WO2022042445A1 - 一种基于称重的箔带横断面轮廓测量方法 - Google Patents

一种基于称重的箔带横断面轮廓测量方法 Download PDF

Info

Publication number
WO2022042445A1
WO2022042445A1 PCT/CN2021/113790 CN2021113790W WO2022042445A1 WO 2022042445 A1 WO2022042445 A1 WO 2022042445A1 CN 2021113790 W CN2021113790 W CN 2021113790W WO 2022042445 A1 WO2022042445 A1 WO 2022042445A1
Authority
WO
WIPO (PCT)
Prior art keywords
foil strip
foil
strip
thickness
sample
Prior art date
Application number
PCT/CN2021/113790
Other languages
English (en)
French (fr)
Inventor
何安瑞
于海军
刘超
邵健
王晓晨
孙文权
Original Assignee
北京科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京科技大学 filed Critical 北京科技大学
Publication of WO2022042445A1 publication Critical patent/WO2022042445A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/02Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring flatness or profile of strips

Definitions

  • the invention relates to the technical field of strip calendering, in particular to a method for measuring the cross-sectional profile of a foil strip based on weighing.
  • the development trend of product lightweight and miniaturization makes the use of ultra-thin metal strips with high added value more and more widely, and the requirements for the shape accuracy of ultra-thin strip products are also higher and higher.
  • the research object of the present invention is mainly the electronic aluminum foil ultra-thin strip products used for manufacturing various capacitors. In addition to higher requirements for strip texture and thickness difference, the requirements for plate shape accuracy are also higher and higher.
  • the thickness of the finished electronic aluminum foil strip in a factory is about 0.1mm, and its foil rolling mill still has obvious "edge tight ribs" after using the shape control methods such as roll inclination, positive and negative work roll bending, roll cooling spray and roll hot spray. wave" special plate shape defect.
  • the main reason for the plate-shaped defect is that the relative convexity of the edge of the aluminum foil strip is reduced, which leads to a tight area at the edge of the strip.
  • Tensile stress the rib strip is subjected to compressive stress to produce a rib wave. Therefore, in order to verify the cause of the "border rib wave” plate shape defect of the aluminum foil strip, it is necessary to measure the cross-sectional profile of the aluminum foil strip and calculate the relative convexity of the edge of the aluminum foil strip.
  • the change of relative convexity determines the technological method to improve the plate shape defect of "tight edge and rib wave" of foil strip.
  • the exit of the rolling mill is generally equipped with a single point thickness gauge, and there is no strip profile measurement device.
  • the measurement methods of the single-point thickness gauge mainly include eddy current thickness measurement, isotope ray thickness measurement and X-ray thickness measurement. These three methods have low measurement accuracy, and isotope rays and X-rays will also cause great harm to the human body.
  • the foil tape with a thickness of about 0.1mm is directly measured, and the measurement error is large and unstable. Therefore, many scholars have studied the measurement methods of the thickness and cross-sectional profile of wide and thin strips.
  • Document 1 (a scanning type thickness profile measuring instrument for strip rolled material, authorized patent, CN209706753U) designed a scanning type strip thickness profile measurement instrument, which adopts a linear array laser displacement sensor probe, and passes through the preset trajectory according to the preset trajectory. Move the slider with the probe fixed to measure the cross-sectional profile of the sheet and strip. Due to the very fast rolling speed in the production of foil strips, this measurement method cannot guarantee the matching between the moving speed of the probe and the rolling speed of the strip, that is, the measurement The strip thickness values for the foil strip may not be the thickness of the same section of the foil strip.
  • Document 2 thickness measurement method and thickness measurement system for long-sized sheets, authorized patent, CN108885096A proposes a method to measure the increase in the diameter of the winding roller and the number of rotations of the reel formed by winding the long-sized sheet to the reel.
  • the method of measuring the thickness of long-sized sheets this method can only measure the thickness of a single point of the thickness of long-sized sheets, and the method of calculating the thickness of sheets based on the increase in the diameter of the winding roller and the number of rotations of the reel is used in the measurement of extremely thin foils. It will bring a lot of errors when taking it.
  • Document 3 an off-line measuring device for aluminum foil thickness, authorized patent, CN202814379U
  • the main measuring devices are linear displacement sensors and supporting balls.
  • the movement of the groove can measure the thickness of each point of the width of the strip, so the length of the V-shaped groove on the long pressing block will limit the width of the aluminum foil strip that can be measured by the equipment. Improper measurement will result in the measurement error of the thickness accuracy of the aluminum foil.
  • the foil thickness and cross-sectional measurement methods mentioned in the above documents all need to rely on complex equipment, and the operation is relatively complicated. The accuracy of the equipment will also directly affect the measurement accuracy of the foil thickness and cross-sectional profile.
  • the technical problem to be solved by the present invention is to provide a weighing-based method for measuring the cross-sectional profile of the foil strip, which measures the cross-sectional profile of the foil strip to clarify the change of the profile characteristics of the foil strip before and after rolling, and then provides a design for the design of the foil strip.
  • a weighing-based method for measuring the cross-sectional profile of the foil strip which measures the cross-sectional profile of the foil strip to clarify the change of the profile characteristics of the foil strip before and after rolling, and then provides a design for the design of the foil strip.
  • a foil strip sample is firstly cut in the stable thickness section of the foil strip, and then several foil strips with the same size are cut along the width direction of the foil strip sample by a sampler, and the position of the foil strip in the width direction of the foil strip sample is recorded at the same time.
  • the thickness of each foil strip is calculated by the thickness calculation formula, and finally the position of the foil strip is taken as the abscissa, and the thickness of the foil strip is drawn as the ordinate to obtain the thickness distribution of the foil strip sample in the width direction, that is, the foil strip.
  • Cross-sectional profile is
  • the curve formed by the two is the foil strip Cross-section profile curve.
  • the foil strip sample is selected from the foil strip in the stable section of the thickness of the foil strip before and after rolling to ensure the accuracy and stability of the cross-sectional profile measurement of the foil strip; intercept the foil strip sample to be measured along the length direction of the foil strip.
  • the length L of the sample along the rolling direction of the foil strip is greater than the length of the knife edge of the sampler for cutting the foil strip in the later stage, that is, L>l.
  • the size l*w of the foil strips cut by the sampler in step (2) is determined by the sampler, where l is the length of the blade of the sampler, and the direction is the same as L, and w is the width of the blade of the sampler, and the direction is the same as W; different sampling The width of the knife edge of the cutter is different. The smaller w is, the more foil strips are cut when the foil strip sample of the same width is cut, and the obtained foil strip cross-sectional profile curve points are also more. It is important to describe the thickness distribution of the foil swatches. After cutting the foil strips, number them and record the position of the foil strips across the width of the foil swatch.
  • step (3) the value of the density ⁇ of the foil tape varies according to the type of the foil tape to be measured. At the same time, it is considered that the foil tape is a homogeneous material, and the density is the same everywhere; The higher the quality accuracy of the obtained foil strip strips, the higher the thickness precision of the foil strip strips.
  • step (4) the distance between the foil strip and a certain side edge of the foil strip represents the position of the foil strip in the width direction of the foil strip sample, and its thickness represents the thickness of the foil strip sample here.
  • the curve is the distribution curve of the thickness of the foil strip sample in its width direction, from which the profile distribution of the cross section of the foil strip can be obtained.
  • the present invention first samples the foil strip in the thickness-stabilized section, and the obtained foil strip sample has a stable cross-sectional profile, which is very important for the acquisition of changes in the profile characteristics of the foil strip before and after rolling;
  • the conventional sampler cuts the foil strip along the width direction of the foil strip to obtain a fixed size foil strip, marks the foil strip and records the position of the foil strip in the width direction of the sample, and uses a laboratory high-precision weighing balance to measure The quality of the foil strip is calculated by the formula to obtain the thickness of the foil strip.
  • the sampler and weighing scale used in this process are commonly used equipment in the laboratory. The use method is simple and easy to operate.
  • the foil strip obtained by cutting The dimensional accuracy is high, and the accuracy of the weighing balance is high enough; finally, the curve composed of the thickness value of the foil strip and its position in the width direction of the foil strip is the cross-sectional profile curve of the foil strip.
  • the method for measuring the cross-sectional profile of the foil strip no additional equipment needs to be added. .
  • Fig. 1 is the foil strip sample picture taken along the strip width direction in the foil strip roll thickness stable section of the present invention
  • Fig. 2 is the strip diagram of the foil strip obtained by adopting the sampler to cut in the present invention
  • FIG. 3 is a comparison diagram of the profile curve of the cross-section of the foil strip before and after rolling according to the present invention.
  • the invention provides a method for measuring the cross-sectional profile of a foil strip based on weighing.
  • the foil strip sample is cut from the thickness stable section of the foil strip, and then a sampler is used to cut several foil strip strips of the same size along the width direction of the foil strip sample, and at the same time, the foil strip strips are recorded in the foil strip.
  • the position of the strip in the width direction of the strip is calculated by the thickness calculation formula to obtain the thickness of each foil strip.
  • the method specifically includes the following steps:
  • the curve formed by the two is the foil strip Cross-section profile curve.
  • the foil strip sample needs to select the foil strip in the stable section of the thickness of the foil strip before and after rolling, so that it is beneficial to ensure the accuracy and stability of the cross-sectional profile measurement of the foil strip; Rolling direction) to intercept the sample of the foil strip to be tested.
  • the length L of the sample along the rolling direction of the strip should be greater than the length of the knife edge of the sampler for cutting the foil strip in the later stage, that is, it should be ensured that L>l. .
  • step (2) the size l*w of the foil strips cut by the sampler is determined by the sampler, where l is the length of the blade of the sampler, and the direction is the same as L, and w is the width of the blade of the sampler, and the direction is the same as W; different;
  • the width of the knife edge of the sampler may be different.
  • the position is crucial to the thickness distribution of the foil swatches. After the foil strips are cut, they are numbered and the position of the foil strips on the width of the foil swatch is recorded.
  • step (3) the value of the density ⁇ of the foil tape varies according to the type of foil tape to be measured.
  • the foil tape is a homogeneous material, and the density is the same everywhere; the range of the weighing device should be appropriate, and the higher the weighing accuracy is. , the higher the quality accuracy of the measured foil strip, the higher the thickness accuracy of the calculated foil strip.
  • step (4) the distance between the foil strip and a certain side edge of the foil sample represents the position of the foil strip in the width direction of the foil sample, and its thickness represents the thickness of the foil sample here.
  • the formed curve is the thickness distribution curve in the width direction of the foil strip, from which the profile distribution of the cross section of the foil strip can be obtained.
  • Step (1) select the aluminum foil strip in the stable thickness section of the aluminum foil strip as the aluminum foil sample, the length of the sample along the rolling direction of the aluminum foil strip is L, and the sample width W is the entire width of the aluminum foil strip, where L is greater than the sampler
  • the length of the knife edge is l, and the aluminum foil sample is shown in Figure 1.
  • Step (3) Since the aluminum foil strip in this embodiment is an electronic aluminum foil with an aluminum purity higher than 99.995%, the value of its density ⁇ is 2.7 g/cm 3 ; the aluminum foil strip is weighed by a laboratory high-precision balance, Its weighing accuracy can reach 0.0001g.
  • the cross-sectional profiles of a certain roll of aluminum foil strip before and after rolling were measured, wherein the nominal thickness of the aluminum foil strip before rolling was 0.14 mm, and the nominal thickness of the aluminum foil strip after rolling was 0.116 mm.
  • Take 30 aluminum foil strips in the width direction measure the distance between each aluminum foil strip and the operating side of the aluminum foil strip and the mass of each aluminum foil strip, and calculate the thickness of the aluminum foil strip, as shown in Table 1.
  • Table 1 The distance from the strip of aluminum foil to the operating side of the strip before and after rolling, the quality and thickness of the strip of aluminum foil
  • Step (4) take the distance between the aluminum foil strip and the operating side of the aluminum foil strip as the abscissa, and the thickness of the aluminum foil strip as the ordinate to draw a graph to obtain the cross-sectional profile curve of the aluminum foil strip before and after rolling, as shown in Figure 3.
  • the relative crown of the aluminum foil strip before and after rolling at any position can be calculated.
  • the edge tightness area of the "edge tight rib wave" plate defect of an electronic aluminum foil in a factory is the edge area of 10-20 mm.
  • the relative convexity at a position 10 mm away from the edge of the aluminum foil strip is calculated to characterize the relative convexity change of the edge tight area. . It can be seen from the calculation that the relative convexity of the aluminum foil strip in the tight edge area after rolling changes from 1.86% to 1.47%, indicating that the relative reduction in the tight edge area of the aluminum foil strip is small.
  • foil tape and the number of foil tape strips in the above embodiment are only an example, and are not intended to be limiting.
  • different foil tapes can be selected for different types of foil tapes.
  • the number of small strips allows flexible measurement of the cross-sectional profile of the foil strip in the field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Metal Rolling (AREA)

Abstract

一种基于称重的箔带横断面轮廓测量方法包括:在箔带卷厚度稳定段截取箔带样片;用取样器沿着箔带样片宽度方向截取尺寸相同的若干箔带小条,同时记录箔带小条在箔带样片宽度方向的位置;通过厚度计算公式计算得到各箔带小条厚度;以箔带小条位置为横坐标、箔带小条厚度为纵坐标绘图,得到箔带样片宽度方向上的厚度分布情况,即箔带横断面轮廓。由于箔带很薄,横断面的厚差一般小于10μm,这种测量方法通过实测箔带小条质量计算得到箔带厚度,避免了现有的箔带厚度测量设备精度校核不准导致的厚度测量误差,由此可得到精确的箔带横断面轮廓。

Description

一种基于称重的箔带横断面轮廓测量方法 技术领域
本发明涉及板带压延技术领域,特别是指一种基于称重的箔带横断面轮廓测量方法。
背景技术
产品轻量化和微型化的发展趋势使得具有高附加值的极薄金属带材的使用越来越广泛,对极薄带产品板形精度的要求也越来越高。本发明的研究对象主要是用于制造各种电容器的电子铝箔极薄带产品,其除了对带材织构和厚差有较高要求外,对板形精度的要求也越来越高。某厂电子铝箔带材成品厚度约为0.1mm,其箔轧机在使用轧辊倾斜、工作辊正负弯辊、轧辊冷却喷淋和轧辊热喷淋等板形控制手段后仍然存在明显“边紧肋浪”的特殊板形缺陷。分析认为,该板形缺陷产生的主要原因是铝箔带材边部相对凸度减小导致带材边部产生边紧区,边紧区使得带材边部附近的肋部带材受到“外端拉应力”,肋部带材承受压应力而产生肋部浪形。因此,为了验证铝箔带材“边界肋浪”板形缺陷产生的原因,需要测量铝箔带材横断面轮廓并计算铝箔带材边部相对凸度,通过对比轧制前后铝箔带材横断面轮廓和相对凸度的变化情况,确定改善箔带“边紧肋浪”板形缺陷的工艺方法。
当前,在箔带轧制生产过程中,轧机出口一般是配备一台单点测厚仪,没有带材轮廓测量装置。单点测厚仪的测量方法主要有涡流测厚、同位素射线测厚和X射线测厚,此三种方法测量精度低,而且同位素射线和X射线还会对人体造成很大伤害,采用千分尺对厚度约为0.1mm的箔带直接进行测量,测量误差很大且不稳定。因此,许多学者对宽薄带材的厚度和横断面轮廓的测量方法进行了研究。文献1(一种扫描式板带轧材厚度轮廓测量仪,授权专利,CN209706753U)设计了一种扫描式板带材厚度轮廓测量仪,采用线阵激光位移传感器测头,通过按照预设的轨迹移动固定有测头的滑块来对板带材横断面轮 廓进行测量,由于箔带生产中轧制速度非常快,该测量方法无法保证测头移动速度与带材轧制速度的匹配,即测量的带材厚度值可能不是箔带同一截面的厚度情况。文献2(长尺寸片材的厚度测量方法以及厚度测量系统,授权专利,CN108885096A)提出了一种通过测量长尺寸片材卷绕到卷轴所形成的卷绕辊辊径增加量和卷轴旋转次数来测量长尺寸片材厚度的方法,此方法仅能测量长尺寸片材厚度的单点厚度,另外其基于卷绕辊辊径增加量和卷轴旋转次来计算片材厚度的方法在测量极薄箔带时会带来很大误差。文献3(一种铝箔厚度离线测定装置,授权专利,CN202814379U)设计了一种铝箔厚度离线测定装置,其主要测量设备为直线位移传感器和支撑圆球,通过V型滑块在长压块V型槽的移动,可以对带材宽度各点厚度进行测量,因此长压块上V型槽的长度会限制设备可测铝箔带材的宽度,另外,位移传感器的使用对操作过程要求较高,操作不当会造成铝箔厚度精度的测量误差。以上文献所提到的箔带厚度和横断面测量方法都需要依靠复杂设备,且操作较复杂,设备的精度也将直接影响箔带厚度和横断面轮廓的测量精度。因此,找到一种不过度依赖于测量设备精度,且简单易操作的箔带横断面轮廓测量方法,对掌握箔带轧制前后横断面轮廓特征变化、改善箔带板形缺陷具有重要意义。
发明内容
本发明要解决的技术问题是提供一种基于称重的箔带横断面轮廓测量方法,对箔带横断面轮廓进行测量,以明确轧制前后箔带横断面轮廓特征的变化情况,进而为设计改善箔带板形缺陷的工艺方法提供基础信息。
该方法首先在箔带卷厚度稳定段截取箔带样片,然后采用取样器沿着箔带样片宽度方向截取尺寸相同的若干箔带小条,同时记录箔带小条在箔带样片宽度方向的位置,通过厚度计算公式计算得到各箔带小条厚度,最后以箔带小条位置为横坐标,箔带小条厚度为纵坐标绘图,得到箔带样片宽度方向上的厚度分布情况,即箔带横断面轮廓。
具体包括步骤如下:
(1)在箔带卷厚度稳定段沿着箔带长度方向截取需要测厚的箔带样片,尺寸为L*W,L为箔带样片在轧制方向的长度,W为箔带整幅宽度,对于宽幅 箔带,有L<W;
(2)采用具有固定尺寸矩形截面刀口的取样器沿着箔带样片宽度方向进行裁切,得到固定尺寸的箔带小条,其尺寸为l*w,l为取样器刀口长度,w为取样器刀口宽度,记录裁切得到的箔带小条所在位置距箔带样片操作侧(或传动侧)边部的距离x n
(3)采用合适量程的高精度称重天平对箔带小条的质量进行逐个测量,并计算箔带小条的厚度h n
(4)以箔带小条距箔带样片操作侧(或传动侧)边部距离x n为横坐标,以箔带小条厚度h n为纵坐标,两者所组成的曲线便是箔带横断面轮廓曲线。
其中,步骤(1)中箔带样片选取轧制前后箔带卷厚度稳定段的箔带,保证箔带横断面轮廓测量的准确性和稳定性;沿着箔带长度方向截取待测箔带样片,样片沿着箔带轧制方向的长度L大于后期裁切箔带小条的取样器刀口的长度,即L>l。
步骤(2)中取样器裁切得到的箔带小条尺寸l*w由取样器决定,l为取样器刀口长度,方向与L相同,w为取样器刀口宽度,方向与W相同;不同取样器的刀口宽度有所不同,w越小,相同宽度箔带样片时裁切得到的箔带小条数目越多,所得到的箔带横断面轮廓曲线点也越多;箔带小条位置对于描述箔带样片厚度分布情况至关重要,裁切得到箔带小条后要对其进行编号,并记录箔带小条在箔带样片宽度上的位置。
步骤(3)中箔带小条的厚度h n的计算公式如下:
Figure PCTCN2021113790-appb-000001
其中,M n为第n个箔带小条的质量,g;ρ为箔带密度,g/m 3;w为箔带小条的宽度,与取样器刀口宽度一致,m;l为箔带小条的长度,与取样器刀口长度一致,m;h n为第n个箔带小条的厚度,mm。
步骤(3)中箔带密度ρ值根据所测箔带品种的不同而有所不同,同时认为箔带是均质材料,各处密度均相同;称重天平量程合适,其精度越高,测量得到的箔带小条质量精度越高,箔带小条厚度精度也越高。
步骤(4)中箔带小条距箔带某侧边部的距离表征箔带小条在箔带样片宽 度方向的位置,其厚度则表征箔带样片在此处的厚度情况,两者构成的曲线便是箔带样片厚度在其宽度方向的分布曲线,由此便可以得到箔带横断面轮廓分布情况。
本发明的上述技术方案的有益效果如下:
上述方案中,本发明首先在箔带卷厚度稳定段取样,得到的箔带样片横断面轮廓稳定,这对轧制前后箔带横断面轮廓特征变化情况的获取至关重要;然后,采用化验室常规取样器沿着箔带样片宽度方向裁切得到固定尺寸的箔带小条,对箔带小条进行标记并记录箔带小条在样片宽度方向的位置,采用化验室高精度称重天平测量箔带小条质量并通过公式计算得到箔带小条厚度,此过程所用到的取样器和称重天平均为化验室常用设备,使用方法简单,容易操作,同时裁切得到的箔带小条尺寸精度高,称重天平精度也足够高;最后,箔带小条厚度值和其在箔带样片宽度方向的位置组成的曲线便是箔带横断面轮廓曲线。箔带横断面轮廓测量方法实施过程中不需要额外增添新的设备,所用的设备均容易获取且操作简便,影响箔带小条厚度测量精度的因素较少,获得的箔带横断面轮廓精度高。
附图说明
图1为本发明在箔带卷厚度稳定段沿带材宽度方向截取的箔带样片图;
图2为本发明采用取样器裁切得到的箔带小条图;
图3为本发明轧制前后箔带横断面轮廓曲线对比图。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本发明提供一种基于称重的箔带横断面轮廓测量方法。
如图1所示,本方法首先在箔带卷厚度稳定段截取箔带样片,然后采用取样器沿着箔带样片宽度方向截取尺寸相同的若干箔带小条,同时记录箔带小条在箔带样片宽度方向的位置,通过厚度计算公式计算得到各箔带小条厚度,最后以箔带小条位置为横坐标,箔带小条厚度为纵坐标绘图,得到箔带样片宽度 方向上的厚度分布情况,即箔带横断面轮廓。
该方法具体包括步骤如下:
(1)在箔带卷厚度稳定段沿着箔带长度方向(即轧制方向)截取需要测厚的箔带样片,尺寸为L*W,L为箔带样片在轧制方向的长度,W箔带整幅宽度,对于宽幅箔带,有L<W;
(2)采用具有固定尺寸矩形截面刀口的取样器沿着箔带样片宽度方向进行裁切,得到固定尺寸的箔带小条,其尺寸为l*w,记录裁切得到的箔带小条所在位置距箔带样片操作侧(或传动侧)边部的距离x n
(3)采用合适量程的高精度称重天平对箔带小条的质量进行逐个测量,在明确箔带密度的情况下,根据下面公式计算箔带小条的厚度h n
Figure PCTCN2021113790-appb-000002
其中,M n为第n个箔带小条的质量,g;ρ为箔带密度,g/m 3;w为箔带小条的宽度,与取样器刀口宽度一致,m;l为箔带小条的长度,与取样器刀口长度一致,m;h n为第n个箔带小条的厚度,mm;
(4)以箔带小条距箔带样片操作侧(或传动侧)边部距离x n为横坐标,以箔带小条厚度h n为纵坐标,两者所组成的曲线便是箔带横断面轮廓曲线。
步骤(1)中,箔带样片需要选取轧制前后箔带卷厚度稳定段的箔带,这样,有利于保证箔带横断面轮廓测量的准确性和稳定性;沿着箔带长度方向(即轧制方向)截取待测箔带样片,样片沿着带材轧制方向的长度L应大于后期裁切箔带小条的取样器刀口的长度,即应确保L>l。。
步骤(2)中,取样器裁切得到的箔带小条尺寸l*w由取样器决定,l为取样器刀口长度,方向与L相同,w为取样器刀口宽度,方向与W相同;不同取样器的刀口宽度可能有所不同,w越小,相同宽度箔带样片时裁切得到的箔带小条数目越多,所得到的箔带横断面轮廓曲线点也越多;箔带小条位置对于箔带样片厚度分布情况至关重要,裁切得到箔带小条后要对其进行编号,并记录箔带小条在箔带样片宽度上的位置。
步骤(3)中箔带密度ρ值根据所测箔带品种的不同而有所不同,同时认为箔带是均质材料,各处密度均相同;称重装置量程应合适,称重精度越高, 测量得到的箔带小条质量精度越高,计算得到的箔带小条厚度精度也越高。
步骤(4)中,箔带小条距箔带样片某侧边部的距离表征箔带小条在箔带样片宽度方向的位置,其厚度则表征箔带样片在此处的厚度情况,两者构成的曲线便是箔带宽度方向厚度分布曲线,由此可以得到箔带横断面轮廓分布情况。
下面结合具体实施例予以说明。
实施例1
步骤(1):选取铝箔带卷厚度稳定段的铝箔带材作为铝箔样片,样片沿着铝箔带材轧制方向的长度为L,样片宽度W为铝箔带材整幅宽,其中L大于取样器刀口长度l,铝箔样片如图1所示。
步骤(2):采用化验室常规取样器沿着铝箔样片宽度方向裁切得到固定尺寸的铝箔小条,对铝箔小条进行标记并记录铝箔小条在铝箔样片宽度方向的位置;取样器刀口为长度l*宽度w=0.15m*0.01m的矩形,裁切得到的铝箔小条如图2所示。
步骤(3):由于本实施例中铝箔带材为铝纯度高于99.995%的电子铝箔,其密度ρ的值为2.7g/cm 3;采用化验室高精度天平对铝箔小条进行称重,其称重精度可达0.0001g。
实施例中分别对某卷铝箔带材轧制前后的横断面轮廓进行了测量,其中轧前铝箔带材标称厚度为0.14mm,轧后铝箔带材标称厚度为0.116mm,沿着铝箔样片宽度方向取30个铝箔小条,测量得到各铝箔小条距铝箔带材操作侧距离和各铝箔小条的质量,并通过计算得到铝箔小条厚度,如表1所示。
表1轧制前后铝箔小条距带材操作侧距离、铝箔小条的质量和厚度
Figure PCTCN2021113790-appb-000003
Figure PCTCN2021113790-appb-000004
步骤(4):以铝箔小条距铝箔带材操作侧距离为横坐标,以铝箔小条厚度为纵坐标作图,得到铝箔带材轧制前后的横断面轮廓曲线,如图3所示。
得到铝箔横断面轮廓后便可以对铝箔带材任意位置轧制前后的相对凸度 进行计算。某厂电子铝箔“边紧肋浪”板形缺陷的边紧区域为边部10~20mm区域,对距铝箔带材边部10mm位置的相对凸度进行计算以表征边紧区相对凸度变化情况。计算可知,轧后铝箔带材在边紧区域相对凸度由1.86%变为1.47%,表明铝箔带材边紧区域相对压下量较小。因此,优化生产工艺,增大铝箔带材边紧区域压下量,保证轧后铝箔带材边紧区域相对凸度不小于轧前铝箔带材边紧区域相对凸度将有助于改善铝箔“边紧肋浪”的板形缺陷。
当然,以上实施例中箔带类型和箔带小条个数仅仅为一个举例,并不作为限制,使用本文基于称重的箔带横断面轮廓测量方法,可以对不同类型箔带选取不同箔带小条个数来对现场箔带横断面轮廓进行灵活测量。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (5)

  1. 一种基于称重的箔带横断面轮廓测量方法,其特征在于:包括步骤如下:
    (1)在箔带卷厚度稳定段沿着箔带长度方向截取需要测厚的箔带样片,尺寸为L*W,L为箔带样片在轧制方向的长度,W为箔带整幅宽度,对于宽幅箔带,有L<W;
    (2)采用具有固定尺寸矩形截面刀口的取样器沿着箔带样片宽度方向进行裁切,得到固定尺寸的箔带小条,其尺寸为l*w,l为取样器刀口长度,w为取样器刀口宽度,记录裁切得到的箔带小条所在位置距箔带样片操作侧边部的距离x n
    (3)采用高精度称重天平对箔带小条的质量进行逐个测量,并计算箔带小条的厚度h n
    (4)以箔带小条距箔带样片操作侧边部距离x n为横坐标,以箔带小条厚度h n为纵坐标,两者所组成的曲线便是箔带横断面轮廓曲线。
  2. 根据权利要求1所述的基于称重的箔带横断面轮廓测量方法,其特征在于:所述步骤(1)中箔带样片选取轧制前后箔带卷厚度稳定段的箔带,箔带样片沿着箔带轧制方向的长度L大于后期裁切箔带小条的取样器刀口的长度,即L>l。
  3. 根据权利要求1所述的基于称重的箔带横断面轮廓测量方法,其特征在于:所述步骤(2)中取样器裁切得到的箔带小条尺寸l*w由取样器决定,l方向与L相同,w方向与W相同。
  4. 根据权利要求1所述的基于称重的箔带横断面轮廓测量方法,其特征在于:所述步骤(3)中箔带小条的厚度h n的计算公式如下:
    Figure PCTCN2021113790-appb-100001
    其中,M n为第n个箔带小条的质量,g;ρ为箔带密度,g/m 3;w为箔带小条的宽度,与取样器刀口宽度一致,m;l为箔带小条的长度,与取样器刀口长度一致,m;h n为第n个箔带小条的厚度,mm。
  5. 根据权利要求1所述的基于称重的箔带横断面轮廓测量方法,其特征在于:所述步骤(2)和步骤(4)中操作侧改为传动侧代替。
PCT/CN2021/113790 2020-08-26 2021-08-20 一种基于称重的箔带横断面轮廓测量方法 WO2022042445A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010871183.X 2020-08-26
CN202010871183.XA CN112122365B (zh) 2020-08-26 2020-08-26 一种基于称重的箔带横断面轮廓测量方法

Publications (1)

Publication Number Publication Date
WO2022042445A1 true WO2022042445A1 (zh) 2022-03-03

Family

ID=73848341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113790 WO2022042445A1 (zh) 2020-08-26 2021-08-20 一种基于称重的箔带横断面轮廓测量方法

Country Status (2)

Country Link
CN (1) CN112122365B (zh)
WO (1) WO2022042445A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112122365B (zh) * 2020-08-26 2021-08-03 北京科技大学 一种基于称重的箔带横断面轮廓测量方法
CN114353719A (zh) * 2022-01-18 2022-04-15 广东英联包装股份有限公司 一种快速检测涂覆聚乙烯涂层铝箔涂布膜厚的测量方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104942017A (zh) * 2015-05-08 2015-09-30 北京首钢股份有限公司 冷轧带钢横向厚差的确定方法
CN107999548A (zh) * 2017-12-07 2018-05-08 北京首钢股份有限公司 一种热轧带钢轮廓局部高点的识别方法及装置
CN108067837A (zh) * 2015-12-18 2018-05-25 穆尔和本德公司 用于制造板状金属坯料的方法和设备
CN108555025A (zh) * 2017-12-29 2018-09-21 郭其秀 一种轻钢成型设备及使用方法及激光器的合速度取值方法
CN110404977A (zh) * 2019-07-26 2019-11-05 东北大学 一种板带轧制过程在线质量判定方法
EP3572161A1 (de) * 2018-05-24 2019-11-27 Muhr und Bender KG Verfahren und vorrichtung zur herstellung eines produkts aus flexibel gewalztem bandmaterial
CN112122365A (zh) * 2020-08-26 2020-12-25 北京科技大学 一种基于称重的箔带横断面轮廓测量方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204276526U (zh) * 2014-11-18 2015-04-22 华东理工大学 带钢边部缺陷检测装置
DE102015121673B4 (de) * 2015-12-11 2019-01-10 SmartRay GmbH Formermittlungsverfahren
JP6919385B2 (ja) * 2017-07-19 2021-08-18 日本製鉄株式会社 ワークロール摩耗量予測方法、及びワークロール摩耗量予測システム
CN210305047U (zh) * 2019-07-23 2020-04-14 攀枝花学院 热轧带钢平直度检测装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104942017A (zh) * 2015-05-08 2015-09-30 北京首钢股份有限公司 冷轧带钢横向厚差的确定方法
CN108067837A (zh) * 2015-12-18 2018-05-25 穆尔和本德公司 用于制造板状金属坯料的方法和设备
CN107999548A (zh) * 2017-12-07 2018-05-08 北京首钢股份有限公司 一种热轧带钢轮廓局部高点的识别方法及装置
CN108555025A (zh) * 2017-12-29 2018-09-21 郭其秀 一种轻钢成型设备及使用方法及激光器的合速度取值方法
EP3572161A1 (de) * 2018-05-24 2019-11-27 Muhr und Bender KG Verfahren und vorrichtung zur herstellung eines produkts aus flexibel gewalztem bandmaterial
CN110404977A (zh) * 2019-07-26 2019-11-05 东北大学 一种板带轧制过程在线质量判定方法
CN112122365A (zh) * 2020-08-26 2020-12-25 北京科技大学 一种基于称重的箔带横断面轮廓测量方法

Also Published As

Publication number Publication date
CN112122365B (zh) 2021-08-03
CN112122365A (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
WO2022042445A1 (zh) 一种基于称重的箔带横断面轮廓测量方法
US6967726B2 (en) Means for in-place automated calibration of optically-based thickness sensor
CN114720324B (zh) 一种锂电池极片净涂层量检测方法、装置及系统
James et al. Study of the Precision of X-ray Stress Analysis
JPS635683B2 (zh)
KR102095358B1 (ko) 전지 재료의 두께 측정기
US4088886A (en) Radiation thickness gauge for sheet material
CN114812470A (zh) 一种薄膜在线测厚仪计量校准方法
CN211401060U (zh) 一种硬质合金顶锤平行度检测工具
JP4784320B2 (ja) 冷間圧延におけるエッジドロップの検出・制御方法及び装置
US3679972A (en) Micrometer thickness gage
CN115343175A (zh) 一种极片辊压后延展率的测量方法
CN108414553B (zh) 一种动态测量片状材料晶体织构的系统、设备及方法
CN110360937B (zh) 一种基于激光测距仪的纸卷幅宽自动测量方法
Hibbert et al. Experimental errors in combined electron microscopy and energy analysis
CN102189118B (zh) 基于定长采样的板形模型在线修正方法
CN106500642A (zh) 一种沿预定路线在线测量电池板厚度的方法
JP3363281B2 (ja) 帯状物の2次元形状測定装置
CN113280782B (zh) 一种求积仪检测方法
JPS6259255B2 (zh)
KR100489711B1 (ko) 결함깊이의 측정이 가능한 방사선투과 비파괴검사법
CN208269871U (zh) 一种测厚仪
CN216898761U (zh) 板材测量器具
CN215893480U (zh) 一种切割用主辊的测量工装
JPS5919282B2 (ja) 板材の断面厚さ形状測定装置を較正する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21860282

Country of ref document: EP

Kind code of ref document: A1