WO2022042148A1 - 一种波导接口结构 - Google Patents

一种波导接口结构 Download PDF

Info

Publication number
WO2022042148A1
WO2022042148A1 PCT/CN2021/107660 CN2021107660W WO2022042148A1 WO 2022042148 A1 WO2022042148 A1 WO 2022042148A1 CN 2021107660 W CN2021107660 W CN 2021107660W WO 2022042148 A1 WO2022042148 A1 WO 2022042148A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
extension
interface structure
face
elastic
Prior art date
Application number
PCT/CN2021/107660
Other languages
English (en)
French (fr)
Inventor
李卓
王靖
张勇
舒建讯
张震
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2023511871A priority Critical patent/JP2023538358A/ja
Priority to EP21859988.4A priority patent/EP4195401A4/en
Publication of WO2022042148A1 publication Critical patent/WO2022042148A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/04Fixed joints
    • H01P1/042Hollow waveguide joints

Definitions

  • the embodiments of the present application relate to the field of microwave communications, and in particular, to a waveguide interface structure.
  • the waveguide In the microwave frequency band, the waveguide has the smallest transmission loss, and it is an irreplaceable type of transmission line to improve the power generation and reception sensitivity of microwave communication systems.
  • the waveguide interconnection scheme is mostly a single waveguide port and the electrical connection is preferentially ensured, that is, the end faces of the two waveguide ports of the interconnection are in close contact. The scheme of placing the shielding sealing ring to solve the electromagnetic leakage prevention problem.
  • the above solutions have at least the following problems: the above solutions have higher requirements on the end face processing and assembly of the waveguide, and the structure of the waveguide is difficult to process.
  • the purpose of the embodiments of the present application is to provide a waveguide interface structure, which can reduce the structural processing difficulty of the waveguide on the premise of ensuring normal signal transmission of the waveguide interconnection channel, and is suitable for use scenarios with large gap random tolerances.
  • the embodiments of the present application provide a waveguide interface structure for electrically connecting a first waveguide and a second waveguide, including: an elastic electrical connection part and a fixed connection connected to the electrical connection part the fixing part is used for abutting against the end face of the first waveguide, the electrical connection part surrounds an opening for passing electromagnetic waves, and the electrical connection part is used for elastically pressing against the first waveguide
  • the first waveguide and the second waveguide are electrically connected between the end face and the end face of the second waveguide.
  • FIG. 1 is a schematic structural diagram of the waveguide interface structure provided by the first embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a waveguide interface structure provided in the first embodiment of the present application applied to a waveguide.
  • FIG. 3 is an assembly diagram of a waveguide interface structure provided in the first embodiment of the present application applied to a waveguide.
  • FIG. 4 is another schematic structural diagram of the waveguide interface structure provided by the first embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another waveguide interface structure provided in the first embodiment of the present application applied to a waveguide.
  • FIG. 6 is an assembly diagram of another waveguide interface structure provided in the first embodiment of the present application applied to a waveguide.
  • FIG. 7 is another structural schematic diagram of the waveguide interface structure provided by the first embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another waveguide interface structure provided in the first embodiment of the present application applied to a waveguide.
  • FIG. 9 is an assembly diagram of another waveguide interface structure provided in the first embodiment of the present application applied to a waveguide.
  • FIG. 10 is a schematic structural diagram of a waveguide interface structure provided by a second embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of the waveguide interface structure provided in the second embodiment of the present application applied to a waveguide.
  • FIG. 12 is an assembly diagram of another waveguide interface structure provided in the first embodiment of the present application applied to a waveguide.
  • the first embodiment of the present application relates to a waveguide interface structure 100 for electrically connecting the first waveguide 10 and the second waveguide 20 .
  • the core of this embodiment is that the waveguide interface structure 100 includes: an elastic electrical connection part 11 and a fixed part 12 connected to the electrical connection part 11 , the fixed part 12 is used for abutting against the end face of the first waveguide 10 , and the electrical connection part 11 surrounds an opening 30 for passing electromagnetic waves, and the electrical connection portion 11 is used for elastically pressing between the end surface of the first waveguide 10 and the end surface of the second waveguide 20 and electrically connecting the first waveguide 10 and the second waveguide 20 .
  • the electrical connection portion 11 Since the electrical connection portion 11 has elasticity and is used for elastic pressing between the end face of the first waveguide 10 and the end face of the second waveguide 20 , it can The size of the gap can be elastically deformed, and since the electrical connection portion 11 is also used to electrically connect the first waveguide 10 and the second waveguide 20, the electrical connection portion 11 can always absorb the gap between the first waveguide 10 and the second waveguide 20 (ie , the electrical connection portion 11 surrounds an opening 30 for passing electromagnetic waves, and blocks the leakage of electromagnetic waves at the gap between the first waveguide 10 and the second waveguide 20, making up for the gap between the first waveguide 10 and the second waveguide 20.
  • each waveguide port channel can be processed independently, which reduces the difficulty of structural processing of the waveguide, and can be suitable for use scenarios with large gaps and random tolerances.
  • the prior art scheme of prioritizing the connection of the waveguide ports, and then considering the waterproof and heat dissipation of the casing limits the overall system architecture scheme, such as: the stacking sequence of the entire machine structure, the number of waveguide ports in the whole machine, the position of the heat sink, The size of the waterproof sealing ring, etc., in the embodiment of the present application, the first waveguide 10 and the second waveguide 20 are connected by the above-mentioned waveguide interface structure 100, which can be elastically deformed according to the size of the gap between the waveguides to absorb the waveguide gaps of different sizes, thereby There is no need to give priority to the connection of the waveguide port, and the heat sink can be designed on the outside of the whole machine and the antenna feeder to achieve the best heat dissipation effect, thereby effectively reducing the size of the whole machine and reducing the cost.
  • the reliability of the machine seal improves the mechanical strength of the connection between the whole machine and the antenna feeder, and reduces the field reliability risk and later maintenance costs.
  • the electrical connection portion 11 may include: an annular main body portion 111 connected to the fixing portion 12 , and a plurality of elastic pieces 112 arranged on the annular main body portion 111 at intervals, and the annular main body portion 111 is used to fit the first On the end face of the waveguide 10 , a plurality of elastic sheets 112 are used to abut against the end face of the second waveguide 20 , and the plurality of elastic sheets 112 extend in a direction away from the annular main body portion 111 to together form an opening 30 , and the opening 30 communicates with the center of the annular main body portion 111 .
  • the holes are arranged opposite to each other to facilitate the transmission of electromagnetic waves, and are elastically pressed between the end face of the first waveguide 10 and the end face of the second waveguide 20 through a plurality of elastic sheets 112, and are electrically connected to the first waveguide 10 and the second waveguide 20.
  • the large-surface contact is converted into multi-point contact, which effectively avoids the problem of poor contact in a large area, and reduces the machining accuracy and assembly requirements of the shrapnel 112.
  • the size of the opening 30 changes according to the size of the interconnection gap of the waveguide and the deformation of the elastic sheet 112 , as long as the size of the opening 30 is always matched with the size of the waveguide.
  • the waveguide interface structure 100 may be suitable for application scenarios such as rectangular waveguides, circular waveguides, and ridged waveguides.
  • the shrapnel 112 solution is a broadband design, and the operating frequency range is consistent with the waveguide operating frequency range.
  • Different central openings 30 are designed according to different types of waveguides. For example, for rectangular waveguides, the openings 30 may be rectangular, for circular waveguides, the openings 30 may be circular; for ridged waveguides, the openings 30 may be ridged.
  • the material of the annular body portion 111 may be a conductive material, such as metal
  • the material of the elastic piece 112 may be an elastic conductive material, such as metal.
  • the annular body portion 111 and the elastic sheet 112 may only be made of conductive material on the surface and insulating material (eg, plastic) inside, as long as the first waveguide 10 and the second waveguide 20 can pass through the annular body portion 111 and the elastic sheet. 112 can be electrically connected.
  • the elastic sheet 112 can be punched or etched and then folded to form, and the cylindrical isolation portion 114 can first bend a flat metal sheet into a cylindrical shape, and then perform welding.
  • the elastic piece 112 and the cylindrical isolation portion 114 may be processed separately, and then welded together. Since the material cost of the waveguide interface structure 100 of this embodiment is low and easy to process, it can be mass-produced by a mold, and has a cost advantage compared with the conductive rubber ring.
  • each elastic piece 112 may include: a first extension part 112a connected to the annular main body part 111, and a second extension part 112b bent and extended from the first extension part 112a, and the second extension part 112b is used to resist Holding the end face of the second waveguide 20, since the second extension part 112b is bent and extended from the first extension part 112a, the junction of the first extension part 112a and the second extension part 112b is more likely to elastically deform, so that it can better adapt to Different sized gaps between the first waveguide 10 and the second waveguide 20 .
  • the first extension portion 112a may be disposed on the inner edge 111a of the annular main body portion 111 , or may be disposed on the outer edge 111b of the annular main body portion 111 , or a part of the first extending portion 112a may be disposed on the inner edge of the annular main body portion 111 111a, and another part of the first extension part 112a is provided on the outer edge 111b of the annular main body part 111.
  • the first extension portion 112a may not be provided at the edge of the annular main body portion 111, but may be located between the inner edge 111a and the outer edge 111b, which is not limited here.
  • the second extension portion 112b and the first extension portion 112a may be arranged at an obtuse angle, an acute angle or a right angle (that is, the included angle between the second extension portion 112b and the first extension portion 112a is an obtuse angle, Acute angle or right angle), the intersection of the second extension portion 112b and the first extension portion 112a is used to abut the end face of the second waveguide 20, or, the end of the second extension portion 112b away from the first extension portion 112a is used to abut the first extension portion 112a.
  • the end face of the second waveguide 20 is arranged at an obtuse angle, an acute angle or a right angle (that is, the included angle between the second extension portion 112b and the first extension portion 112a is an obtuse angle, Acute angle or right angle)
  • each second extension portion 112b and the corresponding first extension portion 112a are arranged at an obtuse angle, an acute angle or a right angle; various elastic pieces with different arrangements can also be used 112 are combined, and each elastic piece 112 can be arranged in any of the above-mentioned manners.
  • a part of the second extension part 112b and the corresponding first extension part 112a are arranged at an obtuse angle, and another part of the second extension part 112b is arranged at an obtuse angle with the corresponding first extension part 112b.
  • An acute angle is formed between the first extending portions 112a.
  • the first extension portion 112 a is disposed on the inner edge 111 a of the annular main body portion 111 , and the second extension portion 112 b and the first extension portion 112 a are all disposed at an obtuse angle.
  • the intersection of the two extension parts 112b and the first extension part 112a is used to abut the end surface of the first waveguide 10
  • the end of the second extension part 112b away from the first extension part 112a is used to abut the end surface of the second waveguide 20 .
  • a part of the first extension part 112 a is provided on the inner edge 111 a of the annular main body part 111
  • another part of the first extension part 112 a is provided on the outer edge 111 b of the annular main body part 111
  • the first The two extending portions 112b and the first extending portion 112a are formed at an acute angle.
  • the intersection of the second extending portion 112b and the first extending portion 112a is used to abut the end face of the first waveguide 10, and the second extending portion 112b is away from the first extending portion 112b.
  • One end of the extension portion 112 a is used to abut against the end face of the second waveguide 20 .
  • the first extension parts 112 a are all disposed on the inner edge 111 a of the annular main body part 111 , and a part of the second extension parts 112 b and the corresponding first extension parts 112 a are arranged at an obtuse angle , another part of the second extension portion 112b and the corresponding first extension portion 112a are arranged at an acute angle.
  • One end of the portion 112b away from the first extension portion 112a is used to abut against the end face of the second waveguide 20 .
  • the finger width, finger spacing, finger length and shape of the elastic sheet 112 are designed through simulation.
  • the finger width needs to consider the material elasticity and deformation (the smaller the finger width, the better the elasticity) to ensure good contact under different gap sizes; the finger spacing meets the cut-off waveguide theory and is reasonably designed according to the anti-leakage goal; the finger length and shape determine Tolerance absorption capacity (adaptability for gap size between waveguides) and electrical properties.
  • the above-mentioned waveguide interface structure 100 is suitable for a waveguide for transmitting electromagnetic waves having a first wavelength (the opening 30 is used for passing electromagnetic waves having a first wavelength), that is, the first waveguide 10 and the second waveguide 20 are used for transmitting electromagnetic waves having a first wavelength.
  • the finger width determines the length of the contact surface between the elastic sheet 112 and the waveguide. In order to ensure reliable electrical contact, the width w (ie, the finger width) of the elastic sheet 112 in the arrangement direction of the elastic sheet 112 can be less than 0.2 times.
  • the spacing v ie, finger spacing
  • the thickness of the elastic sheet 112 is generally less than 0.2 mm.
  • a mounting hole 13 may be provided on the fixing portion 12 , and a screw may be inserted into the mounting hole 13 and fixed on one end of the waveguide (ie, the first waveguide 10 ), so as to realize the installation of the waveguide interface structure 100 .
  • the slot absorption capacity may be 0 to 2 mm, that is, when the distance between the end face of the first waveguide 10 and the end face of the second waveguide 20 is within 2 mm, the waveguide interface structure 100 will A good electrical connection and the effect of preventing electromagnetic wave leakage can be achieved.
  • the second embodiment of the present application relates to a waveguide interface structure 200 .
  • the second embodiment is roughly the same as the first embodiment, and the main difference is that: in the first embodiment, the electrical connection part 11 includes: The annular main body portion 111 that is attached to the end face of the first waveguide 10 and the plurality of elastic pieces 112 disposed on the annular main body portion 111 spaced apart from each other, the plurality of elastic pieces 112 extend in a direction away from the annular main body portion 111 and together form an opening. 30 , the plurality of elastic pieces 112 are used to abut against the end face of the second waveguide 20 .
  • the electrical connection portion 11 includes: a plurality of elastic pieces 113 arranged on the fixing portion 12 at intervals, and a cylindrical isolation portion 114 connected with the plurality of elastic pieces 113; the elastic pieces 113 are used to resist Holding the end face of the second waveguide 20 , the cylindrical isolation portion 114 surrounds the opening 30 , and the cylindrical isolation portion 114 is used for contacting the inner wall of the first waveguide 10 .
  • the technical effects of this embodiment are similar to those of the first embodiment, which are not repeated here.
  • the annular main body 111 and the plurality of elastic pieces 112 are used to press against the end surface of the first waveguide 10 and the end surface of the second waveguide 20 respectively, so as to realize the connection between the first waveguide 10 and the second waveguide 20 .
  • the fixed portion 12 and the plurality of elastic sheets 113 are used to press against the end face of the first waveguide 10 and the end face of the second waveguide 20 respectively, so as to realize the first waveguide 10 and the second waveguide.
  • the elastic connection between the first waveguide 10 and the second waveguide 20 is realized by using the cylindrical isolation portion 114 to connect with the plurality of elastic pieces 113 and contact the inner wall of the first waveguide 10 .
  • the cylindrical isolation portion 114 may include: a cylindrical wall 114a connected with a plurality of elastic pieces 113, and a plurality of abutting portions 114b connected with the cylindrical wall 114a, the free ends of the abutting portions 114b are used to abut the first
  • the abutting portion 114b extends from the end edge or the outer wall of the cylindrical wall 114a in a direction away from the inner space of the cylindrical wall 114a, so that when the waveguide interface structure 200 connects the first waveguide 10 and the second waveguide 20,
  • the barrel wall 114a protrudes into the waveguide port of the first waveguide 10, the abutting portion 114b abuts against the inner wall of the first waveguide 10, the elastic sheet 113 abuts against the end face of the second waveguide 20, and the elastic sheet 113 is connected to the abutting portion 114b via the barrel wall 114a , so that the electrical connection between the first waveguide 10 and the second waveguide 20 is achieved, and when the size of the interconnection gap between the first waveguide 10 and the second waveguide 20 is changed, the abutting portion 114b slides on the inner wall of the first waveguide 10, It can always keep in contact with the inner wall of the first waveguide 10, and at the same time, the electromagnetic wave in the electromagnetic wave transmission channel is isolated
  • each elastic piece 113 includes a first extension portion 113a connected to the fixing portion 12 , a second extension portion 113b bent and extended from the first extension portion 113a , and a bent extension portion 113b extending from the second extension portion 113b
  • the third extension portion 113c is connected to the cylindrical isolation portion 114, and the third extension portion 113c is used to abut the end surface of the second waveguide 20.
  • the third extension portion 113c and one of the cylindrical wall 114a The end edge (top edge) is connected, and the abutting portion 114b is connected with the other end edge (bottom edge).
  • the junction of the first extension portion 113a and the second extension portion 113b is more prone to elastic deformation, thereby better adapting to the first waveguide 10 and the second waveguide Between 20 gaps of different sizes.
  • the elastic sheet 113 can also be other elastic structures, such as springs, etc., as long as it can be elastically pressed between the end face of the first waveguide 10 and the end face of the second waveguide 20 , which is not limited here.
  • the material, manufacturing method and size of the abutting portion 114b are similar to those of the elastic sheet 112 in the first embodiment.
  • the abutting portion 114b can be made of metal material, which can be punched or etched and then bent and welded to form (the cylinder wall 114a and the abutting portion 114b).
  • the width w (ie, the finger width) of the abutting portions 114b may all be smaller than 0.2 times the first wavelength; according to the anti-leakage target, using the cut-off waveguide theory, in the arrangement direction of the abutting portions 114b, adjacent abutting
  • the spacing v (ie, the finger spacing) between the parts 114b may be smaller than 0.05 times the first wavelength, and the settings of other dimensions will not be repeated here.
  • the materials of the third extension portion 113c and the cylindrical isolation portion 114 are conductive materials, such as metal, so that the first waveguide 10 and the second waveguide 20 pass through the third
  • the extension portion 113c, the cylinder wall 114a and the abutting portion 114b are electrically connected.
  • the third extension portion 113c, the cylinder wall 114a and the abutting portion 114b may only be made of conductive material on the surface and insulating material (eg, plastic) on the inside, as long as they can conduct electricity.
  • the slot absorption capacity is greater than 2 mm, that is, when the distance between the end face of the first waveguide 10 and the end face of the second waveguide 20 is more than 2 mm, the waveguide interface structure 200 can achieve good performance The electrical connection and the effect of preventing electromagnetic wave leakage.
  • this embodiment can be implemented in cooperation with the first embodiment.
  • the relevant technical details mentioned in the first embodiment are still valid in this embodiment, and the technical effects that can be achieved in the first embodiment can also be achieved in this embodiment. In order to reduce repetition, details are not repeated here. Correspondingly, the related technical details mentioned in this embodiment can also be applied in the second embodiment.

Landscapes

  • Waveguide Connection Structure (AREA)

Abstract

本申请实施例涉及微波通信领域,公开了一种波导接口结构。本申请实施例提供的波导接口结构(100)用于电连接第一波导(10)和第二波导(20),包括:具有弹性的电连接部(11)、以及与所述电连接部(11)相连的固定部(12),所述固定部(12)用于抵靠所述第一波导(10)的端面,所述电连接部(11)围设形成用于通过电磁波的开口,所述电连接部(11)用于弹性压持在所述第一波导(10)的端面和所述第二波导(20)的端面之间、且电连接所述第一波导(10)和所述第二波导(20)。

Description

一种波导接口结构
相关申请的交叉引用
本申请基于申请号为202010895432.9、申请日为2020年8月31日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请实施例涉及微波通信领域,特别涉及一种波导接口结构。
背景技术
在微波频段,波导具有最小的传输损耗,它是提升微波通信系统发功和接收灵敏度无法替代的传输线类型。当波导互连存在缝隙时,将发生强烈的辐射损耗和干扰,影响系统正常工作。在一些情形下,波导互连方案大多是单波导口且优先保证电连接,即互连的两个波导口端面是紧密接触的,在存在微小互连缝隙的情况下,一般采用在波导口周围放置屏蔽密封圈的方案来解决电磁防泄漏问题。
上述方案至少存在如下问题:上述方案对波导端面加工、装配要求较高,波导的结构加工难度较大,只能适应微小互连缝隙的情况,不能适应大缝隙随机公差的使用场景。
发明内容
本申请实施例的目的在于提供一种波导接口结构,能够保证波导互连通道的正常信号传输的前提下,降低波导的结构加工难度,适用于大缝隙随机公差的使用场景。
为解决上述技术问题,本申请的实施例提供了一种波导接口结构,用于电连接第一波导和第二波导,包括:具有弹性的电连接部、以及与所述电连接部相连的固定部,所述固定部用于抵靠所述第一波导的端面,所述电连接部围设形成用于通过电磁波的开口,所述电连接部用于弹性压持在所述第一波导的端面和所述第二波导的端面之间、且电连接所述第一波导和所述第二波导。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别 申明,附图中的图不构成比例限制。
图1是本申请的第一实施例提供的波导接口结构的一种结构示意图。
图2是本申请的第一实施例提供的一种波导接口结构应用于波导的结构示意图。
图3是本申请的第一实施例提供的一种波导接口结构应用于波导的组装图。
图4是本申请的第一实施例提供的波导接口结构的另一种结构示意图。
图5是本申请的第一实施例提供的另一种波导接口结构应用于波导的结构示意图。
图6是本申请的第一实施例提供的另一种波导接口结构应用于波导的组装图。
图7是本申请的第一实施例提供的波导接口结构的又一种结构示意图。
图8是本申请的第一实施例提供的又一种波导接口结构应用于波导的结构示意图。
图9是本申请的第一实施例提供的另一种波导接口结构应用于波导的组装图。
图10是本申请的第二实施例提供的波导接口结构的结构示意图。
图11是本申请的第二实施例提供的波导接口结构应用于波导的结构示意图。
图12是本申请的第一实施例提供的另一种波导接口结构应用于波导的组装图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。
参见图1至图9,本申请的第一实施例涉及一种波导接口结构100,用于电连接第一波导10和第二波导20。本实施例的核心在于,波导接口结构100包括:具有弹性的电连接部11、以及与电连接部11相连的固定部12,固定部12用于抵靠第一波导10的端面,电连接部11围设形成用于通过电磁波的开口30,电连接部11用于弹性压持在第一波导10的端面和第二波导20的端面之间、且电连接第一波导10和第二波导20。
由于电连接部11具有弹性,且用于弹性压持在第一波导10的端面和第二波导20的端面之间,从而能够根据第一波导10的端面和第二波导20的端面之间的缝隙大小来弹性形变,又由于电连接部11还用于电连接第一波导10和第二波导20,使得电连接部11始终能够吸收第一波导10和第二波导20之间的缝隙(即,电连接部11围设形成用于通过电磁波的开口30,并阻挡了第一波导10和第二波导20之间的缝隙处电磁波的泄漏,弥补了第一波导10和第二波导20之间的缝隙),解决了多波导口互连不共面问题,避免了电磁波的泄漏,保证了波导互连通道的正常信号传输,使得累积公差对波导互连的影响较小,各波导端面的加工精度、装配要求较低,各个波导口通道可以独立加工,降低了波导的结构加工难度,能够适用于大缝隙随机公差的使用场景。
同时,现有技术中的优先保证波导口连接、再考虑机壳防水、散热等的方案,限制了整机系统架构方案,例如:整机结构堆叠顺序、整机波导口数量、散热片位置、防水密封圈尺寸等等,本申请实施例通过上述的波导接口结构100连接第一波导10和第二波导20,能够根据波导之间的缝隙大小来弹性形变、以吸收不同大小的波导缝隙,从而无需优先保证波导 口连接,可以使散热片设计在整机与天馈外侧,达到最佳散热效果,从而有效缩减整机体积,降低成本,并且,保证了整机结构防水面优先接触,提升整机密封可靠性,提升整机与天馈对接的机械强度,降低外场可靠性风险和后期维护成本。
下面对本实施例的波导接口结构100的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须。
在实际应用中,电连接部11可以包括:与固定部12相连的环形主体部111、以及相互间隔地设置在环形主体部111上的多个弹片112,环形主体部111用于贴合第一波导10的端面,多个弹片112用于抵持第二波导20的端面,多个弹片112沿远离环形主体部111的方向延伸而共同围成开口30,开口30与环形主体部111的中心通孔正对设置、以便于电磁波的传输,通过多个弹片112弹性压持在第一波导10的端面和第二波导20的端面之间、且电连接第一波导10和第二波导20,把大面接触转化为多点接触,有效地避免了大面积的接触不良问题,降低了弹片112加工精度和装配要求。
为了满足信号传输要求,开口30的尺寸根据波导互连缝隙的大小和弹片112的形变而发生变化,只要始终保证开口30尺寸与波导尺寸电性能匹配即可。波导接口结构100可以适用于矩形波导、圆波导、脊波导等应用场景,弹片112方案是宽带设计,工作频率范围与波导工作频率范围一致。根据波导类型不同设计不同的中心开口30,例如,针对矩形波导,开口30可以为矩形,针对圆波导,开口30可以为圆形;针对脊波导,开口30可以为脊形。
其中,环形主体部111的材料可以为导电材料,例如金属,弹片112的材料可以为具有弹性的导电材料,例如金属。当然,环形主体部111和弹片112也可以仅表面的材料为导电材料、而内部的材料为绝缘材料(例如塑料),只要保证第一波导10和第二波导20能够经由环形主体部111和弹片112实现电连接即可。
实际应用中,弹片112可以冲压或蚀刻后折叠成型,筒状隔离部114可以将平面的金属片先弯折成筒状,再进行焊接。为了降低加工难度,可以把弹片112和筒状隔离部114分别加工,然后再焊接到一起。由于本实施例的波导接口结构100的材料成本低、易于加工,可以通过模具大批量生产,与导电橡胶圈相比较,具有成本优势。
本实施例中,每个弹片112可以包括:与环形主体部111相连的第一延伸部112a、以及自第一延伸部112a弯折延伸的第二延伸部112b,第二延伸部112b用于抵持第二波导20的端面,由于第二延伸部112b自第一延伸部112a弯折延伸,使得第一延伸部112a和第二延伸部112b的交接处更易发生弹性形变,从而能够更好的适应第一波导10和第二波导20之间不同大小的缝隙。
其中,第一延伸部112a可以设置在环形主体部111的内边缘111a,也可以设置在环形主体部111的外边缘111b,或者是,一部分第一延伸部112a设置在环形主体部111的内边缘111a,另一部分第一延伸部112a设置在环形主体部111的外边缘111b。当然,第一延伸部112a也可以不设置在环形主体部111的边缘位置,而是位置在内边缘111a和外边缘111b之间,此处不做限定。
对于每个弹片112,第二延伸部112b与第一延伸部112a之间均可以呈钝角、锐角或直角设置(即,第二延伸部112b与第一延伸部112a之间的夹角为钝角、锐角或直角),第二延伸部112b与第一延伸部112a的交接处用于抵持第二波导20的端面,或者,第二延伸部 112b远离第一延伸部112a的一端用于抵持第二波导20的端面。
对于所有弹片112,可以采用相同的设置方式,例如,每个第二延伸部112b与对应的第一延伸部112a之间均呈钝角、锐角或直角设置;也可以采用多种不同设置方式的弹片112进行组合,每个弹片112的设置方式可以为上述的任一种,例如,一部分第二延伸部112b与对应的第一延伸部112a之间呈钝角设置,另一部分第二延伸部112b与对应的第一延伸部112a之间呈锐角设置。
为了便于理解,下面举两个例子:
如图1、图2、图3所示,第一延伸部112a均设置在环形主体部111的内边缘111a,并且,第二延伸部112b与第一延伸部112a之间均呈钝角设置,第二延伸部112b与第一延伸部112a的交接处用于抵持第一波导10的端面,第二延伸部112b远离第一延伸部112a的一端用于抵持第二波导20的端面。
如图4、图5、图6所示,一部分第一延伸部112a设置在环形主体部111的内边缘111a,另一部分第一延伸部112a设置在环形主体部111的外边缘111b,并且,第二延伸部112b与第一延伸部112a之间均呈锐角设置,第二延伸部112b与第一延伸部112a的交接处用于抵持第一波导10的端面,第二延伸部112b远离第一延伸部112a的一端用于抵持第二波导20的端面。
如图7、图8、图9所示,第一延伸部112a均设置在环形主体部111的内边缘111a,并且,一部分第二延伸部112b与对应的第一延伸部112a之间呈钝角设置,另一部分第二延伸部112b与对应的第一延伸部112a之间呈锐角设置,第二延伸部112b与第一延伸部112a的交接处用于抵持第一波导10的端面,第二延伸部112b远离第一延伸部112a的一端用于抵持第二波导20的端面。
为了保证公差范围内的可靠接触和电性能,弹片112的指宽、指间距、指长及形状经过仿真设计。指宽需要考虑材料弹力和形变量(指宽越小,弹性越好),保证不同缝隙大小情况下始终接触良好;指间距满足截止波导理论,根据防泄漏目标合理设计;指长和形状决定了公差吸收能力(针对波导之间的缝隙大小的适应能力)和电性能。
具体的,若上述波导接口结构100适用于传输具有第一波长的电磁波的波导(开口30用于通过具有第一波长的电磁波),即,第一波导10和第二波导20用于传输具有第一波长的电磁波,指宽决定了弹片112与波导的接触面长度,为了保证可靠的电接触,在沿弹片112的排列方向上,弹片112的宽度w(即,指宽)可以均小于0.2倍的第一波长;根据防泄漏目标,利用截止波导理论,在沿弹片112的排列方向上,相邻的弹片112之间的间距v(即,指间距)可以均小于0.05倍的第一波长;为了保证足够的弹性,弹片112的厚度一般小于0.2毫米。
可选的,在实际应用中,可以在固定部12上设置安装孔13,使用螺钉插入安装孔13中并固定在一端波导(即,第一波导10)上,从而实现波导接口结构100的安装。
本实施例提供的波导接口结构100,缝隙吸收能力可以为0至2毫米,即,第一波导10的端面和第二波导20的端面之间的距离为2毫米以内时,波导接口结构100均可以实现良好的电连接以及防止电磁波泄露的效果。
本申请的第二实施例涉及一种波导接口结构200。如图10、图11、图12所示,第二实施例与第一实施例大致相同,主要区别之处在于:在第一实施例中,电连接部11包括:与固定部12相连且用于贴合第一波导10的端面的环形主体部111、以及相互间隔地设置在环形主体部111上的多个弹片112,多个弹片112沿远离环形主体部111的方向延伸而共同围成开口30,多个弹片112用于抵持第二波导20的端面。而在本申请第二实施例中,电连接部11包括:相互间隔地设置在固定部12上的多个弹片113、以及与多个弹片113相连的筒状隔离部114;弹片113用于抵持第二波导20的端面,筒状隔离部114围设形成开口30,且筒状隔离部114用于与第一波导10的内壁接触。此外,本实施例与第一实施例的技术效果类似,此处不再赘述。
也就是说,第一实施例中是利用环形主体部111和多个弹片112分别抵持第一波导10的端面和第二波导20的端面,以实现第一波导10和第二波导20之间的弹性连接和电连接;而第二实施例中是利用固定部12和多个弹片113分别抵持第一波导10的端面和第二波导20的端面,以实现第一波导10和第二波导20之间的弹性连接,利用筒状隔离部114与多个弹片113相连、并与第一波导10的内壁接触,以实现第一波导10和第二波导20之间的电连接。
下面对本实施例的波导接口结构200的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须。
具体的说,筒状隔离部114可以包括:与多个弹片113相连的筒壁114a、以及与筒壁114a相连的多个抵靠部114b,抵靠部114b的自由端用于抵靠第一波导10的内壁,也就是说,筒状隔离部114在其轴向方向上具有相对的两个端缘(两端的边缘),弹片113与其中一个端缘(顶部边缘)相连,抵靠部114b与另一个端缘(底部边缘)相连,通过把大面接触转化为多点接触,有效地避免了大面积的接触不良问题,降低了抵靠部114b的加工精度和装配要求。
在本实施例中,抵靠部114b自筒壁114a的端缘或外壁面朝远离筒壁114a的内部空间的方向延伸,从而在波导接口结构200连接第一波导10和第二波导20时,筒壁114a伸入第一波导10的波导口内,抵靠部114b抵靠第一波导10的内壁,弹片113抵持第二波导20的端面,且弹片113经由筒壁114a与抵靠部114b相连,从而实现了第一波导10和第二波导20的电连接,并且第一波导10和第二波导20的互连缝隙大小改变时,抵靠部114b通过在第一波导10的内壁上滑动,能够始终与第一波导10的内壁保持接触,同时,电磁波传输通道内的电磁波被筒壁114a和抵靠部114b隔离,避免了电磁波泄露的问题。
本实施例中,每个弹片113包括:与固定部12相连的第一延伸部113a、自第一延伸部113a弯折延伸的第二延伸部113b,以及自第二延伸部113b弯折延伸的第三延伸部113c,第三延伸部113c与筒状隔离部114相连、且第三延伸部113c用于抵持第二波导20的端面,具体的,第三延伸部113c与筒壁114a的一个端缘(顶部边缘)相连,抵靠部114b与另一个端缘(底部边缘)相连。由于第二延伸部113b自第一延伸部113a弯折延伸,使得第一延伸部113a和第二延伸部113b的交接处更易发生弹性形变,从而能够更好的适应第一波导10和第二波导20之间不同大小的缝隙。
可以理解的是,弹片113也可以为其他具有弹性的结构,例如弹簧等,只要能够弹性压持在第一波导10的端面和第二波导20的端面之间即可,此处不做限定。
抵靠部114b的材料、制作方法及尺寸与第一实施例中的弹片112类似,例如,抵靠部 114b可以为金属材料,可以冲压或蚀刻后弯曲焊接成型(筒壁114a和抵靠部114b一起成型)、或使用焊接工艺将抵靠部114b焊接到筒壁114a上,若开口30用于通过具有第一波长的电磁波,为了保证可靠的电接触,在沿抵靠部114b的排列方向上,抵靠部114b的宽度w(即,指宽)可以均小于0.2倍的第一波长;根据防泄漏目标,利用截止波导理论,在沿抵靠部114b的排列方向上,相邻的抵靠部114b之间的间距v(即,指间距)可以均小于0.05倍的第一波长,其他尺寸的设置此处不再赘述。
在实际应用中,第三延伸部113c和筒状隔离部114(具体为筒壁114a和抵靠部114b)的材料为导电材料,例如金属,从而第一波导10和第二波导20经由第三延伸部113c、筒壁114a和抵靠部114b实现了电连接。当然,第三延伸部113c、筒壁114a和抵靠部114b也可以仅表面的材料为导电材料、而内部的材料为绝缘材料(例如塑料),只要能够实现导电即可。
本实施例提供的波导接口结构200,缝隙吸收能力大于2毫米,即,第一波导10的端面和第二波导20的端面之间的距离为2毫米以外时,波导接口结构200均可以实现良好的电连接以及防止电磁波泄露的效果。
由于第一实施例与本实施例相互对应,因此本实施例可与第一实施例互相配合实施。第一实施例中提到的相关技术细节在本实施例中依然有效,在第一实施例中所能达到的技术效果在本实施例中也同样可以实现,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在第二实施例中。
本领域的普通技术人员可以理解,上述各实施例是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (13)

  1. 一种波导接口结构,用于电连接第一波导和第二波导,包括:具有弹性的电连接部、以及与所述电连接部相连的固定部,所述固定部用于抵靠所述第一波导的端面,所述电连接部围设形成用于通过电磁波的开口,所述电连接部用于弹性压持在所述第一波导的端面和所述第二波导的端面之间、且电连接所述第一波导和所述第二波导。
  2. 根据权利要求1所述的波导接口结构,其中,所述电连接部包括:与所述固定部相连且用于贴合所述第一波导的端面的环形主体部、以及相互间隔地设置在所述环形主体部上的多个弹片,多个所述弹片沿远离所述环形主体部的方向延伸而共同围成所述开口,多个所述弹片用于抵持所述第二波导的端面。
  3. 根据权利要求2所述的波导接口结构,其中,每个所述弹片包括:与所述环形主体部相连的第一延伸部、以及自所述第一延伸部弯折延伸的第二延伸部,所述第二延伸部用于抵持所述第二波导的端面。
  4. 根据权利要求3所述的波导接口结构,其中,所述第一延伸部设置在所述环形主体部的内边缘;
    或者,所述第一延伸部设置在所述环形主体部的外边缘;
    或者,一部分所述第一延伸部设置在所述环形主体部的内边缘,另一部分所述第一延伸部设置在所述环形主体部的外边缘。
  5. 根据权利要求3所述的波导接口结构,其中,所述第二延伸部与所述第一延伸部之间呈钝角设置;
    或者,所述第二延伸部与所述第一延伸部之间呈锐角设置;
    或者,一部分所述第二延伸部与所述第一延伸部之间呈钝角设置,另一部分所述第二延伸部与所述第一延伸部之间呈锐角设置。
  6. 根据权利要求2所述的波导接口结构,其中,所述开口用于通过具有第一波长的电磁波,在沿所述弹片的排列方向上,所述弹片的宽度均小于0.2倍的第一波长,和\或相邻的所述弹片之间的间距小于0.05倍的第一波长。
  7. 根据权利要求2所述的波导接口结构,其中,所述环形主体部的材料为导电材料,所述弹片的材料为具有弹性的导电材料。
  8. 根据权利要求1所述的波导接口结构,其中,所述电连接部包括:相互间隔地设置在所述固定部上的多个弹片、以及与多个所述弹片相连的筒状隔离部;
    所述弹片用于抵持所述第二波导的端面,所述筒状隔离部围设形成所述开口,且所述筒 状隔离部用于与所述第一波导的内壁接触。
  9. 根据权利要求8所述的波导接口结构,其中,所述筒状隔离部包括:与多个所述弹片相连的筒壁、以及与所述筒壁相连的多个抵靠部,所述抵靠部用于抵靠所述第一波导的内壁。
  10. 根据权利要求9所述的波导接口结构,其中,所述抵靠部自所述筒壁的端缘或外壁面朝远离所述筒壁的内部空间的方向延伸。
  11. 根据权利要求9所述的波导接口结构,其中,所述开口用于通过具有第一波长的电磁波,在沿所述弹片的排列方向上,所述抵靠部的宽度均小于0.2倍的第一波长,且\或相邻的所述抵靠部之间的间距小于0.05倍的第一波长。
  12. 根据权利要求8所述的波导接口结构,其中,每个所述弹片包括:与所述固定部相连的第一延伸部、自所述第一延伸部弯折延伸的第二延伸部、以及自第二延伸部弯折延伸的第三延伸部,第三延伸部与所述筒状隔离部相连、且所述第三延伸部用于抵持所述第二波导的端面。
  13. 根据权利要求12所述的波导接口结构,其中,所述第三延伸部和所述筒状隔离部的材料为导电材料。
PCT/CN2021/107660 2020-08-31 2021-07-21 一种波导接口结构 WO2022042148A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023511871A JP2023538358A (ja) 2020-08-31 2021-07-21 導波材インターフェース構造
EP21859988.4A EP4195401A4 (en) 2020-08-31 2021-07-21 WAVEGUIDE INTERFACE STRUCTURE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010895432.9A CN114122644A (zh) 2020-08-31 2020-08-31 一种波导接口结构
CN202010895432.9 2020-08-31

Publications (1)

Publication Number Publication Date
WO2022042148A1 true WO2022042148A1 (zh) 2022-03-03

Family

ID=80352627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107660 WO2022042148A1 (zh) 2020-08-31 2021-07-21 一种波导接口结构

Country Status (4)

Country Link
EP (1) EP4195401A4 (zh)
JP (1) JP2023538358A (zh)
CN (1) CN114122644A (zh)
WO (1) WO2022042148A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB633433A (en) * 1947-04-10 1949-12-19 Gen Electric Co Ltd Improvements in couplings for rigidly joining two lengths of electrical wave-guide
JP2001196801A (ja) * 2000-01-07 2001-07-19 Nec Corp 導波管の接続固定構造及び導波管クランパ
CN108475833A (zh) * 2016-01-20 2018-08-31 索尼公司 连接器模块、通信电路板和电子装置
JP2020155940A (ja) * 2019-03-20 2020-09-24 三菱電機株式会社 導波管接続構造

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3351408B2 (ja) * 1999-11-29 2002-11-25 日本電気株式会社 導波管接続方法および接続構造
JP4834629B2 (ja) * 2007-08-31 2011-12-14 古野電気株式会社 導波管接続器具及び導波管接続構造
WO2017101980A1 (en) * 2015-12-15 2017-06-22 Telefonaktiebolaget Lm Ericsson (Publ) A waveguide gasket

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB633433A (en) * 1947-04-10 1949-12-19 Gen Electric Co Ltd Improvements in couplings for rigidly joining two lengths of electrical wave-guide
JP2001196801A (ja) * 2000-01-07 2001-07-19 Nec Corp 導波管の接続固定構造及び導波管クランパ
CN108475833A (zh) * 2016-01-20 2018-08-31 索尼公司 连接器模块、通信电路板和电子装置
JP2020155940A (ja) * 2019-03-20 2020-09-24 三菱電機株式会社 導波管接続構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4195401A4 *

Also Published As

Publication number Publication date
JP2023538358A (ja) 2023-09-07
EP4195401A1 (en) 2023-06-14
EP4195401A4 (en) 2024-01-17
CN114122644A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
US11056754B2 (en) Filter antenna device
EP3616259B1 (en) Communication device
CN101527377B (zh) 配备有矩形波导的高频设备
CN109586027B (zh) 低损耗插头连接装置和具有这种插头连接装置的系统
EP2983302A1 (en) Radio frequency unit and integrated antenna with improved heat dissipation
JP5275766B2 (ja) 基板同軸接続機構および基板同軸接続装置
KR20110061566A (ko) 밀리미터파 유전체 내 전송 장치 및 그 제조 방법, 및 무선 전송 장치 및 무선 전송 방법
JP2022532528A (ja) 基板コネクタ
WO2022042148A1 (zh) 一种波导接口结构
JP6408798B2 (ja) 同軸フィードでのrf接続のための方法
CN106654491B (zh) 一种通信器件
KR102487036B1 (ko) 고속 고주파 신호 전송 커넥터
JP2012182550A (ja) パッチアンテナ
TW518929B (en) Housing-shaped shielding plate for the shielding of an electrical component
CN211088493U (zh) 立体式天线及电子装置
JP6123892B2 (ja) 無線通信装置
EP3691031A1 (en) Antenna device and router unit with antenna
US10951191B1 (en) Low-leakage automatic adjustable diplexer
US9246548B2 (en) Electromagnetic coupling of electronic devices using resonant terminations that shift resonant frequencies
CN114221108B (zh) 传输装置
CN211507855U (zh) 一种滤波器组件及其耦合器
WO2024087930A1 (zh) 馈电网络、移相器及天线装置
US20240204397A1 (en) Integrated antenna structure
KR101326601B1 (ko) 무선 송수신 장치의 전자파 차폐 장치
CN114788096B (zh) 电连接器对

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21859988

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023511871

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021859988

Country of ref document: EP

Effective date: 20230309

NENP Non-entry into the national phase

Ref country code: DE