的检测方法,所述检测方法包括:采用光源将光入射至显示屏幕表面上,以形成漫反射,所述光源包括初始第一颜色通道值a1和初始第二颜色通道b1;采用探测器测量反射光的第一颜色通道值a和第二颜色通道值b;计算所述反射光的色分离值
Figure PCTCN2021114229-appb-000001
当a+b不等于0时,计算色相值ε=|a+b|/(a+b);计算所述反射光的色分离及色相量化值
Figure PCTCN2021114229-appb-000002
以及基于判断所述色分离及色相量化值
Figure PCTCN2021114229-appb-000003
是否位于量化值预设范围,确定所述显示屏幕是否合格。
在一些实施例中,所述检测方法还包括:当a+b=0时,基于判断所述反射光的色分离值l ab是否位于色分离值预设范围,确定所示显示屏幕是否合格。
在一些实施例中,在计算所述反射光的色分离及色相量化值
Figure PCTCN2021114229-appb-000004
的步骤中,计算多个色分离及色相量化值
Figure PCTCN2021114229-appb-000005
所述检测方法还包括:计算所述多个色分离及色相量化值
Figure PCTCN2021114229-appb-000006
的平均值
Figure PCTCN2021114229-appb-000007
以及在基于判断所述色分离及色相量化值
Figure PCTCN2021114229-appb-000008
是否位于量化值预设范围,确 定所述显示屏幕是否合格的步骤中,基于判断所述平均值
Figure PCTCN2021114229-appb-000009
是否位于所述量化值预设范围,确定所述显示屏幕是否合格。
在一些实施例中,在计算所述反射光的色分离及色相量化值
Figure PCTCN2021114229-appb-000010
的步骤中,计算多个色分离及色相量化值
Figure PCTCN2021114229-appb-000011
所述检测方法还包括:确定所述多个色分离及色相量化值
Figure PCTCN2021114229-appb-000012
的最大值
Figure PCTCN2021114229-appb-000013
以及在基于判断所述色分离及色相量化值
Figure PCTCN2021114229-appb-000014
是否位于量化值预设范围,确定所述显示屏幕是否合格的步骤中,基于判断所述最大值
Figure PCTCN2021114229-appb-000015
是否位于所述量化值预设范围,确定所述显示屏幕是否合格。
在一些实施例中,所述光源为点光源,所述显示屏幕包括位于显示屏幕表面上的至少一个测试点;所述采用光源将光入射至显示屏幕表面上包括:采用所述点光源将光入射至所述至少一个测试点上;所述采用探测器测量反射光的第一颜色通道值a和第二颜色通道值b包括:针对每一个测试点,在所述点光源和该测试点所在的且垂直于所述显示屏幕的平面内,绕该测试点旋转所述探测器,以获得多个测量位置;以及采用探测器分别获得所述多个测量位置处的反射光的第一颜色通道值a和第二颜色通道值b,所述计算多个色分离及色相量化值
Figure PCTCN2021114229-appb-000016
包括:针对所述多个测量位置处的反射光的第一颜色通道值a和第二颜色通道值b,分别计算色分离及色相量化值
Figure PCTCN2021114229-appb-000017
以获得所述多个色分离及色相量化值
Figure PCTCN2021114229-appb-000018
在一些实施例中,所述点光源发出的光入射至所述显示屏幕上的入射角度为30°~60°。
在一些实施例中,所述至少一个测试点包括多个测试点,所述多个测试点呈矩阵分布,所述矩阵中心与显示屏幕的中心重合。
在一些实施例中,所述点光源发出的光入射至显示屏幕上入射路径在所述显示屏幕上的正投影与所述显示屏幕的长度方向平行、垂直/或呈预定锐角夹角。
在一些实施例中,所述光源为与所述显示屏幕平行的线光源,所述显示屏幕包括位于显示屏幕表面上的至少一条测试线,每条测试线包括多个测试点;所述采用光源将光入射至显示屏幕表面上包括:采用所述线光源将光入射至所述至少一条测试线上;所述采用探测器测量反射光的第一颜色通道值a和第二颜色通道值b包括:针对每条测试线,沿平行于该条测试线延伸方向移动所述探测器,以及针对每条测试线上的每一个测试点,在该测试点所在的且垂直于该测试点所在测试线的平面,绕该测试点旋转所述探测器,以获得多个测量位置;以及采用探测器分别获得所述多个测量位置处 的反射光的第一颜色通道值a和第二颜色通道值b,所述计算多个色分离及色相量化值
Figure PCTCN2021114229-appb-000019
包括:针对所述多个测量位置处的反射光的第一颜色通道值a和第二颜色通道值b,分别计算色分离及色相量化值
Figure PCTCN2021114229-appb-000020
以获得所述多个色分离及色相量化值
Figure PCTCN2021114229-appb-000021
在一些实施例中,所述线光源发出的光入射至所述显示屏幕上的入射角度为30°~60°。
在一些实施例中,所述至少一条测试线包括多条测试线,所述多条测试线相互平行,请在显示屏幕上均匀分布。
在一些实施例中,所述测试线与所述显示屏幕的长度方向平行、垂直/或呈预定锐角夹角。
在一些实施例中,所述光源为与所述显示屏幕平行的面光源,所述面光源的中心在所述显示屏幕上的正投影与所述显示屏幕表面的中心重合;所述采用光源将光入射至显示屏幕表面上包括:采用所述面光源将光入射至所述显示屏幕的整个表面上;所述采用探测器测量反射光的第一颜色通道值a和第二颜色通道值b包括:在平行于所述显示屏幕表面的平面内,绕所述面光源的中心与所述显示屏幕表面的中心的直线连线旋转所述探测器以获得多个转动位置,以及对于每个转动位置,在该转动位置和所述显示屏幕表面的中心所在的且垂直于所述显示屏幕的平面内,绕所述显示屏幕表面的中心旋转所述探测器,以获得多个测量位置;以及采用探测器分别获得所述多个测量位置处的反射光的第一颜色通道值a和第二颜色通道值b,所述计算多个色分离及色相量化值
Figure PCTCN2021114229-appb-000022
包括:针对所述多个测量位置处的反射光的第一颜色通道值a和第二颜色通道值b,分别计算色分离及色相量化值
Figure PCTCN2021114229-appb-000023
以获得所述多个色分离及色相量化值
Figure PCTCN2021114229-appb-000024
在一些实施例中,所述光源为包括至少两种不同颜色的混色光源。
在一些实施例中,所述光源为白光光源。
本公开一些实施例提供一种显示屏幕的检测装置,包括:光源,配置为将光入射至显示屏幕表面上,以形成漫反射,所述光源包括初始第一颜色通道值a1和初始第二颜色通道b1;探测器,配置为测量反射光的第一颜色通道值a和第二颜色通道值b;处理器,配置为执行前述实施例中所述检测方法的各步骤。
本公开一些实施例提供一种显示屏幕的检测系统,包括前述实施例所述的检测装置和显示屏幕。
在一些实施例中,所述显示屏幕包括OLED显示面板,所述OLED显示面板包括: 基材;多个像素,阵列排布在基材上;封装层,位于所述多个像素远离所述基材一侧并覆盖所述多个像素;彩膜层,设置在所述封装层远离所述多个像素一侧。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本公开的其它特征、目的和优点将会变得更明显:
图1为根据本公开一些实施例的采用COE技术的OLED显示结构示意图;
图2为根据本公开一些实施例的一种反射光色分离及色相的量化评价方法的流程图;
图3为Lab彩色空间的平面图;
图4为根据本公开一些实施例对单个测量位置的反射光色分离和色相进行衡量判定的流程图;
图5为根据本公开一些实施例测量由显示屏幕反射的反射光的Lab色彩空间的a值和b值的场景示意图,其中采用点光源照射显示屏幕;
图6为根据本公开一些实施例的显示屏幕上分布多个测试点的平面示意图;
图7示出了点光源的光入射至显示屏幕上入射路径在所述显示屏幕上的正投影相对于显示屏幕的长度方向呈多个角度;
图8为根据本公开一些实施例测量由显示屏幕反射的反射光的Lab色彩空间的a值和b值的场景示意图,其中采用线光源照射显示屏幕;
图9为根据本公开一些实施例的显示屏幕上分布多条测试线的平面示意图;
图10示出了根据本公开一些实施例测量由显示屏幕反射的反射光的Lab色彩空间的a值和b值的场景示意图,其中采用面光源照射显示屏幕;
图11为根据本公开一些实施例的显示屏幕的检测装置的结构框图。
具体实施方式
下面结合附图和实施例对本公开作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与发明相关的部分。
需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相 互组合。
另外,在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本披露实施例的全面理解。然而明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。
应该理解的是,尽管在这里可使用术语第一、第二等来描述不同的元件,但是这些元件不应受这些术语的限制。这些术语仅是用来将一个元件与另一个元件区分开来。例如,在不脱离示例实施例的范围的情况下,第一元件可以被命名为第二元件,类似地,第二元件可以被命名为第一元件。如在这里使用的术语“和/或”包括一个或多个相关所列的项目的任意组合和所有组合。
应该理解的是,当元件或层被称作“形成在”另一元件或层“上”时,该元件或层可以直接地或间接地形成在另一元件或层上。也就是,例如,可以存在中间元件或中间层。相反,当元件或层被称作“直接形成在”另一元件或层“上”时,不存在中间元件或中间层。应当以类似的方式来解释其它用于描述元件或层之间的关系的词语(例如,“在...之间”与“直接在…之间”、“相邻的”与“直接相邻的”等)。
本文中使用的术语仅是为了描述特定实施例的目的,而不意图限制实施例。如本文中所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式。还将理解的是,当在此使用术语“包含”和/或“包括”时,说明存在所述特征、整体、步骤、操作、元件和/或组件,但不排除存在或附加一个或多个其它特征、整体、步骤、操作、元件、组件和/或它们的组合。
在本文中,如无特别说明,表述“位于同一层”、“同层设置”一般表示的是:第一部件和第二部件可以使用相同的材料并且可以通过同一构图工艺形成。表述“位于不同层”、“不同层设置”一般表示的是:第一部件和第二部件通过不同构图工艺形成。
相关技术中的OLED显示面板为了防止屏幕的反光,需要在OLED显示面板出光侧贴上一层偏光片(POL),偏光片的透过率较低,导致OLED显示面板功耗较大。为了提高出光率,近年来COE(Color film on Encapsulation)技术成为了研究热点,图1示出根据本公开一些实施例的采用COE技术的OLED显示结构示意图,如图1所示,显示面板作为显示屏幕,其包括基材10以及设置在基材10上的阵列排布的像素P,每个像素P包括依次远离基材设置的第一电极11、发光功能层12以及第二电极13。第一电极11例如为阳极,可以采用金属材料制成,发光功能层12例如包括依次远离 第一电极11设置的空穴注入层、空穴传输层、发光层、电子传输层和电子注入层。显示面板还包括封装层14,封装层14包覆基材10上的像素P。彩膜层16阵列设置在封装层14上,包括第一色彩膜层161、第二色彩膜层162和第三色彩膜层163。第一色彩膜层161、第二色彩膜层162和第三色彩膜层163例如分别为红色彩膜层、绿色彩膜层和蓝色彩膜层。每一彩膜层与一像素P对应,例如彩膜层16在基材10上的正投影落入与其对应的像素P在基材10上的正投影内,或者与其对应的像素P在基材10上的正投影重合。相邻彩膜层16之间设置有黑矩阵15。显示面板还包括设置在黑矩阵15和彩膜层16远离基材10一侧的保护层17。当环境光照射至显示面板(即显示屏幕)的出光面时,环境光进入显示面板,并在像素P的第一电极11处发生反射,反射光射出显示面板。由于彩膜层16的透过率大于偏光片的透过率,采用COE技术的显示OLED显示面板相较于采用POL的OLED显示面板,屏幕反光现象将更为明显,且由于彩膜层16与像素P排列一致,呈阵列排布,且被黑矩阵15包围,环境光被第一电极11反射出来时,会形成小孔衍射,加重了色分离现象(即出现彩色的反射光)。色分离现象在传统的LCD、贴POL的OLED产品上均会出现,但一直没有衡量的量化标准,也缺乏测试的方法,通常仅仅是靠检测人员的视觉来粗略的判断色分离现象的程度。尤其是对于采用COE技术的OLED显示面板来说,环境光在其表面产生的色分离现象更为严重,有必要设计一种可量化的评价方法,来管控显示屏幕的色分离程度及反射色相,以提高客户满意度。
本公开一些实施例提供一种显示屏幕的检测方法,具体为一种反射光色分离及色相的量化评价方法,图2为根据本公开一些实施例的一种反射光色分离及色相的量化评价方法的流程图。如图2所示,反射光色分离及色相的量化评价方法包括以下步骤:
S10:采用光源将光入射至显示屏幕表面上形成漫反射,所述光源包括初始第一颜色通道值a1和初始第二颜色通道b1;
S20:采用探测器测量反射光的第一颜色通道值a和第二颜色通道值b;
S30:计算所述反射光的色分离值
Figure PCTCN2021114229-appb-000025
以及色相值ε=|a+b|/(a+b);
S40:计算所述反射光的色分离及色相量化值
Figure PCTCN2021114229-appb-000026
以及
S50:基于判断所述色分离及色相量化值
Figure PCTCN2021114229-appb-000027
是否位于预设范围来确定所述显示屏幕 是否合格。
上述实施例适用于a+b不等于0的情况。在其他实施例中,当a+b=0时,可以基于判断所述反射光的色分离值l ab是否位于色分离值预设范围,确定所述显示屏幕是否合格。
以下详细介绍本反射光色分离及色相的量化评价方法的原理及具体操作。
图3为Lab彩色空间的平面图。如图3所示,横坐标a表示第一颜色通道值,其正方表示红色,负方向表示绿色。纵坐标b表示第二颜色通道值,其正方向表示黄色,负方向表示蓝色。冷暖色调可用b=-a这一直线划分开,左下方为冷色调,右上方为暖色调,使用这一平面坐标系可以完整的衡量出光的色彩信息。在该Lab彩色空间的平面图中,仅仅涉及体现色彩的第一颜色通道值a和第二颜色通道值b,并不涉及体现亮色的L值。在本公开中,采用l ab来量化衡量色分离现象的严重程度,其中
Figure PCTCN2021114229-appb-000028
其在数学上的含义为色坐标点位到所述光源色坐标的距离,如图3所示。采用数值ε来表示色相,ε=|a+b|/(a+b),若ε=1则代表色坐标(a,b)落在b=-a直线的右上方,那么色相为暖色调,同理若ε=-1则代表色坐标(a,b)落在b=-a直线的左下方,那么色相为冷色调。
需要说明的是,本实施例中入射的光源可以是包括至少两种不同颜色的混色光源,混色光源的色坐标为(a1,b1),例如,光源可以是白光光源,白光光源的第一颜色通道值a1大约为0,白光光源的第二颜色通道值b1大约为0,此时白光光源的色坐标可以认为是(0,0)。
在本公开中,将l ab与ε结合起来,定义乘积
Figure PCTCN2021114229-appb-000029
来同时量化反映出色分离及色相的情况。由此可以量化评价显示屏幕反射的反射光的色分离及色相。即
Figure PCTCN2021114229-appb-000030
值的正负表示了色相信息,
Figure PCTCN2021114229-appb-000031
值为正,则表示反射光为暖色光,
Figure PCTCN2021114229-appb-000032
值为负,则表示反射光为冷色光;
Figure PCTCN2021114229-appb-000033
值的大小表示了色分离程度,
Figure PCTCN2021114229-appb-000034
值越大表示色分离越严重。在实际应用中,只需要给
Figure PCTCN2021114229-appb-000035
值设定一个预设范围,就可以同时对显示屏幕反射光的色分离及色相进行量化管控。例如,设定
Figure PCTCN2021114229-appb-000036
N为根据产品需求设定的上限值,范围可取[0,128],这样就可以管控色分离严重程度在小于N的范围内,同时也可以设定
Figure PCTCN2021114229-appb-000037
或者
Figure PCTCN2021114229-appb-000038
这样可以将色相也管控进去,可以确保产品的反射光为冷色光或暖色光,且色分离严重程度在小于N的范围内。
在以下实施例中,以入射光源为白光光源为例进行解释说明,此时,
Figure PCTCN2021114229-appb-000039
以下以单个测量位置为例来对反射光色分离及色相的量化评价方法进行说明。图4为根据本公开一些实施例对单个测量位置的反射光色分离和色相进行衡量判定的流程图。在该示例中,规定色分离控制在N以内且反射光为冷色调,才满足产品规定。
如图4所示,首先对显示屏幕在息屏状态进行反射光的测量,具体地,利用光源将光照射至处于息屏状态下的显示屏幕上,利用探测器在单个测量位置测量由显示屏幕反射的反射光的Lab色彩空间的第一颜色通道值a和第二颜色通道值b。
然后,在预处理阶段,判断a是否为0,且b是否为0。若结论为是,即a=0,且b=0,则在该单个测量位置处的反射光不存在彩色信息,色分离和色相均合格。若结论为否,则判断a+b是否为0。若结论为是,则计算反射光的色分离值
Figure PCTCN2021114229-appb-000040
当色分离值l ab超出-N≤l ab≤N的范围时,则认为该单个测量位置处的反射光的色分离不合格。当l ab落入-N≤l ab≤N的范围时,则认为该单个测量位置处的反射光的色分离合格,此时可以进一步判断a是否大于0,若是,则可以判断出该色分离合格的反射光色相为黄绿色,若否,则可以判断出该色分离合格的反射光色相为紫色。
上述预处理阶段对单个测量位置测量的反射光的第一颜色通道值a和第二颜色通道值b为特殊情况下的反射光色分离及色相的量化评价。通常情况下,测量的反射光的a、b以及a+b均不为0。上述预处理阶段是为了去除上述特殊情况,避免后续数值计算存在问题。
在通常情况下,根据单个测量位置测量的反射光的第一颜色通道值a和第二颜色通道值b基于公式
Figure PCTCN2021114229-appb-000041
计算出
Figure PCTCN2021114229-appb-000042
值。判断
Figure PCTCN2021114229-appb-000043
是否落入
Figure PCTCN2021114229-appb-000044
的范围,若结论为否,则可以确定该单个测量位置处的反射光的色分离不合格;若结论为是,则进一步判断
Figure PCTCN2021114229-appb-000045
是否小于0,若
Figure PCTCN2021114229-appb-000046
则该单个测量位置处的反射光的色相为冷色,合格。否则,该单个测量位置处的反射光的色相为暖色,不合格。
在本公开的一些实施例中,对于显示屏幕的反射光的色分离及色相的量化评价通常是针对多个测量位置来综合判断的。该种情况下可以对多个测量位置处计算出的
Figure PCTCN2021114229-appb-000047
值求平均值
Figure PCTCN2021114229-appb-000048
在实际应用中,只需要给
Figure PCTCN2021114229-appb-000049
设定一个预设范围,就可以从整体上对显示屏幕的色分离及色相进行量化管控。还可以多个测量位置处计算出的
Figure PCTCN2021114229-appb-000050
值求最大值
Figure PCTCN2021114229-appb-000051
在实际应用中,只需要给
Figure PCTCN2021114229-appb-000052
设定一个预设范围,就可以从整体上对 显示屏幕的色分离及色相进行量化管控。后一种情形适用于色分离及色相量化管控相对严格的情况。
本领域技术人员可以理解的是,在上述两种针对多个测量位置来综合量化评价显示屏幕的反射光的色分离及色相的方式中,不考虑或者剔除a+b=0的情况。
以下实施例着重介绍如何测量由显示屏幕反射的反射光的Lab色彩空间的第一颜色通道值a和第二颜色通道值b。
图5示出了根据本公开一些实施例测量由显示屏幕反射的反射光的Lab色彩空间的a值和b值的场景示意图,其中采用点光源照射显示屏幕。如图5所示,点光源20发出的光入射至显示屏幕的测试点T上形成光斑,在该测试点处形成漫反射,反射光向各个方向反射,该测试点例如为显示屏幕的中心。本领域技术人员可以理解的是测试点还可以位于显示屏幕的其他位置。上述光斑通常覆盖多个像素。点光源20例如采用标准C光源或者D65光源。点光源20入射到显示屏幕上的光的入射角为预定角度,例如为30°~60°,具体地例如为45°。探测器30可以在垂直于显示屏幕的平面内绕测试点T旋转,点光源20、测试点T均位于该平面内。探测器30例如为多角度分光测色计或色差仪,可以直接测量反射光的Lab色彩空间的a值和b值。
在该些实施例中,通过在上述平面内绕测试点T旋转探测器30,可以测量多个测量位置,即多个测量角度处的反射光的第一颜色通道值a和第二颜色通道值b。本文中为了方便表述,将垂直于显示屏幕的方向定义为0°方向,测量角度定义为测量位置处测量的反射光的出光路径与垂直于显示屏幕的方向之间的角,并用测量角度代表其对应的测量位置。当测量位置处测量的反射光的出光路径位于0°方向的顺时针方向时,测量角度为正值,当测量位置处测量的反射光的出光路径位于0°方向的逆时针方向时,测量角度为负值。如图5所示,通过绕测试点T旋转探测器30,可以依次测量多个测量角度处的反射光的第一颜色通道值a和第二颜色通道值b,多个测量角度例如为60°、45°、30°、20°、0°、-30°和-65°等。进而可以计算出上述多个测量角度中的每一个处的反射光的色分离值
Figure PCTCN2021114229-appb-000053
以及色相值ε=|a+b|/(a+b),近一步地,可以计算出上述多个测量角度中的每一个处的反射光的色分离及色相量化值
Figure PCTCN2021114229-appb-000054
在一些实施例中,对多个测量角度处计算出的
Figure PCTCN2021114229-appb-000055
值求平均值
Figure PCTCN2021114229-appb-000056
基于判断所述平均值
Figure PCTCN2021114229-appb-000057
是否位于预设范围来确定所述显示屏幕是否合格,由此可以从整体上对显示屏幕的色分离及色相进行量化管控。在一些实施例中,对多个测量角度处计算出的
Figure PCTCN2021114229-appb-000058
值求最大值
Figure PCTCN2021114229-appb-000059
基于判断所述最大值
Figure PCTCN2021114229-appb-000060
是否位于预设范围来确定所述显示屏幕是否合格,由此可以从整体上对显示屏幕的色分离及色相进行量化管控。
上述实施例是采用点光源20照射单个测试点来对反射光色分离及色相进行量化评价。在另一些实施例中,为了对显示屏的反射光色分离及色相评价更加精确,可以对一个显示屏幕选取多个测试点来进行反射光色分离及色相量化评价。测试点的数量例如为9个或更多个。
图6示出了根据本公开一些实施例显示屏幕上分布多个测试点的平面示意图,其中多个测试点在显示屏幕上均匀分布。如图6所示,测试点的数量为9个,9个测试点呈矩阵排布,矩阵的中心例如与显示屏幕的中心重合。对于每个测试点,均进行如图5所示的多个测量角度处的反射光的第一颜色通道值a和第二颜色通道值b的测量。具体地,在一些实施例中,点光源20入射到显示屏幕上的光的入射角为预定角度,例如为30°~60°,具体地,例如为45°。首先,将点光源20照射至一个测试点,探测器30可以在垂直于显示屏幕的平面内绕该一个测试点旋转,点光源20、测试点均位于该平面内,通过在上述平面内绕该一个测试点旋转探测器30,针对该一个测试点测量多个测量角度处的反射光的第一颜色通道值a和第二颜色通道值b。然后相对于显示屏幕平移点光源20使得点光源照射至另一测试点,采用类似方式针对该另一测试点测量多个测量角度处的反射光的第一颜色通道值a和第二颜色通道值b。接下来,继续相对于显示屏幕平移点光源20使得点光源照射至下一个测试点,并采用类似方式测量多个测量角度处的反射光的第一颜色通道值a和第二颜色通道值b,直至历遍所有测试点。并针对每一次测得的第一颜色通道值a和第二颜色通道值b计算出相应的
Figure PCTCN2021114229-appb-000061
值。
在一些实施例中,对多个测试点的多个测量角度处计算出的
Figure PCTCN2021114229-appb-000062
值求平均值
Figure PCTCN2021114229-appb-000063
基于判断所述平均值
Figure PCTCN2021114229-appb-000064
是否位于预设范围来确定所述显示屏幕是否合格,由此可以从整体上对显示屏幕的色分离及色相进行量化管控。在一些实施例中,对多个测量点的多个测量角度处计算出的
Figure PCTCN2021114229-appb-000065
值求最大值
Figure PCTCN2021114229-appb-000066
基于判断所述最大值
Figure PCTCN2021114229-appb-000067
是否位于预设范围来确定所述显示屏幕是否合格,由此可以从整体上对显示屏幕的色分离及色相进行量化管控。
在上述实施例中,点光源发出的光入射至显示屏幕上入射路径在所述显示屏幕上的正投影相对于显示屏幕的长度方向的交角是固定的。例如所述显示屏幕的长度方向L平行、垂直或呈预定锐角夹角。
在另一些实施例中,为了对显示屏的反射光色分离及色相评价更加精确,可以对一个显示屏幕的多个测试点中的每个测试点,均通过相对于显示屏幕来移动点光源来使得点光源发出的光入射至显示屏幕上入射路径在所述显示屏幕上的正投影相对于显示屏幕的长度方向呈多个角度,在每个角度的情况下均对该测试点测量多个测量角度处的反射光的第一颜色通道值a和第二颜色通道值b。
相对于显示屏幕来移动点光源来使得点光源发出的光入射至显示屏幕上入射路径在所述显示屏幕上的正投影相对于显示屏幕的长度方向呈多个角度例如可以通过以该测试点为圆心在显示屏幕所在的平面内旋转显示屏幕来实现。
图7示出了点光源的光入射至显示屏幕上入射路径在所述显示屏幕上的正投影相对于显示屏幕的长度方向呈多个角度。如图7所示,点光源的光入射至显示屏幕上入射路径在所述显示屏幕上的正投影可以平行于显示屏幕的长度方向,即与显示屏幕的长度方向L呈0°或180°。点光源的光入射至显示屏幕上入射路径在所述显示屏幕上的正投影还可以垂直于显示屏幕的长度方向,即与显示屏幕的长度方向L呈90°。点光源的光入射至显示屏幕上入射路径在所述显示屏幕上的正投影还可以与显示屏幕的长度方向L呈锐角角度,例如为±45°。
对于每个测试点,对于点光源的光入射至显示屏幕上入射路径在所述显示屏幕上的正投影相对于显示屏幕的长度方向呈多个角度中的每一个,均进行如图5所示的多个测量角度处的反射光的第一颜色通道值a和第二颜色通道值b的测量。
具体地,在一些实施例中,点光源20入射到显示屏幕上的光的入射角为预定角度,例如为30°~60°,具体地,例如为45°。首先,将点光源20照射至一个测试点,并且点光源20的光入射至显示屏幕上入射路径在所述显示屏幕上的正投影平行于显示屏幕的长度方向,探测器30可以在垂直于显示屏幕的平面内绕该一个测试点旋转,点光源20、测试点均位于该平面内,通过在上述平面内绕该一个测试点旋转探测器30,针对该一个测试点测量多个测量角度处的反射光的第一颜色通道值a和第二颜色通道值b。然后通过以该测试点为圆心在显示屏幕所在的平面内旋转显示屏幕使得点光源20的光入射至显示屏幕上入射路径在所述显示屏幕上的正投影垂直于显示屏幕的长度方向,并针对该一个测试点测量多个测量角度处的反射光的第一颜色通道值a和第二颜色通道值b,并采用上述方式历遍点光源20的光入射至显示屏幕上入射路径在所述显示屏幕上的正投影相对于显示屏幕的长度方向的多个角度。接下来,相对于显示屏幕 平移点光源20使得点光源照射至下一个测试点,并采用上述类似方式直至历遍所有测试点。并针对每一次测得的第一颜色通道值a和第二颜色通道值b计算出相应的
Figure PCTCN2021114229-appb-000068
值。
在一些实施例中,在点光源20的光入射至显示屏幕上入射路径在所述显示屏幕上的正投影相对于显示屏幕的长度方向呈多个角度的情况下,对多个测试点的多个测量角度处计算出的
Figure PCTCN2021114229-appb-000069
值求平均值
Figure PCTCN2021114229-appb-000070
基于判断所述平均值
Figure PCTCN2021114229-appb-000071
是否位于预设范围来确定所述显示屏幕是否合格,由此可以从整体上对显示屏幕的色分离及色相进行量化管控。在一些实施例中,在点光源20的光入射至显示屏幕上入射路径在所述显示屏幕上的正投影相对于显示屏幕的长度方向呈多个角度的情况下,对多个测量点的多个测量角度处计算出的
Figure PCTCN2021114229-appb-000072
值求最大值
Figure PCTCN2021114229-appb-000073
基于判断所述最大值
Figure PCTCN2021114229-appb-000074
是否位于预设范围来确定所述显示屏幕是否合格,由此可以从整体上对显示屏幕的色分离及色相进行量化管控。
图8示出了根据本公开一些实施例测量由显示屏幕反射的反射光的Lab色彩空间的a值和b值的场景示意图,其中采用线光源照射显示屏幕。如图8所示,线光源40发出的光入射至显示屏幕的测试线M上形成亮线,测试线M平行于线光源40。该测试线处形成漫反射,反射光向各个方向反射,该测试线例如经过显示屏幕的中心。本领域技术人员可以理解的是测试线还可以位于显示屏幕的其他位置。上述亮线的宽度方向上通常可以覆盖多个像素。线光源40例如采用标准C光源或者D65光源。线光源40入射到显示屏幕上的光的入射角为预定角度,例如为30°~60°,具体地,例如为45°。测试线M包括多个测试点。对于每个测试点,探测器30可以在垂直于测试线M的平面内绕测试线旋转,测试点位于该平面内。探测器30例如为多角度分光测色计或色差仪,可以直接测量反射光的Lab色彩空间的a值和b值。对于每个测试点,可以通过在上述平面内绕测试线旋转探测器30,可以测量多个测量角度处的反射光的第一颜色通道值a和第二颜色通道值b,类似如图5所示的方式。如图8所示,对于测试线M,可以通过将探测器沿测试线M延伸方向移动,依次历遍测试线M上的测试点,对测试线上的所有测试点进行测量。并针对每一次测得的第一颜色通道值a和第二颜色通道值b计算出相应的
Figure PCTCN2021114229-appb-000075
值。
在一些实施例中,对测试线上的多个测试点的多个测量角度处计算出的
Figure PCTCN2021114229-appb-000076
值求平均值
Figure PCTCN2021114229-appb-000077
基于判断所述平均值
Figure PCTCN2021114229-appb-000078
是否位于预设范围来确定所述显示屏幕是否合格,由此可以从整体上对显示屏幕的色分离及色相进行量化管控。在一些实施例中,对测试线上的多个测试点的多个测量角度处计算出的
Figure PCTCN2021114229-appb-000079
值求最大值
Figure PCTCN2021114229-appb-000080
基于判断所述 最大值
Figure PCTCN2021114229-appb-000081
是否位于预设范围来确定所述显示屏幕是否合格,由此可以从整体上对显示屏幕的色分离及色相进行量化管控。
上述实施例是采用线光源40照射单条测试线M来对反射光色分离及色相进行量化评价。在另一些实施例中,为了对显示屏的反射光色分离及色相评价更加精确,可以对一个显示屏幕选取多条测试线来进行反射光色分离及色相量化评价。测试线的数量例如为3条或更多条。
图9示出了根据本公开一些实施例显示屏幕上分布多条测试线的平面示意图,其中多条测试线在显示屏幕上均匀分布且平行设置。如图9所示,测试线的数量例如为3条,3条测试线M1,M2,M3平行等间距分布,位于中间的测试线M2经过显示屏幕的中心。对于每条测试线上的每个测试点,可以通过在上述平面内绕测试线旋转探测器30,测量多个测量角度处的反射光的第一颜色通道值a和第二颜色通道值b,类似如图5所示的方式。对于每条测试线,可以通过将探测器沿该测试线延伸方向移动,依次历遍该测试线上的测试点,对该测试线上的所有测试点进行测量。并针对每一次测得的第一颜色通道值a和第二颜色通道值b计算出相应的
Figure PCTCN2021114229-appb-000082
值。
图9所示的三条测试线均与显示屏幕的长度方向L平行,本领域技术人员可以理解的是,在其他实施例中,三条测试线还可以均垂直于显示屏幕的长度方向L,或均与显示屏幕的长度方向L呈预定锐角角度。
在一些实施例中,对多条测试线上的多个测试点的多个测量角度处计算出的
Figure PCTCN2021114229-appb-000083
值求平均值
Figure PCTCN2021114229-appb-000084
基于判断所述平均值
Figure PCTCN2021114229-appb-000085
是否位于预设范围来确定所述显示屏幕是否合格,由此可以从整体上对显示屏幕的色分离及色相进行量化管控。在一些实施例中,对多条测试线上的多个测试点的多个测量角度处计算出的
Figure PCTCN2021114229-appb-000086
值求最大值
Figure PCTCN2021114229-appb-000087
基于判断所述最大值
Figure PCTCN2021114229-appb-000088
是否位于预设范围来确定所述显示屏幕是否合格,由此可以从整体上对显示屏幕的色分离及色相进行量化管控。
图9所示的三条测试线均与显示屏幕的长度方向L平行,为了使对显示屏的反射光色分离及色相评价更加精确,在其他实施例中,还可以增加垂直于显示屏幕的长度方向L的一条或更多条测试线,和/或与显示屏幕的长度方向L呈预定锐角角度的一条或更多条测试线。该预定锐角角度例如为±45°。
图10示出了根据本公开一些实施例测量由显示屏幕反射的反射光的Lab色彩空间的a值和b值的场景示意图,其中采用面光源照射显示屏幕。如图10所示,面光源 50与显示屏幕平行设置,面光源50的中心在所述显示屏幕上的正投影与所述显示屏幕的中心重合。面光源50发出的光垂直入射并照亮整个屏幕。入射至显示屏幕的光在显示屏幕表面形成漫反射,反射光向各个方向反射。面光源50例如采用标准C光源或者D65光源。探测器30可以在平行于显示屏幕的平面内,绕经过显示屏幕中点且垂直于显示屏幕的线旋转,探测器30在多个旋转角度处中的每一个,均可以通过在垂直于显示屏幕且通过显示屏幕中点的平面内绕测试线旋转探测器30,测量多个测量角度处的反射光的第一颜色通道值a和第二颜色通道值b,类似如图5所示的方式。可以理解为,探测器30在多个测量位置进行测量,所述测量位置分布在以所述显示屏幕中心为球心朝向所述面光源50突出的半球上,采用探测器在每一测量位置处测量反射光的第一颜色通道值a和第二颜色通道值b。并针对每一次测得的第一颜色通道值a和第二颜色通道值b计算出相应的
Figure PCTCN2021114229-appb-000089
值。
在一些实施例中,对多个测量位置处计算出的
Figure PCTCN2021114229-appb-000090
值求平均值
Figure PCTCN2021114229-appb-000091
基于判断所述平均值
Figure PCTCN2021114229-appb-000092
是否位于预设范围来确定所述显示屏幕是否合格,由此可以从整体上对显示屏幕的色分离及色相进行量化管控。在一些实施例中,对多个测量位置处计算出的
Figure PCTCN2021114229-appb-000093
值求最大值
Figure PCTCN2021114229-appb-000094
基于判断所述最大值
Figure PCTCN2021114229-appb-000095
是否位于预设范围来确定所述显示屏幕是否合格,由此可以从整体上对显示屏幕的色分离及色相进行量化管控。
本公开一些实施例提供一种显示屏幕的检测装置,图11为根据本公开一些实施例的显示屏幕的检测装置的结构框图。如图11所示,显示屏幕的检测装置包括:光源S、探测器30以及处理器60。光源S例如为前述的点光源20、线光源40、或面光源50,配置为将光入射至显示屏幕表面上,以形成漫反射;探测器30,配置为测量反射光的第一颜色通道值a和第二颜色通道值b;处理器60,配置为执行前述实施例中所述检测方法的各步骤。例如,具体执行图2所示的步骤S10-S50。
本公开一些实施例还包括一种显示屏幕的检测系统,包括检测装置以及显示屏幕。检测装置例如为图11所示的检测装置,显示屏幕例如为图1所示的OLED显示面板。
以上描述仅为本公开的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (18)

  1. 一种显示屏幕的检测方法,其特征在于,所述检测方法包括:
    采用光源将光入射至显示屏幕表面上,以形成漫反射,所述光源包括初始第一颜色通道值a1和初始第二颜色通道b1;
    采用探测器测量反射光的第一颜色通道值a和第二颜色通道值b;
    计算所述反射光的色分离值
    Figure PCTCN2021114229-appb-100001
    当a+b不等于0时,计算色相值ε=|a+b|/(a+b);
    计算所述反射光的色分离及色相量化值
    Figure PCTCN2021114229-appb-100002
    以及
    基于判断所述色分离及色相量化值
    Figure PCTCN2021114229-appb-100003
    是否位于量化值预设范围,确定所述显示屏幕是否合格。
  2. 根据权利要求1所述的检测方法,其中,所述检测方法还包括:
    当a+b=0时,基于判断所述反射光的色分离值l ab是否位于色分离值预设范围,确定所述显示屏幕是否合格。
  3. 根据权利要求1所述的检测方法,其中,在计算所述反射光的色分离及色相量化值
    Figure PCTCN2021114229-appb-100004
    的步骤中,计算多个色分离及色相量化值
    Figure PCTCN2021114229-appb-100005
    所述检测方法还包括:计算所述多个色分离及色相量化值
    Figure PCTCN2021114229-appb-100006
    的平均值
    Figure PCTCN2021114229-appb-100007
    以及
    在基于判断所述色分离及色相量化值
    Figure PCTCN2021114229-appb-100008
    是否位于量化值预设范围,确定所述显示屏幕是否合格的步骤中,基于判断所述平均值
    Figure PCTCN2021114229-appb-100009
    是否位于所述量化值预设范围,确定所述显示屏幕是否合格。
  4. 根据权利要求1所述的检测方法,其中,在计算所述反射光的色分离及色相量化值
    Figure PCTCN2021114229-appb-100010
    的步骤中,计算多个色分离及色相量化值
    Figure PCTCN2021114229-appb-100011
    所述检测方法还包括:确定所述多个色分离及色相量化值
    Figure PCTCN2021114229-appb-100012
    的最大值
    Figure PCTCN2021114229-appb-100013
    以及
    在基于判断所述色分离及色相量化值
    Figure PCTCN2021114229-appb-100014
    是否位于量化值预设范围,确定所述显示屏幕是否合格的步骤中,基于判断所述最大值
    Figure PCTCN2021114229-appb-100015
    是否位于所述量化值预设范围,确 定所述显示屏幕是否合格。
  5. 根据权利要求3或4所述的检测方法,其中,所述光源为点光源,所述显示屏幕包括位于显示屏幕表面上的至少一个测试点;
    所述采用光源将光入射至显示屏幕表面上包括:采用所述点光源将光入射至所述至少一个测试点上;
    所述采用探测器测量反射光的第一颜色通道值a和第二颜色通道值b包括:
    针对每一个测试点,在所述点光源和该测试点所在的且垂直于所述显示屏幕的平面内,绕该测试点旋转所述探测器,以获得多个测量位置;以及
    采用探测器分别获得所述多个测量位置处的反射光的第一颜色通道值a和第二颜色通道值b,
    所述计算多个色分离及色相量化值
    Figure PCTCN2021114229-appb-100016
    包括:针对所述多个测量位置处的反射光的第一颜色通道值a和第二颜色通道值b,分别计算色分离及色相量化值
    Figure PCTCN2021114229-appb-100017
    以获得所述多个色分离及色相量化值
    Figure PCTCN2021114229-appb-100018
  6. 根据权利要求5所述的检测方法,其中,所述点光源发出的光入射至所述显示屏幕上的入射角度为30°~60°。
  7. 根据权利要求5所述的检测方法,其中,所述至少一个测试点包括多个测试点,所述多个测试点呈矩阵分布,所述矩阵中心与显示屏幕的中心重合。
  8. 根据权利要求5所述的检测方法,其中,所述点光源发出的光入射至显示屏幕上入射路径在所述显示屏幕上的正投影与所述显示屏幕的长度方向平行、垂直/或呈预定锐角夹角。
  9. 根据权利要求3或4所述的检测方法,其中,所述光源为与所述显示屏幕平行的线光源,所述显示屏幕包括位于显示屏幕表面上的至少一条测试线,每条测试线包括多个测试点;
    所述采用光源将光入射至显示屏幕表面上包括:采用所述线光源将光入射至所述至少一条测试线上;
    所述采用探测器测量反射光的第一颜色通道值a和第二颜色通道值b包括:
    针对每条测试线,沿平行于该条测试线延伸方向移动所述探测器,以及针对每条测试线上的每一个测试点,在该测试点所在的且垂直于该测试点所在测试线的平面,绕该测试点旋转所述探测器,以获得多个测量位置;以及
    采用探测器分别获得所述多个测量位置处的反射光的第一颜色通道值a和第二颜色通道值b,
    所述计算多个色分离及色相量化值
    Figure PCTCN2021114229-appb-100019
    包括:针对所述多个测量位置处的反射光的第一颜色通道值a和第二颜色通道值b,分别计算色分离及色相量化值
    Figure PCTCN2021114229-appb-100020
    以获得所述多个色分离及色相量化值
    Figure PCTCN2021114229-appb-100021
  10. 根据权利要求9所述的检测方法,其中,所述线光源发出的光入射至所述显示屏幕上的入射角度为30°~60°。
  11. 根据权利要求9所述的检测方法,其中,所述至少一条测试线包括多条测试线,所述多条测试线相互平行,请在显示屏幕上均匀分布。
  12. 根据权利要求9所述的检测方法,其中,所述测试线与所述显示屏幕的长度方向平行、垂直/或呈预定锐角夹角。
  13. 根据权利要求3或4所述的检测方法,其中,所述光源为与所述显示屏幕平行的面光源,所述面光源的中心在所述显示屏幕上的正投影与所述显示屏幕表面的中心重合;
    所述采用光源将光入射至显示屏幕表面上包括:采用所述面光源将光入射至所述显示屏幕的整个表面上;
    所述采用探测器测量反射光的第一颜色通道值a和第二颜色通道值b包括:
    在平行于所述显示屏幕表面的平面内,绕所述面光源的中心与所述显示屏幕表面的中心的直线连线旋转所述探测器以获得多个转动位置,以及对于每个转动位置,在该转动位置和所述显示屏幕表面的中心所在的且垂直于所述显示屏幕的平面内,绕所述显示屏幕表面的中心旋转所述探测器,以获得多个测量位置;以及
    采用探测器分别获得所述多个测量位置处的反射光的第一颜色通道值a和第二颜 色通道值b,
    所述计算多个色分离及色相量化值
    Figure PCTCN2021114229-appb-100022
    包括:针对所述多个测量位置处的反射光的第一颜色通道值a和第二颜色通道值b,分别计算色分离及色相量化值
    Figure PCTCN2021114229-appb-100023
    以获得所述多个色分离及色相量化值
    Figure PCTCN2021114229-appb-100024
  14. 根据权利要求1-13任一项所述的检测方法,其中,所述光源为包括至少两种不同颜色的混色光源。
  15. 根据权利要求14所述的检测方法,其中,所述光源为白光光源。
  16. 一种显示屏幕的检测装置,包括:
    光源,配置为将光入射至显示屏幕表面上,以形成漫反射,所述光源包括初始第一颜色通道值a1和初始第二颜色通道b1;
    探测器,配置为测量反射光的第一颜色通道值a和第二颜色通道值b;
    处理器,配置为执行权利要求1-15中任一项所述检测方法的各步骤。
  17. 一种显示屏幕的检测系统,包括权利要求16所述的检测装置和显示屏幕。
  18. 根据权利要求17所述的检测系统,其中,所述显示屏幕包括OLED显示面板,所述OLED显示面板包括:
    基材;
    多个像素,阵列排布在基材上;
    封装层,位于所述多个像素远离所述基材一侧并覆盖所述多个像素;
    彩膜层,设置在所述封装层远离所述多个像素一侧。
PCT/CN2021/114229 2020-08-31 2021-08-24 显示屏幕的检测方法及检测装置 WO2022042521A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/042,857 US20240027343A1 (en) 2020-08-31 2021-08-24 Detection method and detection device for display screen
EP21860356.1A EP4206639A1 (en) 2020-08-31 2021-08-24 Detection method and detection apparatus of display screen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010900699.2A CN114112317A (zh) 2020-08-31 2020-08-31 显示屏幕的检测方法及检测装置
CN202010900699.2 2020-08-31

Publications (1)

Publication Number Publication Date
WO2022042521A1 true WO2022042521A1 (zh) 2022-03-03

Family

ID=80352693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114229 WO2022042521A1 (zh) 2020-08-31 2021-08-24 显示屏幕的检测方法及检测装置

Country Status (4)

Country Link
US (1) US20240027343A1 (zh)
EP (1) EP4206639A1 (zh)
CN (1) CN114112317A (zh)
WO (1) WO2022042521A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1354360A (zh) * 2000-11-22 2002-06-19 精工爱普生株式会社 液晶面板的评价方法和评价装置
CN101840671A (zh) * 2009-03-16 2010-09-22 华映视讯(吴江)有限公司 色序法显示器的适应性回授控制方法
CN104412089A (zh) * 2012-07-27 2015-03-11 夏普株式会社 液晶显示面板的检查方法和液晶显示面板的检查装置
WO2016042907A1 (ja) * 2014-09-16 2016-03-24 シャープ株式会社 表示装置
CN108136201A (zh) * 2015-06-12 2018-06-08 爱可瑞公司 使用颜色空间信息来导出像素级衰减因子的环境光抑制
CN109752394A (zh) * 2019-01-28 2019-05-14 凌云光技术集团有限责任公司 一种显示屏缺陷高精度检测方法及系统
CN111108602A (zh) * 2019-12-17 2020-05-05 京东方科技集团股份有限公司 减少显示面板中环境光的反射的色分离的方法、显示面板、显示装置及制造显示面板的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1354360A (zh) * 2000-11-22 2002-06-19 精工爱普生株式会社 液晶面板的评价方法和评价装置
CN101840671A (zh) * 2009-03-16 2010-09-22 华映视讯(吴江)有限公司 色序法显示器的适应性回授控制方法
CN104412089A (zh) * 2012-07-27 2015-03-11 夏普株式会社 液晶显示面板的检查方法和液晶显示面板的检查装置
WO2016042907A1 (ja) * 2014-09-16 2016-03-24 シャープ株式会社 表示装置
CN108136201A (zh) * 2015-06-12 2018-06-08 爱可瑞公司 使用颜色空间信息来导出像素级衰减因子的环境光抑制
CN109752394A (zh) * 2019-01-28 2019-05-14 凌云光技术集团有限责任公司 一种显示屏缺陷高精度检测方法及系统
CN111108602A (zh) * 2019-12-17 2020-05-05 京东方科技集团股份有限公司 减少显示面板中环境光的反射的色分离的方法、显示面板、显示装置及制造显示面板的方法

Also Published As

Publication number Publication date
US20240027343A1 (en) 2024-01-25
CN114112317A (zh) 2022-03-01
EP4206639A1 (en) 2023-07-05

Similar Documents

Publication Publication Date Title
US10565740B2 (en) Pigment identification of complex coating mixtures with sparkle color
CN107084927B (zh) 基板色度检测方法及装置
US20160299018A1 (en) Pressure sensitive film and manufacturing method thereof
WO2016155190A1 (zh) 基板检测装置及突起高度检测方法
US8615125B2 (en) Apparatus and method for inspecting surface state
CN105404041B (zh) 显示基板母板及其制造和检测方法以及显示面板母板
CN105182574B (zh) Tft基板上的配向膜厚度测量方法及cf基板上的配向膜厚度测量方法
JPH11108759A (ja) 欠陥検査方法及びその装置
CN103727888B (zh) 彩色滤色片膜厚测量方法及装置
CN107389316B (zh) 显示面板测试装置和显示面板测试方法
WO2022042521A1 (zh) 显示屏幕的检测方法及检测装置
JP2019082451A (ja) 反射特性測定装置、加工システム、反射特性測定方法、物体の加工方法
JPH09203664A (ja) 色合い検査装置
CN112530331A (zh) 显示分屏的信息检测方法、装置及信息检测设备
KR101188756B1 (ko) 편광판 얼룩 자동 검사 시스템 및 이를 이용한 편광판 얼룩검사 방법
US10048131B2 (en) Chromaticity test method and chromaticity test apparatus
CN107024487A (zh) Ito导电玻璃检测系统及其检测方法
CN116558645A (zh) 一种光变油墨的颜色测量方法
CN114218027A (zh) 屏幕检测的辅助方法及装置
JP2023005503A (ja) 欠陥の検査方法及び検査システム
CN109298553A (zh) 一种检测液晶屏的外观异物的方法
WO2024003437A1 (es) Procedimiento y dispositivo para determinar la calidad superficial de materiales reflectantes basado en análisis de imagen
CN109298554A (zh) 一种检测液晶屏的异物的新方法
JP2009053016A (ja) カラーフィルタ基板のムラ検査装置及びムラ検査方法
Myers et al. An Analysis of M0 and M1 Measurement Conditions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860356

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18042857

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021860356

Country of ref document: EP

Effective date: 20230331