WO2022042098A1 - 远程驾驶方法、装置、系统、设备及介质 - Google Patents
远程驾驶方法、装置、系统、设备及介质 Download PDFInfo
- Publication number
- WO2022042098A1 WO2022042098A1 PCT/CN2021/106056 CN2021106056W WO2022042098A1 WO 2022042098 A1 WO2022042098 A1 WO 2022042098A1 CN 2021106056 W CN2021106056 W CN 2021106056W WO 2022042098 A1 WO2022042098 A1 WO 2022042098A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- entity
- driving
- area
- information
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 83
- 230000008447 perception Effects 0.000 claims description 34
- 238000012544 monitoring process Methods 0.000 claims description 31
- 230000006870 function Effects 0.000 claims description 17
- 238000004891 communication Methods 0.000 claims description 16
- 238000013461 design Methods 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 208000018910 keratinopathic ichthyosis Diseases 0.000 description 4
- 238000010295 mobile communication Methods 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 3
- 206010039203 Road traffic accident Diseases 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 3
- 230000006399 behavior Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000006424 Flood reaction Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 101001093748 Homo sapiens Phosphatidylinositol N-acetylglucosaminyltransferase subunit P Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/0011—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
- G05D1/0022—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the communication link
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0639—Performance analysis of employees; Performance analysis of enterprise or organisation operations
- G06Q10/06393—Score-carding, benchmarking or key performance indicator [KPI] analysis
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
- G08G1/0962—Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
- G08G1/0967—Systems involving transmission of highway information, e.g. weather, speed limits
- G08G1/096708—Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control
- G08G1/096725—Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control where the received information generates an automatic action on the vehicle control
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/0011—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/0055—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements
- G05D1/0077—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements using redundant signals or controls
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C5/00—Registering or indicating the working of vehicles
- G07C5/008—Registering or indicating the working of vehicles communicating information to a remotely located station
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C5/00—Registering or indicating the working of vehicles
- G07C5/08—Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
- G07C5/0808—Diagnosing performance data
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
- G08G1/0962—Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
- G08G1/0967—Systems involving transmission of highway information, e.g. weather, speed limits
- G08G1/096766—Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
- G08G1/096775—Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a central station
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
- G08G1/0962—Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
- G08G1/0967—Systems involving transmission of highway information, e.g. weather, speed limits
- G08G1/096766—Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
- G08G1/096783—Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a roadside individual element
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/021—Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/40—Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
- H04W4/44—Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the embodiments of the present application relate to the field of intelligent driving, and in particular, to a remote driving method, device, system, device, and medium.
- Intelligent Connected Vehicle refers to the organic combination of the Internet of Vehicles and smart cars.
- ICVs support autonomous driving and remote control driving of vehicles above L3.
- Vehicle autonomous driving referred to as autonomous driving
- autonomous driving is the use of bicycle intelligence to achieve autonomous driving, that is, driving technology based on cameras, millimeter-wave radar, lidar and other devices.
- Remote control driving referred to as remote driving, is a driving technology in which the driving rights are handed over to the server and realized by the remote control of the staff of the server.
- remote control driving needs to consume the computing resources of the server, if multiple vehicles continue to use the remote control driving technology, it will cause greater computing pressure on the server.
- the embodiments of the present application provide a remote driving method, apparatus, system, device and medium, which can eliminate or reduce the use of remote control driving in a dynamic safety area, thereby reducing the computing pressure of the server.
- the technical solution is as follows:
- a remote driving method applied to a remote driving entity, the method comprising:
- the dynamic safety area is an area where the vehicle is used for autonomous driving without remote control driving, or the dynamic safety area is an area where the vehicle is used for autonomous driving and the degree of intervention of the remote control driving is lower than a predetermined level.
- a remote driving device comprising:
- the acquisition module is used to acquire the working condition information of the vehicle
- a determining module configured to determine the dynamic safety zone of the vehicle according to the working condition information
- the dynamic safety area is an area where the vehicle is used for autonomous driving without remote control driving, or the dynamic safety area is an area where the vehicle is used for autonomous driving and the degree of intervention of the remote control driving is lower than a predetermined level.
- a remote driving system comprising: a remote driving entity and a communication network entity;
- the remote driving entity is configured to acquire working condition information of the vehicle from the communication network entity; determine the dynamic safety zone of the vehicle according to the working condition information;
- the dynamic safety area is an area where the vehicle is used for autonomous driving without remote control driving, or the dynamic safety area is an area where the vehicle is used for autonomous driving and the degree of intervention of the remote control driving is lower than a predetermined level.
- the working condition information includes at least one of the following information:
- connection performance of a network connection including at least one of connection reliability and connection quality, the network connection being a connection between the remote driving entity and the vehicle;
- map information of the area where the vehicle is located
- the traditional vehicle information of the area where the vehicle is located is the vehicle information that does not support the network connection function;
- VRU Vulnerable Road Users
- the vehicle is configured to report terminal capability information to the remote driving entity
- the remote driving entity is configured to receive the terminal capability information reported by the vehicle, where the terminal capability information is used to indicate the terminal capability information of the vehicle.
- the communication network entity includes: a network monitoring and prediction entity;
- the network monitoring and prediction entity is used to monitor or predict the connection performance of the network connection, the network connection being the network connection between the remote driving entity and the vehicle, and the connection performance includes connection reliability and connection quality at least one of;
- the remote driving entity is configured to obtain the connection performance of the network connection from the network monitoring entity.
- the communication network entity includes: a location service entity
- the location service entity for locating the driving position of the vehicle
- the remote driving entity is configured to acquire the driving position of the vehicle from the location service entity.
- the communication network entity includes: a map information entity
- the map information entity is used to collect and store map information, and the map information includes: basic map information and real-time road condition information;
- the remote driving entity is used for acquiring map information of the area where the vehicle is located from the map information entity.
- the communication network entity includes: a roadside perception entity
- the roadside perception entity is used to collect traditional vehicle information and VRU information of vulnerable traffic participants on the road;
- the remote driving entity is configured to acquire at least one of traditional vehicle information and the VRU information of the area where the vehicle is located from the roadside perception entity.
- the remote driving entity is configured to preferentially use the high-priority operating condition information to determine the dynamic safety zone of the vehicle.
- first working condition information and second working condition information there are first working condition information and second working condition information, and the priority of the first working condition information is higher than that of the second working condition information;
- the remote driving entity is configured to determine the first dynamic safety zone of the vehicle according to the first working condition information with high priority; according to the second working condition information with low priority, in the A second dynamic safety zone of the vehicle is determined in the first dynamic safety zone.
- the determination condition of the dynamic safety area includes at least one of the following conditions:
- the key performance indicators of the network connection in the target area reach the threshold value required by the remote control driving, and the network connection is the connection between the remote driving entity and the vehicle;
- the distribution of conventional vehicles in the target area meets the first safety condition
- the distribution of VRUs in the target area meets the second security condition
- the target area is a candidate area of the dynamic safety area.
- the remote driving entity is configured to adopt a target driving strategy for the vehicle when the vehicle is in the dynamic safety zone;
- the target driving strategy includes at least one of the following strategies:
- Remote driving is performed with a first computing power resource that is less than a target resource threshold.
- the dynamic safety area is divided according to granularity, and the granularity includes at least one of an administrative area, a road section, and a lane.
- a computer device includes a processor and a memory, and the memory stores at least one instruction, at least a piece of program, code set or instruction set, the at least one instruction , The at least one piece of program, the code set or the instruction set is loaded and executed by the processor to implement the remote driving method as described in the above aspect.
- a computer-readable storage medium stores at least one instruction, at least one piece of program, code set or instruction set, the at least one instruction, the At least one piece of program, the code set or the instruction set is loaded and executed by the processor to implement the remote driving method as described above.
- the remote driving entity determines the dynamic safety zone of the vehicle based on the operating condition information. For the vehicle in the dynamic safety area to use the vehicle to drive autonomously, there is no need for remote control driving or a low level of intervention in remote control driving. Therefore, under the premise of ensuring the safety of the vehicle, the remote driving entity can control the control with no or less computing power. vehicle, thereby saving the computing resources of the remote driving entity.
- FIG. 1 is a block diagram of a remote driving system provided by an exemplary embodiment of the present application.
- FIG. 2 is a flowchart of a remote driving method provided by an exemplary embodiment of the present application
- FIG. 3 is a flowchart of a remote driving method provided by an exemplary embodiment of the present application.
- FIG. 4 is a flowchart of a remote driving method provided by an exemplary embodiment of the present application.
- FIG. 5 is a flowchart of a remote driving method provided by an exemplary embodiment of the present application.
- FIG. 6 is a flowchart of a remote driving method provided by an exemplary embodiment of the present application.
- FIG. 7 is a flowchart of a remote driving method provided by an exemplary embodiment of the present application.
- FIG. 8 is a flowchart of a remote driving method provided by an exemplary embodiment of the present application.
- FIG. 9 is a block diagram of a remote driving device provided by an exemplary embodiment of the present application.
- FIG. 10 is a block diagram of a computer device provided by an exemplary embodiment of the present application.
- Level 0 autonomous driving only provides warnings and instantaneous assistance. Such as automatic emergency braking, visual blind spot reminder, body stability system.
- Level 1 autonomous driving Ability to brake, accelerate or steer. For example, lane departure correction or adaptive cruise control.
- Level 2 Autonomous Driving Ability to formulate, accelerate and steer. For example, lane departure correction and adaptive cruise control.
- Level 3 autonomous driving driving the vehicle under restricted conditions. For example, autonomous driving in traffic jams.
- Level 4 autonomous driving driving the vehicle under restricted conditions. For example, a self-driving taxi in a city may not need to install pedals/steering devices.
- Level 5 autonomous driving drive the vehicle under any conditions.
- L4 is similar, but enables autonomous driving under any conditions.
- Entity A computational logic unit implemented by a combination of software and hardware.
- An entity may correspond to a server, multiple servers, a cloud service, or a virtual computing unit in a cloud service.
- each entity is a server.
- some entities are separate servers, and some entities are virtual computing units in cloud services.
- one or more entities are integrated into a server, and one or more entities are integrated into a cloud service.
- FIG. 1 shows a structural diagram of an automatic driving system provided by an embodiment of the present application.
- the automatic driving system includes: a remote driving entity 10 , a location service entity 20 , a network monitoring and prediction entity 30 , a digital twin entity 40 , a map information entity 50 , a roadside perception entity 60 and a vehicle-side driving entity 70 .
- the remote driving entity 10 is used to provide a remote driving control function for the vehicle. Also known as, Remote Controlled Driving Entity.
- the location service entity 20 is used to locate the driving position of the vehicle, including but not limited to at least one of ordinary precision positioning and high precision positioning. For example, high-precision localization is lane-level localization.
- the remote driving entity 10 obtains the driving position of the vehicle from the location service entity 20 .
- the driving position includes: the geographical position during travel and the geographical position when parked. Parking includes at least one of: a complete stop, a short stop under a traffic light, and a moderate stop in the event of a breakdown or accident.
- the network monitoring and prediction entity 30 is used to monitor the connection reliability and connection quality of the 5G network (and the subsequently evolved communication system), and to predict the connection reliability and connection quality.
- the network monitoring and prediction entity 30 is used to monitor or predict the connection performance of the network connection, the network connection is the network connection between the remote driving entity and the vehicle, and the connection performance includes at least one of connection reliability and connection quality; the remote driving entity 10 , which is used to obtain the connection performance of the network connection from the network monitoring entity.
- the digital twin entity 40 is used to virtually present information such as the road conditions of the vehicle, other surrounding vehicles, and the VRU to assist the decision-making of the remote driving entity 10 .
- information such as the road conditions of the vehicle, other surrounding vehicles, and the VRU is displayed on a plurality of display screens arranged side by side in an arc shape for the reference of the operator (remote driver) of the remote driving entity 10 .
- the map information entity 50 is used to provide collection and storage of map information.
- the map information includes: basic map information (such as a high-precision map) and real-time road condition information. For example, real-time road condition information whether there is landslide, whether there is a car accident, whether there is heavy rain and hail, etc.
- the remote driving entity 10 is configured to obtain map information of the area where the vehicle is located from the map information entity.
- the roadside perception entity 60 is used to perceive buildings, facilities, traditional vehicles, pedestrians, bicycles, motorcycles, etc. near the vehicle. There is a network connection between the roadside perception entity 60 and the remote driving entity 10 .
- the roadside perception entity 60 is used to collect traditional vehicle information and VRU information on the road; the remote driving entity 10 is used to obtain at least one of traditional vehicle information and VRU information in the area where the vehicle is located from the roadside perception entity 60 .
- the vehicle-end driving entity 70 is used to realize the functions of perception, calculation, decision-making and execution during automatic driving at the vehicle-end.
- the vehicle-side driving entity 70 is used for realizing autonomous driving of the vehicle, and the vehicle-side driving entity 70 is arranged in the vehicle.
- the autonomous driving of the vehicle may refer to the automatic driving of the vehicle, the manual driving of the vehicle by the driver, or the combination of the automatic driving of the vehicle and the manual driving of the vehicle by the driver.
- the above-mentioned network connection may be a wired network, a wireless network, a mobile communication network, or a virtual network between entities in a cloud service, and this application does not limit the specific type of the network connection.
- FIG. 2 shows a flowchart of a remote driving method provided by an embodiment of the present application. This embodiment is exemplified by applying the method to the remote driving entity 10 shown in FIG. 1 .
- the method includes:
- Step 202 Acquire the working condition information of the vehicle
- a vehicle is a vehicle that supports remote driving functions, such as an intelligent connected car.
- the vehicle also supports autonomous driving functions.
- the autonomous driving function is the function of autonomous driving by the vehicle according to the data collected by sensors and radars and other devices.
- the working condition information of the vehicle includes at least one of the following information:
- connection performance of the network connection between the entity and the vehicle including at least one of connection reliability and connection quality
- the driving position of the vehicle (or other expressions such as driving position, position information, geographic location, positioning position, positioning information, etc.);
- the legacy vehicle information is used to indicate the vehicle information of a legacy vehicle (Legacy Vehicle) that does not support the network connection function, or the legacy vehicle information is the vehicle information of the legacy vehicle that does not support the network connection function.
- the network connection function refers to the function of the vehicle to communicate with the remote driving entity through the mobile communication network.
- Mobile communication networks include but are not limited to: 4G, 5G and subsequent evolution networks, cellular network vehicle networking (Cellular-V2X, C-V2X), dedicated short-range communication technology (Dedicated Short Range Communications, DSRC) and so on.
- legacy vehicles cannot communicate with current vehicles through V2X to coordinate driving behavior, and/or legacy vehicles do not support remote-controlled driving via a remote-driving entity located in the cloud.
- VRU ⁇ Vulnerable Road User
- the VRU information includes: at least one of pedestrians, bicycles, motorcycles, battery cars, tricycles, scooters, wild animals, and pets.
- Step 204 Determine the dynamic safety zone of the vehicle according to the working condition information.
- a dynamic safety zone is an area in which the vehicle is driven autonomously without remote control driving, or, a dynamic safety area is an area in which the vehicle is autonomously driven and the degree of intervention of the remote control driving is lower than a predetermined level.
- the autonomous driving of the vehicle is referred to as autonomous driving for short
- the remote control driving is referred to as remote driving for short.
- the dynamic safety area is a safety area in which the safety factor of the driving environment of the controlled vehicle is higher than the target threshold.
- the dynamic safety area is an area in which the remote driving entity determines the safety level of the driving environment of the controlled vehicle as safe.
- the dynamic safety area is related to the driving position of the vehicle, the road conditions of the vehicle, the bicycle perception ability and the network connection support ability of the vehicle. For example, taking the current vehicle driving position as a reference point, all lanes within 3 kilometers ahead. This area changes over time and is related to the vehicle's ability to drive alone or to support the ability to obtain target and road condition information from the roadside through the connected function.
- the dynamic safety area can change over time, and the dynamic safety area can also change according to the current location of the vehicle. That is, the dynamic security area is not fixed.
- the dynamic safety area may also be called: safe area, dynamic area, autonomous driving area, non-takeover area, low-risk area, area without remote control and other names, which are not limited in this application.
- the target area is an area determined based on the driving position of the vehicle, and the target area is a candidate area of the dynamic safety area.
- the principle for the remote driving entity to determine the target area as the dynamic safety area includes but is not limited to at least one of the following:
- the key performance indicators of the network connection in the target area reach the threshold required for remote control driving
- KPI Key Performance Indicator
- KPIs include: at least one of access capability, retention capability, mobility, service integrity, utilization, availability, and service capability.
- Service integrity includes: the average throughput rate of uplink/downlink users, and the average throughput rate of uplink/downlink cells.
- Utilization includes physical resource block (Physical Resource Block, PRB) utilization, CPU utilization, etc.
- Special road conditions include: at least one of car accidents, landslides, rockfalls, floods, road subsidence, and out-of-control vehicles.
- the distribution of conventional vehicles in the target area meets the first safety condition
- V2X Vehicle to Everything
- traditional vehicles do not support remote driving through remote driving entities located in the cloud
- the traditional vehicle's weekly side area which is not suitable to be divided into dynamic safety area.
- the area where the traditional vehicle will not affect the current vehicle it can be classified as a dynamic safety area; for the area where the traditional vehicle may affect the current vehicle, it cannot be classified as a dynamic safety area.
- the assessment of whether the traditional vehicle will affect the safety of the current vehicle can be based on the location of the traditional vehicle and the current vehicle, the driving direction between the two, the relative speed between the two, and whether the two are in the same
- the collision prediction is obtained by at least one factor of the lane and the distance between the two.
- the distribution of VRUs in the target area meets the second security condition
- the peripheral area of the VRU is not suitable to be divided into a dynamic safety area.
- the VRU will not affect the current vehicle, it can be divided into a dynamic safety area; for the area where the VRU may affect the current vehicle, it cannot be divided into a dynamic safety area.
- the evaluation of whether the VRU will affect the safety of the current vehicle can be based on the position of the VRU and the current vehicle, the driving direction between the two, the relative speed between the two, and the distance between the two. At least one factor is obtained for collision prediction.
- the remote driving entity adopts a target driving strategy for the vehicle.
- the target driving strategy includes at least one of the following:
- Remote control driving is performed with the first computing power resource, and the first computing power resource is less than the target resource threshold.
- the vehicle-side autonomous driving of the vehicle is completely or mainly used in the dynamic safety area, and the remote control driving is not used or is used to a lesser extent.
- the remote driving entity determines the dynamic safety area of the vehicle according to the working condition information, and then uses the target driving strategy to remotely control the vehicle in the dynamic safety area. Since the vehicle in the dynamic safety area is relatively safe, the remote driving entity can invest no or less computing power to control the vehicle, thereby saving the computing resources of the remote driving entity.
- the working condition information includes: an example of the terminal capability information of the vehicle:
- FIG. 3 shows a flowchart of a remote driving method provided by an embodiment of the present application. This embodiment is exemplified by applying the method to the remote driving entity 10 shown in FIG. 1 .
- the method includes:
- Step 302 Acquire terminal capability information of the vehicle
- the terminal capability information is used to indicate at least one of the capability supported by the vehicle in terms of autonomous driving and the capability supported by remote control driving.
- the terminal capability information includes: the automatic driving level supported by the terminal.
- the controlled vehicle does not have any automatic driving level, that is, the L0 level; for another example, the controlled vehicle can receive the control commands of the remote driving entity 10 to perform acceleration, steering and braking operations, and at the same time, the information from cameras and radars can be recorded in real time. to remote driving entity 10.
- the controlled vehicle itself has L4-level autonomous driving, but it needs to take over remotely when it encounters complex working conditions.
- the terminal capability information includes: the ability to be controlled during remote control driving, such as whether to support the remote braking function, whether to support the remote steering function, and whether to support the remote acceleration function.
- the terminal capability information includes: bicycle perception capability during remote control driving, such as whether the terminal supports cameras and radars, the number and location of cameras, and the number and location of radars.
- the terminal capability information includes: network connection support capability during remote control driving, such as whether to support uploading the data collected by the camera to the remote driving entity 10 , whether to support uploading the data collected by the radar to the remote driving entity 10 . , whether to support uploading the data transmitted by the Internet of Vehicles to the remote driving entity 10 .
- the terminal capability information is indicated by a capability level, or in the form of a bitmap.
- the corresponding relationship of the capability level is pre-defined or configured, such as capability corresponding to capability level 1, capability corresponding to capability level 2, etc.
- the terminal determines its own capability level according to its own capability.
- the terminal capability information is indicated in the form of a bitmap, a bit sequence with n bits is set, and each bit in the bit sequence corresponds to a capability. That is, each capability corresponds to 1 bit in the bit sequence.
- the bit value is 1, it means that the capability is available; when the bit value is 0, it means that the capability is not available.
- the reporting method of the terminal capability information may be pre-configured by the remote driving entity 10 to the vehicle, or may be implemented by the vehicle using dynamic reporting.
- the vehicle sends registration information to the remote driving entity 10, the registration information carries terminal capability information, the remote driving entity 10 obtains the terminal capability information from the registration information, and then the remote driving entity 10 sends a registration response to the vehicle.
- the remote driving entity 10 sends a capability inquiry request message to the vehicle, and after receiving the capability inquiry request message, the vehicle sends a capability information reporting message to the remote driving entity 10, where the capability information reporting message carries the terminal capability information.
- this embodiment is applicable to the remote control driving service provided by the equipment manufacturer (Original Equipment Manufacturer, OEM) itself, and the remote control driving service provided by the third-party service provider.
- Step 304 Determine the dynamic safety zone of the vehicle at least according to the terminal capability information
- the remote driving entity 10 determines a smaller dynamic safety area (even 0) for the vehicle; when the terminal capability information is strong, the remote driving entity 10 determines a larger dynamic safety area for the vehicle.
- the terminal capability information indicates that the vehicle supports L4 or L5 automatic driving
- a larger dynamic safety area is determined for the vehicle
- the terminal capability information indicates that the vehicle only supports acceleration, braking and steering in remote control driving
- the vehicle is determined. Smaller dynamic safe area.
- the terminal capability information is one factor in determining the dynamic security area, and the dynamic security area may be determined according to more than one factor, that is, the terminal capability information is used as one factor among multiple factors for determining the dynamic security area.
- Step 306 When the vehicle is in the dynamic safety zone, adopt the target driving strategy for the vehicle.
- the target driving strategy includes at least one of the following:
- Remote control driving is performed with the first computing power resource, and the first computing power resource is less than the target resource threshold.
- the emergency situation is determined based on the pre-set driving environment conditions, such as a landslide 100 meters ahead, the distance of the obstacle in front is less than the effective braking distance, the sensor on the vehicle is faulty, and so on.
- the vehicle-side automatic driving of the vehicle is fully or mainly used, and remote control driving is not used or is used to a lesser extent.
- the remote driving entity determines the dynamic safety area of the vehicle according to the terminal capability information, and then uses the target driving strategy to remotely control the vehicle in the dynamic safety area. Since vehicles with higher terminal capabilities are safer, the remote driving entity can invest no or less computing power to control the vehicle, thereby saving the computing resources of the remote driving entity.
- the information for working conditions includes: an example of the connection performance of the network connection of the vehicle:
- FIG. 4 shows a flowchart of a remote driving method provided by an embodiment of the present application. This embodiment is illustrated by applying the method to the remote driving entity 10 shown in FIG. 1 , and the remote driving entity 10 is connected with a network monitoring and prediction entity.
- the method includes:
- Step 402 Obtain the connection performance of the network connection of the vehicle from the network monitoring and prediction entity;
- the communication network is a 5G network and subsequent evolution networks.
- the control command needs to be sent from the remote driving entity to the vehicle (or the vehicle-side driving system), and then implemented on the vehicle-side driving system.
- the connection reliability and/or connection quality of the network connection directly determines whether the control commands can be delivered to the vehicle in time.
- a network connection is the connection between the remote driving entity and the vehicle.
- the network connection is a connection in a 5G network, or a connection in a subsequent evolution network of the 5G network.
- the network monitoring and prediction entity is an entity for monitoring the connection performance of the network connection.
- the network monitoring and prediction entity is an entity for predicting the connection performance of a network connection.
- the connection performance includes at least one of connection reliability and connection quality.
- connection reliability is an index used to evaluate the quality of service (QoS), and the connection reliability is characterized by parameters such as dedicated bandwidth, network jitter, network delay, and packet loss rate.
- the connection quality is an indicator used to evaluate the channel quality.
- the connection quality is characterized by parameters such as Reference Signal Received Power (RSRP) and Reference Signal Received Quality (RSRQ).
- the network monitoring and forecasting entity has monitoring capabilities to obtain real-time or near real-time network connection connection performance through monitoring.
- the network monitoring and prediction entity also has a prediction capability, and the connection performance of the network connection in the future period of time can be obtained through prediction.
- the remote driving entity 10 sends an inquiry request to the network monitoring and prediction entity, the inquiry request carrying at least one of the identification of the vehicle, the identification of the network connection, and the driving position of the vehicle.
- the network monitoring and prediction entity After receiving the inquiry request, the network monitoring and prediction entity sends the connection performance of the network connection to the remote driving entity 10 .
- the identifier of the network connection may be at least one of a radio bearer (Radio Bear, RB) identifier, a signaling radio bearer (Signaling RB, SRB) identifier, a data radio bearer (Data RB, DRB) identifier, and a network slice identifier.
- the network monitoring and prediction entity periodically sends the connection performance of the network connection to the remote driving entity 10, or actively sends the connection performance of the network connection to the remote driving entity 10 when the information is updated.
- Step 404 Determine the dynamic safety zone of the vehicle at least according to the connection performance of the network connection;
- the remote driving entity 10 determines a larger dynamic safety area (even 0) for the vehicle; when the connection reliability and/or connection quality of the network connection is poor , the remote driving entity 10 determines a larger dynamic safety area for the vehicle.
- connection reliability and/or connection quality of the network connection is one factor in determining the dynamic security zone, which can be determined based on more than one factor, i.e. the connection performance of the network connection as one of multiple factors in determining the dynamic security zone factor.
- Step 406 When the vehicle is in the dynamic safety zone, adopt the target driving strategy for the vehicle.
- the target driving strategy includes at least one of the following:
- Remote control driving is performed with the first computing power resource, and the first computing power resource is less than the target resource threshold.
- the vehicle-side automatic driving of the vehicle is fully or mainly used, and remote control driving is not used or is used to a lesser extent.
- the remote driving entity determines the dynamic safety area of the vehicle according to the connection reliability and/or connection quality of the network connection, and then uses the target driving strategy to remotely control the vehicle in the dynamic safety area. Due to the increased unexpectedness of remote driving of vehicles with poor network connections, the remote driving entity can invest no or less computing power to control the vehicle and rely more on the automatic driving on the vehicle side, thereby saving the computing power of the remote driving entity resource.
- the working condition information includes: an example of the driving position of the vehicle:
- FIG. 5 shows a flowchart of a remote driving method provided by an embodiment of the present application. This embodiment is illustrated by applying the method to the remote driving entity 10 shown in FIG. 1 , where the remote driving entity 10 is connected with a location service entity.
- the method includes:
- Step 502 Obtain the driving position of the vehicle from the location service entity
- the driving position of the vehicle is an important parameter for the remote driving entity 10 to make a remote control driving decision.
- the remote driving entity 10 obtains the driving position of the vehicle from the location service entity.
- a location service entity is an entity used to locate the driving location of a vehicle.
- the location service entity can locate the driving position of the vehicle based on the global positioning system (Global Positioning System, GPS), the Galileo satellite navigation system, and the Beidou satellite navigation system.
- the location service entity can use the three-point positioning method based on the base station to locate the driving position of the vehicle, or the positioning technology based on the distance difference to locate the driving position of the vehicle, or the positioning technology based on the angle difference to locate the driving position of the vehicle, or the detection based on the detection technology.
- the positioning technology of the round-trip time difference of the echoes is used to locate the driving position of the vehicle. Even, the location service entity can also locate the driving position of the vehicle according to the road condition image collected by the camera.
- the positioning method used by the location service entity includes at least one of the following methods:
- TBS ⁇ Terrestrial Beacon Systems
- NR enhanced cell identification method (NR Enhanced-Cell Identity Document, NR e-CID) based on new air interface NR signal;
- RTT Round Trip Time
- DL-AoD Downlink-Angle of Departure
- DL-TDOA Downlink-Time Difference of Arrival
- Uplink-Time of Arrival (UL-AoA), including A-AoA and Z-AoA based on NR signals;
- one of the above positioning methods can be used to locate the vehicle.
- the vehicle uses one of the above positioning methods to perform autonomous positioning without the assistance of the location service entity, and then the vehicle reports the positioning result to the location service entity;
- a variety of ways can be mixed to achieve mixed positioning.
- the remote driving entity 10 sends a location acquisition request to the location service entity, the location acquisition request carrying the identification of the vehicle. After receiving the location acquisition request, the location service entity sends the driving location of the vehicle to the remote driving entity 10 .
- the location service entity periodically sends the driving position of the vehicle to the remote driving entity 10, or actively sends the driving position of the vehicle to the remote driving entity 10 when the driving position is updated.
- the driving position of the vehicle can be represented by an absolute position, such as a latitude and longitude position, or a relative position, such as a direction and distance relative to a ground base station.
- Step 504 Determine the dynamic safety zone of the vehicle at least according to the driving position of the vehicle;
- the remote driving entity 10 uses the driving position of the vehicle as a reference position to determine the dynamic safety zone of the vehicle. For example, the remote driving entity 10 determines the dynamic safety area of the vehicle by taking the driving position of the vehicle as the starting point of the safety area. For another example, the remote driving entity 10 determines the dynamic safety area of the vehicle by taking the driving position of the vehicle as the center point of the safety area.
- the driving position of the vehicle is one factor in determining the dynamic safety area, and the dynamic safety area may be determined based on more than one factor, that is, the driving position of the vehicle is used as one of the multiple factors for determining the dynamic safety area.
- Step 506 When the vehicle is in the dynamic safety zone, adopt the target driving strategy for the vehicle.
- the target driving strategy includes at least one of the following:
- Remote control driving is performed with the first computing power resource, and the first computing power resource is less than the target resource threshold.
- the vehicle-side automatic driving of the vehicle is fully or mainly used, and remote control driving is not used or is used to a lesser extent.
- the remote driving entity determines the dynamic safe area of the vehicle according to the driving position of the vehicle, and then uses the target driving strategy to remotely control the vehicle in the dynamic safe area.
- the dynamic safety area can be dynamically updated according to the driving position of the vehicle, so as to determine a more accurate and suitable dynamic safety area.
- the working condition information includes: an embodiment of the map information of the area where the vehicle is located:
- FIG. 6 shows a flowchart of a remote driving method provided by an embodiment of the present application. This embodiment is illustrated by applying the method to the remote driving entity 10 shown in FIG. 1 , where the remote driving entity 10 is connected with a map information entity.
- the method includes:
- Step 602 Obtain the map information of the area where the vehicle is located from the map information entity;
- the map information of the area where the vehicle is located is also an important parameter for the remote driving entity 10 to make a remote control driving decision.
- the remote driving entity 10 obtains map information of the area where the vehicle is located from the map information entity.
- the map information entity is an entity for providing map information.
- the map information entity can provide high-precision map information.
- the remote driving entity 10 sends a map acquisition request to the map information entity, and the map acquisition request carries at least one of the identification of the vehicle and the driving position of the vehicle.
- the map information entity After receiving the map acquisition request, the map information entity sends the map information of the area where the vehicle is located to the remote driving entity 10 .
- the driving position of the vehicle is an absolute position or a relative position.
- the absolute position can be expressed by latitude and longitude
- the relative position can be expressed by the direction and distance relative to the reference point.
- the reference point is base station A, and the beam direction and timing advance are used to represent the direction and distance relative to base station A, respectively.
- the area is divided by map information entities, and the size of the area is fixed or dynamically adjusted. For example, when the network condition is good, a larger area is delineated; when the network condition is poor, a smaller area is delineated.
- the map information includes: basic map information, such as a normal precision map or a high precision map.
- the map information also includes real-time traffic information.
- the real-time road condition information includes, but is not limited to, at least one of congestion information, construction information, landslide information, rockfall information, traffic accident information, flood information, and extreme weather information.
- the map information entity periodically sends the map information of the area where the vehicle is located to the remote driving entity 10 .
- the remote driving entity 10 actively acquires the map information of the area where the vehicle is located from the map information entity.
- the remote driving entity 10 actively acquires the map information of the next area from the map information entity.
- Step 604 Determine the dynamic safety area of the vehicle at least according to the map information of the area where the vehicle is located;
- the remote driving entity 10 determines the dynamic safety area of the vehicle with reference to the map information of the area where the vehicle is located. For example, the remote driving entity 10 determines a larger dynamic safety area when the area where the vehicle is located is a highway with unlimited speed; when the area where the vehicle is located is an urban commuting road section, determines a smaller dynamic safety area. For another example, when there is accidental map information such as landslides, rockfalls, and floods in the area where the vehicle is located, the remote driving entity 10 determines a dynamic safety area in a smaller range; when there is no accidental map information in the area where the vehicle is located, determines a dynamic safety area in a larger range. area.
- map information of the area where the vehicle is located is constantly changing, it is necessary to continuously determine the dynamic safety area of the vehicle according to the map information of the area where the vehicle is located.
- the map information of the area where the vehicle is located is one factor in determining the dynamic safety area, and the dynamic safety area can be determined based on more than one factor, that is, the map information of the area where the vehicle is located as one of multiple factors for determining the dynamic safety area.
- Step 606 When the vehicle is in the dynamic safety zone, adopt the target driving strategy for the vehicle.
- the target driving strategy includes at least one of the following:
- Remote control driving is performed with the first computing power resource, and the first computing power resource is less than the target resource threshold.
- the vehicle-side automatic driving of the vehicle is fully or mainly used, and remote control driving is not used or is used to a lesser extent.
- the remote driving entity determines the dynamic safety area of the vehicle according to the map information of the area where the vehicle is located, and then uses the target driving strategy to remotely control the vehicle in the dynamic safety area.
- the dynamic safety area can be dynamically updated according to the map information of the area where the vehicle is located, so as to determine a more accurate and suitable dynamic safety area.
- the working condition information includes: an embodiment of the roadside information of the area where the vehicle is located:
- FIG. 7 shows a flowchart of a remote driving method provided by an embodiment of the present application. This embodiment is illustrated by applying the method to the remote driving entity 10 shown in FIG. 1 , where the remote driving entity 10 is connected with a roadside perception entity.
- the method includes:
- Step 702 Obtain roadside information of the area where the vehicle is located from the roadside perception entity;
- the roadside information of the area where the vehicle is located includes: at least one of traditional vehicle information and VRU information.
- the roadside information is also an important parameter when the remote driving entity 10 makes a remote control driving decision.
- the remote driving entity 10 obtains roadside information of the area where the vehicle is located from the roadside perception entity.
- the roadside awareness entity is an entity used to provide roadside information.
- the roadside perception entity may acquire roadside information through roadside facilities, Internet of Vehicles, cameras, and the like.
- the roadside perception entity collects information of traditional vehicles through the Internet of Vehicles, and for example, the roadside perception entity obtains roadside information of roadside pedestrians or animals through color cameras, infrared cameras, and depth cameras.
- the remote driving entity 10 sends a roadside acquisition request to the roadside perception entity, where the roadside acquisition request carries at least one of an identification of the vehicle and a driving position of the vehicle.
- the roadside perception entity After receiving the roadside acquisition request, the roadside perception entity sends the roadside information of the area where the vehicle is located to the remote driving entity 10 .
- the driving position of the vehicle is an absolute position or a relative position.
- the absolute position can be expressed by latitude and longitude
- the relative position can be expressed by the direction and distance relative to the reference point.
- the reference point is base station A, and the beam direction and timing advance are used to represent the direction and distance relative to base station A, respectively.
- the area is divided by the roadside perception entity, and the size of the area is fixed or dynamically adjusted. For example, when the network condition is good, a larger area is delineated; when the network condition is poor, a smaller area is delineated.
- the roadside perception entity periodically sends roadside information of the area where the vehicle is located to the remote driving entity 10 .
- the remote driving entity 10 actively acquires the roadside information of the area where the vehicle is located from the roadside perception entity.
- the remote driving entity 10 actively acquires the roadside information of the next area from the roadside perception entity.
- the traditional vehicle information includes: at least one of the traditional vehicle's running position, speed, running direction, network connection, and terminal capability information.
- the VRU information includes: at least one of the geographic location, speed, walking direction, network connection, and terminal capability information of the VRU.
- Step 704 Determine the dynamic safety area of the vehicle at least according to the roadside information of the area where the vehicle is located;
- the remote driving entity 10 determines the dynamic safety area of the vehicle with reference to the roadside information of the area where the vehicle is located. For example, the remote driving entity 10 determines a larger dynamic safety area for the vehicle when there is no uncontrolled traditional vehicle in the area where the vehicle is located; when the traditional vehicle and the controlled vehicle in the area where the vehicle is located are in different lanes and the distance is greater than the threshold, Determine a larger dynamic safety area for the vehicle; when the traditional vehicle in the area of the vehicle and the controlled vehicle are in the same lane and the distance is less than the threshold, determine a smaller dynamic safety area for the vehicle.
- a larger dynamic safety area is determined for the vehicle; when the VRU in the area where the vehicle is located is in the rear area of the controlled vehicle, a larger dynamic safety area is determined for the vehicle ; When the VRU in the area where the vehicle is located is in the area in front of the controlled vehicle, determine a smaller dynamic safety area for the vehicle, and so on.
- the roadside information of the area where the vehicle is located is one factor in determining the dynamic safety area, and the dynamic safety area can be determined based on more than one factor, that is, the roadside information of the area where the vehicle is located is one of multiple factors for determining the dynamic safety area.
- Step 706 When the vehicle is in the dynamic safety zone, adopt the target driving strategy for the vehicle.
- the target driving strategy includes at least one of the following:
- Remote control driving is performed with the first computing power resource, and the first computing power resource is less than the target resource threshold.
- the vehicle-side automatic driving of the vehicle is fully or mainly used, and remote control driving is not used or is used to a lesser extent.
- the remote driving entity determines the dynamic safety area of the vehicle according to the roadside information of the area where the vehicle is located, and then uses the target driving strategy to remotely control the vehicle in the dynamic safety area.
- the dynamic safety area can be dynamically updated according to the roadside information of the area where the vehicle is located, so as to determine a more accurate and suitable dynamic safety area.
- FIG. 8 shows a flowchart of a remote driving method provided by an embodiment of the present application. This embodiment is exemplified by applying the method to the remote driving entity 10 shown in FIG. 1 .
- the method includes:
- Step 801 the remote driving entity receives the registration information sent by the vehicle, and the registration information carries the terminal capability information;
- the terminal capability information is used to indicate at least one of the capability supported by the vehicle in terms of automatic driving and the capability supported by remote control driving.
- Terminal capability information is one type of working condition information.
- the terminal capability information includes: the automatic driving level supported by the terminal.
- the terminal capability information includes at least one of: controlled capability during remote control driving, bicycle perception capability during remote control driving, and network connection support capability during remote control driving.
- the terminal capability information is indicated by a capability level, or in the form of a bitmap.
- the terminal capability information adopts the capability level indication, the corresponding relationship of the capability level is pre-defined or configured, and the terminal determines its own capability level according to its own capability.
- the terminal capability information is indicated in the form of a bitmap, a bit sequence with n bits is set, and each bit in the bit sequence corresponds to a capability. That is, each capability corresponds to 1 bit in the bit sequence. When the bit value is 1, it means that the capability is available; when the bit value is 0, it means that the capability is not available.
- the remote driving entity obtains the terminal capability information from the registration information.
- the remote driving entity also obtains the vehicle identification of the vehicle.
- the vehicle identification can be represented by the terminal identification of the vehicle-end driving entity. For example, the physical identification of the vehicle, or the temporary identification of the cell of the driving entity of the vehicle in the mobile communication network.
- Step 802 the remote driving entity sends registration response information to the vehicle;
- Step 803 the remote driving entity sends a network query request to the network monitoring and prediction entity;
- a network connection is the connection between the remote driving entity and the vehicle.
- the network connection is a connection in a 5G network, or a connection in a subsequent evolution network of the 5G network.
- the network query request is used to query at least one of connection reliability and connection quality of the network connection.
- the query request may also be called a monitoring request, a prediction request, a synchronization request, an acquisition request, or other names.
- the network query request carries at least one of the identification of the vehicle, the identification of the network connection, and the driving position of the vehicle.
- the identifier of the network connection may be at least one of an RB identifier, an SRB identifier, a DRB identifier, and a network slice identifier.
- Step 804 the network monitoring and prediction entity sends at least one of the connection reliability and connection quality of the network connection to the remote driving entity;
- the network monitoring and prediction entity After receiving the network query request, the network monitoring and prediction entity sends the connection reliability and/or connection quality of the network connection to the remote driving entity.
- connection reliability and/or connection quality of the network connection is monitored by the network monitoring and prediction entity.
- connection reliability and/or connection quality of the network connection is predicted by the network connection and prediction entity.
- connection reliability and/or connection quality of the network connection is one type of operating condition information.
- Step 805 the remote driving entity sends a location acquisition request to the location service entity
- the location acquisition request carries the identification of the vehicle.
- Step 806 the location service entity sends the driving location of the vehicle to the remote driving entity
- the driving position of the vehicle can be represented by an absolute position, such as a latitude and longitude position, or a relative position, such as a direction and distance relative to a ground base station (or other reference).
- Step 807 the remote driving entity sends a map acquisition request to the map information entity
- the remote driving entity sends a map acquisition request to the map information entity, where the map acquisition request carries at least one of the identification of the vehicle and the driving position of the vehicle.
- the driving position of the vehicle is an absolute position or a relative position.
- Step 808 the map information entity sends the map information of the area where the vehicle is located to the remote driving entity;
- the map information entity After receiving the map acquisition request, the map information entity sends the map information of the area where the vehicle is located to the remote driving entity.
- the map information entity obtains the driving position of the vehicle from the location service entity according to the identification of the vehicle, and sends map information of the area where the vehicle is located to the remote driving entity according to the driving position of the vehicle.
- map information of the area where the vehicle is located is sent to the remote driving entity according to the driving position of the vehicle.
- the map information includes: basic map information.
- the map information also includes real-time traffic information.
- the real-time road condition information includes, but is not limited to, at least one of congestion information, construction information, landslide information, rockfall information, traffic accident information, flood information, and extreme weather information.
- the basic map information is a kind of working condition information.
- Step 809 the remote driving entity sends a roadside acquisition request to the roadside perception entity
- the remote driving entity sends a roadside acquisition request to the roadside perception entity, where the roadside acquisition request carries at least one of an identification of the vehicle and a driving position of the vehicle.
- Step 810 The roadside perception entity sends at least one of traditional vehicle information and VRU information of the area where the vehicle is located to the remote driving entity;
- the roadside perception entity uses at least one of sensors such as cameras, radars, infrared sensors, and millimeter-wave radars to perceive traditional vehicle information and VRU information in the target area. After receiving the roadside acquisition request, the roadside perception entity sends the roadside information of the area where the vehicle is located to the remote driving entity.
- the roadside information of the area where the vehicle is located includes: at least one of traditional vehicle information and VRU information.
- the traditional vehicle information includes: at least one of the traditional vehicle's running position, speed, running direction, network connection, and terminal capability information.
- the VRU information includes at least one of: the geographic location, speed, walking direction, network connection situation, and terminal capability information of the portable terminal carried by the pedestrian or animal.
- VRU information is also a kind of working condition information.
- This embodiment does not limit the acquisition timing between the above-mentioned various working condition information, and the remote driving entity may acquire each working condition information according to different sequences, different acquisition methods (active or passive), and different acquisition frequencies.
- the acquisition process of each working condition information is independent and independent of each other.
- there are dependencies in the process of acquiring some working condition information for example, the driving position of the vehicle needs to be acquired first, and then map information and roadside information are acquired according to the driving position of the vehicle.
- Step 811 the remote driving entity determines the dynamic safety zone of the vehicle according to the working condition information
- the remote driving entity comprehensively determines the dynamic safety zone of the vehicle according to various working condition information.
- multiple working condition information can be used step by step.
- the remote driving entity prioritizes the use of high-priority operating condition information to determine the dynamic safety zone of the vehicle.
- first working condition information and second working condition information in the multiple working condition information, and the priority of the first working condition information is higher than that of the second working condition information.
- the first working condition information is any one of multiple working condition information
- the second working condition information is any one of multiple working condition information except the first working condition information.
- the remote driving entity determines the first dynamic safety zone of the vehicle according to the first working condition information with high priority; and then determines the second dynamic safety zone of the vehicle in the first dynamic safety zone according to the second working condition information with low priority safe area.
- the remote driving entity determines the first dynamic safety area of the vehicle according to the first working condition information with the highest priority; and then according to the second working condition information with the second highest priority, in the first Determine the second dynamic safety area of the vehicle in a dynamic safety area; then determine the third dynamic safety area of the vehicle in the second dynamic safety area according to the third working condition information with low priority, and so on, until the final determination is obtained out of the dynamic security zone.
- the target area is an area determined based on the driving position of the vehicle, and the target area is a candidate area of the dynamic safety area.
- the principles for the remote driving entity to determine the target area as the dynamic safety area include but are not limited to at least one of the following:
- the key performance indicators of the network connection in the target area reach the threshold required for remote control driving
- the KPI of the network connection between the vehicle and the remote driving entity is above a threshold value.
- KPIs higher than the threshold value include but are not limited to at least one of the following: the transmission delay of the network connection is less than the first threshold value, the packet loss rate of the network connection is less than the second threshold value, the stability of the network connection is higher than the third threshold value The threshold value, the mobility of the network connection is higher than the fourth threshold value.
- the dangerous road conditions include at least one of congestion information, construction information, landslide information, rockfall information, traffic accident information, flood information, extreme weather information, and out-of-control vehicles.
- the distribution of conventional vehicles in the target area meets the first safety condition
- the surrounding area of traditional vehicles is not suitable for dynamic safety areas. .
- the area where the traditional vehicle will not affect the current vehicle it can be classified as a dynamic safety area; for the area where the traditional vehicle may affect the current vehicle, it cannot be classified as a dynamic safety area.
- the assessment of whether the traditional vehicle will affect the safety of the current vehicle can be based on the location of the traditional vehicle and the current vehicle, the driving direction between the two, the relative speed between the two, and whether the two are in the same
- the collision prediction is obtained by at least one factor of the lane and the distance between the two.
- the first safety condition includes but is not limited to at least one of the following:
- the distance between the traditional vehicle and the current vehicle is greater than the first threshold
- the traditional vehicle is in the opposite lane to the current vehicle
- the traditional vehicle and the current vehicle are in the opposite lane, and the lane spacing is greater than the second threshold;
- the traditional vehicle and the current vehicle belong to different lanes in the same direction;
- the traditional vehicle and the current vehicle are in different lanes in the same direction, and the lane spacing is greater than the third threshold;
- the driver status of the traditional vehicle meets the safety conditions, such as the age of more than 18 years and less than 50 years old;
- the distribution of VRUs in the target area meets the second security condition
- the peripheral area of the VRU is not suitable to be divided into a dynamic safety area.
- the VRU will not affect the current vehicle, it can be divided into a dynamic safety area; for the area where the VRU may affect the current vehicle, it cannot be divided into a dynamic safety area.
- the evaluation of whether the VRU will affect the safety of the current vehicle can be based on the position of the VRU and the current vehicle, the driving direction between the two, the relative speed between the two, and the distance between the two. At least one factor is obtained for collision prediction.
- the second safety condition includes but is not limited to at least one of the following:
- the distance between the VRU and the current vehicle is greater than the first threshold
- the VRU is in the opposite lane to the current vehicle
- the VRU and the current vehicle are in the opposite lane, and the lane spacing is greater than the second threshold;
- the VRU and the current vehicle belong to different lanes in the same direction;
- the VRU and the current vehicle are in different lanes in the same direction, and the lane spacing is greater than the third threshold;
- the status of the VRU meets the safety conditions, such as the age of more than 18 years and less than 50 years old;
- the historical driving record of the VRU meets the safety conditions.
- Step 812 When the vehicle is in the dynamic safety zone, the remote driving entity adopts the target driving strategy for the vehicle.
- the target driving strategy includes at least one of the following strategies:
- the dynamic security area is divided according to granularity, and the granularity includes at least one of an administrative area, a road section, and a lane.
- the remote driving entity determines the dynamic safety area of the vehicle according to various working condition information, and then uses the target driving strategy to remotely control the vehicle in the dynamic safety area, which can reduce remote control driving. resource consumption, use autopilot as much as possible.
- the dynamic safety area is narrowed in sequence according to the working condition information in the order of priority from high to low, so as to obtain a more accurate and conform to each working condition.
- the dynamic safe area of information so that the remote driving entity can control the vehicle without investing or investing less computing power, saving the computing resources of the remote driving entity.
- FIG. 9 shows a block diagram of a remote driving device provided by an embodiment of the present application.
- the device may be implemented as a remote driving entity or part of a remote driving entity.
- the device includes:
- an obtaining module 920 configured to obtain working condition information of the vehicle
- a determination module 940 configured to determine a dynamic safety zone of the vehicle according to the working condition information
- the dynamic safety area is an area where the vehicle is used for autonomous driving without remote control driving, or the dynamic safety area is an area where the vehicle is used for autonomous driving and the degree of intervention of the remote control driving is lower than a predetermined level.
- the working condition information includes at least one of the following information:
- connection performance of the network connection including connection reliability and/or connection quality
- the network connection being the connection between the device and the vehicle
- map information of the area where the vehicle is located
- VRU information of the area where the vehicle is located is located.
- the device is connected to the vehicle; the acquiring module 920 is configured to receive the terminal capability information reported by the vehicle.
- the device and the network monitoring and prediction entity are connected; the obtaining module 920 is configured to obtain at least one of the connection reliability and connection quality of the network connection from the network monitoring entity,
- the network connection is a network connection between the device and the vehicle.
- the device is connected to a location service entity; the acquiring module 920 is configured to acquire the driving position of the vehicle from the location service entity.
- the device is connected to a map information entity; the acquiring module 920 is configured to acquire map information of the area where the vehicle is located from the map information entity.
- the device is connected to a roadside perception entity; the acquiring module 920 is configured to acquire traditional vehicle information in the area where the vehicle is located and the VRU information from the roadside perception entity at least one of.
- the determining module 940 is configured to preferentially use the working condition information of high priority to determine the dynamic state of the vehicle safe area.
- first working condition information and second working condition information there are first working condition information and second working condition information, and the priority of the first working condition information is higher than that of the second working condition information;
- the determining module 940 is configured to determine the first dynamic safety zone of the vehicle according to the first working condition information with high priority; according to the second working condition information with low priority, in the A second dynamic safety zone of the vehicle is determined in the first dynamic safety zone.
- the determination condition of the dynamic security area includes at least one of the following conditions:
- the key performance indicators of the network connection in the target area reach the threshold value required by the remote control driving, and the network connection is the connection between the remote driving entity and the vehicle;
- the distribution of conventional vehicles in the target area meets the first safety condition
- the distribution of VRUs in the target area meets the second security condition
- the target area is a candidate area of the dynamic safety area.
- the apparatus further includes: an execution module 960, configured to adopt a target driving strategy for the vehicle when the vehicle is in the dynamic safety zone;
- the target driving strategy includes at least one of the following strategies:
- the dynamic safety area is divided according to granularity, and the granularity includes at least one of an administrative area, a road section, and a lane.
- the present application also provides a computer device (such as a server), the computer device includes a processor and a memory, the memory stores at least one instruction, and the at least one instruction is loaded and executed by the processor to implement the remote control provided by the above method embodiments. driving method.
- the computer device may be the computer device provided in FIG. 10 below.
- FIG. 10 shows a schematic structural diagram of a computer device provided by an exemplary embodiment of the present application.
- the computer device includes: a processor 1001 , a receiver 1002 , a transmitter 1003 , a memory 1004 and a bus 1005 .
- the processor 1001 includes one or more processing cores, and the processor 1001 executes various functional applications and information processing by running software programs and modules.
- the receiver 1002 and the transmitter 1003 may be implemented as a communication component, which may be a communication chip.
- the memory 1004 is connected to the processor 1001 through the bus 1005 .
- the memory 1004 may be configured to store at least one instruction, and the processor 1001 may be configured to execute the at least one instruction to implement the various steps in the above method embodiments.
- the processor 1001 implements the sending step in the foregoing method embodiments through the transmitter 1003, the processor 1001 implements the receiving step in the foregoing method embodiments through the receiver 1002, and the processor 1001 is further configured to implement the foregoing method embodiments. Steps other than send and receive.
- the present application provides a computer-readable storage medium, where at least one instruction is stored in the storage medium, and the at least one instruction is loaded and executed by the processor to implement the remote driving method provided by each of the foregoing method embodiments.
- the present application also provides a computer program product, which, when the computer program product runs on the computer, enables the computer to execute the remote driving method provided by each of the above method embodiments.
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Entrepreneurship & Innovation (AREA)
- Development Economics (AREA)
- Educational Administration (AREA)
- Economics (AREA)
- Strategic Management (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- Radar, Positioning & Navigation (AREA)
- Aviation & Aerospace Engineering (AREA)
- Atmospheric Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Tourism & Hospitality (AREA)
- Quality & Reliability (AREA)
- Operations Research (AREA)
- General Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Marketing (AREA)
- Game Theory and Decision Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Traffic Control Systems (AREA)
Abstract
一种远程驾驶方法、装置、系统、设备及介质,涉及智能驾驶领域。方法包括:获取车辆的工况信息(202);根据工况信息确定车辆的动态安全区域(204);其中,动态安全区域是采用车辆自主驾驶且无需远程遥控驾驶的区域,或,动态安全区域是采用车辆自主驾驶且远程遥控驾驶的介入程度低于预定程度的区域。
Description
本申请要求于2020年08月31日提交的申请号为202010895926.7、发明名称为“远程驾驶方法、装置、系统、设备及介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请实施例涉及智能驾驶领域,特别涉及一种远程驾驶方法、装置、系统、设备及介质。
智能网联汽车(Intelligent Connected Vehicle)是指车联网与智能车的有机联合。
智能网联汽车支持L3以上的车辆自主驾驶和远程遥控驾驶。车辆自主驾驶,简称自动驾驶,是采用单车智能来实现自动驾驶,即根据摄像头、毫米波雷达、激光雷达等装置来实现的驾驶技术。远程遥控驾驶,简称远程驾驶,是将驾驶权交由服务器接管,由服务器的工作人员的远程遥控来实现的驾驶技术。
由于远程遥控驾驶需要耗费服务器的计算资源,若多个车辆持续使用远程遥控驾驶技术,会对服务器造成较大的计算压力。
发明内容
本申请实施例提供了一种远程驾驶方法、装置、系统、设备及介质,可以在动态安全区域不使用或减少使用远程遥控驾驶,从而减少服务器的计算压力。所述技术方案如下:
根据本申请的一个方面,提供了一种远程驾驶方法,应用于远程驾驶实体中,所述方法包括:
获取车辆的工况信息;
根据所述工况信息确定所述车辆的动态安全区域;
其中,所述动态安全区域是采用车辆自主驾驶且无需远程遥控驾驶的区域,或,所述动态安全区域是采用所述车辆自主驾驶且所述远程遥控驾驶的介入程度低于预定程度的区域。
根据本申请的另一方面,提供了一种远程驾驶装置,所述装置包括:
获取模块,用于获取车辆的工况信息;
确定模块,用于根据所述工况信息确定所述车辆的动态安全区域;
其中,所述动态安全区域是采用车辆自主驾驶且无需远程遥控驾驶的区域,或,所述动态安全区域是采用所述车辆自主驾驶且所述远程遥控驾驶的介入程度低于预定程度的区域。
根据本申请的另一方面,提供了一种远程驾驶系统,所述系统包括:远程驾驶实体和通 信网络实体;
所述远程驾驶实体,用于从所述通信网络实体获取车辆的工况信息;根据所述工况信息确定所述车辆的动态安全区域;
其中,所述动态安全区域是采用车辆自主驾驶且无需远程遥控驾驶的区域,或,所述动态安全区域是采用所述车辆自主驾驶且所述远程遥控驾驶的介入程度低于预定程度的区域。
在本申请的一个可选设计中,所述工况信息包括如下信息中的至少之一:
所述车辆的终端能力信息;
网络连接的连接性能,所述连接性能包括连接可靠性和连接质量中的至少一种,所述网络连接是所述远程驾驶实体与所述车辆之间的连接;
所述车辆的行驶位置;
所述车辆所在区域的地图信息;
所述车辆所在区域的传统车辆信息,所述传统车辆信息是不支持网联功能的车辆信息;
所述车辆所在区域的弱势交通参与者(Vulnerable Road Users,VRU)信息。
在本申请的一个可选设计中,所述车辆,用于向所述远程驾驶实体上报终端能力信息;
所述远程驾驶实体,用于接收所述车辆上报的所述终端能力信息,所述终端能力信息用于指示所述车辆的所述终端能力信息。
在本申请的一个可选设计中,所述通信网络实体包括:网络监测与预测实体;
所述网络监测与预测实体,用于监测或预测网络连接的连接性能,所述网络连接是所述远程驾驶实体与所述车辆之间的网络连接,所述连接性能包括连接可靠性和连接质量中的至少一种;
所述远程驾驶实体,用于从所述网络监测实体获取所述网络连接的连接性能。
在本申请的一个可选设计中,所述通信网络实体包括:位置服务实体;
所述位置服务实体,用于定位所述车辆的行驶位置;
所述远程驾驶实体,用于从所述位置服务实体获取所述车辆的行驶位置。
在本申请的一个可选设计中,所述通信网络实体包括:地图信息实体;
所述地图信息实体,用于采集和存储地图信息,所述地图信息包括:基础地图信息和实时路况信息;
所述远程驾驶实体,用于从所述地图信息实体获取所述车辆所在区域的地图信息。
在本申请的一个可选设计中,所述通信网络实体包括:路侧感知实体;
所述路侧感知实体,用于采集道路上的传统车辆信息和弱势交通参与者VRU信息;
所述远程驾驶实体,用于从所述路侧感知实体获取所述车辆所在区域的传统车辆信息和所述VRU信息中的至少一种。
在本申请的一个可选设计中,存在至少两种所述工况信息对应各自的优先级;
所述远程驾驶实体,用于优先使用高优先级的所述工况信息,确定所述车辆的动态安全区域。
在本申请的一个可选设计中,存在第一工况信息和第二工况信息,所述第一工况信息的优先级高于所述第二工况信息;
所述远程驾驶实体,用于按照具有高优先级的所述第一工况信息,确定所述车辆的第一动态安全区域;按照具有低优先级的所述第二工况信息,在所述第一动态安全区域中确定所述车辆的第二动态安全区域。
在本申请的一个可选设计中,所述动态安全区域的确定条件包括如下条件中的至少之一:
网络连接在目标区域的关键性能指标达到所述远程遥控驾驶所需的门限值,所述网络连接是所述远程驾驶实体与所述车辆之间的连接;
所述目标区域不存在危险路况;
所述目标区域中的传统车辆的分布情况符合第一安全条件;
所述目标区域中的VRU的分布情况符合第二安全条件;
其中,所述目标区域是所述动态安全区域的候选区域。
在本申请的一个可选设计中,所述远程驾驶实体,用于在所述车辆处于所述动态安全区域时,对所述车辆采用目标驾驶策略;
其中,所述目标驾驶策略包括如下策略中的至少一种:
不使用所述远程遥控驾驶;
仅在紧急情况下进行所述远程遥控驾驶;
以第一算力资源进行远程驾驶,所述第一算力资源少于目标资源阈值。
在本申请的一个可选设计中,所述动态安全区域是按照粒度进行划分的,所述粒度包括:行政区域、道路区段、车道中的至少一种。
根据本申请的另一方面,提供了一种计算机设备,所述计算机设备包括处理器和存储器,所述存储器中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现如上方面所述的远程驾驶方法。
根据本申请的另一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现如上方面所述的远程驾驶方法。
本申请实施例提供的技术方案带来的有益效果至少包括:
远程驾驶实体根据工况信息确定车辆的动态安全区域。对于在动态安全区域中的车辆采用车辆自主驾驶,无需远程遥控驾驶或者较低程度地介入远程遥控驾驶,因此在保证车辆的安全前提下,远程驾驶实体可以不投入或投入较少算力来控制车辆,从而节约远程驾驶实体的计算资源。
图1是本申请一个示例性实施例提供的远程驾驶系统的框图;
图2是本申请一个示例性实施例提供的远程驾驶方法的流程图;
图3是本申请一个示例性实施例提供的远程驾驶方法的流程图;
图4是本申请一个示例性实施例提供的远程驾驶方法的流程图;
图5是本申请一个示例性实施例提供的远程驾驶方法的流程图;
图6是本申请一个示例性实施例提供的远程驾驶方法的流程图;
图7是本申请一个示例性实施例提供的远程驾驶方法的流程图;
图8是本申请一个示例性实施例提供的远程驾驶方法的流程图;
图9是本申请一个示例性实施例提供的远程驾驶装置的框图;
图10是本申请一个示例性实施例提供的计算机设备的框图。
首先对本申请涉及的若干个名词进行简介:
L0级自动驾驶:仅提供警告以及瞬时辅助。比如自动紧急制动、视觉盲点提醒、车身稳定系统。
L1级自动驾驶:能够制动、加速或转向。比如,车道偏离修正或自适应巡航。
L2级自动驾驶:能够制定、加速和转向。比如,车道偏离修正和自适应巡航。
L3级自动驾驶:有限制的条件下驾驶车辆。比如,交通拥堵时的自动驾驶。
L4级自动驾驶:有限制的条件下驾驶车辆。比如,城市中的自动驾驶出租车,可能无需安装踏板/转向装置。
L5级自动驾驶:任何条件下驾驶车辆。比如,L4相似,但能在任何条件下实现自动驾驶。
实体:由软件和硬件的结合所实现的计算逻辑单元。实体可以对应一个服务器、多个服务器、云服务或云服务中的一个虚拟计算单位。比如,每个实体均为一个服务器。又比如,一部分实体是单独的服务器,一部分实体是云服务中的虚拟计算单位。又比如,一个服务器上集成有一个或多个实体,一个云服务中集成一个或多个实体。
图1示出了本申请一个实施例提供的自动驾驶系统的结构图。该自动驾驶系统包括:远程驾驶实体10、位置服务实体20、网络监测与预测实体30、数字孪生实体40、地图信息实体50、路侧感知实体60和车端驾驶实体70。
远程驾驶实体10,用于为车辆提供远程驾驶的控制功能。也称,远程遥控驾驶实体。
位置服务实体20,用于定位车辆的行驶位置,包括但不限于普通精度定位和高精度定位中的至少一种。例如,高精度定位是车道级定位。位置服务实体20与远程驾驶实体10之间存在网络连接。远程驾驶实体10从位置服务实体20获取车辆的行驶位置。行驶位置包括:行进中的地理位置和驻停时的地理位置。驻停包括:完全停留、交通信号灯指示下的短暂停留、发生故障或事故下的中度停留中的至少一种。
网络监测与预测实体30,用于对5G网络(以及后续演进的通信系统)的连接可靠性和 连接质量进行监测,以及对连接可靠性和连接质量进行预测。示意性的,网络监测与预测实体30与远程驾驶实体10之间存在网络连接。网络监测与预测实体30用于监测或预测网络连接的连接性能,网络连接是远程驾驶实体与车辆之间的网络连接,连接性能包括连接可靠性和连接质量中的至少一种;远程驾驶实体10,用于从网络监测实体获取网络连接的连接性能。
数字孪生实体40,用于将车辆的路况、周边其他车辆和VRU等信息进行虚拟呈现,辅助远程驾驶实体10的决策。比如,将车辆的路况、周边其他车辆和VRU等信息采用多个呈弧形并列设置的显示屏进行显示,供远程驾驶实体10的操作者(远程驾驶员)参考。
地图信息实体50,用于提供采集和存储地图信息。示意性的,地图信息包括:基础地图信息(如高精度地图)和实时路况信息。比如,实时路况信息是否存在塌方、是否存在车祸事故、是否存在暴雨和冰雹等。地图信息实体50和远程驾驶实体10之间存在网络连接。远程驾驶实体10,用于从所述地图信息实体获取所述车辆所在区域的地图信息。
路侧感知实体60,用于对车辆附近的建筑、设施、传统车辆、行人、自行车、摩托车等进行感知。路侧感知实体60与远程驾驶实体10之间存在网络连接。路侧感知实体60,用于采集道路上的传统车辆信息和VRU信息;远程驾驶实体10,用于从路侧感知实体60获取车辆所在区域的传统车辆信息和VRU信息中的至少一种。
车端驾驶实体70,用于在车端实现自动驾驶时的感知、计算、决策和执行功能。车端驾驶实体70用于实现车辆的车辆自主驾驶,车端驾驶实体70设置在车辆中。在本申请中,车辆自主驾驶可以是指车辆自动驾驶,也可以是指驾驶员对车辆的手动驾驶,也可以是车辆自动驾驶和驾驶员对车辆的手动驾驶的组合。
上述网络连接可以是有线网络、无线网络、移动通信网络、云服务中的实体间的虚拟网络,本申请对网络连接的具体类型不加以限定。
图2示出了本申请一个实施例提供的远程驾驶方法的流程图。本实施例以该方法应用于图1所示的远程驾驶实体10来举例说明。该方法包括:
步骤202:获取车辆的工况信息;
车辆是支持远程驾驶功能的车辆,比如智能网联汽车。可选地,车辆还支持自动驾驶功能。自动驾驶功能是由车辆根据传感器和雷达等设备采集的数据,进行自主驾驶的功能。
示意性的,车辆的工况信息包括如下信息中的至少之一:
·车辆的终端能力信息;
·实体与车辆之间的网络连接的连接性能,连接性能包括连接可靠性和连接质量中的至少一个;
·车辆的行驶位置(或驾驶位置、位置信息、地理位置、定位位置、定位信息等其它表述);
·车辆所在区域的地图信息;
·车辆所在区域的传统车辆信息;
传统车辆信息用于指示不支持基于网联功能的传统车辆(Legacy Vehicle)的车辆信息, 或者,传统车辆信息是不支持网联功能的传统车辆的车辆信息。网联功能是指车辆通过移动通信网络与远程驾驶实体进行通信的功能。移动通信网络包括但不限于:4G、5G以及后续演进网络、蜂窝网络车联网(Cellular-V2X,C-V2X)、专用短程通信技术(Dedicated Short Range Communications,DSRC)等。比如,传统车辆无法与当前车辆进行V2X通信来协调驾驶行为,和/或,传统车辆不支持通过位于云端的远程驾驶实体进行远程遥控驾驶。
·车辆所在区域的弱势交通参与者(Vulnerable Road User,VRU)信息。
VRU信息包括:行人、单车、摩托车、电瓶车、三轮车、滑板车、野生动物、宠物中的至少一种。
步骤204:根据工况信息确定车辆的动态安全区域。
动态安全区域是采用车辆自主驾驶且无需远程遥控驾驶的区域,或,动态安全区域是采用车辆自主驾驶且远程遥控驾驶的介入程度低于预定程度的区域。在下文中,车辆自主驾驶简称为自主驾驶,远程遥控驾驶简称为远程驾驶。
动态安全区域是被控制的车辆的行驶环境的安全系数高于目标门限的安全区域。或者,动态安全区域是远程驾驶实体将被控制的车辆的行驶环境的安全级别判定为安全的区域。
动态安全区域与车辆的行驶位置、车辆所处路况、车辆的单车感知能力和网联支持能力相关,能够基本确定的执行自主驾驶操作而不需要远程接管的区域范围。比如,以当前车辆行驶位置为参考点,向前3公里之内的所有车道。这个区域随时间而变,因车辆的单车驾驶能力或者通过网联功能从路侧获取目标和路况信息的支持能力相关。
对于同一个车辆来讲,动态安全区域可以随着时间改变而改变,动态安全区域也可以根据车辆当前所在的位置改变而改变。即动态安全区域不是固定不变的。
在不同的实施例中,动态安全区域还可能称为:安全区域、动态区域、自主驾驶区域、非接管区域、低风险区域、无需远程遥控的区域等其它名称,本申请对此不加以限定。
在一个示例中,目标区域是以车辆的行驶位置为基准确定的区域,目标区域是动态安全区域的候选区域。远程驾驶实体将目标区域确定为动态安全区域的原则包括但不限于如下至少之一:
·网络连接在目标区域的关键性能指标达到远程遥控驾驶所需的门限值;
比如,车辆和远程驾驶实体之间的网络连接的关键性能指标(Key Performance Indicator,KPI)高于门限值。KPI包括:接入能力、保持能力、移动性、服务完整性、利用率、可用性和业务能力中的至少一种。服务完整性包括:上/下行用户平均吞吐率、上/下行小区平均吞吐率。利用率包括物理资源块(Physical Resource Block,PRB)利用率,CPU利用率等。
·目标区域内不存在危险路况;
特殊路况包括:车祸、塌方、落石、洪水、路面塌陷、失控车辆中的至少一种。
·目标区域内的传统车辆的分布情况符合第一安全条件;
由于传统车辆无法与当前车辆进行车辆到其他设备(Vehicle to Everything,V2X)通信来协调驾驶行为,和/或,传统车辆不支持通过位于云端的远程驾驶实体进行远程遥控驾驶, 因此传统车辆的周侧区域,不适合划分为动态安全区域。对于传统车辆不会影响到当前车辆的区域,可划分为动态安全区域;对于传统车辆可能会影响到当前车辆的区域,不可划分为动态安全区域。
示意性的,传统车辆是否会影响当前车辆的安全性的评估,可按照传统车辆和当前车辆所在的位置、两者之间的行驶方向、两者之间的相对速度、两者是否处于相同的车道、两者之间的距离中的至少一个因素来进行碰撞预测得到。
·目标区域内的VRU的分布情况符合第二安全条件;
由于VRU的行动方式难以预知,因此VRU的周侧区域,不适合划分为动态安全区域。对于VRU不会影响到当前车辆的区域,可划分为动态安全区域;对于VRU可能会影响到当前车辆的区域,不可划分为动态安全区域。
示意性的,VRU是否会影响当前车辆的安全性的评估,可按照VRU和当前车辆所在的位置、两者之间的行驶方向、两者之间的相对速度、两者之间的距离中的至少一个因素来进行碰撞预测得到。
在车辆处于动态安全区域时,远程驾驶实体对车辆采用目标驾驶策略。目标驾驶策略包括如下至少之一:
不进行远程遥控驾驶;
仅在紧急情况下进行远程遥控驾驶;
以第一算力资源进行远程遥控驾驶,第一算力资源少于目标资源阈值。
也即,在动态安全区域中完全使用或主要使用车辆的车端自主驾驶,远程遥控驾驶不使用或较少使用。
由于动态安全区域内的安全性较高,车辆在采用车端自主驾驶时,还可在符合限速规定的情况下尽可能提高车辆的行驶速度。
综上所述,本实施例提供的方法,远程驾驶实体根据工况信息确定车辆的动态安全区域,进而在动态安全区域中采用目标驾驶策略对车辆进行远程遥控驾驶。由于处于动态安全区域内的车辆较为安全,因此远程驾驶实体可以不投入或投入较少算力来控制车辆,从而节约远程驾驶实体的计算资源。
针对工况信息包括:车辆的终端能力信息的实施例:
图3示出了本申请一个实施例提供的远程驾驶方法的流程图。本实施例以该方法应用于图1所示的远程驾驶实体10来举例说明。该方法包括:
步骤302:获取车辆的终端能力信息;
终端能力信息是用于指示车辆在自主驾驶方面支持的能力,和在远程遥控驾驶方面支持的能力中的至少一种。
示意性的,终端能力信息包括:终端所支持的自动驾驶级别。比如,被控制的车辆不具备任何自动驾驶等级,即L0级;又比如,被控制的车辆可接收远程驾驶实体10的控制指令 进行加速、转向和刹车操作,同时可以实时将摄像头和雷达的信息传到远程驾驶实体10。再比如,被控制的车辆自身具备L4级的自动驾驶,只是在遇到复杂工况时需要远程接管。
示意性的,终端能力信息包括:在远程遥控驾驶时的被控制能力,比如是否支持远程刹车功能、是否支持远程转向功能、是否支持远程加速功能。在另一个示例中,终端能力信息包括:在远程遥控驾驶时的单车感知能力,比如终端是否支持摄像头、是否支持雷达,摄像头的数量和位置,雷达的数量和位置。在另一个示例中,终端能力信息包括:在远程遥控驾驶时的网联支持能力,比如是否支持将摄像头采集的数据上传至远程驾驶实体10,是否支持将雷达采集的数据上传至远程驾驶实体10,是否支持将车联网传输的数据上传至远程驾驶实体10。
终端能力信息采用能力等级来指示,或者,采用位图形式来指示。在终端能力信息采用能力等级指示时,预先定义或配置有能力等级的对应关系,比如能力等级1对应的能力、能力等级2对应的能力等,终端根据自身的能力确定自身的能力等级。在终端能力信息采用位图形式来指示时,设置具有n个比特的比特序列,比特序列中的每个比特对应一种能力。也即将每种能力对应比特序列中的1个比特,当比特值为1时代表具有该能力;当比特值为0时代表不具有该能力。
终端能力信息的上报方式,可以由远程驾驶实体10向车辆进行预配置,也可以由车辆采用动态报告进行实现。在一个示例中,车辆向远程驾驶实体10发送注册信息,该注册信息中携带有终端能力信息,远程驾驶实体10从注册信息中获取终端能力信息,然后远程驾驶实体10向车辆发送注册应答。在另一个示例中,远程驾驶实体10向车辆发送能力询问请求消息,车辆在接收到能力询问请求消息后,向远程驾驶实体10发送能力信息上报消息,该能力信息上报消息携带有终端能力信息。
需要说明的是,本实施例适用于设备生产商(Original Equipment Manufacturer,OEM)厂商自身提供的远程遥控驾驶服务,以及第三方服务提供商提供的远程遥控驾驶服务。
步骤304:至少根据终端能力信息确定车辆的动态安全区域;
在终端能力信息较差时,远程驾驶实体10为车辆确定较小的动态安全区域(甚至为0);在终端能力信息较强时,远程驾驶实体10为车辆确定较大的动态安全区域。
比如,在终端能力信息指示车辆支持L4或L5的自动驾驶时,为车辆确定较大的动态安全区域;在终端能力信息指示车辆仅支持远程遥控驾驶中的加速、刹车和转向时,为车辆确定较小的动态安全区域。
终端能力信息为确定动态安全区域中的一个因素,动态安全区域可以根据不止一个因素来确定,即将终端能力信息作为确定动态安全区域的多个因素中的一个因素。
步骤306:在车辆处于动态安全区域时,对车辆采用目标驾驶策略。
在车辆处于动态安全区域时,对车辆采用目标驾驶策略。目标驾驶策略包括如下至少之一:
不进行远程遥控驾驶;
仅在紧急情况下进行远程遥控驾驶;
以第一算力资源进行远程遥控驾驶,第一算力资源少于目标资源阈值。
其中,紧急情况是基于预先设定的驾驶环境条件判定的,比如前方100米有塌方、前方障碍物的距离小于有效刹停距离、车辆上的传感器发生故障等等。
也即,在动态安全区域中完全使用或主要使用车辆的车端自动驾驶,远程遥控驾驶不使用或较少使用。
综上所述,本实施例提供的方法,远程驾驶实体根据终端能力信息确定车辆的动态安全区域,进而在动态安全区域中采用目标驾驶策略对车辆进行远程遥控驾驶。由于具有较高的终端能力的车辆较为安全,因此远程驾驶实体可以不投入或投入较少算力来控制车辆,从而节约远程驾驶实体的计算资源。
针对工况信息包括:车辆的网络连接的连接性能的实施例:
图4示出了本申请一个实施例提供的远程驾驶方法的流程图。本实施例以该方法应用于图1所示的远程驾驶实体10来举例说明,该远程驾驶实体10连接有网络监测与预测实体。该方法包括:
步骤402:从网络监测与预测实体获取车辆的网络连接的连接性能;
远程驾驶实体10与车辆之间需要通过通信网络实现实时的交互和协作。该通信网络是5G网络以及后续演进网络。在车辆被远程驾驶实体10控制的情况下,控制指令需要从远程驾驶实体发送到车辆(或车端驾驶系统),然后在车端驾驶系统上实施。网络连接的连接可靠性和/或连接质量,直接决定着控制指令是否能够及时传递到车辆上。
网络连接是远程驾驶实体与车辆之间的连接。示意性的,该网络连接是5G网络中的连接,或者,5G网络的后续演进网络中的连接。
网络监测与预测实体是用于监测网络连接的连接性能的实体。网络监测与预测实体是用于预测网络连接的连接性能的实体。连接性能包括:连接可靠性和连接质量中的至少一种。
其中,连接可靠性是用于评价服务质量(Quality of Service,QoS)的指标,连接可靠性采用专用带宽、网络抖动、网络延迟、丢包率等参数来表征。连接质量是用于评价信道质量的指标,连接质量采用参考信号接收功率(Reference Signal Received Power,RSRP)、参考信号接收质量(Reference Signal Received Quality,RSRQ)等参数来表征。
网络监测与预测实体具有监测能力,通过监测得到实时或近乎实时的网络连接的连接性能。示意性的,网络监测与预测实体还具有预测能力,通过预测得到未来一段时间内的网络连接的连接性能。
在一个示例中,远程驾驶实体10向网络监测与预测实体发送询问请求,该询问请求携带有车辆的标识、网络连接的标识、车辆的行驶位置中的至少一种。网络监测与预测实体在接收到询问请求后,向远程驾驶实体10发送网络连接的连接性能。网络连接的标识可以是无线承载(Radio Bear,RB)标识、信令无线承载(Signaling RB,SRB)标识、数据无线承载(Data RB,DRB)标识、网络切片标识中的至少一种。
示意性的,网络监测与预测实体周期性向远程驾驶实体10发送网络连接的连接性能,或者,在信息发生更新时,主动向远程驾驶实体10发送网络连接的连接性能。
步骤404:至少根据网络连接的连接性能确定车辆的动态安全区域;
在网络连接的连接可靠性和/或连接质量较差时,远程驾驶实体10为车辆确定较大的动态安全区域(甚至为0);在网络连接的连接可靠性和/或连接质量较差时,远程驾驶实体10为车辆确定较大的动态安全区域。
网络连接的连接可靠性和/或连接质量为确定动态安全区域中的一个因素,动态安全区域可以根据不止一个因素来确定,即将网络连接的连接性能作为确定动态安全区域的多个因素中的一个因素。
步骤406:在车辆处于动态安全区域时,对车辆采用目标驾驶策略。
在车辆处于动态安全区域时,对车辆采用目标驾驶策略。目标驾驶策略包括如下至少之一:
不进行远程遥控驾驶;
仅在紧急情况下进行远程遥控驾驶;
以第一算力资源进行远程遥控驾驶,第一算力资源少于目标资源阈值。
也即,在动态安全区域中完全使用或主要使用车辆的车端自动驾驶,远程遥控驾驶不使用或较少使用。
综上所述,本实施例提供的方法,远程驾驶实体根据网络连接的连接可靠性和/或连接质量确定车辆的动态安全区域,进而在动态安全区域中采用目标驾驶策略对车辆进行远程遥控驾驶。由于具有较差网络连接的车辆在远程遥控驾驶时的意外性增加,因此远程驾驶实体可以不投入或投入较少算力来控制车辆,更多依赖车端的自动驾驶,从而节约远程驾驶实体的计算资源。
针对工况信息包括:车辆的行驶位置的实施例:
图5示出了本申请一个实施例提供的远程驾驶方法的流程图。本实施例以该方法应用于图1所示的远程驾驶实体10来举例说明,该远程驾驶实体10连接有位置服务实体。该方法包括:
步骤502:从位置服务实体获取车辆的行驶位置;
车辆的行驶位置是远程驾驶实体10在进行远程遥控驾驶决策时的重要参数。远程驾驶实体10从位置服务实体获取车辆的行驶位置。
位置服务实体是用于定位车辆的行驶位置的实体。位置服务实体可以基于全球定位系统(Global Positioning System,GPS),伽利略卫星导航系统,北斗卫星导航系统来定位车辆的行驶位置。位置服务实体可以采用基于基站的三点定位法来定位车辆的行驶位置,或者基于距离差的定位技术来定位车辆的行驶位置,或者基于角度差的定位技术来定位车辆的行驶位 置,或者基于探测回波的往返时间差的定位技术来定位车辆的行驶位置。甚至,位置服务实体还可以根据摄像头采集到的路况图像来定位车辆的行驶位置。
示意性的,位置服务实体使用的定位方式包括如下方式中的至少一种:
·网络辅助的全球导航卫星系统方法;
·基于长期演进(Long-Term Evolution,LTE)信号的到达时差定位;
·基于LTE信号的增强型小区识别方法;
·无线局域网定位;
·蓝牙定位;
·地面信标系统(Terrestrial Beacon Systems,TBS)定位;
·基于传感器的方法;
·气压传感器;
·运动传感器;
·基于新空口NR信号的NR增强小区识别方法(NR Enhanced-Cell Identity Document,NR e-CID);
·多往返时间(Round Trip Time,RTT)定位,包括基于NR信号的多RTT;
·基于NR信号的下行离去角(Downlink-Angle of Departure,DL-AoD);
·基于NR信号的下行到达时差(Downlink-Time Difference of Arrival,DL-TDOA);
·基于NR信号的上行到达时差(Uplink-Time Difference of Arrival,UL-TDOA);
·上行到达角(Uplink-Time of Arrival,UL-AoA),包括基于NR信号的A-AoA和Z-AoA;
·基于侧行链路(SideLink,SL)的定位方式。
示意性的,可采用上述定位方式中的一种进行车辆的定位,比如,车辆采用其中一种进行自主定位,无需位置服务实体的协助,然后车辆向位置服务实体上报定位结果;或者,上述定位方式可进行多种的混合使用以实现混合定位。
在一个示例中,远程驾驶实体10向位置服务实体发送位置获取请求,该位置获取请求携带有车辆的标识。位置服务实体在接收到位置获取请求后,向远程驾驶实体10发送车辆的行驶位置。
示意性的,位置服务实体周期性向远程驾驶实体10发送车辆的行驶位置,或者,在行驶位置发生更新时,主动向远程驾驶实体10发送车辆的行驶位置。车辆的行驶位置可采用绝对位置来表示,比如经纬度位置,也可以采用相对位置来表示,比如相对于某一地面基站的方向和距离。
步骤504:至少根据车辆的行驶位置确定车辆的动态安全区域;
远程驾驶实体10以车辆的行驶位置为基准参考位置,确定车辆的动态安全区域。比如,远程驾驶实体10以车辆的行驶位置为安全区域的起点,确定车辆的动态安全区域。又比如,远程驾驶实体10以车辆的行驶位置为安全区域的中心点,确定车辆的动态安全区域。
由于车辆的行驶位置在不断的改变,因此需要根据车辆的行驶位置不断地确定车辆的动态安全区域。
车辆的行驶位置为确定动态安全区域中的一个因素,动态安全区域可以根据不止一个因素来确定,即将车辆的行驶位置作为确定动态安全区域的多个因素中的一个因素。
步骤506:在车辆处于动态安全区域时,对车辆采用目标驾驶策略。
在车辆处于动态安全区域时,对车辆采用目标驾驶策略。目标驾驶策略包括如下至少之一:
不进行远程遥控驾驶;
仅在紧急情况下进行远程遥控驾驶;
以第一算力资源进行远程遥控驾驶,第一算力资源少于目标资源阈值。
也即,在动态安全区域中完全使用或主要使用车辆的车端自动驾驶,远程遥控驾驶不使用或较少使用。
综上所述,本实施例提供的方法,远程驾驶实体根据车辆的行驶位置确定车辆的动态安全区域,进而在动态安全区域中采用目标驾驶策略对车辆进行远程遥控驾驶。其中,动态安全区域可根据车辆的行驶位置进行动态更新,从而确定出更加准确和合适的动态安全区域。
针对工况信息包括:车辆所在区域的地图信息的实施例:
图6示出了本申请一个实施例提供的远程驾驶方法的流程图。本实施例以该方法应用于图1所示的远程驾驶实体10来举例说明,该远程驾驶实体10连接有地图信息实体。该方法包括:
步骤602:从地图信息实体获取车辆所在区域的地图信息;
车辆所在区域的地图信息也是远程驾驶实体10在进行远程遥控驾驶决策时的重要参数。远程驾驶实体10从地图信息实体获取车辆所在区域的地图信息。
地图信息实体是用于提供地图信息的实体。示意性的,地图信息实体可以提供高精度的地图信息。
在一个示例中,远程驾驶实体10向地图信息实体发送地图获取请求,该地图获取请求携带有车辆的标识和车辆的行驶位置中的至少一种。地图信息实体在接收到地图获取请求后,向远程驾驶实体10发送车辆所在区域的地图信息。车辆的行驶位置是绝对位置或相对位置。绝对位置可采用经纬度来表示,相对位置可采用相对于参考点的方向和距离来表示。比如,参考点是基站A,采用波束方向和定时提前来分别表示相对于基站A的方向和距离。
示意性的,区域由地图信息实体来划分,区域的大小固定或动态调整。比如在网络情况较好时,划定较大的区域;在网络情况较差时,划定较小的区域。
地图信息包括:基础地图信息,比如普通精度地图或高精度地图。在一些示例中,地图信息还包括实时路况信息。实时路况信息包括但不限于:拥堵信息、施工信息、塌方信息、落石信息、交通事故信息、洪水信息、极端天气信息中的至少一种。
示意性的,地图信息实体周期性向远程驾驶实体10发送车辆所在区域的地图信息。或者,在行驶位置发生更新时,由远程驾驶实体10主动向地图信息实体获取车辆所在区域的地图信息。或者,在车辆驶出上一区域或即将驶出上一区域时,由远程驾驶实体10主动向地图信息实体获取下一区域的地图信息。
步骤604:至少根据车辆所在区域的地图信息确定车辆的动态安全区域;
远程驾驶实体10以车辆所在区域的地图信息为参考,确定车辆的动态安全区域。比如,远程驾驶实体10在车辆所在区域为无限速的高速公路时,确定较大范围的动态安全区域;在车辆所在区域为城市通勤路段时,确定较小范围的动态安全区域。又比如,远程驾驶实体10在车辆所在区域存在塌方、落石、洪水等意外地图信息时,确定较小范围的动态安全区域;在车辆所在区域不存在意外地图信息时,确定较大范围的动态安全区域。
由于车辆所在区域的地图信息在不断的改变,因此需要根据车辆所在区域的地图信息不断地确定车辆的动态安全区域。
车辆所在区域的地图信息为确定动态安全区域中的一个因素,动态安全区域可以根据不止一个因素来确定,即将车辆所在区域的地图信息作为确定动态安全区域的多个因素中的一个因素。
步骤606:在车辆处于动态安全区域时,对车辆采用目标驾驶策略。
在车辆处于动态安全区域时,对车辆采用目标驾驶策略。目标驾驶策略包括如下至少之一:
不进行远程遥控驾驶;
仅在紧急情况下进行远程遥控驾驶;
以第一算力资源进行远程遥控驾驶,第一算力资源少于目标资源阈值。
也即,在动态安全区域中完全使用或主要使用车辆的车端自动驾驶,远程遥控驾驶不使用或较少使用。
综上所述,本实施例提供的方法,远程驾驶实体根据车辆所在区域的地图信息确定车辆的动态安全区域,进而在动态安全区域中采用目标驾驶策略对车辆进行远程遥控驾驶。其中,动态安全区域可根据车辆所在区域的地图信息进行动态更新,从而确定出更加准确和合适的动态安全区域。
针对工况信息包括:车辆所在区域的路侧信息的实施例:
图7示出了本申请一个实施例提供的远程驾驶方法的流程图。本实施例以该方法应用于图1所示的远程驾驶实体10来举例说明,该远程驾驶实体10连接有路侧感知实体。该方法包括:
步骤702:从路侧感知实体获取车辆所在区域的路侧信息;
车辆所在区域的路侧信息包括:传统车辆信息和VRU信息中的至少一种。路侧信息也是远程驾驶实体10在进行远程遥控驾驶决策时的重要参数。远程驾驶实体10从路侧感知实体获取车辆所在区域的路侧信息。
路侧感知实体是用于提供路侧信息的实体。示意性的,路侧感知实体可以通过路边设施、车联网、摄像头等方式来获取路侧信息。比如,路侧感知实体通过车联网来采集传统车辆的信息,又比如,路侧感知实体通过彩色相机、红外相机以及深度相机等获取路边行人或动物的路侧信息。
在一个示例中,远程驾驶实体10向路侧感知实体发送路侧获取请求,该路侧获取请求携带有车辆的标识和车辆的行驶位置中的至少一种。路侧感知实体在接收到路侧获取请求后,向远程驾驶实体10发送车辆所在区域的路侧信息。车辆的行驶位置是绝对位置或相对位置。绝对位置可采用经纬度来表示,相对位置可采用相对于参考点的方向和距离来表示。比如,参考点是基站A,采用波束方向和定时提前来分别表示相对于基站A的方向和距离。
示意性的,区域由路侧感知实体来划分,区域的大小固定或动态调整。比如在网络情况较好时,划定较大的区域;在网络情况较差时,划定较小的区域。
示意性的,路侧感知实体周期性向远程驾驶实体10发送车辆所在区域的路侧信息。或者,在行驶位置发生更新时,由远程驾驶实体10主动向路侧感知实体获取车辆所在区域的路侧信息。或者,在车辆驶出上一区域或即将驶出上一区域时,由远程驾驶实体10主动向路侧感知实体获取下一区域的路侧信息。
传统车辆信息包括:传统车辆的行驶位置、速度、行驶方向、网络连接情况、终端能力信息中的至少一种。VRU信息包括:VRU的地理位置、速度、行走方向、网络连接情况、终端能力信息中的至少一种。
步骤704:至少根据车辆所在区域的路侧信息确定车辆的动态安全区域;
远程驾驶实体10以车辆所在区域的路侧信息为参考,确定车辆的动态安全区域。比如,远程驾驶实体10在车辆所在区域不存在不受控的传统车辆时,为车辆确定较大的动态安全区域;在车辆所在区域的传统车辆与被控车辆处于不同车道且距离大于阈值时,为车辆确定较大的动态安全区域;在车辆所在区域的传统车辆与被控车辆处于相同车道且距离小于阈值时,为车辆确定较小的动态安全区域。在车辆所在区域的传统车辆与被控车辆处于相反车道时,为车辆确定较大的动态安全区域;在车辆所在区域的VRU处于被控车辆的后方区域时,为车辆确定较大的动态安全区域;在车辆所在区域的VRU处于被控车辆的前方区域时,为车辆确定较小的动态安全区域等等。
由于车辆所在区域的路侧信息在不断的改变,因此需要根据车辆所在区域的路侧信息不断地确定车辆的动态安全区域。
车辆所在区域的路侧信息为确定动态安全区域中的一个因素,动态安全区域可以根据不止一个因素来确定,即将车辆所在区域的路侧信息作为确定动态安全区域的多个因素中的一个因素。
步骤706:在车辆处于动态安全区域时,对车辆采用目标驾驶策略。
在车辆处于动态安全区域时,对车辆采用目标驾驶策略。目标驾驶策略包括如下至少之一:
不进行远程遥控驾驶;
仅在紧急情况下进行远程遥控驾驶;
以第一算力资源进行远程遥控驾驶,第一算力资源少于目标资源阈值。
也即,在动态安全区域中完全使用或主要使用车辆的车端自动驾驶,远程遥控驾驶不使用或较少使用。
综上所述,本实施例提供的方法,远程驾驶实体根据车辆所在区域的路侧信息确定车辆的动态安全区域,进而在动态安全区域中采用目标驾驶策略对车辆进行远程遥控驾驶。其中,动态安全区域可根据车辆所在区域的路侧信息进行动态更新,从而确定出更加准确和合适的动态安全区域。
针对工况信息包括多种信息的实施例:
图8示出了本申请一个实施例提供的远程驾驶方法的流程图。本实施例以该方法应用于图1所示的远程驾驶实体10来举例说明。该方法包括:
步骤801:远程驾驶实体接收车辆发送的注册信息,注册信息携带有终端能力信息;
终端能力信息是用于指示车辆在自动驾驶方面支持的能力,和在远程遥控驾驶方面支持的能力中的至少一种。终端能力信息是工况信息中的一种。
示意性的,终端能力信息包括:终端所支持的自动驾驶级别。
示意性的,终端能力信息包括:在远程遥控驾驶时的被控制能力、在远程遥控驾驶时的单车感知能力、在远程遥控驾驶时的网联支持能力中的至少一种。
终端能力信息采用能力等级来指示,或者,采用位图形式来指示。在终端能力信息采用能力等级指示时,预先定义或配置有能力等级的对应关系,终端根据自身的能力确定自身的能力等级。在终端能力信息采用位图形式来指示时,设置具有n个比特的比特序列,比特序列中的每个比特对应一种能力。也即将每种能力对应比特序列中的1个比特,当比特值为1时代表具有该能力;当比特值为0时代表不具有该能力。
远程驾驶实体从注册信息中,获取终端能力信息。可选地,远程驾驶实体还获取车辆的车辆标识。该车辆标识可以采用车端驾驶实体的终端标识来表示。比如,车端物理标识,或车端驾驶实体在移动通信网络中的小区临时标识。
步骤802:远程驾驶实体向车辆发送注册应答信息;
步骤803:远程驾驶实体向网络监测与预测实体发送网络询问请求;
网络连接是远程驾驶实体与车辆之间的连接。示意性的,该网络连接是5G网络中的连接,或者,5G网络的后续演进网络中的连接。
该网络询问请求用于询问网络连接的连接可靠性和连接质量中的至少一种。该询问请求还可称为监测请求、预测请求、同步请求、获取请求等其它名称。
该网络询问请求携带有车辆的标识、网络连接的标识、车辆的行驶位置中的至少一种。网络连接的标识可以是RB标识、SRB标识、DRB标识、网络切片标识中的至少一种。
步骤804:网络监测与预测实体向远程驾驶实体发送网络连接的连接可靠性和连接质量中的至少一种;
网络监测与预测实体在接收到网络询问请求后,向远程驾驶实体发送网络连接的连接可靠性和/或连接质量。
网络连接的连接可靠性和/或连接质量是网络监测与预测实体监测得到的。或者,网络连接的连接可靠性和/或连接质量是网络连接与预测实体预测得到的。
网络连接的连接可靠性和/或连接质量是工况信息中的一种。
步骤805:远程驾驶实体向位置服务实体发送位置获取请求;
该位置获取请求携带有车辆的标识。
步骤806:位置服务实体向远程驾驶实体发送车辆的行驶位置;
车辆的行驶位置可采用绝对位置来表示,比如经纬度位置,也可以采用相对位置来表示,比如相对于某一地面基站(或其他参考物)的方向和距离。
步骤807:远程驾驶实体向地图信息实体发送地图获取请求;
远程驾驶实体向地图信息实体发送地图获取请求,该地图获取请求携带有车辆的标识和车辆的行驶位置中的至少一种。车辆的行驶位置是绝对位置或相对位置。
步骤808:地图信息实体向远程驾驶实体发送车辆所在区域的地图信息;
地图信息实体在接收到地图获取请求后,向远程驾驶实体发送车辆所在区域的地图信息。
示意性的,在地图获取请求中携带车辆的标识时,地图信息实体根据车辆的标识,从位置服务实体获取车辆的行驶位置,根据车辆的行驶位置向远程驾驶实体发送车辆所在区域的地图信息。
示意性的,在地图获取请求中携带车辆的行驶位置时,根据车辆的行驶位置向远程驾驶实体发送车辆所在区域的地图信息。
地图信息包括:基础地图信息。在一些示例中,地图信息还包括实时路况信息。实时路况信息包括但不限于:拥堵信息、施工信息、塌方信息、落石信息、交通事故信息、洪水信息、极端天气信息中的至少一种。
其中,基础地图信息是工况信息中的一种。
步骤809:远程驾驶实体向路侧感知实体发送路侧获取请求;
远程驾驶实体向路侧感知实体发送路侧获取请求,该路侧获取请求携带有车辆的标识和车辆的行驶位置中的至少一种。
步骤810:路侧感知实体向远程驾驶实体发送车辆所在区域的传统车辆信息和VRU信息中的至少一种;
路侧感知实体采用摄像头、雷达、红外感应器、毫米波雷达等传感器中的至少一种,感知目标区域内的传统车辆信息和VRU信息。路侧感知实体在接收到路侧获取请求后,向远程驾驶实体发送车辆所在区域的路侧信息。车辆所在区域的路侧信息包括:传统车辆信息和VRU信息中的至少一种。
其中,传统车辆信息包括:传统车辆的行驶位置、速度、行驶方向、网络连接情况、终端能力信息中的至少一种。VRU信息包括:行人或动物的地理位置、速度、行走方向、网络连接情况、行人携带的便携式终端的终端能力信息中的至少一种。
传统车辆信息是工况信息中的一种。VRU信息也是工况信息中的一种。
本实施例对上述各个工况信息之间的获取时机不加以限定,远程驾驶实体可以按照不同的先后顺序、不同的获取方式(主动或被动)、不同的获取频率来获取各个工况信息。在一些实施例中,各个工况信息的获取过程独立,互不依赖。在一些实施例中,存在一些工况信息的获取过程存在依赖,比如需要先获取车辆的行驶位置,再根据车辆的行驶位置获取地图信息以及路侧信息。
步骤811:远程驾驶实体根据工况信息确定车辆的动态安全区域;
远程驾驶实体根据多种工况信息,综合确定车辆的动态安全区域。在使用多种工况信息来确定车辆的动态安全区域时,多种工况信息可以逐级使用。
示意性的,存在至少两种工况信息对应各自的优先级。远程驾驶实体优先使用高优先级的工况信息,确定车辆的动态安全区域。
示意性的,多种工况信息中存在第一工况信息和第二工况信息,第一工况信息的优先级高于第二工况信息。第一工况信息是多种工况信息中的任意一种,第二工况信息是多种工况信息中除第一工况信息之外的任意一种。
远程驾驶实体按照具有高优先级的第一工况信息,确定车辆的第一动态安全区域;再按照具有低优先级的第二工况信息,在第一动态安全区域中确定车辆的第二动态安全区域。
当工况信息为三种以上时,远程驾驶实体按照具有最高优先级的第一工况信息,确定车辆的第一动态安全区域;再按照具有次高优先级的第二工况信息,在第一动态安全区域中确定车辆的第二动态安全区域;再按照具有低优先级的第三工况信息,在第二动态安全区域中确定车辆的第三动态安全区域,依次类推,直至得到最后确定出的动态安全区域。
在一个示例中,目标区域是以车辆的行驶位置为基准确定的区域,目标区域是动态安全区域的候选区域。远程驾驶实体将目标区域确定为动态安全区域的原则包括但不限于如下至少之一:
·网络连接在目标区域的关键性能指标达到远程遥控驾驶所需的门限值;
比如,车辆和远程驾驶实体之间的网络连接的KPI高于门限值。KPI高于门限值包括但不限于如下至少之一:网络连接的传输时延小于第一门限值、网络连接的丢包率小于第二门限值、网络连接的稳定性高于第三门限值、网络连接的移动性高于第四门限值。
·目标区域内不存在危险路况;
危险路况包括:拥堵信息、施工信息、塌方信息、落石信息、交通事故信息、洪水信息、极端天气信息、失控车辆中的至少一种。
·目标区域内的传统车辆的分布情况符合第一安全条件;
由于传统车辆无法与当前车辆进行V2X通信来协调驾驶行为,和/或,传统车辆不支持通过位于云端的远程驾驶实体进行远程遥控驾驶,因此传统车辆的周侧区域,不适合划分为动态安全区域。对于传统车辆不会影响到当前车辆的区域,可划分为动态安全区域;对于传统车辆可能会影响到当前车辆的区域,不可划分为动态安全区域。
示意性的,传统车辆是否会影响当前车辆的安全性的评估,可按照传统车辆和当前车辆所在的位置、两者之间的行驶方向、两者之间的相对速度、两者是否处于相同的车道、两者之间的距离中的至少一个因素来进行碰撞预测得到。
其中,第一安全条件包括但不限于如下至少之一:
传统车辆与当前车辆的距离大于第一阈值;
传统车辆与当前车辆处于反向车道;
传统车辆与当前车辆处于反向车道,且车道间距大于第二阈值;
传统车辆与当前车辆属于不同的同向车道;
传统车辆与当前车辆处于不同的同向车道,且车道间距大于第三阈值;
传统车辆的驾驶者状态符合安全条件,比如年龄大于18岁且小于50岁;
传统车辆的历史驾驶记录符合安全条件。
·目标区域内的VRU的分布情况符合第二安全条件;
由于VRU的行动方式难以预知,因此VRU的周侧区域,不适合划分为动态安全区域。对于VRU不会影响到当前车辆的区域,可划分为动态安全区域;对于VRU可能会影响到当前车辆的区域,不可划分为动态安全区域。
示意性的,VRU是否会影响当前车辆的安全性的评估,可按照VRU和当前车辆所在的位置、两者之间的行驶方向、两者之间的相对速度、两者之间的距离中的至少一个因素来进行碰撞预测得到。
其中,第二安全条件包括但不限于如下至少之一:
VRU与当前车辆的距离大于第一阈值;
VRU与当前车辆处于反向车道;
VRU与当前车辆处于反向车道,且车道间距大于第二阈值;
VRU与当前车辆属于不同的同向车道;
VRU与当前车辆处于不同的同向车道,且车道间距大于第三阈值;
VRU的状态符合安全条件,比如年龄大于18岁且小于50岁;
VRU的历史行驶记录符合安全条件。
步骤812:在车辆处于动态安全区域时,远程驾驶实体对车辆采用目标驾驶策略。
其中,目标驾驶策略包括如下策略中的至少一种:
不使用远程遥控驾驶;
仅在紧急情况下进行远程遥控驾驶;
以第一算力资源进行远程驾驶,第一算力资源少于目标资源阈值。
也即,在动态安全区域中完全使用或主要使用车辆的车端自动驾驶,远程遥控驾驶不使用或较少使用。其中,动态安全区域是按照粒度进行划分的,所述粒度包括:行政区域、道路区段、车道中的至少一种。
综上所述,本实施例提供的方法,远程驾驶实体根据多种工况信息确定车辆的动态安全区域,进而在动态安全区域中采用目标驾驶策略对车辆进行远程遥控驾驶,能够减少远程遥控驾驶的资源占用,尽可能多地使用自动驾驶。
本实施例提供的方法,还通过在存在多种工况信息时,按照优先级由高到低的顺序,依次根据工况信息对动态安全区域进行缩小,从而能够得到较为准确且符合各个工况信息的动态安全区域,从而远程驾驶实体可以不投入或投入较少算力来控制车辆,节约远程驾驶实体的计算资源。
图9示出了本申请一个实施例提供的远程驾驶装置的框图。该装置可以实现成为远程驾驶实体或远程驾驶实体的一部分。该装置包括:
获取模块920,用于获取车辆的工况信息;
确定模块940,用于根据所述工况信息确定所述车辆的动态安全区域;
其中,所述动态安全区域是采用车辆自主驾驶且无需远程遥控驾驶的区域,或,所述动态安全区域是采用所述车辆自主驾驶且所述远程遥控驾驶的介入程度低于预定程度的区域。
在本申请的一个可能实现中,所述工况信息包括如下信息中的至少之一:
所述车辆的终端能力信息;
网络连接的连接性能,连接性能包括连接可靠性和/或连接质量,所述网络连接是所述装置与所述车辆之间的连接;
所述车辆的行驶位置;
所述车辆所在区域的地图信息;
所述车辆所在区域的传统车辆信息;
所述车辆所在区域的VRU信息。
在本申请的一个可能实现中,所述装置与所述车辆相连;所述获取模块920,用于接收所述车辆上报的所述终端能力信息。
在本申请的一个可能实现中,所述装置和网络监测与预测实体相连;所述获取模块920,用于从所述网络监测实体获取网络连接的连接可靠性和连接质量中的至少一种,所述网络连接是所述装置与所述车辆之间的网络连接。
在本申请的一个可能实现中,所述装置与位置服务实体相连;所述获取模块920,用于从所述位置服务实体获取所述车辆的行驶位置。
在本申请的一个可能实现中,所述装置与地图信息实体相连;所述获取模块920,用于从所述地图信息实体获取所述车辆所在区域的地图信息。
在本申请的一个可能实现中,所述装置与路侧感知实体相连;所述获取模块920,用于从所述路侧感知实体获取所述车辆所在区域的传统车辆信息和所述VRU信息中的至少一种。
在本申请的一个可能实现中,存在至少两种所述工况信息对应各自的优先级;所述确定模块940,用于优先使用高优先级的所述工况信息,确定所述车辆的动态安全区域。
在本申请的一个可能实现中,存在第一工况信息和第二工况信息,所述第一工况信息的优先级高于所述第二工况信息;
所述确定模块940,用于按照具有高优先级的所述第一工况信息,确定所述车辆的第一动态安全区域;按照具有低优先级的所述第二工况信息,在所述第一动态安全区域中确定所述车辆的第二动态安全区域。
在本申请的一个可能实现中,所述动态安全区域的确定条件包括如下条件中的至少之一:
网络连接在目标区域的关键性能指标达到所述远程遥控驾驶所需的门限值,所述网络连接是所述远程驾驶实体与所述车辆之间的连接;
所述目标区域不存在危险路况;
所述目标区域中的传统车辆的分布情况符合第一安全条件;
所述目标区域中的VRU的分布情况符合第二安全条件;
其中,所述目标区域是所述动态安全区域的候选区域。
在本申请的一个可能实现中,所述装置还包括:执行模块960,用于在所述车辆处于所述动态安全区域时,对所述车辆采用目标驾驶策略;
其中,所述目标驾驶策略包括如下策略中的至少一种:
不使用所述远程遥控驾驶;
仅在紧急情况下进行所述远程遥控驾驶;
以第一算力资源进行远程驾驶,第一算力资源少于目标资源阈值。
在本申请的一个可能实现中,所述动态安全区域是按照粒度进行划分的,所述粒度包括:行政区域、道路区段、车道中的至少一种。
本申请还提供了一种计算机设备(比如服务器),该计算机设备包括处理器和存储器,存储器中存储有至少一条指令,至少一条指令由处理器加载并执行以实现上述各个方法实施例提供的远程驾驶方法。需要说明的是,该计算机设备可以是如下图10所提供的计算机设备。
图10示出了本申请一个示例性实施例提供的计算机设备的结构示意图,该计算机设备包括:处理器1001、接收器1002、发射器1003、存储器1004和总线1005。
处理器1001包括一个或者一个以上处理核心,处理器1001通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器1002和发射器1003可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器1004通过总线1005与处理器1001相连。
存储器1004可用于存储至少一个指令,处理器1001用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
示意性的,处理器1001通过发射器1003实现上述方法实施例中的发送步骤,处理器1001通过接收器1002实现上述方法实施例中的接收步骤,处理器1001还用于实现上述方法实施例中除发送和接收之外的步骤。
本申请提供了一种计算机可读存储介质,所述存储介质中存储有至少一条指令,所述至少一条指令由所述处理器加载并执行以实现上述各个方法实施例提供的远程驾驶方法。
本申请还提供了一种计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行上述各个方法实施例提供的远程驾驶方法。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
Claims (27)
- 一种远程驾驶方法,应用于远程驾驶实体中,所述方法包括:获取车辆的工况信息;根据所述工况信息确定所述车辆的动态安全区域。
- 根据权利要求1所述的方法,所述动态安全区域是采用车辆自主驾驶且无需远程遥控驾驶的区域,或,所述动态安全区域是采用所述车辆自主驾驶且所述远程遥控驾驶的介入程度低于预定程度的区域。
- 根据权利要求1所述的方法,所述工况信息包括如下信息中的至少之一:所述车辆的终端能力信息;网络连接的连接性能,所述连接性能包括连接可靠性和连接质量中的至少一种,所述网络连接是所述远程驾驶实体与所述车辆之间的连接;所述车辆的行驶位置;所述车辆所在区域的地图信息;所述车辆所在区域的传统车辆信息,所述传统车辆信息是不支持网联功能的车辆信息;所述车辆所在区域的弱势交通参与者VRU信息。
- 根据权利要求3所述的方法,所述远程驾驶实体与所述车辆相连;所述获取工况信息,包括:接收所述车辆上报的所述终端能力信息。
- 根据权利要求3所述的方法,所述远程驾驶实体与网络监测实体相连;所述获取工况信息,包括:从所述网络监测实体获取网络连接的连接性能,所述网络连接是所述远程驾驶实体与所述车辆之间的网络连接,所述连接性能包括连接可靠性和连接质量中的至少一种。
- 根据权利要求3所述的方法,所述远程驾驶实体与位置服务实体相连;所述获取工况信息,包括:从所述位置服务实体获取所述车辆的位置信息。
- 根据权利要求3所述的方法,所述远程驾驶实体与地图信息实体相连;所述获取工况信息,包括:从所述地图信息实体获取所述车辆所在区域的地图信息。
- 根据权利要求3所述的方法,所述远程驾驶实体与路侧感知实体相连;所述获取工况信息,包括:从所述路侧感知实体获取所述车辆所在区域的传统车辆信息和所述VRU信息中的至少一种。
- 根据权利要求1至8任一所述的方法,存在至少两种所述工况信息对应各自的优先级;所述根据所述工况信息确定所述车辆的动态安全区域,包括:优先使用高优先级的所述工况信息,确定所述车辆的动态安全区域。
- 根据权利要求9所述的方法,存在第一工况信息和第二工况信息,所述第一工况信息的优先级高于所述第二工况信息;所述优先使用高优先级的所述工况信息,确定所述车辆的动态安全区域,包括:按照具有高优先级的所述第一工况信息,确定所述车辆的第一动态安全区域;按照具有低优先级的所述第二工况信息,在所述第一动态安全区域中确定所述车辆的第二动态安全区域。
- 根据权利要求1至8任一所述的方法,所述动态安全区域的确定条件包括如下条件中的至少之一:网络连接在目标区域的关键性能指标达到所述远程遥控驾驶所需的门限值,所述网络连接是所述远程驾驶实体与所述车辆之间的连接;所述目标区域不存在危险路况;所述目标区域中的传统车辆的分布情况符合第一安全条件;所述目标区域中的弱势交通参与者VRU的分布情况符合第二安全条件;其中,所述目标区域是所述动态安全区域的候选区域。
- 根据权利要求1至8任一所述的方法,所述方法还包括:在所述车辆处于所述动态安全区域时,对所述车辆采用目标驾驶策略;其中,所述目标驾驶策略包括如下策略中的至少一种:不使用所述远程遥控驾驶;仅在紧急情况下进行所述远程遥控驾驶;以第一算力资源进行远程驾驶,所述第一算力资源少于目标资源阈值。
- 一种远程驾驶装置,所述装置包括:获取模块,用于获取车辆的工况信息;确定模块,用于根据所述工况信息确定所述车辆的动态安全区域。
- 根据权利要求13所述的装置,所述动态安全区域是采用车辆自主驾驶且无需远程遥控驾驶的区域,或,所述动态安全区域是采用所述车辆自主驾驶且所述远程遥控驾驶的介入程度低于预定程度的区域。
- 根据权利要求13所述的装置,所述工况信息包括如下信息中的至少之一:所述车辆的终端能力信息;网络连接的连接性能,所述连接性能包括连接可靠性和连接质量中的至少一种,所述网络连接是所述装置与所述车辆之间的连接;所述车辆的行驶位置;所述车辆所在区域的地图信息;所述车辆所在区域的传统车辆信息,所述传统车辆信息是不支持网联功能的车辆信息;所述车辆所在区域的弱势交通参与者VRU信息。
- 根据权利要求15所述的装置,所述装置与所述车辆相连;所述获取模块,用于接收所述车辆上报的所述终端能力信息。
- 根据权利要求15所述的装置,所述装置与网络监测实体相连;所述获取模块,用于从所述网络监测实体获取网络连接的连接性能,所述网络连接是所述装置与所述车辆之间的网络连接,所述连接性能包括连接可靠性和连接质量中的至少一种。
- 根据权利要求15所述的装置,所述装置与位置服务实体相连;所述获取模块,用于从所述位置服务实体获取所述车辆的位置信息。
- 根据权利要求15所述的装置,所述装置与地图信息实体相连;所述获取模块,用于从所述地图信息实体获取所述车辆所在区域的地图信息。
- 根据权利要求15所述的装置,所述装置与路侧感知实体相连;所述获取模块,用于从所述路侧感知实体获取所述车辆所在区域的传统车辆信息和所述VRU信息中的至少一种。
- 根据权利要求13至20任一所述的装置,存在至少两种所述工况信息对应各自的优先级;所述确定模块,用于优先使用高优先级的所述工况信息,确定所述车辆的动态安全区域。
- 根据权利要求21所述的装置,存在第一工况信息和第二工况信息,所述第一工况信息的优先级高于所述第二工况信息;所述确定模块,用于按照具有高优先级的所述第一工况信息,确定所述车辆的第一动态安全区域;按照具有低优先级的所述第二工况信息,在所述第一动态安全区域中确定所述车辆的第二动态安全区域。
- 根据权利要求13至20任一所述的装置,所述动态安全区域的确定条件包括如下条件中的至少之一:网络连接在目标区域的关键性能指标达到所述远程遥控驾驶所需的门限值,所述网络连接是所述装置与所述车辆之间的连接;所述目标区域不存在危险路况;所述目标区域中的传统车辆的分布情况符合第一安全条件;所述目标区域中的弱势交通参与者VRU的分布情况符合第二安全条件;其中,所述目标区域是所述动态安全区域的候选区域。
- 根据权利要求13至20任一所述的装置,所述装置还包括:执行模块,用于在所述车辆处于所述动态安全区域时,对所述车辆采用目标驾驶策略;其中,所述目标驾驶策略包括如下策略中的至少一种:不使用所述远程遥控驾驶;仅在紧急情况下进行所述远程遥控驾驶;以第一算力资源进行远程驾驶,所述第一算力资源少于目标资源阈值。
- 一种远程驾驶系统,所述系统包括:远程驾驶实体和通信网络实体;所述远程驾驶实体,用于从所述通信网络实体获取车辆的工况信息;根据所述工况信息确定所述车辆的动态安全区域;其中,所述动态安全区域是采用车辆自主驾驶且无需远程遥控驾驶的区域,或,所述动态安全区域是采用所述车辆自主驾驶且所述远程遥控驾驶的介入程度低于预定程度的区域。
- 一种计算机设备,所述计算机设备包括处理器和存储器,所述存储器中存储有至少一段程序,所述至少一段程序由所述处理器加载并执行以实现如权利要求1至12任一所述的远程驾驶方法。
- 一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一段程序,所述至少一段程序由处理器加载并执行以实现如权利要求1至12任一所述的远程驾驶方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/963,762 US20230030446A1 (en) | 2020-08-31 | 2022-10-11 | Remote driving method, apparatus, and system, device, and medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010895926.7A CN112037553B (zh) | 2020-08-31 | 2020-08-31 | 远程驾驶方法、装置、系统、设备及介质 |
CN202010895926.7 | 2020-08-31 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/963,762 Continuation US20230030446A1 (en) | 2020-08-31 | 2022-10-11 | Remote driving method, apparatus, and system, device, and medium |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022042098A1 true WO2022042098A1 (zh) | 2022-03-03 |
Family
ID=73586549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/106056 WO2022042098A1 (zh) | 2020-08-31 | 2021-07-13 | 远程驾驶方法、装置、系统、设备及介质 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230030446A1 (zh) |
CN (1) | CN112037553B (zh) |
WO (1) | WO2022042098A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115830805A (zh) * | 2022-10-24 | 2023-03-21 | 武汉大学 | 基于数字孪生的公路边坡监测预警系统及设备 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112037553B (zh) * | 2020-08-31 | 2023-09-08 | 腾讯科技(深圳)有限公司 | 远程驾驶方法、装置、系统、设备及介质 |
CN112911551B (zh) * | 2021-01-18 | 2022-01-04 | 国汽智控(北京)科技有限公司 | 一种车路云算力动态分配系统 |
CN113192349B (zh) * | 2021-04-16 | 2023-12-12 | 刘本林 | 公路车辆的离车代驾系统与方法 |
CN113611098B (zh) * | 2021-08-02 | 2024-08-20 | 腾讯科技(深圳)有限公司 | 远程驾驶的控制方法、装置、计算机可读介质及电子设备 |
CN116939688A (zh) * | 2022-04-08 | 2023-10-24 | 腾讯科技(深圳)有限公司 | 远程驾驶的控制方法、装置、设备以及存储介质 |
CN117400959A (zh) * | 2022-07-07 | 2024-01-16 | 腾讯科技(深圳)有限公司 | 远程驾驶的控制方法、装置、计算机可读介质及电子设备 |
CN115410374A (zh) * | 2022-11-01 | 2022-11-29 | 中国第一汽车股份有限公司 | 一种远程控制自动驾驶车辆管理系统及管理方法 |
CN116720663B (zh) * | 2023-08-07 | 2023-11-10 | 创意(成都)数字科技有限公司 | 一种交通运行管理方法、装置、系统及存储介质 |
US12105534B1 (en) * | 2024-03-14 | 2024-10-01 | Ottopia Technologies Ltd. | Maintaining safety of remotely operated vehicles in variable network conditions |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018142921A (ja) * | 2017-02-28 | 2018-09-13 | パナソニックIpマネジメント株式会社 | 自動運転制御装置、自動運転制御方法、自動運転制御プログラム、自動運転車両、遠隔制御装置、遠隔制御方法、及び遠隔制御プログラム |
CN109891473A (zh) * | 2016-11-11 | 2019-06-14 | 本田技研工业株式会社 | 车辆控制装置、车辆控制系统、车辆控制方法及车辆控制程序 |
CN110264720A (zh) * | 2019-06-28 | 2019-09-20 | 腾讯科技(深圳)有限公司 | 驾驶模式提示方法、装置、设备及存储介质 |
CN111071263A (zh) * | 2019-12-09 | 2020-04-28 | 苏州智加科技有限公司 | 一种自动驾驶车辆的控制方法、装置、系统及设备 |
CN111497865A (zh) * | 2019-01-30 | 2020-08-07 | 斯特拉德视觉公司 | 用于切换驾驶模式的远程控制自动驾驶车辆的方法及装置 |
CN111580522A (zh) * | 2020-05-15 | 2020-08-25 | 东风柳州汽车有限公司 | 无人驾驶汽车的控制方法、汽车和存储介质 |
CN112037553A (zh) * | 2020-08-31 | 2020-12-04 | 腾讯科技(深圳)有限公司 | 远程驾驶方法、装置、系统、设备及介质 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7215368B2 (ja) * | 2019-07-19 | 2023-01-31 | トヨタ自動車株式会社 | 走行制御装置、走行システムおよび走行プログラム |
JP7200868B2 (ja) * | 2019-07-23 | 2023-01-10 | トヨタ自動車株式会社 | 車両制御システム及び車両制御装置 |
-
2020
- 2020-08-31 CN CN202010895926.7A patent/CN112037553B/zh active Active
-
2021
- 2021-07-13 WO PCT/CN2021/106056 patent/WO2022042098A1/zh active Application Filing
-
2022
- 2022-10-11 US US17/963,762 patent/US20230030446A1/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109891473A (zh) * | 2016-11-11 | 2019-06-14 | 本田技研工业株式会社 | 车辆控制装置、车辆控制系统、车辆控制方法及车辆控制程序 |
JP2018142921A (ja) * | 2017-02-28 | 2018-09-13 | パナソニックIpマネジメント株式会社 | 自動運転制御装置、自動運転制御方法、自動運転制御プログラム、自動運転車両、遠隔制御装置、遠隔制御方法、及び遠隔制御プログラム |
CN111497865A (zh) * | 2019-01-30 | 2020-08-07 | 斯特拉德视觉公司 | 用于切换驾驶模式的远程控制自动驾驶车辆的方法及装置 |
CN110264720A (zh) * | 2019-06-28 | 2019-09-20 | 腾讯科技(深圳)有限公司 | 驾驶模式提示方法、装置、设备及存储介质 |
CN111071263A (zh) * | 2019-12-09 | 2020-04-28 | 苏州智加科技有限公司 | 一种自动驾驶车辆的控制方法、装置、系统及设备 |
CN111580522A (zh) * | 2020-05-15 | 2020-08-25 | 东风柳州汽车有限公司 | 无人驾驶汽车的控制方法、汽车和存储介质 |
CN112037553A (zh) * | 2020-08-31 | 2020-12-04 | 腾讯科技(深圳)有限公司 | 远程驾驶方法、装置、系统、设备及介质 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115830805A (zh) * | 2022-10-24 | 2023-03-21 | 武汉大学 | 基于数字孪生的公路边坡监测预警系统及设备 |
Also Published As
Publication number | Publication date |
---|---|
CN112037553A (zh) | 2020-12-04 |
US20230030446A1 (en) | 2023-02-02 |
CN112037553B (zh) | 2023-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022042098A1 (zh) | 远程驾驶方法、装置、系统、设备及介质 | |
US11521496B2 (en) | Lane-borrowing vehicle driving method and control center | |
US10229590B2 (en) | System and method for improved obstable awareness in using a V2X communications system | |
US20220114885A1 (en) | Coordinated control for automated driving on connected automated highways | |
US10613547B2 (en) | System and method for improved obstacle awareness in using a V2X communications system | |
US10567923B2 (en) | Computation service for mobile nodes in a roadway environment | |
US12022353B2 (en) | Vehicle to everything dynamic geofence | |
US20170127246A1 (en) | Method for Sharing Travelling Information, Vehicle Platform and Intelligent Traffic System | |
US10530451B1 (en) | Modifying a millimeter wave radio based on a beam alignment feedback | |
US20200257310A1 (en) | Method and system for determining autonomous vehicle (av) action based on vehicle and edge sensor data | |
WO2013163222A1 (en) | V2v safety system using self-generated lane maps | |
US11495064B2 (en) | Value-anticipating cooperative perception with an intelligent transportation system station | |
JP7553573B2 (ja) | 車両対あらゆるモノ(v2x)によって支援されるローカルナビゲーション | |
CN112073936A (zh) | 用于网络节点通信的系统和方法 | |
US11709258B2 (en) | Location data correction service for connected vehicles | |
US20220412746A1 (en) | Positioning method and apparatus | |
US10580302B2 (en) | Optimization of a motion profile for a vehicle | |
CN113085902A (zh) | 一种基于网络的智能汽车驾驶预估方法和装置 | |
CN105844935A (zh) | 车辆视觉辅助设备及方法 | |
WO2023189878A1 (en) | Intersection-based offboard vehicle path generation | |
WO2020248136A1 (zh) | 用于驾驶控制的方法、装置、设备、介质和系统 | |
WO2023189881A1 (en) | Collision warning based on intersection information from map messages | |
WO2023189880A1 (en) | Path prediction based on intersection information from map messages | |
WO2023189879A1 (en) | Intersection-based map message generation and broadcasting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21859938 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/07/2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21859938 Country of ref document: EP Kind code of ref document: A1 |