WO2022041986A1 - 一种轴类工件在位非接触检测方法 - Google Patents

一种轴类工件在位非接触检测方法 Download PDF

Info

Publication number
WO2022041986A1
WO2022041986A1 PCT/CN2021/102006 CN2021102006W WO2022041986A1 WO 2022041986 A1 WO2022041986 A1 WO 2022041986A1 CN 2021102006 W CN2021102006 W CN 2021102006W WO 2022041986 A1 WO2022041986 A1 WO 2022041986A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring instrument
axis
coordinate system
laser measuring
line laser
Prior art date
Application number
PCT/CN2021/102006
Other languages
English (en)
French (fr)
Inventor
周宏根
刘云龙
李国超
管小燕
何强
史肖娜
孙丽
吴恒恒
刘勇
冯丰
Original Assignee
江苏科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏科技大学 filed Critical 江苏科技大学
Priority to US17/618,500 priority Critical patent/US20220379423A1/en
Priority to KR1020227032083A priority patent/KR20220155997A/ko
Priority to JP2022505625A priority patent/JP7171114B2/ja
Publication of WO2022041986A1 publication Critical patent/WO2022041986A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/20Arrangements for observing, indicating or measuring on machine tools for indicating or measuring workpiece characteristics, e.g. contour, dimension, hardness
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/401Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/03Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring coordinates of points
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37194Probe work, calculate shape independent of position, orientation, best fit
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37573In-cycle, insitu, during machining workpiece is measured continuously
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37582Position, angle of workpiece surface

Definitions

  • the invention relates to a detection method for shaft workpieces in the processing field, in particular to a non-contact detection method for shaft workpieces in place.
  • the camshaft is a part of the piston engine, and its function is to control the opening and closing of the valve.
  • the main body of the camshaft is a cylindrical rod with approximately the same length as the cylinder group, and there are several journals on it and several sleeves between the journals. a cam to actuate the valve.
  • the camshaft is the core component of the engine, and its machining accuracy directly affects the overall performance indicators of the engine, such as noise, power performance, and economy. Among them, the machining accuracy of the camshaft journal runout is very high, and it is also a must-check item for inspection.
  • the traditional optical mechanical measuring instrument, contact probe measuring instrument and sample measurement efficiency are extremely low, and most of them need to be carried out offline, which cannot adapt to today's high-precision and high-efficiency scale. The need for the production mode.
  • the purpose of the present invention is to provide a non-contact in-situ detection method for shaft workpieces with small error and high detection effect.
  • the invention discloses an in-situ non-contact detection method for a shaft workpiece, comprising the following steps:
  • the laser displacement sensor performs continuous data collection on the detection part, calculates and analyzes the collected data, and obtains the actual runout machining accuracy of the camshaft journal;
  • the line laser measuring instrument is used to collect continuous data on the detection part, and the collected data is calculated and analyzed to obtain the coaxiality machining accuracy of the shaft workpiece.
  • the specific steps of the step (1) include: the detection system includes a grating guide rail located on one side of the machine tool and a measurement position A that is measured by a line laser measuring instrument and is located on the grating guide rail at intervals, and a laser displacement sensor is used to measure The measurement position C measured and the measurement position B measured by the line laser measuring instrument; the measurement position A and the measurement position B are the reference positions to be detected, and the measurement position C is the position that needs to be tested for runout, coaxiality and profile.
  • the measurement directions of the line laser measuring instrument and the laser displacement sensor are the same, and the calibration plate is placed at a distance L in front of the measurement direction, and the calibration plane of the calibration plate is adjusted to be orthogonal to the optical path of the line laser measuring instrument and perpendicular to the optical path of the laser displacement sensor;
  • the XOY plane of the measuring instrument is parallel to the calibration plane of the calibration plate, the optical path of the laser displacement sensor is perpendicular to the XOY plane, and the installation direction of the laser displacement sensor on the grating guide rail is parallel to the Y axis; establish the coordinates of the line laser measuring instrument at position A and position B
  • Coordinate system O C -X C Y C Z C to zero the measurement origin of the line laser measuring instrument, the X and Z coordinates of O A and O B are 0; to zero the measurement origin of the laser displacement sensor, then The X and Z coordinates of O C are 0;
  • the line laser measuring instrument can obtain the coordinate data in the XOZ plane, and the coordinate data of the Y axis is obtained from the position on the grating guide rail where the optical path of the line laser measuring instrument is located; when the line laser measuring instrument is in position A, the coordinate origin O A is the world coordinate System origin, if the coordinates of O A are calibrated as (0,0,0), if the data measured by the line laser measuring instrument at position A is (x A , z A ), then the three-dimensional coordinates in position A are (x A , z A ) A ,0,z A );
  • the optical path distance of the line laser measuring instrument at position A and position B is l AB , then the coordinates of OB are calibrated as (0,0,l AB ); if the data measured by the line laser measuring instrument at position B is (x B , z B ), then the coordinates in the coordinate system O B -X B Y B Z B can be expressed in the coordinate system O A -X A Y A Z A as:
  • the optical path distance between the line laser measuring instrument and the laser displacement sensor at position A and position C is l AC , then the O C coordinate is calibrated as (0, 0, l AC ); if the data measured by the laser displacement sensor at position C is ( z C ), then the coordinates in the coordinate system O C -X C Y C Z C can be expressed in the coordinate system O A -X A Y A Z A as:
  • the specific steps of the step (2) include: when the normal axis of the detection section of the shaft workpiece is not collinear with the ideal reference axis, that is, when the shaft workpiece and the detection system have a rotation angle ⁇ around the X-axis direction and the rotation angle ⁇ around the Z-axis direction, the measurement section measured by the optical path of the line laser measuring instrument is an ellipse, in which the short axis of the ellipse is the shaft diameter, the long axis ac of the ellipse is at an angle with the Z axis, and the short axis of the ellipse is at an angle.
  • a, b, c, d, e and f are constant coefficients, which are obtained by substituting the coordinate point set;
  • the included angle ⁇ between the measuring section of the gauge block and its concentric cross section is calculated according to formulas (3), (4), (8) and (9);
  • the short axis of the profile of the measuring section A of the gauge block is the diameter of the profile of its concentric cross section A, with is the X S axis of the coordinate system of the workpiece clamping device, the center O U of the contour of the measuring section A is the origin O S of the coordinate system of the workpiece clamping device, and the axis of the axis of the contour of the cross section A perpendicular to the measuring block is Y and S axes, establish the coordinate system O S -X S Y S Z S of the workpiece clamping device conforming to the right-hand rule;
  • the deviation between the detection system coordinate system O A -X A Y A Z A and the workpiece clamping device coordinate system O S -X S Y S Z S is That is, the point (x, y, z) in the detection system coordinate system is translated by x u and z u in the x-axis and z-axis directions, and then rotated by the angle ⁇ around the X axis, and then rotated by the angle around the Y axis.
  • the specific steps of the step (4) include: rotating the shaft type workpiece, the laser displacement sensor obtains the coordinates of the real-time measurement point of the measurement position C, and it is assumed that the coordinates at a certain moment are C 1 (0, y C1 , z C1 );
  • a 11 , b 11 , c 11 , d 11 , e 11 and f 11 can be obtained by solving the equations, and then obtained from formulas (19) and (20):
  • the specific steps of the step (5) include: first use a line laser measuring instrument to perform contour detection on the measurement position A and the measurement position B of the reference shaft section of the shaft workpiece, and the real time when the line laser measuring instrument obtains a certain rotational position.
  • the coaxiality ⁇ t of the shaft section of the shaft workpiece detection is obtained by the difference between the maximum value d′ max and the minimum value d′ min in the distance d′ i from the center coordinate point of the cross section of the detected shaft section to the center axis of the reference section , the calculation formula is:
  • the shaft workpiece is a camshaft
  • the line laser measuring instrument performs continuous data collection on the convex lobes of the camshaft cam, and calculates and analyzes the collected data to obtain the machining accuracy of the camshaft cam profile
  • the present invention has the following significant advantages: firstly, the present invention can detect the shaft journal center and its ideal reference axis in real time, avoiding the traditional use of thimble reference or V-shaped block.
  • the system error and the difficulty of compensation, the establishment of the non-contact measurement coordinate system can obtain spatial coordinates in all aspects; wherein the present invention enables the high-precision machining accuracy detection process to be carried out directly on the machining site, and the non-contact measurement avoids damage to the machining workpiece
  • the combination of point and surface avoids the influence of complex calibration process and clamping position of parts, and avoids the positioning error caused by multiple clamping; compared with other detection methods, the invention has high reliability and detection efficiency. High and short time, in-situ non-contact detection of large-sized shaft workpieces can be realized, and the high degree of freedom does not depend on a large number of fixed fixture constraints, and has a wide range of applicability.
  • FIG. 1 is a schematic diagram of a detection system coordinate system in the present invention
  • Fig. 2 is the schematic flow chart in the present invention
  • FIG. 3 is a schematic structural diagram of a detection system and a workpiece tooling device in the present invention.
  • 5 is a schematic diagram of the coordinate system of the cross-section of the column measuring block measured by the centerline laser measuring instrument of the present invention.
  • the line laser measuring instrument fixed on the grating guide rail to measure the cross-section profile at the measurement position A and the reference shaft section of the measurement position B, and the fitting center of the measurement cross-section profile is O U and O W ;
  • the laser displacement sensor measures the runout detection at the measurement position C
  • the measurement point is on the cross section with O V as the center of the circle, and O V is on the axis of the shaft center. Due to the relative offset between the detection system and the workpiece position, there is an included angle ⁇ between the profile of the measurement section and the profile of the concentric section with the axis of the shaft as the normal vector.
  • the coordinate origin O A established by the laser measuring instrument on the laser guide line at position A is the origin of the world coordinate system
  • the X0Z surface of the line laser measuring instrument is the XOZ surface of the world coordinate system
  • the world coordinate system O A based on the detection system is established - X A Y A Z A
  • the line laser measuring instrument has a coordinate system O B -X B Y B Z B at the position of the grating guide B
  • the laser displacement sensor has a coordinate system O C -X C Y C Z at the position of the grating guide C C.
  • a method for non-contact in-situ detection of a shaft workpiece of the present invention includes the following steps:
  • the detection system includes a grating guide rail 8 located on one side of the machine tool, and a measurement position A that is measured by a line laser measuring instrument 6 and a laser displacement sensor 7, which are located on the grating guide rail at intervals in sequence.
  • the measuring position C and the measuring position B measured by the line laser measuring instrument 6, the line laser measuring instrument 6 and the laser displacement sensor 7 are installed on the slider of the grating guide rail 8; wherein the measuring position A and the measuring position B are the required detection
  • adjust the flatness of the line laser measuring instrument, the laser displacement sensor and the grating straight guide so that the flatness reaches 0.001 mm, the measurement directions of the line laser measuring instrument and the laser displacement sensor are the same, and the calibration plate is placed at a distance L in front of the measurement direction, and the calibration plane of the calibration plate is adjusted to be orthogonal to the optical path of the line laser measuring instrument and perpendicular to the optical path of the laser displacement sensor;
  • the XOY plane of the laser measuring instrument is parallel to the calibration plane of the calibration plate, the optical path of the laser displacement sensor is perpendicular to the XOY plane, and the installation direction of the laser displacement sensor on the grating guide rail is parallel to the Y axis; establish the line laser measuring instrument at position A and position B
  • the line laser measuring instrument can obtain the coordinate data in the XOZ plane, and the coordinate data of the Y axis is obtained from the position on the grating guide rail where the optical path of the line laser measuring instrument is located; when the line laser measuring instrument is in position A, the coordinate origin O A is the world coordinate System origin, if the coordinates of O A are calibrated as (0,0,0), if the data measured by the line laser measuring instrument at position A is (x A , z A ), then the three-dimensional coordinates in position A are (x A , z A ) A ,0,z A );
  • the optical path distance of the line laser measuring instrument at position A and position B is l AB , then the coordinates of OB are calibrated as (0,0,l AB ); if the data measured by the line laser measuring instrument at position B is (x B , z B ), then the coordinates in the coordinate system O B -X B Y B Z B can be expressed in the coordinate system O A -X A Y A Z A as:
  • the optical path distance between the line laser measuring instrument and the laser displacement sensor at position A and position C is l AC , then the O C coordinate is calibrated as (0, 0, l AC ); if the data measured by the laser displacement sensor at position C is ( z C ), then the coordinates in the coordinate system O C -X C Y C Z C can be expressed in the coordinate system O A -X A Y A Z A as:
  • the present invention can use the laser sensor in the detection system to obtain the coordinate data of the workpiece in the O A -X A Y A Z A coordinate system, and then perform subsequent calculation and analysis;
  • the workpiece clamping device includes a chuck control box 1, a chuck chuck 2, a camshaft to be inspected 3, an ejector pin 4 and an ejector pin slide rail 5.
  • the normal axis of the detection section of the shaft workpiece is the ideal reference axis.
  • the measurement section measured by the optical path of the line laser measuring instrument is an ellipse.
  • the short axis is the shaft diameter
  • the long axis ac of the ellipse has an included angle with the Z axis
  • the short axis bd of the ellipse has an included angle with the X axis
  • the ellipse center of the obtained ellipse profile is on the central axis
  • the included angle between the measured section and the cross section is ⁇ , where the length of the major axis ac of the ellipse is l ac , and the length of the short axis bd is l bd , then the calculation formula of ⁇ is:
  • a, b, c, d, e and f are constant coefficients, which are obtained by substituting the coordinate point set;
  • the included angle ⁇ between the measuring section of the gauge block and its concentric cross section is calculated according to formulas (3), (4), (8) and (9);
  • the short axis of the profile of the measuring section A of the gauge block is the diameter of the profile of its concentric cross section A, with is the X S axis of the coordinate system of the workpiece clamping device, the center O U of the contour of the measuring section A is the origin O S of the coordinate system of the workpiece clamping device, and the axis of the axis of the contour of the cross section A perpendicular to the measuring block is Y and S axes, establish the coordinate system O S -X S Y S Z S of the workpiece clamping device conforming to the right-hand rule;
  • the deviation between the detection system coordinate system O A -X A Y A Z A and the workpiece clamping device coordinate system O S -X S Y S Z S is That is, the point (x, y, z) in the detection system coordinate system is translated by x u and z u in the x-axis and z-axis directions, and then rotated by the angle ⁇ around the X axis, and then rotated by the angle around the Y axis.
  • the laser displacement sensor performs continuous data collection on the detection part, calculates and analyzes the collected data, and obtains the actual runout machining accuracy of the camshaft journal;
  • the laser displacement sensor obtains the coordinates of the real-time measurement point at the measurement position C, assuming that the coordinates at a certain moment are C 1 (0, y C1 , z C1 ); the line laser measuring instrument obtains the real-time contour point of the rotating position at this moment.
  • a 11 , b 11 , c 11 , d 11 , e 11 and f 11 can be obtained by solving the equations, and then obtained from formulas (19) and (20):
  • the invention uses the real-time detection of the central axis, can avoid the influence caused by the eccentric rotation of the workpiece clamping device, and improve the calculation accuracy;
  • the line laser measuring instrument uses the line laser measuring instrument to perform contour detection on the measuring position A and measuring position B of the reference shaft section of the shaft workpiece.
  • the line laser measuring instrument obtains the real-time contour point data at a certain rotational position.
  • the coaxiality ⁇ t of the shaft section of the shaft workpiece detection is obtained by the difference between the maximum value d′ max and the minimum value d′ min in the distance d′ i from the center coordinate point of the cross section of the detected shaft section to the center axis of the reference section , the calculation formula is:
  • the cross-sectional center point set of the detection shaft segment of the workpiece can be obtained statically and non-contact, and then the error between the axis of the detection shaft segment and the reference axis can be obtained; therefore, it is possible to avoid the eccentricity caused by the rotation of the clamping device and the workpiece. impact, and the cumbersome process of moving the workpiece.
  • a method for non-contact detection of a shaft workpiece in place of the present invention, wherein the shaft workpiece is a camshaft includes the following steps:
  • the detection system includes a grating guide rail 8 located on one side of the machine tool, and a measurement position A that is measured by a line laser measuring instrument 6 and a laser displacement sensor 7 that are located on the grating guide rail at intervals.
  • the measuring position C and the measuring position B measured by the line laser measuring instrument 6, the line laser measuring instrument 6 and the laser displacement sensor 7 are installed on the slider of the grating guide rail 8; wherein the measuring position A and the measuring position B are the required detection
  • adjust the flatness of the line laser measuring instrument, the laser displacement sensor and the grating straight guide so that the flatness reaches 0.001 mm, the measurement directions of the line laser measuring instrument and the laser displacement sensor are the same, and the calibration plate is placed at a distance L in front of the measurement direction, and the calibration plane of the calibration plate is adjusted to be orthogonal to the optical path of the line laser measuring instrument and perpendicular to the optical path of the laser displacement sensor;
  • the XOY plane of the laser measuring instrument is parallel to the calibration plane of the calibration plate, the optical path of the laser displacement sensor is perpendicular to the XOY plane, and the installation direction of the laser displacement sensor on the grating guide rail is parallel to the Y axis; establish the line laser measuring instrument at position A and position B
  • the line laser measuring instrument can obtain the coordinate data in the XOZ plane, and the coordinate data of the Y axis is obtained from the position on the grating guide rail where the optical path of the line laser measuring instrument is located; when the line laser measuring instrument is in position A, the coordinate origin O A is the world coordinate System origin, if the coordinates of O A are calibrated as (0,0,0), if the data measured by the line laser measuring instrument at position A is (x A , z A ), then the three-dimensional coordinates in position A are (x A , z A ) A ,0,z A );
  • the optical path distance of the line laser measuring instrument at position A and position B is l AB , then the coordinates of OB are calibrated as (0,0,l AB ); if the data measured by the line laser measuring instrument at position B is (x B , z B ), then the coordinates in the coordinate system O B -X B Y B Z B can be expressed in the coordinate system O A -X A Y A Z A as:
  • the optical path distance between the line laser measuring instrument and the laser displacement sensor at position A and position C is l AC , then the O C coordinate is calibrated as (0, 0, l AC ); if the data measured by the laser displacement sensor at position C is ( z C ), then the coordinates in the coordinate system O C -X C Y C Z C can be expressed in the coordinate system O A -X A Y A Z A as:
  • the present invention can use the laser sensor in the detection system to obtain the coordinate data of the workpiece in the O A -X A Y A Z A coordinate system, and then perform subsequent calculation and analysis;
  • the workpiece clamping device includes a clamp machine control box 1, a clamp machine chuck 2, a camshaft to be inspected 3, an ejector pin 4 and an ejector pin slide rail 5.
  • the normal axis of the detection section of the camshaft is different from the ideal reference axis.
  • the measurement section measured by the optical path of the line laser measuring instrument is an ellipse, and the short axis of the ellipse is ellipse.
  • the shaft diameter is the shaft diameter
  • the long axis ac of the ellipse has an included angle with the Z axis
  • the short axis bd of the ellipse has an included angle with the X axis
  • the ellipse center of the obtained ellipse profile is on the central axis
  • the included angle between the measurement section and the cross section is ⁇
  • the length of the major axis ac of the ellipse is l ac
  • the length of the minor axis bd is l bd
  • the included angle ⁇ between the measuring section of the gauge block and its concentric cross section is calculated according to formulas (3), (4), (8) and (9);
  • the short axis of the profile of the measuring section A of the gauge block is the diameter of the profile of its concentric cross section A, with is the X S axis of the coordinate system of the workpiece clamping device, the center O U of the contour of the measuring section A is the origin O S of the coordinate system of the workpiece clamping device, and the axis of the axis of the contour of the cross section A perpendicular to the measuring block is Y and S axes, establish the coordinate system O S -X S Y S Z S of the workpiece clamping device conforming to the right-hand rule;
  • the deviation between the detection system coordinate system O A -X A Y A Z A and the workpiece clamping device coordinate system O S -X S Y S Z S is That is, the point (x, y, z) in the detection system coordinate system is translated by x u and z u in the x-axis and z-axis directions, and then rotated by the angle ⁇ around the X axis, and then rotated by the angle around the Y axis.
  • control the rotation of the clamping device of the camshaft processing machine tool, the line laser measuring instrument carries out continuous data collection, calculates and analyzes the collected data, and obtains the ideal reference axis of the camshaft;
  • the laser displacement sensor performs continuous data collection on the detection part, calculates and analyzes the collected data, and obtains the actual runout machining accuracy of the camshaft journal;
  • the laser displacement sensor obtains the coordinates of the real-time measurement point of the measurement position C, assuming that the coordinates at a certain moment are C 1 (0, y C1 , z C1 ); the line laser measuring instrument obtains the real-time contour point data at the rotating position at this moment.
  • a 11 , b 11 , c 11 , d 11 , e 11 and f 11 can be obtained by solving the equations, and then obtained from formulas (19) and (20):
  • the invention uses the real-time detection of the central axis, can avoid the influence caused by the eccentric rotation of the workpiece clamping device, and improve the calculation accuracy;
  • the line laser measuring instrument uses the line laser measuring instrument to perform contour detection on the measurement position A and measuring position B of the reference shaft section of the shaft workpiece.
  • the line laser measuring instrument obtains the real-time contour point data at a certain rotational position.
  • the concentricity ⁇ t of the camshaft detection shaft segment is obtained by the difference between the maximum value d' max and the minimum value d' min in the distance d' i from the center coordinate point of the cross section of the detected shaft segment to the central axis of the reference segment,
  • the calculation formula is:
  • the cross-sectional center point set of the detection shaft segment of the workpiece can be obtained statically and non-contact, and then the error between the axis of the detection shaft segment and the reference axis can be obtained; therefore, it is possible to avoid the eccentricity caused by the rotation of the clamping device and the workpiece. impact, and the cumbersome process of moving the workpiece;
  • the line laser measuring instrument performs continuous data collection on the convex peach of the camshaft cam, calculates and analyzes the collected data, and obtains the machining accuracy of the camshaft cam profile;
  • the line laser measuring instrument of the detection device selects a LJ-X8400 type, which can measure a maximum width of 320mm and an accuracy of 5um; the CCD laser displacement sensor selects a LK-G400 type with an accuracy of 2um and a measurable range of 400 ⁇ 100mm .
  • the center coordinates O U (x U , 0, z U ) and O W (x W , l AB , z W ) of the workpiece cross-section corresponding to the cross-sectional profiles of positions A and B can be obtained by calculation, and the results are shown in Table 1.
  • the distance d i from the real-time measurement point to the real-time central axis can be obtained by calculation, and the radial circular runout t of the workpiece can be obtained by calculation.
  • Table 1 for the t value.
  • the distance d i from the center coordinate point of the cross section of the shaft section to the central axis of the reference section, the coaxiality ⁇ t of the workpiece detection shaft section can be obtained by calculation, and the results are shown in Table 1.

Abstract

本发明公开了一种轴类工件在位非接触检测方法,包括如下步骤:建立检测系统,标定检测系统并建立检测坐标系;对工件在检测系统的位姿进行分析建立工件装夹装置的坐标系统;控制轴类工件加工机床的装夹装置转动,线激光测量仪进行连续数据采集,对采集的数据进行计算分析,获得轴类工件的理想基准轴线;激光位移传感器对检测部位进行连续数据采集,对采集的数据进行计算分析,获得凸轮轴轴颈实际跳动加工精度;采用线激光测量仪对检测部位进行连续数据采集,对采集的数据进行计算分析获得轴类工件同轴度加工精度。本发明可实时检测出轴类工件轴颈圆心及其理想基准轴线,避免了传统使用顶针基准或V形块所带来的系统误差以及补偿的困难。

Description

一种轴类工件在位非接触检测方法 技术领域
本发明涉及加工领域中轴类工件的检测方法,尤其涉及一种轴类工件在位非接触检测方法。
背景技术
凸轮轴是活塞发动机的部件,其作用是控制气门的开启和闭合,凸轮轴的主体是一根与气缸组长度近似相同的圆柱形棒体,上面有若干个轴颈以及轴颈间套有若干个凸轮,用于驱动气门。凸轮轴是发动机的核心部件,其加工精度直接影响到发动机的噪声、动力性能、经济性等整体性能指标。其中对凸轮轴轴颈跳动加工精度要求非常高,也是检测的必检项目,传统光学机械量仪、接触测头测量仪器及样板测量效率极低且多数需要离线进行,无法适应当今高精高效规模化生产模式的需要。
因此,亟待解决上述问题。
发明内容
发明目的:本发明的目的提供一种误差小且检测效果高的轴类工件在位非接触检测方法。
本发明公开了一种轴类工件在位非接触检测方法,包括如下步骤:
(1)、建立检测系统,标定检测系统并建立检测坐标系;
(2)、对工件在检测系统的位姿进行分析建立工件装夹装置的坐标系统;
(3)、控制轴类工件加工机床的装夹装置转动,线激光测量仪进行连续数据采集,对采集的数据进行计算分析,获得轴类工件的理想基准轴线;
(4)、激光位移传感器对检测部位进行连续数据采集,对采集的数据进行计算分析,获得凸轮轴轴颈实际跳动加工精度;
(5)、采用线激光测量仪对检测部位进行连续数据采集,对采集的数据进行计算分析获得轴类工件同轴度加工精度。
其中,所述步骤(1)的具体步骤包括:所述检测系统包括位于机床一侧的光栅导轨以及依次间隔位于光栅导轨上的采用线激光测量仪进行测量的测量位置A、采用激光位移传感器进行测量的测量位置C和采用线激光测量仪进行测量的测量位置B;其中测量位置A和测量位置B为所需检测的基准位置,测量位置C为需要进行跳动、同轴度 以及轮廓度检测位置;线激光测量仪和激光位移传感器的测量方向一致,在测量方向前距离L处放置标定板,调节标定板标定平面与线激光测量仪光路正交,且与激光位移传感器光路垂直;其中线激光测量仪的XOY平面与标定板标定平面平行,激光位移传感器光路垂直与XOY平面,激光位移传感器在光栅导轨上的安装方向与Y轴平行;建立线激光测量仪在位置A和位置B处的坐标系O A-X AY AZ A和坐标系O B-X BY BZ B;再调节使激光位移传感器的光斑在线激光测量仪光路的Y轴上,建立激光位移传感器在位置C处的坐标系O C-X CY CZ C;对线激光测量仪的测量原点进行标零,则O A、O B的X、Z坐标为0;对激光位移传感器的测量原点进行标零,则O C的X、Z坐标为0;
线激光测量仪可获取XOZ平面内的坐标数据,Y轴的坐标数据由线激光测量仪光路所在光栅导轨上的位置得出;设定线激光测量仪在位置A时坐标原点O A为世界坐标系原点,若O A的坐标标定为(0,0,0),若线激光测量仪在位置A处所测的数据为(x A,z A),则位置A内的三维坐标为(x A,0,z A);
线激光测量仪在位置A和位置B的光路距离为l AB,则O B的坐标标定为(0,0,l AB);若线激光测量仪在位置B所测的数据为(x B,z B),那么坐标系O B-X BY BZ B内的坐标在坐标系O A-X AY AZ A中可表示为:
Figure PCTCN2021102006-appb-000001
线激光测量仪和激光位移传感器在位置A和位置C的光路距离为l AC,则O C坐标即标定为(0,0,l AC);若激光位移传感器在位置C所测的数据为(z C),那么坐标系O C-X CY CZ C内的坐标在坐标系O A-X AY AZ A中可表示为:
Figure PCTCN2021102006-appb-000002
优选的,所述步骤(2)的具体步骤包括:当轴类工件的检测截面法向轴线与理想基准轴线不共线时,即当轴类工件与检测系统存在绕X轴方向的旋转角θ和绕Z轴方向的旋转角ɑ时,线激光测量仪的光路所测的测量截面为椭圆,其中椭圆的短轴为轴直 径,椭圆的长轴ac与Z轴存在夹角,椭圆的短轴bd与X轴存在夹角;所得椭圆轮廓的椭心在中心轴线上,测量截面与横截面的夹角为λ,其中椭圆的长轴ac长度为l ac,短轴bd长度为l bd,则λ的计算公式为:
Figure PCTCN2021102006-appb-000003
在装夹装置中装夹一根轴类的量柱量块,启动线激光测量仪对量柱量块进行截面轮廓检测,量柱量块置于线激光测量仪的测量光路中,则量柱量块与测量光路的相交截面为椭圆轮廓;激光测量仪在位置A可测得量柱量块在任一位置时的半截面轮廓弧
Figure PCTCN2021102006-appb-000004
则可假定弧
Figure PCTCN2021102006-appb-000005
上轮廓点坐标为Pn(x n,0,z n),(n=1,2,3…),坐标点满足公式(4):
Figure PCTCN2021102006-appb-000006
式中a、b、c、d、e和f为常系数,通过代入坐标点集求出;
则椭圆在O A-X AY AZ A坐标系中的椭圆长轴的旋转角
Figure PCTCN2021102006-appb-000007
由公式(5)求出:
Figure PCTCN2021102006-appb-000008
假定椭圆的几何中心O U的坐标为(x U,z U),则由公式(6)和(7)求出:
Figure PCTCN2021102006-appb-000009
Figure PCTCN2021102006-appb-000010
长轴长度l ac和短轴长度l bd可分别由公式(8)和(9)求出:
Figure PCTCN2021102006-appb-000011
Figure PCTCN2021102006-appb-000012
量柱量块的测量截面与其同心横截面存在的夹角λ,根据公式(3)、(4)、(8)和(9)求出;
量柱量块的测量截面A轮廓的短轴为其同心横截面A轮廓的直径,以
Figure PCTCN2021102006-appb-000013
为工件装夹装置坐标系的X S轴,以测量截面A轮廓的中心O U为工件装夹装置坐标系的原点O S,以垂直于量柱量块的横截面A轮廓的轴心轴线为Y S轴,建立符合右手规则的工件装夹装置坐标系O S-X SY SZ S
检测系统坐标系O A-X AY AZ A与工件装夹装置坐标系O S-X SY SZ S之间具有偏离量为
Figure PCTCN2021102006-appb-000014
即检测系统坐标系中的点(x,y,z)分别在x轴和z轴方向上平移x u和z u,然后绕X轴旋转角度λ,再绕Y轴旋转角度
Figure PCTCN2021102006-appb-000015
后即可能获得对应在工件装夹装置坐标系O S-X SY SZ S中对应的点坐标(x′,y′,z′);因此检测系统坐标系和工件装夹装置坐标系的变换关系为:
Figure PCTCN2021102006-appb-000016
再者,所述步骤(3)的具体步骤包括:将轴类工件装夹在标定好的装夹装置中,将线激光测量仪的光路对准轴类工件的基准轴段,启动位置A和位置B处的线激光测量仪进行测量;假定线激光测量仪在位置A;获得的截面轮廓内点在坐标系O A-X AY AZ A下的坐标为P i(x i,0,z i),(i=1,2,3…),坐标点满足公式(11):
Figure PCTCN2021102006-appb-000017
解方程可求出常数a 1、b 1、c 1、d 1、e 1和f 1,再由公式(12)和(13)求出:
Figure PCTCN2021102006-appb-000018
Figure PCTCN2021102006-appb-000019
线激光测量仪在距离测量位置A为l′ AB的测量位置B获得的截面轮廓内点在坐标系O A-X AY AZ A的坐标为P j(x j,l′ AB,z j),(j=1,2,3…);坐标点满足公式(14):
Figure PCTCN2021102006-appb-000020
解方程可求出a 2、b 2、c 2、d 2、e 2和f 2,再由公式(15)和(16)求出:
Figure PCTCN2021102006-appb-000021
Figure PCTCN2021102006-appb-000022
可分别获得测量位置A和测量位置B处截面轮廓所对应的工件横截面的中心坐标
Figure PCTCN2021102006-appb-000023
Figure PCTCN2021102006-appb-000024
则基准轴段的中心轴线在O A-X AY AZ A坐标系下轴线的直线公式为:
Figure PCTCN2021102006-appb-000025
进一步,所述步骤(4)的具体步骤包括:旋转轴类工件,激光位移传感器获取测量位置C实时测量点的坐标,假定某一时刻坐标为C 1(0,y C1,z C1);线激光测量仪获得此时刻旋转位置时的实时轮廓点数据,假定此时刻线激光测量仪在位置A获得的截面轮廓内点在坐标系O A-X AY AZ A下的坐标为P i1(x i1,0,z i1),(i=1,2,3…),坐标点满足公式(18):
Figure PCTCN2021102006-appb-000026
解方程可求出a 11、b 11、c 11、d 11、e 11和f 11,再由公式(19)和(20)求出:
Figure PCTCN2021102006-appb-000027
Figure PCTCN2021102006-appb-000028
假定此时刻线激光测量仪在距离测量位置A为l″ AB的测量位置B获得的截面轮廓内点在坐标系O A-X AY AZ A的坐标为P j1(x j1,l″ AB,z j1),(j=1,2,3…),坐标点满足公式(21):
Figure PCTCN2021102006-appb-000029
解方程可求出a 21、b 21、c 21、d 21、e 21和f 21,再由公式(22)和(23)求出:
Figure PCTCN2021102006-appb-000030
Figure PCTCN2021102006-appb-000031
可获得此时刻基准轴段中心点坐标
Figure PCTCN2021102006-appb-000032
Figure PCTCN2021102006-appb-000033
求得此时刻测量点到实时中心轴线的距离d 1,计算公式为:
Figure PCTCN2021102006-appb-000034
旋转轴类工件,测得旋转一周后各时刻所记录的数据,并计算获得全部时刻测量点到实时中心轴线的距离d i(i=1,2,3…);
轴类工件的径向圆跳动t通过实时测量点到实时中心轴线的距离d i(i=1,2,3…)中的最大值d max和最小值d min的差值求得,计算公式为:
t=d max-d min          (25)
再者,所述步骤(5)的具体步骤包括:先利用线激光测量仪对轴类工件基准轴段测量位置A和测量位置B进行轮廓检测,线激光测量仪获得某一旋转位置时的实时轮廓点数据,假定此时刻线激光测量仪在位置A获得的截面轮廓内点在坐标系O A-X AY AZ A下的坐标为P′ i1(x′ i1,0,z′ i1),(i=1,2,3…),坐标点满足公式(26):
Figure PCTCN2021102006-appb-000035
解方程可求出a′ 11、b′ 11、c′ 11、d′ 11、e′ 11和f′ 11,再由公式(27)和(28)求出:
Figure PCTCN2021102006-appb-000036
Figure PCTCN2021102006-appb-000037
假定此时刻线激光测量仪在距离位置A为l″′ AB的位置B获得的截面轮廓内点在坐标系O A-X AY AZ A的坐标为P′ j1(x′ j1,l″′A B,z′ j1),(j=1,2,3…),坐标点满足公式(29):
Figure PCTCN2021102006-appb-000038
解方程可求出a′ 21、b′ 21、c′ 21、d′ 21、e′ 21和f′ 21,再由公式(30)和(31)求出:
Figure PCTCN2021102006-appb-000039
Figure PCTCN2021102006-appb-000040
可获得此时刻基准轴段中心点坐标
Figure PCTCN2021102006-appb-000041
Figure PCTCN2021102006-appb-000042
则该时刻基准轴段中心点所连接的中心轴线在O A-X AY AZ A坐标系下的轴线的直线公式为:
Figure PCTCN2021102006-appb-000043
将线激光测量仪沿Y A轴方向移动至工件检测轴段位置C′处,通过光栅导轨获得移动距离l′,假定此时刻线激光测量仪在位置C′获得的截面轮廓内点在坐标系O A-X AY AZ A下的坐标为P k1(x k1,l′,z k1),(k=1,2,3…),坐标点满足公式(33):
Figure PCTCN2021102006-appb-000044
解方程可求出a 3、b 3、c 3、d 3、e 3和f 3,再由公式(34)和(35)求出:
Figure PCTCN2021102006-appb-000045
Figure PCTCN2021102006-appb-000046
在不同位置重复数次检测,获得基准轴段中心点坐标
Figure PCTCN2021102006-appb-000047
Figure PCTCN2021102006-appb-000048
测量段横截面中心坐标点集记为C′ i(x C′i,l′,z C′i)(i=1,2,3…);求得检测轴段横截面中心坐标点到基准段中心轴线的距离d′ i,计算公式为:
Figure PCTCN2021102006-appb-000049
轴类工件检测轴段的同轴度φt通过获得的检测轴段横截面中心坐标点到基准段中心轴线的距离d′ i中的最大值d′ max和最小值d′ min的差值求得,计算公式为:
φt=d′ max-d′ min        (37)。
优选的,所述轴类工件为凸轮轴,线激光测量仪对凸轮轴凸轮的凸桃进行连续数据采集,对采集的数据进行计算分析,获得凸轮轴凸轮轮廓度加工精度;
将线激光测量仪移动至凸轮的凸桃处,每移动一小段距离进行一次数据采集,将采集获得的O A-X AY AZ A坐标系下的数据坐标通过算法转换到O S-X SY SZ S工件装夹装置坐标系下,对轮廓点进行拟合,再与标准凸轮轮廓进行对比,计算出轮廓度。
有益效果:与现有技术相比,本发明具有以下显著优点:首先本发明可实时检测出轴类工件轴颈圆心及其理想基准轴线,避免了传统使用顶针基准或V形块所带来的系统误差以及补偿的困难,非接触测量坐标系的建立可获得各方面的空间坐标;其中本发明使高精度的加工精度检测过程直接在加工现场上进行,非接触测量避免了对加工工件的损伤和检测仪器的损耗,点面结合避免了复杂标定过程和零件装夹位置的影响,同时避免多次装夹所带来的定位误差;相比于其他检测方法,本发明可靠性高、检测效率高且时间短,可实现对大尺寸轴类工件的在位非接触检测,且自由度高不依赖大量的固定夹具约束,并具有广泛的适用性。
附图说明
图1为本发明中检测系统坐标系示意图;
图2为本发明中流程示意图;
图3为本发明中检测系统和工件工装装置的结构示意图;
图4为本发明中检测系统坐标系标定示意图;
图5为本发明中线激光测量仪所测量柱量块所在横截面的坐标系示意图。
具体实施方式
下面结合附图对本发明的技术方案作进一步说明。
首先需要实现检测系统与工件装夹装置的坐标系建立与统一,并进行在位测量中轴的坐标数据检测,来得到作为基准的轴心轴线,最后得到轴跳动的检测结果,构建检测系统坐标系如附图1所示。利用固定在光栅导轨上的线激光测量仪在测量位置A和测量位置B基准轴段测量截面轮廓,测量截面轮廓拟合圆心为O U、O W;激光位移传感器在测量位置C出测量跳动检测轴段,测量点在以O V为圆心的横截面上,O V在轴心轴线上。由于检测系统与工件位置相对有偏置,所以测量截面轮廓与以轴心轴线为法向量的同心横截面轮廓存在夹角λ。构建以激光导轨上线激光测量仪在位置A所建立的坐标原点O A为世界坐标系原点,线激光测量仪的X0Z面为世界坐标系XOZ面,于是建立基于检测系统的世界坐标系O A-X AY AZ A,线激光测量仪在光栅导轨B位置处有坐标系O B-X BY BZ B,激光位移传感器在光栅导轨C位置处有坐标系O C-X CY CZ C
因此,为了得到作为基准的轴心轴线O AO B和在O A-X AY AZ A世界坐标系下的测量点 坐标(x C,y C,z C),需要将坐标系O B-X BY BZ B和O C-X CY CZ C转换到O A-X AY AZ A系统世界坐标系下,以及确定工件装夹装置坐标系O S-X SY SZ S。之后便可对工件测量,并将测量数据进行跳动误差等算法计算,得到工件跳动等误差。
如图1和图2所示,本发明的一种轴类工件在位非接触检测方法,包括如下步骤:
(1)、建立检测系统,标定检测系统并建立检测坐标系;
如图3和图4所示,所述检测系统包括位于机床一侧的光栅导轨8以及依次间隔位于光栅导轨上的采用线激光测量仪6进行测量的测量位置A、采用激光位移传感器7进行测量的测量位置C和采用线激光测量仪6进行测量的测量位置B,线激光测量仪6和激光位移传感器7安装在光栅导轨8的滑块上;其中测量位置A和测量位置B为所需检测的基准位置,测量位置C为需要进行跳动、同轴度以及轮廓度检测位置;如图4所示,调整线激光测量仪、激光位移传感器与光栅直导轨的平面度,使其平面度达到0.001mm,线激光测量仪和激光位移传感器的测量方向一致,在测量方向前距离L处放置标定板,调节标定板标定平面与线激光测量仪光路正交,且与激光位移传感器光路垂直;其中线激光测量仪的XOY平面与标定板标定平面平行,激光位移传感器光路垂直与XOY平面,激光位移传感器在光栅导轨上的安装方向与Y轴平行;建立线激光测量仪在位置A和位置B处的坐标系O A-X AY AZ A和坐标系O B-X BY BZ B;再调节使激光位移传感器的光斑在线激光测量仪光路的Y轴上,建立激光位移传感器在位置C处的坐标系O C-X CY CZ C;对线激光测量仪的测量原点进行标零,则O A、O B的X、Z坐标为0;对激光位移传感器的测量原点进行标零,则O C的X、Z坐标为0;
线激光测量仪可获取XOZ平面内的坐标数据,Y轴的坐标数据由线激光测量仪光路所在光栅导轨上的位置得出;设定线激光测量仪在位置A时坐标原点O A为世界坐标系原点,若O A的坐标标定为(0,0,0),若线激光测量仪在位置A处所测的数据为(x A,z A),则位置A内的三维坐标为(x A,0,z A);
线激光测量仪在位置A和位置B的光路距离为l AB,则O B的坐标标定为(0,0,l AB);若线激光测量仪在位置B所测的数据为(x B,z B),那么坐标系O B-X BY BZ B内的坐标在坐标系O A-X AY AZ A中可表示为:
Figure PCTCN2021102006-appb-000050
线激光测量仪和激光位移传感器在位置A和位置C的光路距离为l AC,则O C坐标即标定为(0,0,l AC);若激光位移传感器在位置C所测的数据为(z C),那么坐标系O C-X CY CZ C内的坐标在坐标系O A-X AY AZ A中可表示为:
Figure PCTCN2021102006-appb-000051
本发明可使用检测系统中的激光传感器获取到工件在O A-X AY AZ A坐标系下的坐标数据,然后进行之后的计算分析;
(2)、对工件在检测系统的位姿进行分析建立工件装夹装置的坐标系统;
如图5所示,工件装夹装置包括夹床控制箱1、夹床卡盘2、待检凸轮轴3、顶针4和顶针滑轨5,轴类工件的检测截面法向轴线与理想基准轴线不共线时,即当轴类工件与检测系统存在绕X轴方向的旋转角θ和绕Z轴方向的旋转角ɑ时,线激光测量仪的光路所测的测量截面为椭圆,其中椭圆的短轴为轴直径,椭圆的长轴ac与Z轴存在夹角,椭圆的短轴bd与X轴存在夹角;所得椭圆轮廓的椭心在中心轴线上,测量截面与横截面的夹角为λ,其中椭圆的长轴ac长度为l ac,短轴bd长度为l bd,则λ的计算公式为:
Figure PCTCN2021102006-appb-000052
在装夹装置中装夹一根轴类的量柱量块,启动线激光测量仪对量柱量块进行截面轮廓检测,量柱量块置于线激光测量仪的测量光路中,则量柱量块与测量光路的相交截面为椭圆轮廓;激光测量仪在位置A可测得量柱量块在任一位置时的半截面轮廓弧
Figure PCTCN2021102006-appb-000053
则可假定弧
Figure PCTCN2021102006-appb-000054
上轮廓点坐标为Pn(x n,0,z n),(n=1,2,3…),坐标点满足公式(4):
Figure PCTCN2021102006-appb-000055
式中a、b、c、d、e和f为常系数,通过代入坐标点集求出;
则椭圆在O A-X AY AZ A坐标系中的椭圆长轴的旋转角
Figure PCTCN2021102006-appb-000056
由公式(5)求出:
Figure PCTCN2021102006-appb-000057
假定椭圆的几何中心O U的坐标为(x U,z U),则由公式(6)和(7)求出:
Figure PCTCN2021102006-appb-000058
Figure PCTCN2021102006-appb-000059
长轴长度l ac和短轴长度l bd可分别由公式(8)和(9)求出:
Figure PCTCN2021102006-appb-000060
Figure PCTCN2021102006-appb-000061
量柱量块的测量截面与其同心横截面存在的夹角λ,根据公式(3)、(4)、(8)和(9)求出;
量柱量块的测量截面A轮廓的短轴为其同心横截面A轮廓的直径,以
Figure PCTCN2021102006-appb-000062
为工件装夹装置坐标系的X S轴,以测量截面A轮廓的中心O U为工件装夹装置坐标系的原点O S,以垂直于量柱量块的横截面A轮廓的轴心轴线为Y S轴,建立符合右手规则的工件装夹装置坐标系O S-X SY SZ S
检测系统坐标系O A-X AY AZ A与工件装夹装置坐标系O S-X SY SZ S之间具有偏离量为
Figure PCTCN2021102006-appb-000063
即检测系统坐标系中的点(x,y,z)分别在x轴和z轴方向上平移x u和z u,然后绕X轴旋转角度λ,再绕Y轴旋转角度
Figure PCTCN2021102006-appb-000064
后即可能获得对应在工件装夹装置坐标系O S-X SY SZ S中对应的点坐标(x′,y′,z′);因此检测系统坐标系和工件装夹装置坐标系的变换关系为:
Figure PCTCN2021102006-appb-000065
(3)、控制轴类工件加工机床的装夹装置转动,线激光测量仪进行连续数据采集,对采集的数据进行计算分析,获得轴类工件的理想基准轴线;
将轴类工件装夹在标定好的装夹装置中,将线激光测量仪的光路对准轴类工件的基准轴段,启动位置A和位置B处的线激光测量仪进行测量;假定线激光测量仪在位置A;获得的截面轮廓内点在坐标系O A-X AY AZ A下的坐标为P i(x i,0,z i),(i=1,2,3…),坐标点满足公式(11):
Figure PCTCN2021102006-appb-000066
解方程可求出常数a 1、b 1、c 1、d 1、e 1和f 1,再由公式(12)和(13)求出:
Figure PCTCN2021102006-appb-000067
Figure PCTCN2021102006-appb-000068
线激光测量仪在距离测量位置A为l′ AB的测量位置B获得的截面轮廓内点在坐标系O A-X AY AZ A的坐标为P j(x j,l′ AB,z j),(j=1,2,3…);坐标点满足公式(14):
Figure PCTCN2021102006-appb-000069
解方程可求出a 2、b 2、c 2、d 2、e 2和f 2,再由公式(15)和(16)求出:
Figure PCTCN2021102006-appb-000070
Figure PCTCN2021102006-appb-000071
可分别获得测量位置A和测量位置B处截面轮廓所对应的工件横截面的中心坐标
Figure PCTCN2021102006-appb-000072
Figure PCTCN2021102006-appb-000073
则基准轴段的中心轴线在O A-X AY AZ A坐标系下轴线的直线公式为:
Figure PCTCN2021102006-appb-000074
(4)、激光位移传感器对检测部位进行连续数据采集,对采集的数据进行计算分析,获得凸轮轴轴颈实际跳动加工精度;
旋转轴类工件,激光位移传感器获取测量位置C实时测量点的坐标,假定某一时刻坐标为C 1(0,y C1,z C1);线激光测量仪获得此时刻旋转位置时的实时轮廓点数据,假定此时刻线激光测量仪在位置A获得的截面轮廓内点在坐标系O A-X AY AZ A下的坐标为P i1(x i1,0,z i1),(i=1,2,3…),坐标点满足公式(18):
Figure PCTCN2021102006-appb-000075
解方程可求出a 11、b 11、c 11、d 11、e 11和f 11,再由公式(19)和(20)求出:
Figure PCTCN2021102006-appb-000076
Figure PCTCN2021102006-appb-000077
假定此时刻线激光测量仪在距离测量位置A为l″ AB的测量位置B获得的截面轮廓内点在坐标系O A-X AY AZ A的坐标为P j1(x j1,l″ AB,z j1),(j=1,2,3…),坐标点满足公式(21):
Figure PCTCN2021102006-appb-000078
解方程可求出a 21、b 21、c 21、d 21、e 21和f 21,再由公式(22)和(23)求出:
Figure PCTCN2021102006-appb-000079
Figure PCTCN2021102006-appb-000080
可获得此时刻基准轴段中心点坐标
Figure PCTCN2021102006-appb-000081
Figure PCTCN2021102006-appb-000082
求得此时刻测量点到实时中心轴线的距离d 1,计算公式为:
Figure PCTCN2021102006-appb-000083
旋转轴类工件,测得旋转一周后各时刻所记录的数据,并计算获得全部时刻测量点到实时中心轴线的距离d i(i=1,2,3…);
轴类工件的径向圆跳动t通过实时测量点到实时中心轴线的距离d i(i=1,2,3…)中的最大值d max和最小值d min的差值求得,计算公式为:
t=d max-d min          (25)
本发明使用实时检测的中心轴线,可以避免工件装夹装置回转偏心带来的影响,提高了计算精度;
(5)、采用线激光测量仪对检测部位进行连续数据采集,对采集的数据进行计算分析获得轴类工件同轴度加工精度;
先利用线激光测量仪对轴类工件基准轴段测量位置A和测量位置B进行轮廓检测,线激光测量仪获得某一旋转位置时的实时轮廓点数据,假定此时刻线激光测量仪在位置A获得的截面轮廓内点在坐标系O A-X AY AZ A下的坐标为P′ i1(x′ i1,0,z′ i1),(i=1,2,3…) 坐标点满足公式(26):
Figure PCTCN2021102006-appb-000084
解方程可求出a′ 11、b′ 11、c′ 11、d′ 11、e′ 11和f′ 11,再由公式(27)和(28)求出:
Figure PCTCN2021102006-appb-000085
Figure PCTCN2021102006-appb-000086
假定此时刻线激光测量仪在距离位置A为l″′ AB的位置B获得的截面轮廓内点在坐标系O A-X AY AZ A的坐标为P′ j1(x′ j1,l″′ AB,z′ j1),(j=1,2,3…),坐标点满足公式(29):
Figure PCTCN2021102006-appb-000087
解方程可求出a′ 21、b′ 21、c′ 21、d′ 21、e′ 21和f′ 21,再由公式(30)和(31)求出:
Figure PCTCN2021102006-appb-000088
Figure PCTCN2021102006-appb-000089
可获得此时刻基准轴段中心点坐标
Figure PCTCN2021102006-appb-000090
Figure PCTCN2021102006-appb-000091
则该时刻基准轴段中心点所连接的中心轴线在O A-X AY AZ A坐标系下的轴线的直线公式为:
Figure PCTCN2021102006-appb-000092
将线激光测量仪沿Y A轴方向移动至工件检测轴段位置C′处,通过光栅导轨获得移动距离l′,假定此时刻线激光测量仪在位置C′获得的截面轮廓内点在坐标系O A-X AY AZ A下的坐标为P k1(x k1,l′,z k1),(k=1,2,3…),坐标点满足公式(33):
Figure PCTCN2021102006-appb-000093
解方程可求出a 3、b 3、c 3、d 3、e 3和f 3,再由公式(34)和(35)求出:
Figure PCTCN2021102006-appb-000094
Figure PCTCN2021102006-appb-000095
在不同位置重复数次检测,获得基准轴段中心点坐标
Figure PCTCN2021102006-appb-000096
Figure PCTCN2021102006-appb-000097
测量段横截面中心坐标点集记为C′ i(x C′i,l′,z C′i)(i=1,2,3…);求得检测轴段横截面中心坐标点到基准段中心轴线的距离d′ i,计算公式为:
Figure PCTCN2021102006-appb-000098
轴类工件检测轴段的同轴度φt通过获得的检测轴段横截面中心坐标点到基准段中心轴线的距离d′ i中的最大值d′ max和最小值d′ min的差值求得,计算公式为:
φt=d′ max-d′ min          (37)
采用本发明的方法可静态且非接触的获取工件的检测轴段的横截面中心点集,进而获得检测轴段的轴线与基准轴线的误差大小;因此可以避免装夹装置和工件回转偏心带来的影响,以及移动工件的繁琐工序。
本发明的一种轴类工件在位非接触检测方法,轴类工件为凸轮轴,包括如下步骤:
(1)、建立检测系统,标定检测系统并建立检测坐标系;
如图3和图4所示,所述检测系统包括位于机床一侧的光栅导轨8以及依次间隔位于光栅导轨上的采用线激光测量仪6进行测量的测量位置A、采用激光位移传感器7进行测量的测量位置C和采用线激光测量仪6进行测量的测量位置B,线激光测量仪6和激光位移传感器7安装在光栅导轨8的滑块上;其中测量位置A和测量位置B为所需 检测的基准位置,测量位置C为需要进行跳动、同轴度以及轮廓度检测位置;如图4所示,调整线激光测量仪、激光位移传感器与光栅直导轨的平面度,使其平面度达到0.001mm,线激光测量仪和激光位移传感器的测量方向一致,在测量方向前距离L处放置标定板,调节标定板标定平面与线激光测量仪光路正交,且与激光位移传感器光路垂直;其中线激光测量仪的XOY平面与标定板标定平面平行,激光位移传感器光路垂直与XOY平面,激光位移传感器在光栅导轨上的安装方向与Y轴平行;建立线激光测量仪在位置A和位置B处的坐标系O A-X AY AZ A和坐标系O B-X BY BZ B;再调节使激光位移传感器的光斑在线激光测量仪光路的Y轴上,建立激光位移传感器在位置C处的坐标系O C-X CY CZ C;对线激光测量仪的测量原点进行标零,则O A、O B的X、Z坐标为0;对激光位移传感器的测量原点进行标零,则O C的X、Z坐标为0;
线激光测量仪可获取XOZ平面内的坐标数据,Y轴的坐标数据由线激光测量仪光路所在光栅导轨上的位置得出;设定线激光测量仪在位置A时坐标原点O A为世界坐标系原点,若O A的坐标标定为(0,0,0),若线激光测量仪在位置A处所测的数据为(x A,z A),则位置A内的三维坐标为(x A,0,z A);
线激光测量仪在位置A和位置B的光路距离为l AB,则O B的坐标标定为(0,0,l AB);若线激光测量仪在位置B所测的数据为(x B,z B),那么坐标系O B-X BY BZ B内的坐标在坐标系O A-X AY AZ A中可表示为:
Figure PCTCN2021102006-appb-000099
线激光测量仪和激光位移传感器在位置A和位置C的光路距离为l AC,则O C坐标即标定为(0,0,l AC);若激光位移传感器在位置C所测的数据为(z C),那么坐标系O C-X CY CZ C内的坐标在坐标系O A-X AY AZ A中可表示为:
Figure PCTCN2021102006-appb-000100
本发明可使用检测系统中的激光传感器获取到工件在O A-X AY AZ A坐标系下的坐标数据,然后进行之后的计算分析;
(2)、对工件在检测系统的位姿进行分析建立工件装夹装置的坐标系统;
如图5所示,工件装夹装置包括夹床控制箱1、夹床卡盘2、待检凸轮轴3、顶针4和顶针滑轨5,凸轮轴的检测截面法向轴线与理想基准轴线不共线时,即当凸轮轴与检测系统存在绕X轴方向的旋转角θ和绕Z轴方向的旋转角ɑ时,线激光测量仪的光路所测的测量截面为椭圆,其中椭圆的短轴为轴直径,椭圆的长轴ac与Z轴存在夹角,椭圆的短轴bd与X轴存在夹角;所得椭圆轮廓的椭心在中心轴线上,测量截面与横截面的夹角为λ,其中椭圆的长轴ac长度为l ac,短轴bd长度为l bd,则λ的计算公式为:
Figure PCTCN2021102006-appb-000101
在装夹装置中装夹一根轴类的量柱量块,启动线激光测量仪对量柱量块进行截面轮廓检测,量柱量块置于线激光测量仪的测量光路中,则量柱量块与测量光路的相交截面为椭圆轮廓;激光测量仪在位置A可测得量柱量块在任一位置时的半截面轮廓弧
Figure PCTCN2021102006-appb-000102
则可假定弧
Figure PCTCN2021102006-appb-000103
上轮廓点坐标为Pn(x n,0,z n),(n=1,2,3…),坐标点满足公式(4):
Figure PCTCN2021102006-appb-000104
式中a、b、c、d、e和f为常系数,通过代入坐标点集求出;
则椭圆在O A-X AY AZ A坐标系中的椭圆长轴的旋转角
Figure PCTCN2021102006-appb-000105
由公式(5)求出:
Figure PCTCN2021102006-appb-000106
假定椭圆的几何中心O U的坐标为(x U,z U),则由公式(6)和(7)求出:
Figure PCTCN2021102006-appb-000107
Figure PCTCN2021102006-appb-000108
长轴长度l ac和短轴长度l bd可分别由公式(8)和(9)求出:
Figure PCTCN2021102006-appb-000109
Figure PCTCN2021102006-appb-000110
量柱量块的测量截面与其同心横截面存在的夹角λ,根据公式(3)、(4)、(8)和(9)求出;
量柱量块的测量截面A轮廓的短轴为其同心横截面A轮廓的直径,以
Figure PCTCN2021102006-appb-000111
为工件装夹装置坐标系的X S轴,以测量截面A轮廓的中心O U为工件装夹装置坐标系的原点O S,以垂直于量柱量块的横截面A轮廓的轴心轴线为Y S轴,建立符合右手规则的工件装夹装置坐标系O S-X SY SZ S
检测系统坐标系O A-X AY AZ A与工件装夹装置坐标系O S-X SY SZ S之间具有偏离量为
Figure PCTCN2021102006-appb-000112
即检测系统坐标系中的点(x,y,z)分别在x轴和z轴方向上平移x u和z u,然后绕X轴旋转角度λ,再绕Y轴旋转角度
Figure PCTCN2021102006-appb-000113
后即可能获得对应在工件装夹装置坐标系O S-X SY SZ S中对应的点坐标(x′,y′,z′);因此检测系统坐标系和工件装夹装置坐标系的变换关系为:
Figure PCTCN2021102006-appb-000114
(3)、控制凸轮轴加工机床的装夹装置转动,线激光测量仪进行连续数据采集,对采集的数据进行计算分析,获得凸轮轴的理想基准轴线;
将凸轮轴装夹在标定好的装夹装置中,将线激光测量仪的光路对准凸轮轴的基准轴段,启动位置A和位置B处的线激光测量仪进行测量;假定线激光测量仪在位置A;获得的截面轮廓内点在坐标系O A-X AY AZ A下的坐标为P i(x i,0,z i),(i=1,2,3…),坐标点满足公式(11):
Figure PCTCN2021102006-appb-000115
解方程可求出常数a 1、b 1、c 1、d 1、e 1和f 1,再由公式(12)和(13)求出:
Figure PCTCN2021102006-appb-000116
Figure PCTCN2021102006-appb-000117
线激光测量仪在距离测量位置A为l′ AB的测量位置B获得的截面轮廓内点在坐标系O A-X AY AZ A的坐标为P j(x j,l′ AB,zj),(j=1,2,3…);坐标点满足公式(14)
Figure PCTCN2021102006-appb-000118
解方程可求出a 2、b 2、c 2、d 2、e 2和f 2,再由公式(15)和(16)求出:
Figure PCTCN2021102006-appb-000119
Figure PCTCN2021102006-appb-000120
可分别获得测量位置A和测量位置B处截面轮廓所对应的工件横截面的中心坐标
Figure PCTCN2021102006-appb-000121
Figure PCTCN2021102006-appb-000122
则基准轴段的中心轴线在O A-X AY AZ A坐标系下轴线的直线公式为:
Figure PCTCN2021102006-appb-000123
(4)、激光位移传感器对检测部位进行连续数据采集,对采集的数据进行计算分析,获得凸轮轴轴颈实际跳动加工精度;
旋转凸轮轴,激光位移传感器获取测量位置C实时测量点的坐标,假定某一时刻坐标为C 1(0,y C1,z C1);线激光测量仪获得此时刻旋转位置时的实时轮廓点数据,假定此时刻线激光测量仪在位置A获得的截面轮廓内点在坐标系O A-X AY AZ A下的坐标为P i1(x i1,0,z i1),(i=1,2,3…),坐标点满足公式(18):
Figure PCTCN2021102006-appb-000124
解方程可求出a 11、b 11、c 11、d 11、e 11和f 11,再由公式(19)和(20)求出:
Figure PCTCN2021102006-appb-000125
Figure PCTCN2021102006-appb-000126
假定此时刻线激光测量仪在距离测量位置A为l″ AB的测量位置B获得的截面轮廓内点在坐标系O A-X AY AZ A的坐标为P j1(x j1,l″ AB,z j1),(j=1,2,3…),坐标点满足公式(21):
Figure PCTCN2021102006-appb-000127
解方程可求出a 21、b 21、c 21、d 21、e 21和f 21,再由公式(22)和(23)求出:
Figure PCTCN2021102006-appb-000128
Figure PCTCN2021102006-appb-000129
可获得此时刻基准轴段中心点坐标
Figure PCTCN2021102006-appb-000130
Figure PCTCN2021102006-appb-000131
求得此时刻测量点到实时中心轴线的距离d 1,计算公式为:
Figure PCTCN2021102006-appb-000132
旋转凸轮轴,测得旋转一周后各时刻所记录的数据,并计算获得全部时刻测量点到实时中心轴线的距离d i(i=1,2,3…);
凸轮轴的径向圆跳动t通过实时测量点到实时中心轴线的距离d i(i=1,2,3…)中的最大值d max和最小值d min的差值求得,计算公式为:
t=d max-d min        (25)
本发明使用实时检测的中心轴线,可以避免工件装夹装置回转偏心带来的影响,提高了计算精度;
(5)、采用线激光测量仪对检测部位进行连续数据采集,对采集的数据进行计算分析获得凸轮轴同轴度加工精度;
先利用线激光测量仪对轴类工件基准轴段测量位置A和测量位置B进行轮廓检测,线激光测量仪获得某一旋转位置时的实时轮廓点数据,假定此时刻线激光测量仪在位置A获得的截面轮廓内点在坐标系O A-X AY AZ A下的坐标为P′ i1(x′ i1,0,z′ i1),(i=1,2,3…) 坐标点满足公式(26):
Figure PCTCN2021102006-appb-000133
解方程可求出a′ 11、b′ 11、c′ 11、d′ 11、e′ 11和f′ 11,再由公式(27)和(28)求出:
Figure PCTCN2021102006-appb-000134
Figure PCTCN2021102006-appb-000135
假定此时刻线激光测量仪在距离位置A为l″′ AB的位置B获得的截面轮廓内点在坐标系O A-X AY AZ A的坐标为P′ j1(x′ j1,l″′ AB,z′ j1),(j=1,2,3…),坐标点满足公式(29):
Figure PCTCN2021102006-appb-000136
解方程可求出a′ 21、b′ 21、c′ 21、d′ 21、e′ 21和f′ 21,再由公式(30)和(31)求出:
Figure PCTCN2021102006-appb-000137
Figure PCTCN2021102006-appb-000138
可获得此时刻基准轴段中心点坐标
Figure PCTCN2021102006-appb-000139
Figure PCTCN2021102006-appb-000140
则该时刻基准轴段中心点所连接的中心轴线在O A-X AY AZ A坐标系下的轴线的直线公式为:
Figure PCTCN2021102006-appb-000141
将线激光测量仪沿Y A轴方向移动至工件检测轴段位置C′处,通过光栅导轨获得移动距离l′,假定此时刻线激光测量仪在位置C′获得的截面轮廓内点在坐标系O A-X AY AZ A下的坐标为P k1(x k1,l′,z k1),(k=1,2,3…),坐标点满足公式(33):
Figure PCTCN2021102006-appb-000142
解方程可求出a 3、b 3、c 3、d 3、e 3和f 3,再由公式(34)和(35)求出:
Figure PCTCN2021102006-appb-000143
Figure PCTCN2021102006-appb-000144
在不同位置重复数次检测,获得基准轴段中心点坐标
Figure PCTCN2021102006-appb-000145
Figure PCTCN2021102006-appb-000146
测量段横截面中心坐标点集记为 C′ i(x C′i,l′,z C′i)(i=1,2,3…);求得检测轴段横截面中心坐标点到基准段中心轴线的距离d′ i,计算公式为:
Figure PCTCN2021102006-appb-000147
凸轮轴检测轴段的同轴度φt通过获得的检测轴段横截面中心坐标点到基准段中心轴线的距离d′ i中的最大值d′ max和最小值d′ min的差值求得,计算公式为:
φt=d′ max-d′ min       (37)
采用本发明的方法可静态且非接触的获取工件的检测轴段的横截面中心点集,进而获得检测轴段的轴线与基准轴线的误差大小;因此可以避免装夹装置和工件回转偏心带来的影响,以及移动工件的繁琐工序;
(6)、线激光测量仪对凸轮轴凸轮的凸桃进行连续数据采集,对采集的数据进行计算分析,获得凸轮轴凸轮轮廓度加工精度;
将线激光测量仪移动至凸轮的凸桃处,每移动一小段距离进行一次数据采集,将采集获得的O A-X AY AZ A坐标系下的数据坐标通过算法转换到O S-X SY SZ S工件装夹装置坐标系下,对轮廓点进行拟合,再与标准凸轮轮廓进行对比,计算出轮廓度。
实施例
以某柴油机厂所生产的凸轮轴为例,其凸轮轴轴颈直径为180mm,长1780mm,跳动公差要求为0.05mm,同轴度公差要求为0.05mm,凸桃轮廓度要求为0.08mm。于是根据检测凸轮轴大小,检测装置的线激光测量仪选取某LJ-X8400型,可测最大宽度320mm,精度5um;CCD激光位移传感器选取某LK-G400型,精度2um,可测量范围400±100mm。
将检测系统放置于机床一侧,凸轮轴置于上述与检测系统标定好的工件装夹装置中,将线激光测量仪的光路对准工件的基准轴段,启动位置A、B的线激光测量仪进行测量;假定线激光测量仪在位置A获得的截面轮廓内点在坐标系O A-X AY AZ A下的坐标为P i(x i,0,z i),(i=1,2,3…),线激光测量仪在距离A位置为l AB的B位置获得的截面轮廓内点在坐标系O A-X AY AZ A的坐标为P j(x j,l AB,z j),(i=1,2,3…)。通过计算可分别获得位置 A、B截面轮廓所对应的工件横截面的中心坐标O U(x U,0,z U)与O W(x W,l AB,z W),结果见表1内O U坐标和O W坐标。
旋转工件,激光位移传感器获取实时测量点的坐标C i(0,y Ci,z Ci)(i=1,2,3…),线激光测量仪获得同旋转位置时的实时轮廓点数据,通过计算,获得基准轴段中心点坐标O Ui(x Ui,0,z Ui)和O Wi(x Wi,l AB,z Wi)(i=1,2,3…)。可通过计算求得实时测量点到实时中心轴线的距离d i,通过计算获得工件的径向圆跳动t,结果见表1内t值。
然后将线激光测量仪沿Y A轴方向移动至工件检测轴段,通过光栅导轨获得移动距离l则,通过计算可获得工件检测轴段轮廓在O A-X AY AZ A坐标系下的坐标,通过计算可求得检测轴段横截面中心点的坐标。在不同位置重复数次检测,则可获得测量段横截面中心坐标点集记为D i(0,y Di,z Di)(i=1,2,3…);则通过计算可求得检测轴段横截面中心坐标点到基准段中心轴线的距离d i,通过计算可求得工件检测轴段的同轴度φt,结果见表1内φt值。
将线激光测量仪移动至凸轮的凸桃处,每移动一小段距离进行一次数据采集,将采集获得的O A-X AY AZ A坐标系下的数据坐标,计算机系统通过算法转换到O S-X SY SZ S工件及装夹系统坐标系下。利用系统二维或三维软件对轮廓点进行拟合,然后与所设计的标准凸轮轮廓进行对比,计算出轮廓度,结果见表1内轮廓度值。
表1轴检测结果部分数据
Figure PCTCN2021102006-appb-000148
Figure PCTCN2021102006-appb-000149

Claims (7)

  1. 一种轴类工件在位非接触检测方法,其特征在于,包括如下步骤:
    (1)、建立检测系统,标定检测系统并建立检测坐标系;
    (2)、对工件在检测系统的位姿进行分析建立工件装夹装置的坐标系统;
    (3)、控制轴类工件加工机床的装夹装置转动,线激光测量仪进行连续数据采集,对采集的数据进行计算分析,获得轴类工件的理想基准轴线;
    (4)、激光位移传感器对检测部位进行连续数据采集,对采集的数据进行计算分析,获得凸轮轴轴颈实际跳动加工精度;
    (5)、采用线激光测量仪对检测部位进行连续数据采集,对采集的数据进行计算分析获得轴类工件同轴度加工精度。
  2. 根据权利要求1所述的一种轴类工件在位非接触检测方法,其特征在于,所述步骤(1)的具体步骤包括:所述检测系统包括位于机床一侧的光栅导轨以及依次间隔位于光栅导轨上的采用线激光测量仪进行测量的测量位置A、采用激光位移传感器进行测量的测量位置C和采用线激光测量仪进行测量的测量位置B;其中测量位置A和测量位置B为所需检测的基准位置,测量位置C为需要进行跳动、同轴度以及轮廓度检测位置;线激光测量仪和激光位移传感器的测量方向一致,在测量方向前距离L处放置标定板,调节标定板标定平面与线激光测量仪光路正交,且与激光位移传感器光路垂直;其中线激光测量仪的XOY平面与标定板标定平面平行,激光位移传感器光路垂直与XOY平面,激光位移传感器在光栅导轨上的安装方向与Y轴平行;建立线激光测量仪在位置A和位置B处的坐标系O A-X AY AZ A和坐标系O B-X BY BZ B;再调节使激光位移传感器的光斑在线激光测量仪光路的Y轴上,建立激光位移传感器在位置C处的坐标系O C-X CY CZ C;对线激光测量仪的测量原点进行标零,则O A、O B的X、Z坐标为0;对激光位移传感器的测量原点进行标零,则O C的X、Z坐标为0;
    线激光测量仪可获取XOZ平面内的坐标数据,Y轴的坐标数据由线激光测量仪光路所在光栅导轨上的位置得出;设定线激光测量仪在位置A时坐标原点O A为世界坐标系原点,若O A的坐标标定为(0,0,0),若线激光测量仪在位置A处所测的数据为(x A,z A),则位置A内的三维坐标为(x A,0,z A);
    线激光测量仪在位置A和位置B的光路距离为l AB,则O B的坐标标定为(0,0,l AB);若线激光测量仪在位置B所测的数据为(x B,z B),那么坐标系O B-X BY BZ B内的坐标在坐标系O A-X AY AZ A中可表示为:
    Figure PCTCN2021102006-appb-100001
    线激光测量仪和激光位移传感器在位置A和位置C的光路距离为l AC,则O C坐标即标定为(0,0,l AC);若激光位移传感器在位置C所测的数据为(z C),那么坐标系O C-X CY CZ C内的坐标在坐标系O A-X AY AZ A中可表示为:
    Figure PCTCN2021102006-appb-100002
  3. 根据权利要求2所述的一种轴类工件在位非接触检测方法,其特征在于,所述步骤(2)的具体步骤包括:当轴类工件的检测截面法向轴线与理想基准轴线不共线时,即当轴类工件与检测系统存在绕X轴方向的旋转角θ和绕Z轴方向的旋转角ɑ时,线激光测量仪的光路所测的测量截面为椭圆,其中椭圆的短轴为轴直径,椭圆的长轴ac与Z轴存在夹角,椭圆的短轴bd与X轴存在夹角;所得椭圆轮廓的椭心在中心轴线上,测量截面与横截面的夹角为λ,其中椭圆的长轴ac长度为l ac,短轴bd长度为l bd,则λ的计算公式为:
    Figure PCTCN2021102006-appb-100003
    在装夹装置中装夹一根轴类的量柱量块,启动线激光测量仪对量柱量块进行截面轮廓检测,量柱量块置于线激光测量仪的测量光路中,则量柱量块与测量光路的相交截面为椭圆轮廓;激光测量仪在位置A可测得量柱量块在任一位置时的半截面轮廓弧
    Figure PCTCN2021102006-appb-100004
    则可假定弧
    Figure PCTCN2021102006-appb-100005
    上轮廓点坐标为Pn(x n,0,z n),(n=1,2,3…),坐标点满足公式(4):
    Figure PCTCN2021102006-appb-100006
    式中a、b、c、d、e和f为常系数,通过代入坐标点集求出;
    则椭圆在O A-X AY AZ A坐标系中的椭圆长轴的旋转角
    Figure PCTCN2021102006-appb-100007
    由公式(5)求出:
    Figure PCTCN2021102006-appb-100008
    假定椭圆的几何中心O U的坐标为(x U,z U),则由公式(6)和(7)求出:
    Figure PCTCN2021102006-appb-100009
    Figure PCTCN2021102006-appb-100010
    长轴长度l ac和短轴长度l bd可分别由公式(8)和(9)求出:
    Figure PCTCN2021102006-appb-100011
    Figure PCTCN2021102006-appb-100012
    量柱量块的测量截面与其同心横截面存在的夹角λ,根据公式(3)、(4)、(8)和(9)求出;
    量柱量块的测量截面A轮廓的短轴为其同心横截面A轮廓的直径,以
    Figure PCTCN2021102006-appb-100013
    为工件装夹装置坐标系的X S轴,以测量截面A轮廓的中心O U为工件装夹装置坐标系的原点O S,以垂直于量柱量块的横截面A轮廓的轴心轴线为Y S轴,建立符合右手规则的工件装夹装置坐标系O S-X SY SZ S
    检测系统坐标系O A-X AY AZ A与工件装夹装置坐标系O S-X SY SZ S之间具有偏离量为
    Figure PCTCN2021102006-appb-100014
    即检测系统坐标系中的点(x,y,z)分别在x轴和z轴方向上平移x u和z u,然后绕X轴旋转角度λ,再绕Y轴旋转角度
    Figure PCTCN2021102006-appb-100015
    后即可能获得对应在工件装夹装置坐标系O S-X SY SZ S中对应的点坐标(x',y',z');因此检测系统坐标系和工件装夹装置坐标系的变换关系为:
    Figure PCTCN2021102006-appb-100016
  4. 根据权利要求3所述的一种轴类工件在位非接触检测方法,其特征在于,所述步骤(3)的具体步骤包括:将轴类工件装夹在标定好的装夹装置中,将线激光测量仪的光路对准轴类工件的基准轴段,启动位置A和位置B处的线激光测量仪进行测量;假定线激光测量仪在位置A;获得的截面轮廓内点在坐标系O A-X AY AZ A下的坐标为P i(x i,0,z i),(i=1,2,3…),坐标点满足公式(11):
    Figure PCTCN2021102006-appb-100017
    解方程可求出常数a 1、b 1、c 1、d 1、e 1和f 1,再由公式(12)和(13)求出:
    Figure PCTCN2021102006-appb-100018
    Figure PCTCN2021102006-appb-100019
    线激光测量仪在距离测量位置A为l′ AB的测量位置B获得的截面轮廓内点在坐标系O A-X AY AZ A的坐标为P j(x j,l′ AB,z j),(j=1,2,3…);坐标点满足公式(14):
    Figure PCTCN2021102006-appb-100020
    解方程可求出a 2、b 2、c 2、d 2、e 2和f 2,再由公式(15)和(16)求出:
    Figure PCTCN2021102006-appb-100021
    Figure PCTCN2021102006-appb-100022
    可分别获得测量位置A和测量位置B处截面轮廓所对应的工件横截面的中心坐标
    Figure PCTCN2021102006-appb-100023
    Figure PCTCN2021102006-appb-100024
    则基准轴段的中心轴线在O A-X AY AZ A坐标系下轴线的直线公式为:
    Figure PCTCN2021102006-appb-100025
  5. 根据权利要求4所述的一种轴类工件在位非接触检测方法,其特征在于,所述步骤(4)的具体步骤包括:旋转轴类工件,激光位移传感器获取测量位置C实时测量点的坐标,假定某一时刻坐标为C 1(0,y C1,z C1);线激光测量仪获得此时刻旋转位置时的实时轮廓点数据,假定此时刻线激光测量仪在位置A获得的截面轮廓内点在坐标系O A-X AY AZ A下的坐标为P i1(x i1,0,z i1),(i=1,2,3…),坐标点满足公式(18):
    Figure PCTCN2021102006-appb-100026
    解方程可求出a 11、b 11、c 11、d 11、e 11和f 11,再由公式(19)和(20)求出:
    Figure PCTCN2021102006-appb-100027
    Figure PCTCN2021102006-appb-100028
    假定此时刻线激光测量仪在距离测量位置A为l″ AB的测量位置B获得的截面轮廓内点在坐标系O A-X AY AZ A的坐标为P j1(x j1,l″ AB,z j1),(j=1,2,3…),坐标点满足公式(21):
    Figure PCTCN2021102006-appb-100029
    解方程可求出a 21、b 21、c 21、d 21、e 21和f 21,再由公式(22)和(23)求出:
    Figure PCTCN2021102006-appb-100030
    Figure PCTCN2021102006-appb-100031
    可获得此时刻基准轴段中心点坐标
    Figure PCTCN2021102006-appb-100032
    Figure PCTCN2021102006-appb-100033
    求得此时刻测量点到实时中心轴线的距离d 1,计算公式为:
    Figure PCTCN2021102006-appb-100034
    旋转轴类工件,测得旋转一周后各时刻所记录的数据,并计算获得全部时刻测量点到实时中心轴线的距离d i(i=1,2,3…);
    轴类工件的径向圆跳动t通过实时测量点到实时中心轴线的距离d i(i=1,2,3…)中的最大值d max和最小值d min的差值求得,计算公式为:
    t=d max-d min  (25)。
  6. 根据权利要求5所述的一种轴类工件在位非接触检测方法,其特征在于,所述步骤(5)的具体步骤包括:先利用线激光测量仪对轴类工件基准轴段测量位置A和测量位置B进行轮廓检测,线激光测量仪获得某一旋转位置时的实时轮廓点数据,假定此时刻线激光测量仪在位置A获得的截面轮廓内点在坐标系O A-X AY AZ A下的坐标为P′ i1(x′ i1,0,z′ z1),(i=1,2,3…),坐标点满足公式(26):
    Figure PCTCN2021102006-appb-100035
    解方程可求出a′ 11、b′ 11、c′ 11、d′ 11、e′ 11和f′ 11,再由公式(27)和(28)求出:
    Figure PCTCN2021102006-appb-100036
    Figure PCTCN2021102006-appb-100037
    假定此时刻线激光测量仪在距离位置A为l″′ AB的位置B获得的截面轮廓内点在坐标系O A-X AY AZ A的坐标为P′ j1(x′ j1,l″′ AB,z′ j1),(j=1,2,3…),坐标点满足公式(29):
    Figure PCTCN2021102006-appb-100038
    解方程可求出a′ 21、b′ 21、c′ 21、d′ 21、e′ 21和f′ 21,再由公式(30)和(31)求出:
    Figure PCTCN2021102006-appb-100039
    Figure PCTCN2021102006-appb-100040
    可获得此时刻基准轴段中心点坐标
    Figure PCTCN2021102006-appb-100041
    Figure PCTCN2021102006-appb-100042
    则该时刻基准轴段中心点所连接的中心轴线在O A-X AY AZ A坐标系下的轴线的直线公式为:
    Figure PCTCN2021102006-appb-100043
    将线激光测量仪沿Y A轴方向移动至工件检测轴段位置C′处,通过光栅导轨获得移动距离l′,假定此时刻线激光测量仪在位置C′获得的截面轮廓内点在坐标系O A-X AY AZ A下的坐标为P k1(x k1,l′,z k1),(k=1,2,3…),坐标点满足公式(33):
    Figure PCTCN2021102006-appb-100044
    解方程可求出a 3、b 3、c 3、d 3、e 3和f 3,再由公式(34)和(35)求出:
    Figure PCTCN2021102006-appb-100045
    Figure PCTCN2021102006-appb-100046
    在不同位置重复数次检测,获得基准轴段中心点坐标
    Figure PCTCN2021102006-appb-100047
    Figure PCTCN2021102006-appb-100048
    测量段横截面中心坐标点集记为C′ i(x C′i,l′,z C′i)(i=1,2,3…);求得检测轴段横截面中心坐标点到基准段中心轴线的距离d′ i,计算公式为:
    Figure PCTCN2021102006-appb-100049
    轴类工件检测轴段的同轴度φt通过获得的检测轴段横截面中心坐标点到基准段中心轴线的距离d′ i中的最大值d′ max和最小值d′ min的差值求得,计算公式为:
    φt=d′ max-d′ min  (37)。
  7. 根据权利要求6所述的一种轴类工件在位非接触检测方法,其特征在于,所述轴类工件为凸轮轴,线激光测量仪对凸轮轴凸轮的凸桃进行连续数据采集,对采集的数据进行计算分析,获得凸轮轴凸轮轮廓度加工精度;
    将线激光测量仪移动至凸轮的凸桃处,每移动一小段距离进行一次数据采集,将采集获得的O A-X AY AZ A坐标系下的数据坐标通过算法转换到O S-X SY SZ S工件装夹装置坐标系下,对轮廓点进行拟合,再与标准凸轮轮廓进行对比,计算出轮廓度。
PCT/CN2021/102006 2020-08-27 2021-06-24 一种轴类工件在位非接触检测方法 WO2022041986A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/618,500 US20220379423A1 (en) 2020-08-27 2021-06-24 In-place non-contact detection method for shaft workpiece
KR1020227032083A KR20220155997A (ko) 2020-08-27 2021-06-24 샤프트 공작물 인플레이스 비접촉 감지 방법
JP2022505625A JP7171114B2 (ja) 2020-08-27 2021-06-24 シャフトワークのインサイチュ非接触検出方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010875603.1 2020-08-27
CN202010875603.1A CN111993159B (zh) 2020-08-27 2020-08-27 一种轴类工件在位非接触检测方法

Publications (1)

Publication Number Publication Date
WO2022041986A1 true WO2022041986A1 (zh) 2022-03-03

Family

ID=73470488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102006 WO2022041986A1 (zh) 2020-08-27 2021-06-24 一种轴类工件在位非接触检测方法

Country Status (5)

Country Link
US (1) US20220379423A1 (zh)
JP (1) JP7171114B2 (zh)
KR (1) KR20220155997A (zh)
CN (1) CN111993159B (zh)
WO (1) WO2022041986A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116399284A (zh) * 2023-06-08 2023-07-07 山东科技大学 带孔零件表面垂直度误差及误差方向角测量装置及方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111993159B (zh) * 2020-08-27 2022-02-11 江苏科技大学 一种轴类工件在位非接触检测方法
CN112729211B (zh) * 2020-12-25 2021-11-23 东北大学 一种导向杠/杆的直行运动误差测量与分离方法
CN112556579A (zh) * 2020-12-25 2021-03-26 深圳市中图仪器股份有限公司 一种六自由度空间坐标位置和姿态测量装置
CN112985322B (zh) * 2021-02-07 2024-01-02 年贺勋 一种通过建立数模对内燃机锻件连杆进行的检测方法
CN113028990B (zh) * 2021-03-08 2022-11-18 湖北工业大学 一种基于加权最小二乘的激光跟踪姿态测量系统及方法
CN113029560A (zh) * 2021-03-09 2021-06-25 安徽工程大学 自适应高精度rv减速器性能测试装置及其控制方法
CN113103066B (zh) * 2021-03-19 2022-03-18 上海航天精密机械研究所 用于薄壁回转体机加工自动化产线的定位测量方法及系统
CN113670238B (zh) * 2021-07-29 2021-12-31 深圳市中图仪器股份有限公司 正交轴系统的正交性的测量方法
CN113587860B (zh) * 2021-08-09 2023-06-09 苏州中材建设有限公司 一种回转窑轴中心线在线动态检测方法
CN113446952B (zh) * 2021-08-17 2022-08-02 华北科技学院(中国煤矿安全技术培训中心) 一种在线非接触式轴径测量方法
CN113639673B (zh) * 2021-08-19 2023-01-31 江苏科技大学 一种大型凸轮轴凸轮相位角及轮廓的非接触测量方法
CN113739703A (zh) * 2021-08-27 2021-12-03 浙江大学台州研究院 一种回转体扫描测量方法及其数据补偿校准方法
CN115493529A (zh) * 2022-09-30 2022-12-20 江苏科技大学 一种轴类工件键槽对称度在位非接触检测方法
CN115876088B (zh) * 2023-03-06 2023-05-12 湖南大学 基于数字孪生的高铁轮轴3d测量方法及装置
CN116494024B (zh) * 2023-03-27 2023-11-03 浙江嘉湖机床股份有限公司 一种机床对中度检测组件及其检测方法
CN117146720B (zh) * 2023-11-01 2024-02-09 中机生产力促进中心有限公司 一种滚动直线导轨副导轨型面检测方法及检测平台
CN117570909B (zh) * 2024-01-16 2024-04-12 北京航空航天大学 一种带有连接结构的转子变形识别方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104990487A (zh) * 2015-06-18 2015-10-21 厦门大学 一种基于联动误差分析的非正交回转轴轴心偏差测量方法
US20160003608A1 (en) * 2014-07-02 2016-01-07 Prüftechnik Dieter Busch AG Method for determining the alignment of a laser light beam referred to an axis of rotation of a device that is rotatable around the axis of rotation and laser light detection device
CN108827192A (zh) * 2018-08-20 2018-11-16 西安交通大学 一种采用激光传感器测量同轴度的测量装置和方法
CN111238413A (zh) * 2020-02-26 2020-06-05 南京航空航天大学 一种测量轴类零件内孔同轴度的装置及方法
CN111578866A (zh) * 2020-06-16 2020-08-25 大连理工大学 一种多线激光传感器组合测量的空间位姿标定方法
CN111993159A (zh) * 2020-08-27 2020-11-27 江苏科技大学 一种轴类工件在位非接触检测方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3531615A1 (de) * 1985-09-04 1987-03-05 Busch Dieter & Co Prueftech Vorrichtung zum feststellen und ueberwachen von aenderungen der position von wellen
JPH0829131A (ja) * 1994-07-19 1996-02-02 S K S Kk 光学式測定装置
JP2008039707A (ja) 2006-08-09 2008-02-21 Ricoh Co Ltd 被測定物の振れを測定する装置
JP2009068972A (ja) 2007-09-12 2009-04-02 Institute Of National Colleges Of Technology Japan 回転振れ及び形状測定装置
JP2011053140A (ja) 2009-09-03 2011-03-17 Canon Inc 被覆軸体の偏心測定方法および偏心測定装置
ES2415776B2 (es) * 2011-12-23 2014-02-03 Universitat Politècnica De Catalunya Sistema y método de medida del desplazamiento transversal de un eje físico giratorio
CN105403148B (zh) * 2015-11-27 2018-04-13 天津大学 一种曲轴各轴颈中心位置度测量装置的测量和标定方法
CN107101582A (zh) * 2017-07-03 2017-08-29 吉林大学 基于结构光视觉的轴类零件径向跳动误差在线测量方法
CN107356222B (zh) * 2017-07-27 2019-06-14 合肥工业大学 五点圆柱度误差分离测量方法
CN108253906B (zh) 2018-03-20 2019-11-19 齐鲁工业大学 一种桥壳圆度圆柱度检测装置工件轴线定位误差补偿方法
CN109202535B (zh) * 2018-09-29 2020-12-22 南京艾提瑞精密机械有限公司 一种基于加工形貌检测估测主轴轴向跳动的方法
CN109500659A (zh) * 2018-10-31 2019-03-22 株洲格斯特动力机械有限责任公司 一种航空发动机空心轴类零件的加工方法
DE202018107207U1 (de) * 2018-12-17 2019-01-04 Friedrich Vollmer Feinmessgerätebau Gmbh Handgeführte Vorrichtung zur optischen berührungsfreien Bestimmung der Dicke eines gewalzten Metallbandes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160003608A1 (en) * 2014-07-02 2016-01-07 Prüftechnik Dieter Busch AG Method for determining the alignment of a laser light beam referred to an axis of rotation of a device that is rotatable around the axis of rotation and laser light detection device
CN104990487A (zh) * 2015-06-18 2015-10-21 厦门大学 一种基于联动误差分析的非正交回转轴轴心偏差测量方法
CN108827192A (zh) * 2018-08-20 2018-11-16 西安交通大学 一种采用激光传感器测量同轴度的测量装置和方法
CN111238413A (zh) * 2020-02-26 2020-06-05 南京航空航天大学 一种测量轴类零件内孔同轴度的装置及方法
CN111578866A (zh) * 2020-06-16 2020-08-25 大连理工大学 一种多线激光传感器组合测量的空间位姿标定方法
CN111993159A (zh) * 2020-08-27 2020-11-27 江苏科技大学 一种轴类工件在位非接触检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WU YANQI: "Non-contact Detection Research of Axle Shell on Coaxility of Bearing Hole", CHINESE SELECTED DOCTORAL DISSERTATIONS AND MASTER'S THESES FULL-TEXT DATABASES (MASTER), ENGINEERING SCIENCE & TECHNOLOGY II, no. S1, 15 December 2013 (2013-12-15), XP055904276 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116399284A (zh) * 2023-06-08 2023-07-07 山东科技大学 带孔零件表面垂直度误差及误差方向角测量装置及方法
CN116399284B (zh) * 2023-06-08 2023-08-22 山东科技大学 带孔零件表面垂直度误差及误差方向角测量装置及方法

Also Published As

Publication number Publication date
CN111993159A (zh) 2020-11-27
KR20220155997A (ko) 2022-11-24
JP7171114B2 (ja) 2022-11-15
JP2022543763A (ja) 2022-10-14
US20220379423A1 (en) 2022-12-01
CN111993159B (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
WO2022041986A1 (zh) 一种轴类工件在位非接触检测方法
US6985238B2 (en) Non-contact measurement system for large airfoils
WO2024066181A1 (zh) 一种轴类工件键槽对称度在位非接触检测方法
Liu et al. On-machine measurement method for the geometric error of shafts with a large ratio of length to diameter
CN112985299B (zh) 一种基于路径规划的光学探针在线检测方法
CN110645935B (zh) 数控回转轴集成位移传感器安装偏置的精确校准方法
CN117260389A (zh) 多传感器融合驱动的大型深孔零件形状误差在位测量系统
Liu et al. Online approach to measuring relative location of spatial geometric features of long rotating parts
CN113074628A (zh) 一种修边型面检验的装置及方法
CN107907071A (zh) 一种从动式轴承沟曲率半径测量装置及方法
CN113446952A (zh) 一种在线非接触式轴径测量方法
CN110293431B (zh) 一种五轴机床零点标定方法及装夹装置
Xin et al. Measurement techniques for complex surface based on a non-contact measuring machine
CN113639673B (zh) 一种大型凸轮轴凸轮相位角及轮廓的非接触测量方法
CN112414353B (zh) 凸轮轴偏心误差修正方法
CN113405454B (zh) 适用于舱段类产品姿态测量的装置、方法及软件系统
Buhmann et al. Alignment, calibration and data post‐processing for on‐machine metrology on ultra‐precision diamond turning machines
CN114178904B (zh) 一种机床测量系统的分辨力测量方法
US20240046447A1 (en) Crankshaft shape inspection method, arithmetic unit, program, and shape inspection apparatus
Adamczak et al. The adaptive approach to measurements of deviations of cylindrical parts
Wei et al. Research advance on geometric error recognition algorithm for CNC machine tools
ZHAO et al. Improved Circularity Metrology of Small Cylindrical Workpieces by the Segmenting-stitching Technique
CN116817737A (zh) 一种测量球墨铸铁管椭圆度的方法及装置
Song et al. Research on In-Situ Measurement Technology of NC Machining Based on Line Laser Sensor
CN116242300A (zh) 一种基于椭圆误差模型的回转体零件安装误差辨识方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022505625

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21859828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21859828

Country of ref document: EP

Kind code of ref document: A1