WO2022041402A1 - Container and method of using the same - Google Patents

Container and method of using the same Download PDF

Info

Publication number
WO2022041402A1
WO2022041402A1 PCT/CN2020/119636 CN2020119636W WO2022041402A1 WO 2022041402 A1 WO2022041402 A1 WO 2022041402A1 CN 2020119636 W CN2020119636 W CN 2020119636W WO 2022041402 A1 WO2022041402 A1 WO 2022041402A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
partition
piercer
cylinder
reagent
Prior art date
Application number
PCT/CN2020/119636
Other languages
French (fr)
Inventor
Weidong Zhang
Wenfang Zhang
Aimin Liang
Honghai XU
Original Assignee
Renolit Hansen Packaging Tech. (Bj) Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renolit Hansen Packaging Tech. (Bj) Ltd. filed Critical Renolit Hansen Packaging Tech. (Bj) Ltd.
Publication of WO2022041402A1 publication Critical patent/WO2022041402A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D11/00Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of plastics material
    • B65D11/02Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of plastics material of curved cross-section
    • B65D11/06Drums or barrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D11/00Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of plastics material
    • B65D11/18Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of plastics material collapsible, i.e. with walls hinged together or detachably connected
    • B65D11/1866Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of plastics material collapsible, i.e. with walls hinged together or detachably connected with detachable components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/32Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging two or more different materials which must be maintained separate prior to use in admixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/025Align devices or objects to ensure defined positions relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/16Reagents, handling or storing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/041Connecting closures to device or container
    • B01L2300/042Caps; Plugs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/041Connecting closures to device or container
    • B01L2300/044Connecting closures to device or container pierceable, e.g. films, membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/041Connecting closures to device or container
    • B01L2300/045Connecting closures to device or container whereby the whole cover is slidable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0672Integrated piercing tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0832Geometry, shape and general structure cylindrical, tube shaped

Definitions

  • the invention relates to the technical field of biochemistry, in particular to a container and a method of using the same.
  • PCR Polymerase Chain Reaction
  • the PCR in-vitro diagnosis technology can be used for nucleic acid detection of viruses in a specific application scenario.
  • the common detection process comprises: reagent preparation, nucleic acid extraction, sample addition and PCR amplification.
  • a swab sample needs to be encapsulated with a PCR in-vitro diagnostic kit at the sampling site, the kit is opened after the kit in which the swab sample is encapsulated is sent to a negative-pressure biological laboratory and the swab sample is inactivated, then reagents are prepared, the prepared reagents are added to the inactivated swab sample for nucleic acid extraction, the reagent where the nucleic acid is extracted is added to the reaction solution, placed in PCR instrument for processing, and thus a detection result is obtained.
  • the swab sample needs to be inactivated after obtained, the nucleic acid is extracted by using the prepared reagent and the prepared reagent is added to the reaction solution for testing, in which the operation is complicated, and the operator is faced with the risk of infection to some extent during the operation.
  • the core operation process of the detection process needs to be operated in the negative-pressure biological laboratory with biological safety cabinets, which is not only high cost, but also limited by site.
  • the whole testing process involves operation steps, long test time and low test efficiency.
  • the invention provides a container and a method of using the same.
  • a container comprising: a first container being a hollow cylinder with two open ends which are a first end and a second end, in which a movable partition partitioning the cylinder into a first cavity containing a first reagent and a second cavity is arranged;
  • a combination cover movably arranged at the first end comprising: a cover provided with a window, wherein when the cover is in a first position relative to the cylinder, the window is in an open state, and when the cover is in a second position relative to the cylinder, the window is in a closed state and the combination cover seals the first end;
  • a second container movably sealedly arranged at the second end, in which a third cavity containing a second reagent is formed, wherein one side of the third cavity away from the second end near which a first seal is provided is a plugged end;
  • a piercer arranged in the first container or the second container, in which at least one through channel is formed, capable of piercing the partition and the first seal, in the process of the second container moving towards the side close to the first container, and the first reagent in the first cavity can flow into the third cavity through the channel.
  • the second container in the process of the second container moving towards the side close to the first container, the second container has an initial butt position relative to the first container, when the piercer pierces the first seal and the partition, the second container has a puncture position relative to the first container, before the piercer pierces the first seal and the partition, the partition stands still relative to the first container; after the piercer pierces the first seal and the partition, the second container drives the partition to reach a termination position after continuing to move a predetermined distance, and a predetermined amount of the first reagent is dripped into the third cavity through the channel.
  • an inner wall of the first container is provided with a position limiting portion configured to limit the partition or the first seal along an axis direction of the cylinder.
  • the piercer is arranged in the second container, the first seal is provided with a crown configured to seal one side of the second cavity close to the second end, and a plug portion extending into the third cavity and sealing a position where the piercer matches the third cavity.
  • a first external thread is provided on an outer wall of the cylinder close to the second end, and a first internal thread matching the first external thread is provided on an inner wall of the second container.
  • the third cavity is provided with a first accommodating portion configured to install the piercer, a second accommodating portion configured to accommodate a second reagent, and a third accommodating portion provided on an outer periphery of the first accommodating portion, the first internal thread is provided on the third accommodating portion, and the third accommodating portion is formed with a relief structure on one side away from the first internal thread.
  • the first seal further comprises a protective sleeve connected to the crown and fitted over the piercer.
  • the cover is a hollow structure with both ends open, and has a bottom end close to the second end and a top end away from the second end, and the combination cover also includes a second seal provided on the top end and an engaging member pressed on the second seal.
  • the engaging member is generally in a circular shape, a first engaging portion is provided on an outer wall of the engaging member, a first clamping slot matched with the first engaging portion is provided on an inner wall of the cover close to the top end, and the first engaging portion is matched with the first clamping slot to form an engaging structure for fixing the second seal.
  • the combination cover can at least move axially relative to the first container to switch an open or closed state of the window.
  • the outer wall of the cylinder is provided with a first fitting portion
  • the inner wall of the cover is provided with a second fitting portion, when the cover is in the second position relative to the cylinder, the first fitting portion is fitted with the second fitting portion to form a locking structure.
  • the first fitting portion comprises a plurality of second clamping slots arranged at intervals around a circumferential direction of the cylinder or along an axial direction of the cylinder, and the second fitting portion is a plurality of second engaging portions arranged at intervals around the circumferential direction of the cover.
  • the outer wall of the cylinder close to the first end is also provided with a third engaging portion, when the second engaging portion is engaged with the third engaging portion, the cover is located at the farthest position away from the second end, and the window is in an open state.
  • the first fitting portion is a plurality of second clamping slots arranged at intervals around the circumferential direction of the cylinder, and the third engaging portion is an annular convex rib.
  • the first fitting portion comprises: at least two second clamping slots arranged at intervals along the axial direction of the cylinder, and a through portion connecting the two second clamping slots; and the third engaging portion is two snaps arranged at intervals.
  • the partition comprises any of a rubber plug and a piston.
  • the partition when the partition is a rubber plug, the rubber plug is wholly arranged in the cylinder by interference fit, and the rubber plug is provided in the middle with a to-be-pierced portion; the position limiting portion is located on one side of the rubber plug close to the first end, after the second container moves a first distance close to the position limiting portion and after the piercer pierces the to-be-pierced portion restricted by the position limiting portion, the second container can drive the rubber plug to cross the position limiting portion and then move a second distance towards the first end; or when the partition is a piston, the piston comprises: a main body of the to-be-pierced portion provided in the middle of one end, and a sealing ring sleeved on an outer wall of the main body, the sealing ring is in interference fit with the cylinder, the position limiting portion is located on one side of the piston close to the second end, after the second container moves a first distance to contact the position limiting portion, the piercer pierces the to
  • the piercer is arranged in the first container, the piercer comprises a puncture portion and a base located at one end of the puncture portion, the base is sealedly matched with the cylinder, and the partition is fitted over the piercer.
  • the outer wall of the second container is provided with a second external thread and the inner wall of the first container close to the first end is provided with a second internal thread matching the second external thread.
  • a method of using the container comprising:
  • the second container in the process of the second container moving towards the side close to the first container, the second container has an initial butt position relative to the first container, when the piercer pierces the first seal and the partition, the second container has a puncture position relative to the first container, before the piercer pierces the first seal and the partition, the partition stands still relative to the first container; after the piercer pierces the first seal and the partition, the second container drives the partition to reach a termination position after continuing to move a predetermined distance, and a predetermined amount of the first reagent is dripped into the third cavity through the channel.
  • the puncture position is spaced apart from the termination position by a second distance, the second distance is determined according to volume and flow cross-sectional area of the first cavity, volume and viscosity of the first reagent, a target amount of the first reagent required for testing and a flow cross-sectional area of the piercer.
  • the container provided in the embodiment of the present application is provided with a first container with a partition, a combination cover movably arranged at a first end of the first container, and a second container movably sealed at a second end of the first container, and optimizes design of an internal structure of the first container and the second container, it can be used to realize the process of nucleic acid extraction immediately after sampling, solves the problem that tests must be carried out in a biological laboratory and a biological safety cabinet, and reduces security risks, improves detection efficiency, greatly shortens detection waiting time, and reduces inspection costs.
  • the function of quantitative delivery of the first reagent in the first container to the second container is realized through reasonable control of movement state of the partition, compression of air in the closed cavity of the first container and reasonable design of the piercer channel.
  • the partition stands still relative to the first container before being pierced, and moves a specific distance after being pierced and after being pushed by specific forces to squeeze a predetermined amount of the first reagent into the second container from the first container, a quantitative amount of the first reagent is accurately added to the second reagent without professional operation.
  • the container provided in the embodiment of the application can completely change the traditional diagnostic test process when biological tests and chemical experiments are conducted in a closed environment, for example, extraction and detection of viruses, in order to provide an effective technical guarantee for rapid and instant detection.
  • FIG. 1 is a schematic diagram of components of a container provided in an embodiment of the application.
  • FIG. 2 is a schematic diagram of a state of the container provided in FIG. 1 when the second container is at the initial position relative to the first container.
  • FIG. 3 is a schematic diagram of the state of the container provided in FIG. 1 when the second container is at the puncture position relative to the first container.
  • FIG. 4 is a schematic diagram of the state of the container provided in FIG. 1 when the second container is at the termination position relative to the first container.
  • FIG. 5 is a schematic diagram of the first container of the container provided in FIG. 1.
  • FIG. 6 is a sectional view of the first container in FIG. 5.
  • FIG. 7 is a sectional view of the combination cover of the container provided in FIG. 1.
  • FIG. 8 is an exploded sectional view of the second container of the container provided in FIG. 1.
  • FIG. 9 is a schematic diagram of the first container of another container provided in the embodiment of the application.
  • FIG. 10 is a schematic diagram of components of another container provided in the embodiment of the application.
  • FIG. 11 is a schematic diagram of the state of the container provided in FIG. 10 when the second container is at the puncture position relative to the first container.
  • FIG. 12 is a schematic diagram of the state of the container provided in FIG. 10 when the second container is at the termination position relative to the first container.
  • FIG. 13 is an exploded schematic diagram of the first container of the container provided in FIG. 10.
  • first container 11: first end, 12: second end, 110: first cavity, 120: second cavity, 13: partition, 14: position limiting portion, 15: first external thread, 16: first fitting portion, 17: third engaging portion, 18: second internal thread;
  • 200 second container, 20: third cavity, 201: first accommodating portion, 202: second accommodating portion, 203: third accommodating portion, 21: piercer, 211: puncture portion, 212: base, 213: opening, 214: sealing ring, 22: first seal, 221: crown, 222: plug portion, 223: protective sleeve, 23: first internal thread, 24: relief structure, 25: second external thread; and
  • 300 combination cover, 30: cover, 301: window, 302: first clamping slot, 303: second fitting portion, 31: second seal, 32: engaging member, 320: first engaging portion.
  • a new container and a method of using the same for nucleic acid detection of some viruses, or microbial inoculation tests, or mixed tests of toxic chemical reagents which can simplify operation process, improve test efficiency, test security, reduce costs, and are not restricted by testing sites.
  • the embodiment of the Description of the present application provides a container that mainly comprises: a first container 100, a combination cover 300, and a second container 200.
  • the first container 100 is a hollow cylinder with open ends.
  • the cylinder has a first end 11 and a second end 12 opposite to each other.
  • the first end 11 is an upper end
  • the second end 12 is a lower end.
  • a partition 13 is provided inside the cylinder. The partition 13 partitions the cylinder into a first cavity 110 and a second cavity 120.
  • the first cavity 110 is used to contain a first reagent.
  • the combination cover 300 can be movably arranged at the first end 11 of the cylinder.
  • the combination cover 300 can comprise: a cover 30 provided with a window 301. When the cover 30 is in a first position relative to the cylinder, the window 301 is in an open state; and when the cover 30 is in a second position relative to the cylinder, the window 301 is in a closed state and the combination cover 300 seals the first end 11.
  • the second container 200 can be movably sealedly arranged at the second end 12 of the cylinder.
  • a third cavity 20 containing a second reagent is formed in the second container 200.
  • One side of the third cavity 20 away from the second end 12 of the cylinder is a plugged end, and one side close to the second end 12 of the cylinder is provided with a piercer 21.
  • At least one channel communicating with the third cavity 20 is formed in the piercer 21.
  • the piercer 21 is capable of piercing the partition 13 in the process of the second container 200 moving towards the side close to the first container 100, and the first reagent in the first cavity 110 can flow into the third cavity 20 through the channel of the piercer 21.
  • the specific components of the first reagent may be different according to different usage scenarios of the container.
  • the first reagent when the container is used in an in-vitro diagnostic test scenario, the first reagent can be a lysing agent used to extract biological characteristics (including DNA, RNA) in the virus or called a lysozyme.
  • the first reagent when the container is applied in a microbial inoculation test scenario, the first reagent can be a bacterial agent.
  • the first reagent can be a reagent that needs to be mixed. Since the first reagent needs to be injected into the third cavity 20, the first reagent may be fluid, for example, liquid, or a mixture of solid and liquid.
  • the specific components of the second reagent may also be different according to different usage scenarios of the container.
  • the second reagent when the container is used in an in-vitro diagnostic test scenario, the second reagent can be a test agent for testing the biological characteristics of the lysing agent.
  • the second reagent when the container is used in a microbial inoculation test scenario, the second reagent can be a culture solution.
  • the second reagent can be another reagent that needs to be mixed.
  • the second reagent may be solid, or liquid, or a mixture of solid and liquid.
  • operation steps are included as follows: samples after sampling are put into the first container 100; after that, the combination cover 300 seals and locks the first container 100 that is not opened any more; the first container 100 is shaken to ensure that the samples are fully infiltrated by the first reagent, so that the nucleic acid can be extracted reliably; the first container 100 is connected with the second container 200, and the second container 200 is pushed by a certain distance relative to the first container 100, the piercer 21 in the second container 200 can pierce the partition 13, after the partition 13 is pierced, the partition 13 is driven to move a predetermined distance in the case of pushing the second container 200, so that a specified dose of the first reagent is dripped into the second reagent. Finally, the container is placed in test instrument to test and read data.
  • the overall test process is carried out in a closed environment, a tester has no risk of exposure, which greatly improves test security, and there is no requirement for external test environment, and there is no need to use a dedicated negative-pressure biological laboratory, which greatly reduces costs and improves convenience of testing. In addition, steps of inactivation and transfer of swab samples are cancelled, which greatly improves test efficiency.
  • the second container 200 may further include a first seal 22.
  • the first seal 22 is provided with a crown 221 configured to seal one side of the second cavity 120 close to the second end 12 of the cylinder, and a plug portion 222 extending into the third cavity 20 and sealing a position where the piercer 21 matches the third cavity 20.
  • the first seal 22 may have a hollow ring shape as a whole, in which the hollow portion is a through hole for sealedly piercing the piercer 21.
  • the annular portion includes: the crown 221 and the plug portion 222, wherein an outer diameter of the crown 221 is greater than that of the plug portion 222.
  • the first seal 22 is arranged in the second container 200.
  • the crown 221 of the first seal 22 can be sealedly matched with the second cavity 120, so as to prevent the reagent from leaking at the position where the first container 100 matches and the second container 200.
  • the plug portion 222 is sealedly arranged between the second container 200 and the piercer 21 to prevent the reagent from leaking at the matching position of the second container 200 and the piercer 21.
  • the piercer 21 may be a hollow structure as a whole, and at least one channel communicating with the third cavity 20 is formed in the piercer 21.
  • the number of this channel can be one or more.
  • the piercer 21 may include a puncture portion 211 and a base 212 at one end of the puncture portion 211.
  • the plug portion 222 is provided in a gap between the puncture portion 211 and the first accommodating portion 201. One end of the plug portion 222 abuts against the base 212, and the other end is connected with the crown 221.
  • At least one opening 213 is provided at the tip of the puncture portion 211 of the piercer 21.
  • the number of the channels depends on the number of the opening 213. When the number of the opening 213 is one, the number of the channel is one, and when the number of the opening 213 is two, the number of the channel is two.
  • the base 212 of the piercer 21 is matched with the corresponding portion of the second container 200 to ensure that the piercer 21 remains stable and is not skewed in use.
  • the first seal 22 may further include a protective sleeve 223 connected to the crown 221.
  • the protective sleeve 223 is fitted over the puncture portion 211, and can seal the puncture portion 211 of the piercer 21.
  • the second reagent placed in the third cavity 20 can be set to a fixed known amount.
  • the first reagent required for detection is also limited to a predetermined range.
  • the volume of the first reagent as required can be about 40 microliters, or about 100 microliters. How to accurately add the target amount of the first reagent in the sealed state to the second reagent in the third cavity 20 by using the container provided in the application is an urgent problem to be solved.
  • one method of adding a predetermined amount of reagent to another reagent in the sealed state is to use special matching equipment, for example, a liquid gun with a precision scale for pipetting. Obviously, this method cannot be applied to the application.
  • Another method is to set the cylinder of the first container 100 in a deformable structure, and the first reagent in the first container 100 flows into the second reagent in the third cavity 20 by squeezing the first container 100. This method cannot guarantee that the added first reagent is the target amount.
  • another method is direct injection.
  • the piercer 21 pierces the partition 13 so that the first reagent flows into the second reagent in the third cavity 20.
  • the pressure is released, so that the first reagent in the first container 100 flows into the piercer 21 and the third cavity 20 at an uncontrollable high flow rate, which also leads to the problem that the target amount of the added first reagent cannot be guaranteed.
  • the second container 200 in the process of the second container 200 moving towards the side close to the first container 100, the second container 200 has an initial butt position relative to the first container 100, as shown in FIG. 2.
  • the second container 200 has a puncture position relative to the first container 100, as shown in FIG. 3.
  • the partition 13 stands still relative to the first container 100; after the piercer 21 pierces the first seal 22 and the partition 13, the second container 200 drives the partition 13 to reach a termination position after continuing to move a predetermined distance, as shown in FIG. 4. In this case, a predetermined amount of the first reagent is dripped into the third cavity 20 through the channel of the piercer 21.
  • the initial position is spaced apart from the puncture position by a first distance.
  • the puncture position is spaced apart from the termination position by a second distance.
  • the second distance is determined according to volume and flow cross-sectional area of the first cavity 110, volume and viscosity of the first reagent, a target amount of the first reagent required for testing and a flow cross-sectional area of the piercer 21.
  • the first cavity 110 is a cylindrical cylinder
  • its flow cross-sectional area is directly proportional to its inner diameter.
  • a cylindrical opening is formed in the piercer 21
  • its flow cross-sectional area is directly proportional to its inner diameter.
  • the first distance mainly depends on the height of the piercer 21 exposing the first seal 22.
  • the first distance depends on the height at which the piercer 21 exposes the first seal 22 and the thickness of the protective sleeve 223.
  • the preset distance (the first distance from the initial position to the puncture position and the second distance from the puncture position to the termination position) can be determined for the second container 200 to move in each stage relative to the first container 100.
  • the second container 200 and the structure matching the second container 200 can be set, so that in the process of the second container 200 moving towards the side close to the first container 100, the second container 200 moves a first distance before the partition 13 is pierced, and the partition 13 does not move, that is, the volume of the first cavity 110 is not compressed.
  • the partition 13 is driven by the second container 200 to move the second distance, and the target amount of the first reagent in the first cavity 110 is accurately dripped into the third cavity 20 through the piercer 21.
  • the inner diameter of the first container 100 is 11mm, the effective volume is about 3ml.
  • the volume of the second container 200 is 0.5ml, and the maximum inner diameter of the piercer 21 is 2mm.
  • the viscosity of the first reagent is the same as that of water.
  • the second container 200 is rotated to push the partition 13 to move about 7mm (about 0.6ml of the volume of the first container occupied) , and then 130 ⁇ l (microliter) of the first reagent can be exported into the second container 200. If the added amount of the first reagent is reduced to about 800 ⁇ l, and the second container 200 is rotated to push the partition 13 to move about 7mm (about 0.6ml of volume of the first container 100 occupied) , about 70 ⁇ l of the first reagent can be exported into the second container 200.
  • the inner diameter of the first container 100 is 11mm and the effective volume is about 3ml.
  • the volume of the second container 200 is 0.5ml, and the maximum inner diameter of the piercer 21 is 2mm.
  • the viscosity of the first reagent is the same as that of water. 800 ⁇ l of the first reagent is added into the first container 100. If necessary, 30 ⁇ l of the first reagent is exported into the second container 200, the thread height is set to effectively push the partition 13 to move about 2.5mm (about 0.2ml of the volume of the first container 100 occupied) , 30 ⁇ l of the first reagent can be poured into the second container 200.
  • the volume of the first reagent can be accurately derived by adjusting the added amount of the first reagent and pushing the partition 13 to occupy the volume of the first container 100.
  • the volume parameters of the first container 100 and the second container 200 are determined, the diameter of the piercer 21 is determined, and the viscosity of the first reagent is determined, 700 ⁇ l of the first reagent is added into the first container 100, and 0.2ml of the volume of the first container is occupied by pushing the partition 13, and 25 ⁇ l of the first reagent can be exported into the second container 200.
  • the calculated thread height ensures that the partition 13 can be moved to occupy 0.6ml of the volume of the first container 100. If 100 ⁇ l of the first reagent needs to be exported, 0.8ml of the volume of the first container 100 is occupied; and if the volume of the first reagent to be exported is about 45 ⁇ l, 0.4ml of the volume of the first container 100 is occupied.
  • the volume of the first reagent to be exported is directly proportional to the volume (air) of the first container 100 occupied by pushing the partition 13.
  • the volume of the first reagent added into the first container 100 is adjusted, for example, it is not 700 ⁇ l in Experiment II, but 2ml in Experiment I, then 0.6ml of the volume is also occupied, and the amount of liquid exported is about 130 ⁇ l.
  • a number of experiments can be carried out to determine the proportion of the volume of the first reagent exported in the case of Experiment I to the volume (air) of the first container 100 occupied by pushing the partition 13.
  • the inner wall of the first container 100 is provided with a position limiting portion 14 configured to limit the partition 13 or the first seal 22 along an axis direction of the cylinder.
  • the position limiting portion 14 is configured to preliminarily limit the partition 13 or the first seal 22, so that after the first container 100 is connected with the second container 200, when the piercer 21 of the second container 200 pierces the first seal 22 and the partition 13, the position limiting portion 14 can provide some axial force to ensure that the piercer 21 can reliably pierce the first seal 22 and the partition 13.
  • the partition 13 stands still relative to the first container 100, and after the first seal 22 and the partition 13 are pierced, the partition 13 can move synchronously with the second container 200.
  • the position limiting portion 14 can be an annular or dot-like convex structure provided on the inner wall of the first container 100.
  • the specific form of the position limiting portion 14 can also be other forms that can realize restriction. The present application does not specify the specific form herein.
  • the position limiting portion 14 can be located on the upper side of the partition 13 (i.e., one side close to the second end 12 in the figure) , so as to provide an axial force against the partition 13.
  • the position limiting portion 14 can be located on the lower side of the partition 13, so as to provide an axial force against the first seal 22.
  • the partition 13 can include any of a rubber plug and a piston.
  • the rubber plug When the partition 13 is in a form of a rubber plug, the rubber plug is generally arranged in the cylinder by interference fit, and the rubber plug is provided in the middle with a to-be-pierced portion.
  • the position limiting portion 14 is located on one side of the rubber plug close to the first end. After the second container 200 moves a first distance close to the position limiting portion 14 and after the piercer 21 pierces the to-be-pierced portion restricted by the position limiting portion, the second container 200 can drive the rubber plug to cross the position limiting portion 14 and then move a second distance towards the first end under the action of the first force.
  • the piston comprises: a main body of the to-be-pierced portion provided in the middle of one end, and a sealing ring sleeved on an outer wall of the main body.
  • the sealing ring is in interference fit with the cylinder.
  • the position limiting portion 14 is located on one side of the piston close to the second end. After the second container 200 moves a first distance to contact the position limiting portion 14, the piercer 21 pierces the to-be-pierced portion, the second container 200 can cross the position limiting portion 14 and drive the piston to move a second distance towards the first end under the action of the second force.
  • the specific values of the first force and the second force can be determined according to the matching relationship between the partition 13 and the corresponding components.
  • the application does not specify the specific values herein.
  • the first cavity 110 and the second cavity 120 are connected through the piercer 21, and the initial pressure of the first cavity 110 and the second cavity 120 is equal.
  • the second distance for further upward movement is positively correlated with the target amount of the first reagent needed to be dripped.
  • the first container 100 can be a container with a circular cross-section, of which an inner diameter is known. After the second distance for further upward movement is determined, the volume of the first reagent dripped into the third container can be ensured to be the target amount.
  • the first container 100 and the second container 200 can be connected by means of thread.
  • the first external thread 15 is provided on the outer wall of the cylinder close to the second end 12 of the first container 100
  • the first internal thread 23 matching the first external thread 15 is provided on the inner wall of the second container 200.
  • the third cavity is provided with a first accommodating portion 201 configured to install the piercer 21, a second accommodating portion 202 configured to accommodate a second reagent, and a third accommodating portion 203 provided on an outer periphery of the first accommodating portion 201, the first internal thread 23 is provided on the third accommodating portion 203, and the third accommodating portion 203 is formed with a relief structure 24 on one side away from the first internal thread 23.
  • the relief structure 24 can be a smooth inner wall provided on the lower side of the first internal thread 23.
  • the first accommodating portion 201, the second accommodating portion 202, and the third accommodating portion 203 can be integral, or partially or completely separated.
  • the first accommodating portion 201, the second accommodating portion 202, and the third accommodating portion 203 can be integral.
  • the first accommodating portion 201 and the third accommodating portion 203 can be integral.
  • the first accommodating portion 201 and the third accommodating portion 203 configured to accommodate the second reagent can be separated.
  • the container provided in the embodiment of the application can match the volume of the first reagent to be added according to the second reagent set by detection or experiment.
  • parameters such as the thread height of different sizes, the moving distance of the partition 13 and the diameter of the piercer 21, containers of different sizes can be designed to meet different test requirements.
  • the cover 30 is a hollow structure with both ends open, and has a bottom end close to the second end and a top end away from the second end.
  • the combination cover 300 also includes a second seal 31 provided on the top end and an engaging member 32 pressed on the second seal 31.
  • the second seal 31 includes: a base, a peripheral portion provided on the outer periphery of the base and configured to form a seal at the position where the cover 30 matches the first container 100, and a convex portion provided on one side of the base and configured to form a seal on the top end of the cover 30 and selectively on the first end 11 of the first container 100.
  • the cover 30 is provided with an annular mounting slot for mounting the peripheral portion, and the convex portion is sealedly matched with the inner wall of the first container 100.
  • the second seal 31 can be made of a material with elasticity, and can be matched with the first container 100 by means of interference fit.
  • the convex portion can be a cylinder with the outer diameter identical to or slightly larger than the aperture of the first container 100, and at least one annular convex can be provided on the side wall of the cylinder, and the annular convex acts as a sealing ring.
  • the annular convex can be more than one along the axial direction, for example, as shown in FIG. 8, the annular convex can be two.
  • the top end of the cover 30 is provided with an open end.
  • the second seal 31 can be installed in the cover 30 from the open end to seal the cover 30.
  • the sealing contact can be formed by selectively matching the upper end of the first container 100 according to the service state.
  • an engaging member 32 is also provided on the upper side of the second seal 31 (i.e., one side away from the first container 100) .
  • the engaging member 32 can be wholly in a circular shape, and a first engaging portion 320 is provided on the outer wall of the engaging member 32.
  • the cover 30 is provided with a first clamping slot 302 matched with the first engaging portion 320 on the inner wall close to the top end.
  • the first engaging portion 320 is matched with the first clamping slot 302 to form a clamping structure for fixing the second seal 31.
  • the engaging member 32 and the cover 30 form the clamping structure to restrict the second seal 31.
  • the combination cover 300 can at least move axially relative to the first container 100 to switch an open or closed state of the window 301.
  • the relative movement relationship between the combination cover 300 and the first container 100 can be set according to their specific matching structure. For example, a relative movement between the combination cover 300 and the first container 100 can only occur. Specifically, the combination cover 300 can move axially relative to the first container 100. Alternatively, the combination cover 300 and the first container 100 can be in a combination of relative movement and relative rotation. To be specific, the combination can include rotating relative to the first container 100, moving and then rotating. In addition, the combination can include rotating relative to the first container 100. Specifically, the combination cover 300 can rotate axially relative to the first container 100, thereby changing the position of the window 301 relative to the first container 100, and switching the open or close state of the window 301.
  • the outer wall of the cylinder is provided with a first fitting portion 16
  • the inner wall of the cover 30 is provided with a second fitting portion 303.
  • the first fitting portion 16 is fitted with the second fitting portion 303 to form a locking structure.
  • the combination cover 300 can move axially relative to the first container 100.
  • a locking mechanism is formed by the first fitting portion 16 on the outer wall of the cylinder and the second fitting portion 303 on the cover 30. When the cover 30 is in the second position relative to the cylinder, the locking mechanism can ensure that the cover 30 is axially fixed relative to the cylinder. Under the action of external forces such as vibration, the cover 30 is not easy to move relative to the first container 100, and the window 301 is automatically opened.
  • the first fitting portion 16 can include a plurality of second clamping slots arranged at intervals around the circumferential direction of the cylinder.
  • the second fitting portion 303 is a plurality of second engaging portions arranged at intervals around the circumferential direction of the cover 30.
  • the first fitting portion 16 can include a plurality of second clamping slots arranged at intervals along the axial direction of the cylinder.
  • the second fitting portion 303 is a plurality of second engaging portions arranged at intervals around the circumferential direction of the cover 30.
  • the second clamping slots and the second engaging portions can form a locking structure to prevent accidental loosening of the combination cover 300 when in the second position relative to the first container 100.
  • the outer wall of the cylinder close to the first end 11 is also provided with a third engaging portion 17.
  • the cover 30 is located at the farthest position away from the second end 12, and the window 301 is in an open state.
  • the second position can be the farthest position of the cover 30 away from the second end 12.
  • the second position can also be lower than the farthest position.
  • the first fitting portion 16 is a plurality of second clamping slots arranged at intervals around the circumferential direction of the cylinder
  • the third engaging portion 17 is a convex rib matched with the second clamping slots.
  • the first fitting portion 16 includes: at least two second clamping slots arranged at intervals along the axial direction of the cylinder, and a through portion connecting the two second clamping slots; and the third engaging portion 17 is two snaps arranged at intervals.
  • the through portion can be a through groove formed on the outer surface of the cylinder to connect the upper and lower second clamping slots.
  • the through portion can be symmetrically installed on the outer wall of the intermediate portion of the first cylinder.
  • the snaps of the cover 30 can be clamped through a clamping slot close to the upper end of the cylinder. After the cover 30 rotates relative to the cylinder by some angle, the snaps of the cover 30 are matched with the through portion. Then, the cover 30 axially moves relative to the cylinder until it cannot move any more. At this time, the cover 30 rotates relative to the cylinder by some angle again, such that the snaps at the lower end of the cover 30 are clamped into the second clamping slots at the lower end of the cylinder to lock and match the snaps and the second clamping slots. In this case, the cover 30 cannot be opened axially, the window 301 is closed, and the first cavity 110 is in a sealed state. The snaps, when rotated in a reverse direction, can be detached from the second clamping slots, and then pulled upward to open the cover 30.
  • FIGS. 10, 11 and 12 There is also provided another container in the Description of the present application.
  • the main structure, component, and function of the container are similar to those provided in the embodiments.
  • the application mainly demonstrates the difference therebetween. Please refer to the specific description of the embodiments for the similarities, which are not further described herein.
  • the piercer 21 is arranged in the first container 100.
  • the piercer 21 comprises a puncture portion 211 and a base 212 located at one end of the puncture portion 211, the base 212 is sealedly matched with the cylinder, and the partition 13 is fitted over the puncture portion 211.
  • the piercer 21 can be particularly an injection molded part with high hardness.
  • An annular groove can be provided on the outer wall of the base 212, and a sealing ring 214 can be arranged in the annular groove.
  • the sealing ring 214 can be made of rubber material to ensure the tightness when the piercer 21 matches the inner wall of the cylinder.
  • the partition 13 is hermetically wrapped outside the piercer 21.
  • the partition 13 can include a first portion sealedly matched with the inner wall of the first container 100 and a second portion wrapped outside the puncture portion 211.
  • the first seal 22 can be a sealing sheet arranged at the open end of the second container 200.
  • a second external thread 25 is provided on the outer wall of the second container 200, and a second internal thread 18 matching the second external thread 25 is provided on the inner wall of the first container 100 close to the first end 11.
  • the second external thread 25 of the second container 200 has a starting end and a termination end. The termination end is matched with the outer wall of the second container 200 to form a position limiting portion.
  • the upper end of the second container 200 extends into the second end of the first container 100, before the partition 13 and the first seal 22 are pierced, the partition 13 is restricted by the position limiting portion 14 on the inner wall of the first container 100.
  • the second container 200 is further rotated relative to the first container 100.
  • the second container 200 can drive the partition 13 and the piercer 21 to move towards the first end 12 of the first container 100.
  • the second container 200 stands still relative to the first container 100. In this case, it can ensure that a certain amount of the first reagent in the first container 100 is dripped into the second container 200 through the channel of the piercer 21.
  • the sample includes a main body for carrying the analyte, and an operation portion connected with the main body.
  • the method further comprises: breaking at least a part of the operation portion to prevent the analyte (sample) from being contaminated, when the window 301 is closed.
  • the main operation steps include: packaging of the reagent before use and formal use.
  • the method includes:
  • Packaging of the first reagent putting the partition 13 into the bottom of the first container 100 and sealing one end of the first container 100 in a corresponding clean production environment. Putting the second seal 31 into the cover 30 and fixing with the engaging member 32 to form the combination cover 300. Putting the first reagent into the first container 100 and covering tightly with the combination cover 300, such that the snaps at the bottom of the outer cover are clamped into the corresponding slot of the first container 100 and are locked to prevent the combination cover 300 from being opened before use.
  • Packaging of the second reagent loading the second reagent into the second container 200, loading the piercer 21, and tightly packaging with the first seal 22 to complete packaging of the second reagent in the corresponding clean environment.
  • the piercer 21 can be protected by the protective cover 223 before use.
  • the method includes:
  • the first reagent and the second reagent required for detection of viruses can be packaged in two containers (the first container 100 and the second container 200) , respectively, when the container provided in the application is applied to the virus inspection.
  • the subsequent testers can complete the test in a common environment through simple operations. The operation steps are particularly included as follows:
  • the hand contact part is broken by the analyte, and the sample that enters the first container 100 is only kept 2cm to 3cm long to prevent the sample from being contaminated.
  • the first container 100 is locked and no longer opened. The tester only needs to shake the first container 100 by hand to ensure that the sample is fully soaked so as to facilitate the extraction of nucleic acids.
  • the first container 100 is connected with the second container 200 and completely rotated. In this way, the piercer 21 in the second container 200 can pierce the first container 100 and push the piston to move, so that 2-3 drops (specified dose) of the test solution are dripped into the first reagent. Then the container is put into the test instrument to read data.
  • the container provided in the embodiment of the application when used for biological tests and chemical experiments in a closed environment, for example, when extraction and detection of viruses are carried out, it solves the problem that tests must be carried out in a biological laboratory and a biological safety cabinet, and reduces security risks, improves detection efficiency, greatly shortens detection waiting time, and reduces inspection costs.

Abstract

A container and a method of using the same. The container comprises: a first container (100) being a hollow cylinder with two ends, i.e., a first end (11) and a second end (12) opposite to each other, open, in which a partition partitioning the cylinder into a first cavity (110) and a second cavity (120) is arranged; a combination cover (300) movably arranged at the first end (11) comprising: a cover (30) provided with a window (301); a second container (200) movably sealedly arranged at the second end (12), in which a third cavity (20), of which one side away from the second end (12) near which a first seal (22) is provided is a plug portionged end, is formed; a piercer (21), in which at least one through channel connected with the third cavity (20) is formed, capable of piercing the partition and the first seal (22) in the process of the second container (200) moving towards the side close to the first container (100), and the first reagent in the first cavity (110) can flow into the third cavity (20) through the channel. The present invention can simplify operation process, improve test efficiency, test security, reduce costs, and is not restricted by testing sites.

Description

CONTAINER AND METHOD OF USING THE SAME
Cross reference to related application
The present application claims the priority of the Chinese patent application for invention No. 202010857063.4, entitled “container and method of using the same” , filed on August 24, 2020, of which the entire contents are incorporated by reference in the present application.
Technical Field
The invention relates to the technical field of biochemistry, in particular to a container and a method of using the same.
Background
In the current field of biochemistry, it is necessary to add one reagent to another reagent in a sealed environment, so as to facilitate subsequent specific biological tests and chemical experiments, among which, one of the typical biological testing techniques is in-vitro diagnostic technology. Currently, PCR (Polymerase Chain Reaction) is one of the most important diagnostic techniques in vitro.
The PCR in-vitro diagnosis technology can be used for nucleic acid detection of viruses in a specific application scenario. At present, the common detection process comprises: reagent preparation, nucleic acid extraction, sample addition and PCR amplification.
Currently, when the PCR in-vitro diagnostic technology is used for nucleic acid detection of viruses, a swab sample needs to be encapsulated with a PCR in-vitro diagnostic kit at the sampling site, the kit is opened after the kit in which the swab sample is encapsulated is sent to a negative-pressure biological laboratory and the swab sample is inactivated, then reagents are prepared, the prepared reagents are added to the inactivated swab sample for nucleic acid extraction, the reagent where the nucleic acid is extracted is added to the reaction solution, placed in PCR instrument for processing, and thus a detection result is obtained.
The inventor finds that the following problems occur in the above-mentioned  detection process:
1. The swab sample needs to be inactivated after obtained, the nucleic acid is extracted by using the prepared reagent and the prepared reagent is added to the reaction solution for testing, in which the operation is complicated, and the operator is faced with the risk of infection to some extent during the operation.
2. The core operation process of the detection process needs to be operated in the negative-pressure biological laboratory with biological safety cabinets, which is not only high cost, but also limited by site.
3. The whole testing process involves operation steps, long test time and low test efficiency.
Summary of Invention
In order to overcome at least one defect in the prior art, the invention provides a container and a method of using the same.
The objective of the present invention can be achieved by the following technical solutions:
a container, comprising: a first container being a hollow cylinder with two open ends which are a first end and a second end, in which a movable partition partitioning the cylinder into a first cavity containing a first reagent and a second cavity is arranged;
a combination cover movably arranged at the first end comprising: a cover provided with a window, wherein when the cover is in a first position relative to the cylinder, the window is in an open state, and when the cover is in a second position relative to the cylinder, the window is in a closed state and the combination cover seals the first end;
a second container movably sealedly arranged at the second end, in which a third cavity containing a second reagent is formed, wherein one side of the third cavity away from the second end near which a first seal is provided is a plugged end; and
a piercer arranged in the first container or the second container, in which at least one through channel is formed, capable of piercing the partition and the first seal, in  the process of the second container moving towards the side close to the first container, and the first reagent in the first cavity can flow into the third cavity through the channel.
In a preferred embodiment, in the process of the second container moving towards the side close to the first container, the second container has an initial butt position relative to the first container, when the piercer pierces the first seal and the partition, the second container has a puncture position relative to the first container, before the piercer pierces the first seal and the partition, the partition stands still relative to the first container; after the piercer pierces the first seal and the partition, the second container drives the partition to reach a termination position after continuing to move a predetermined distance, and a predetermined amount of the first reagent is dripped into the third cavity through the channel.
In a preferred embodiment, an inner wall of the first container is provided with a position limiting portion configured to limit the partition or the first seal along an axis direction of the cylinder.
In a preferred embodiment, the piercer is arranged in the second container, the first seal is provided with a crown configured to seal one side of the second cavity close to the second end, and a plug portion extending into the third cavity and sealing a position where the piercer matches the third cavity.
In a preferred embodiment, a first external thread is provided on an outer wall of the cylinder close to the second end, and a first internal thread matching the first external thread is provided on an inner wall of the second container.
In a preferred embodiment, the third cavity is provided with a first accommodating portion configured to install the piercer, a second accommodating portion configured to accommodate a second reagent, and a third accommodating portion provided on an outer periphery of the first accommodating portion, the first internal thread is provided on the third accommodating portion, and the third accommodating portion is formed with a relief structure on one side away from the first internal thread.
In a preferred embodiment, the first seal further comprises a protective sleeve  connected to the crown and fitted over the piercer.
In a preferred embodiment, the cover is a hollow structure with both ends open, and has a bottom end close to the second end and a top end away from the second end, and the combination cover also includes a second seal provided on the top end and an engaging member pressed on the second seal.
In a preferred embodiment, the engaging member is generally in a circular shape, a first engaging portion is provided on an outer wall of the engaging member, a first clamping slot matched with the first engaging portion is provided on an inner wall of the cover close to the top end, and the first engaging portion is matched with the first clamping slot to form an engaging structure for fixing the second seal.
In a preferred embodiment, the combination cover can at least move axially relative to the first container to switch an open or closed state of the window.
In a preferred embodiment, the outer wall of the cylinder is provided with a first fitting portion, and the inner wall of the cover is provided with a second fitting portion, when the cover is in the second position relative to the cylinder, the first fitting portion is fitted with the second fitting portion to form a locking structure.
In a preferred embodiment, the first fitting portion comprises a plurality of second clamping slots arranged at intervals around a circumferential direction of the cylinder or along an axial direction of the cylinder, and the second fitting portion is a plurality of second engaging portions arranged at intervals around the circumferential direction of the cover.
In a preferred embodiment, the outer wall of the cylinder close to the first end is also provided with a third engaging portion, when the second engaging portion is engaged with the third engaging portion, the cover is located at the farthest position away from the second end, and the window is in an open state.
In a preferred embodiment, the first fitting portion is a plurality of second clamping slots arranged at intervals around the circumferential direction of the cylinder, and the third engaging portion is an annular convex rib.
In a preferred embodiment, the first fitting portion comprises: at least two second clamping slots arranged at intervals along the axial direction of the cylinder, and a  through portion connecting the two second clamping slots; and the third engaging portion is two snaps arranged at intervals.
In a preferred embodiment, the partition comprises any of a rubber plug and a piston.
In a preferred embodiment, when the partition is a rubber plug, the rubber plug is wholly arranged in the cylinder by interference fit, and the rubber plug is provided in the middle with a to-be-pierced portion; the position limiting portion is located on one side of the rubber plug close to the first end, after the second container moves a first distance close to the position limiting portion and after the piercer pierces the to-be-pierced portion restricted by the position limiting portion, the second container can drive the rubber plug to cross the position limiting portion and then move a second distance towards the first end; or when the partition is a piston, the piston comprises: a main body of the to-be-pierced portion provided in the middle of one end, and a sealing ring sleeved on an outer wall of the main body, the sealing ring is in interference fit with the cylinder, the position limiting portion is located on one side of the piston close to the second end, after the second container moves a first distance to contact the position limiting portion, the piercer pierces the to-be-pierced portion, the second container can cross the position limiting portion and drive the piston to move a second distance towards the first end.
In a preferred embodiment, the piercer is arranged in the first container, the piercer comprises a puncture portion and a base located at one end of the puncture portion, the base is sealedly matched with the cylinder, and the partition is fitted over the piercer.
In a preferred embodiment, the outer wall of the second container is provided with a second external thread and the inner wall of the first container close to the first end is provided with a second internal thread matching the second external thread.
A method of using the container, comprising:
moving the cover away from a second end of the cylinder to a first position and opening the window, moving the cover close to the second end of the cylinder to a second position and closing the window after placing a sample containing an analyte  into the first container through the window; contacting the sample with the first reagent contained in the first container; and
installing the second container on the second end, piercing, by the piercer, the partition and the first seal, and then dripping a predetermined volume of the first reagent into the second reagent of the second container in the process of the second container approaching the first end.
In a preferred embodiment, in the process of the second container moving towards the side close to the first container, the second container has an initial butt position relative to the first container, when the piercer pierces the first seal and the partition, the second container has a puncture position relative to the first container, before the piercer pierces the first seal and the partition, the partition stands still relative to the first container; after the piercer pierces the first seal and the partition, the second container drives the partition to reach a termination position after continuing to move a predetermined distance, and a predetermined amount of the first reagent is dripped into the third cavity through the channel.
In a preferred embodiment, the puncture position is spaced apart from the termination position by a second distance, the second distance is determined according to volume and flow cross-sectional area of the first cavity, volume and viscosity of the first reagent, a target amount of the first reagent required for testing and a flow cross-sectional area of the piercer.
The container provided in the embodiment of the present application is provided with a first container with a partition, a combination cover movably arranged at a first end of the first container, and a second container movably sealed at a second end of the first container, and optimizes design of an internal structure of the first container and the second container, it can be used to realize the process of nucleic acid extraction immediately after sampling, solves the problem that tests must be carried out in a biological laboratory and a biological safety cabinet, and reduces security risks, improves detection efficiency, greatly shortens detection waiting time, and reduces inspection costs.
In addition, the function of quantitative delivery of the first reagent in the first  container to the second container is realized through reasonable control of movement state of the partition, compression of air in the closed cavity of the first container and reasonable design of the piercer channel. In specific use, the partition stands still relative to the first container before being pierced, and moves a specific distance after being pierced and after being pushed by specific forces to squeeze a predetermined amount of the first reagent into the second container from the first container, a quantitative amount of the first reagent is accurately added to the second reagent without professional operation.
In general, the container provided in the embodiment of the application can completely change the traditional diagnostic test process when biological tests and chemical experiments are conducted in a closed environment, for example, extraction and detection of viruses, in order to provide an effective technical guarantee for rapid and instant detection.
Brief Description of the Drawings
The present invention will be further described with reference to drawings and embodiments.
FIG. 1 is a schematic diagram of components of a container provided in an embodiment of the application.
FIG. 2 is a schematic diagram of a state of the container provided in FIG. 1 when the second container is at the initial position relative to the first container.
FIG. 3 is a schematic diagram of the state of the container provided in FIG. 1 when the second container is at the puncture position relative to the first container.
FIG. 4 is a schematic diagram of the state of the container provided in FIG. 1 when the second container is at the termination position relative to the first container.
FIG. 5 is a schematic diagram of the first container of the container provided in FIG. 1.
FIG. 6 is a sectional view of the first container in FIG. 5.
FIG. 7 is a sectional view of the combination cover of the container provided in FIG. 1.
FIG. 8 is an exploded sectional view of the second container of the container provided in FIG. 1.
FIG. 9 is a schematic diagram of the first container of another container provided in the embodiment of the application.
FIG. 10 is a schematic diagram of components of another container provided in the embodiment of the application.
FIG. 11 is a schematic diagram of the state of the container provided in FIG. 10 when the second container is at the puncture position relative to the first container.
FIG. 12 is a schematic diagram of the state of the container provided in FIG. 10 when the second container is at the termination position relative to the first container.
FIG. 13 is an exploded schematic diagram of the first container of the container provided in FIG. 10.
Description of reference signs:
100: first container, 11: first end, 12: second end, 110: first cavity, 120: second cavity, 13: partition, 14: position limiting portion, 15: first external thread, 16: first fitting portion, 17: third engaging portion, 18: second internal thread;
200: second container, 20: third cavity, 201: first accommodating portion, 202: second accommodating portion, 203: third accommodating portion, 21: piercer, 211: puncture portion, 212: base, 213: opening, 214: sealing ring, 22: first seal, 221: crown, 222: plug portion, 223: protective sleeve, 23: first internal thread, 24: relief structure, 25: second external thread; and
300: combination cover, 30: cover, 301: window, 302: first clamping slot, 303: second fitting portion, 31: second seal, 32: engaging member, 320: first engaging portion.
Detailed Description of the Present Invention
The technical solution of the present invention will be described in detail below with reference to the drawings and embodiments. It should be understood that these embodiments are only used to illustrate the present invention and not to limit the scope of the present invention. After reading the present invention, those skilled in the  art make various equivalent modifications to the present invention within the scope defined by the claims of the present application.
It should be noted that when an element is referred to as being "provided on" another element, it can be directly on the another element, or an intermediate element may also exist. When an element is considered to be "connected" with another element, it can be directly connected with the another element, or an intermediate element may exist at the same time. The terms "vertical" , "horizontal" , "upper" , "lower" , "left" , "right" and similar expressions used herein are used for illustrative purposes only and are not meant to be unique embodiments.
Unless otherwise defined, all technical and scientific terms used herein have the same meanings as those commonly understood by those skilled in the technical field of the application. The terminology used in the Description of the application herein is only used for the purpose of describing specific embodiments, and is not intended to limit the application. As used herein, the term "and/or" includes any or all combinations of one or more related listed items.
In the embodiments of the application, there is provided a new container and a method of using the same for nucleic acid detection of some viruses, or microbial inoculation tests, or mixed tests of toxic chemical reagents, which can simplify operation process, improve test efficiency, test security, reduce costs, and are not restricted by testing sites.
Please refer to FIGS. 1 to 10. The embodiment of the Description of the present application provides a container that mainly comprises: a first container 100, a combination cover 300, and a second container 200.
In this embodiment, the first container 100 is a hollow cylinder with open ends. The cylinder has a first end 11 and a second end 12 opposite to each other. In this embodiment, taking FIG. 6 as an example, the first end 11 is an upper end, and the second end 12 is a lower end. A partition 13 is provided inside the cylinder. The partition 13 partitions the cylinder into a first cavity 110 and a second cavity 120. The first cavity 110 is used to contain a first reagent.
In this embodiment, the combination cover 300 can be movably arranged at the  first end 11 of the cylinder. The combination cover 300 can comprise: a cover 30 provided with a window 301. When the cover 30 is in a first position relative to the cylinder, the window 301 is in an open state; and when the cover 30 is in a second position relative to the cylinder, the window 301 is in a closed state and the combination cover 300 seals the first end 11.
In this embodiment, the second container 200 can be movably sealedly arranged at the second end 12 of the cylinder. A third cavity 20 containing a second reagent is formed in the second container 200. One side of the third cavity 20 away from the second end 12 of the cylinder is a plugged end, and one side close to the second end 12 of the cylinder is provided with a piercer 21. At least one channel communicating with the third cavity 20 is formed in the piercer 21.
The piercer 21 is capable of piercing the partition 13 in the process of the second container 200 moving towards the side close to the first container 100, and the first reagent in the first cavity 110 can flow into the third cavity 20 through the channel of the piercer 21.
The specific components of the first reagent may be different according to different usage scenarios of the container. For example, when the container is used in an in-vitro diagnostic test scenario, the first reagent can be a lysing agent used to extract biological characteristics (including DNA, RNA) in the virus or called a lysozyme. When the container is applied in a microbial inoculation test scenario, the first reagent can be a bacterial agent. When the container is used in a mixed test scenario of toxic chemical reagents, the first reagent can be a reagent that needs to be mixed. Since the first reagent needs to be injected into the third cavity 20, the first reagent may be fluid, for example, liquid, or a mixture of solid and liquid.
The specific components of the second reagent may also be different according to different usage scenarios of the container. For example, when the container is used in an in-vitro diagnostic test scenario, the second reagent can be a test agent for testing the biological characteristics of the lysing agent. When the container is used in a microbial inoculation test scenario, the second reagent can be a culture solution. When the container is used in a mixed test scenario of toxic chemical reagents, the  second reagent can be another reagent that needs to be mixed. To be specific, the second reagent may be solid, or liquid, or a mixture of solid and liquid.
In a specific application scenario, when the container provided in the embodiment of the application is subjected to virus tests, operation steps are included as follows: samples after sampling are put into the first container 100; after that, the combination cover 300 seals and locks the first container 100 that is not opened any more; the first container 100 is shaken to ensure that the samples are fully infiltrated by the first reagent, so that the nucleic acid can be extracted reliably; the first container 100 is connected with the second container 200, and the second container 200 is pushed by a certain distance relative to the first container 100, the piercer 21 in the second container 200 can pierce the partition 13, after the partition 13 is pierced, the partition 13 is driven to move a predetermined distance in the case of pushing the second container 200, so that a specified dose of the first reagent is dripped into the second reagent. Finally, the container is placed in test instrument to test and read data.
The overall test process is carried out in a closed environment, a tester has no risk of exposure, which greatly improves test security, and there is no requirement for external test environment, and there is no need to use a dedicated negative-pressure biological laboratory, which greatly reduces costs and improves convenience of testing. In addition, steps of inactivation and transfer of swab samples are cancelled, which greatly improves test efficiency.
Please refer to FIG. 7. In this embodiment, the second container 200 may further include a first seal 22. The first seal 22 is provided with a crown 221 configured to seal one side of the second cavity 120 close to the second end 12 of the cylinder, and a plug portion 222 extending into the third cavity 20 and sealing a position where the piercer 21 matches the third cavity 20.
In this embodiment, the first seal 22 may have a hollow ring shape as a whole, in which the hollow portion is a through hole for sealedly piercing the piercer 21. The annular portion includes: the crown 221 and the plug portion 222, wherein an outer diameter of the crown 221 is greater than that of the plug portion 222.
The first seal 22 is arranged in the second container 200. When the second  container 200 is connected with the first container 100, the crown 221 of the first seal 22 can be sealedly matched with the second cavity 120, so as to prevent the reagent from leaking at the position where the first container 100 matches and the second container 200. The plug portion 222 is sealedly arranged between the second container 200 and the piercer 21 to prevent the reagent from leaking at the matching position of the second container 200 and the piercer 21.
In this embodiment, the piercer 21 may be a hollow structure as a whole, and at least one channel communicating with the third cavity 20 is formed in the piercer 21. The number of this channel can be one or more.
Specifically, the piercer 21 may include a puncture portion 211 and a base 212 at one end of the puncture portion 211. The plug portion 222 is provided in a gap between the puncture portion 211 and the first accommodating portion 201. One end of the plug portion 222 abuts against the base 212, and the other end is connected with the crown 221.
At least one opening 213 is provided at the tip of the puncture portion 211 of the piercer 21. The number of the channels depends on the number of the opening 213. When the number of the opening 213 is one, the number of the channel is one, and when the number of the opening 213 is two, the number of the channel is two. The base 212 of the piercer 21 is matched with the corresponding portion of the second container 200 to ensure that the piercer 21 remains stable and is not skewed in use.
In order to protect the second reagent in the second container 200 from leaking and ensure the sealing before use, the first seal 22 may further include a protective sleeve 223 connected to the crown 221. The protective sleeve 223 is fitted over the puncture portion 211, and can seal the puncture portion 211 of the piercer 21.
Generally, specific requirements of the ratio of the first reagent to the second reagent required for detection exist in the field of virus detection. The second reagent placed in the third cavity 20 can be set to a fixed known amount. In this case, the first reagent required for detection is also limited to a predetermined range. For example, for detection of some virus, the volume of the first reagent as required can be about 40 microliters, or about 100 microliters. How to accurately add the target amount of the  first reagent in the sealed state to the second reagent in the third cavity 20 by using the container provided in the application is an urgent problem to be solved.
Generally, one method of adding a predetermined amount of reagent to another reagent in the sealed state is to use special matching equipment, for example, a liquid gun with a precision scale for pipetting. Obviously, this method cannot be applied to the application. Another method is to set the cylinder of the first container 100 in a deformable structure, and the first reagent in the first container 100 flows into the second reagent in the third cavity 20 by squeezing the first container 100. This method cannot guarantee that the added first reagent is the target amount. In addition, another method is direct injection. That is, when the second container 200 drives the partition 13 to move together until it cannot be pushed any more, the piercer 21 pierces the partition 13 so that the first reagent flows into the second reagent in the third cavity 20. In this way, there is a large pressure difference between the two ends of the partition 13 and the volume in the first container 100 is compressed, before the piercer 21 pierces the partition 13, so that the internal pressure is far greater than that in the second container 200 and the piercer 21. Once the piercer 21 pierces the partition 13, the pressure is released, so that the first reagent in the first container 100 flows into the piercer 21 and the third cavity 20 at an uncontrollable high flow rate, which also leads to the problem that the target amount of the added first reagent cannot be guaranteed.
In an embodiment, in the process of the second container 200 moving towards the side close to the first container 100, the second container 200 has an initial butt position relative to the first container 100, as shown in FIG. 2. When the piercer 21 pierces the first seal 22 and the partition 13, the second container 200 has a puncture position relative to the first container 100, as shown in FIG. 3. Before the piercer 21 pierces the first seal 22 and the partition 13, the partition 13 stands still relative to the first container 100; after the piercer 21 pierces the first seal 22 and the partition 13, the second container 200 drives the partition 13 to reach a termination position after continuing to move a predetermined distance, as shown in FIG. 4. In this case, a predetermined amount of the first reagent is dripped into the third cavity 20 through  the channel of the piercer 21.
The initial position is spaced apart from the puncture position by a first distance. The puncture position is spaced apart from the termination position by a second distance. The second distance is determined according to volume and flow cross-sectional area of the first cavity 110, volume and viscosity of the first reagent, a target amount of the first reagent required for testing and a flow cross-sectional area of the piercer 21. When the first cavity 110 is a cylindrical cylinder, its flow cross-sectional area is directly proportional to its inner diameter. Similarly, when a cylindrical opening is formed in the piercer 21, its flow cross-sectional area is directly proportional to its inner diameter.
The first distance mainly depends on the height of the piercer 21 exposing the first seal 22. When the piercer 21 is provided with a protective sleeve 223 at the top, the first distance depends on the height at which the piercer 21 exposes the first seal 22 and the thickness of the protective sleeve 223.
In this embodiment, by reasonably setting the volume of the first cavity 110, the volume and viscosity of the first reagent, the flow cross-sectional area of the piercer 21, and the target amount of the first reagent required for testing, the preset distance (the first distance from the initial position to the puncture position and the second distance from the puncture position to the termination position) can be determined for the second container 200 to move in each stage relative to the first container 100. According to the preset distance, the second container 200 and the structure matching the second container 200 can be set, so that in the process of the second container 200 moving towards the side close to the first container 100, the second container 200 moves a first distance before the partition 13 is pierced, and the partition 13 does not move, that is, the volume of the first cavity 110 is not compressed. Subsequently, after the piercer 21 pierces the partition 13 (i.e., the first cavity 110 is connected with the third cavity 20, the initial pressure of the first cavity 110 and the third cavity 20 is consistent) , then the partition 13 is driven by the second container 200 to move the second distance, and the target amount of the first reagent in the first cavity 110 is accurately dripped into the third cavity 20 through the piercer 21.
In order to verify the above theory, the inventor carries out a number of comparative experiments.
Experiment I:
The inner diameter of the first container 100 is 11mm, the effective volume is about 3ml. The volume of the second container 200 is 0.5ml, and the maximum inner diameter of the piercer 21 is 2mm. The viscosity of the first reagent is the same as that of water.
During testing, 2ml of the first reagent is added into the first container 100; the second container 200 is rotated to push the partition 13 to move about 7mm (about 0.6ml of the volume of the first container occupied) , and then 130μl (microliter) of the first reagent can be exported into the second container 200. If the added amount of the first reagent is reduced to about 800μl, and the second container 200 is rotated to push the partition 13 to move about 7mm (about 0.6ml of volume of the first container 100 occupied) , about 70μl of the first reagent can be exported into the second container 200.
It should be noted that in the process of rotating the second container to push the partition 13 to move a second distance, the volume of air in the first container 100 is occupied.
Experiment II:
The inner diameter of the first container 100 is 11mm and the effective volume is about 3ml. The volume of the second container 200 is 0.5ml, and the maximum inner diameter of the piercer 21 is 2mm. The viscosity of the first reagent is the same as that of water. 800μl of the first reagent is added into the first container 100. If necessary, 30μl of the first reagent is exported into the second container 200, the thread height is set to effectively push the partition 13 to move about 2.5mm (about 0.2ml of the volume of the first container 100 occupied) , 30μl of the first reagent can be poured into the second container 200.
To sum up, in the case of determining the basic parameters of the first container 100, the second container 200, the piercer 21 and the first reagent, the volume of the first reagent can be accurately derived by adjusting the added amount of the first  reagent and pushing the partition 13 to occupy the volume of the first container 100.
Specifically, since the volume parameters of the first container 100 and the second container 200 are determined, the diameter of the piercer 21 is determined, and the viscosity of the first reagent is determined, 700μl of the first reagent is added into the first container 100, and 0.2ml of the volume of the first container is occupied by pushing the partition 13, and 25μl of the first reagent can be exported into the second container 200.
According to the relationship, if about 60μl of the first reagent needs to be added, 0.6ml of the volume of the first container needs to be occupied. Therefore, the calculated thread height ensures that the partition 13 can be moved to occupy 0.6ml of the volume of the first container 100. If 100μl of the first reagent needs to be exported, 0.8ml of the volume of the first container 100 is occupied; and if the volume of the first reagent to be exported is about 45μl, 0.4ml of the volume of the first container 100 is occupied.
In general, in the case where the basic parameters (volume and flow cross-sectional area of the first container 100, volume and viscosity of the first reagent, and flow cross-sectional area of the piercer 21) are determined, the volume of the first reagent to be exported is directly proportional to the volume (air) of the first container 100 occupied by pushing the partition 13.
If the volume of the first reagent added into the first container 100 is adjusted, for example, it is not 700μl in Experiment II, but 2ml in Experiment I, then 0.6ml of the volume is also occupied, and the amount of liquid exported is about 130μl. Similarly, a number of experiments can be carried out to determine the proportion of the volume of the first reagent exported in the case of Experiment I to the volume (air) of the first container 100 occupied by pushing the partition 13.
Please refer to FIG. 5 to FIG. 6 or FIG. 9. In this embodiment, the inner wall of the first container 100 is provided with a position limiting portion 14 configured to limit the partition 13 or the first seal 22 along an axis direction of the cylinder.
The position limiting portion 14 is configured to preliminarily limit the partition 13 or the first seal 22, so that after the first container 100 is connected with the second  container 200, when the piercer 21 of the second container 200 pierces the first seal 22 and the partition 13, the position limiting portion 14 can provide some axial force to ensure that the piercer 21 can reliably pierce the first seal 22 and the partition 13. Before the first seal 22 and the partition 13 are pierced, the partition 13 stands still relative to the first container 100, and after the first seal 22 and the partition 13 are pierced, the partition 13 can move synchronously with the second container 200.
Specifically, the position limiting portion 14 can be an annular or dot-like convex structure provided on the inner wall of the first container 100. Of course, the specific form of the position limiting portion 14 can also be other forms that can realize restriction. The present application does not specify the specific form herein.
During specific matching, the position limiting portion 14 can be located on the upper side of the partition 13 (i.e., one side close to the second end 12 in the figure) , so as to provide an axial force against the partition 13. In addition, the position limiting portion 14 can be located on the lower side of the partition 13, so as to provide an axial force against the first seal 22.
In this embodiment, the partition 13 can include any of a rubber plug and a piston.
When the partition 13 is in a form of a rubber plug, the rubber plug is generally arranged in the cylinder by interference fit, and the rubber plug is provided in the middle with a to-be-pierced portion. The position limiting portion 14 is located on one side of the rubber plug close to the first end. After the second container 200 moves a first distance close to the position limiting portion 14 and after the piercer 21 pierces the to-be-pierced portion restricted by the position limiting portion, the second container 200 can drive the rubber plug to cross the position limiting portion 14 and then move a second distance towards the first end under the action of the first force.
When the partition 13 is in a form of a piston, the piston comprises: a main body of the to-be-pierced portion provided in the middle of one end, and a sealing ring sleeved on an outer wall of the main body. The sealing ring is in interference fit with the cylinder. The position limiting portion 14 is located on one side of the piston close to the second end. After the second container 200 moves a first distance to contact the  position limiting portion 14, the piercer 21 pierces the to-be-pierced portion, the second container 200 can cross the position limiting portion 14 and drive the piston to move a second distance towards the first end under the action of the second force.
The specific values of the first force and the second force can be determined according to the matching relationship between the partition 13 and the corresponding components. The application does not specify the specific values herein.
After the piercer 21 pierces the to-be-pierced portion, the first cavity 110 and the second cavity 120 are connected through the piercer 21, and the initial pressure of the first cavity 110 and the second cavity 120 is equal. The second distance for further upward movement is positively correlated with the target amount of the first reagent needed to be dripped. In general, the first container 100 can be a container with a circular cross-section, of which an inner diameter is known. After the second distance for further upward movement is determined, the volume of the first reagent dripped into the third container can be ensured to be the target amount.
In an embodiment, the first container 100 and the second container 200 can be connected by means of thread. Specifically, the first external thread 15 is provided on the outer wall of the cylinder close to the second end 12 of the first container 100, and the first internal thread 23 matching the first external thread 15 is provided on the inner wall of the second container 200. In use, when the second container 200 is rotated in the first direction relative to the first container 100, the second container 200 can be moved close to the first container 100.
For the second container, the third cavity is provided with a first accommodating portion 201 configured to install the piercer 21, a second accommodating portion 202 configured to accommodate a second reagent, and a third accommodating portion 203 provided on an outer periphery of the first accommodating portion 201, the first internal thread 23 is provided on the third accommodating portion 203, and the third accommodating portion 203 is formed with a relief structure 24 on one side away from the first internal thread 23.
The relief structure 24 can be a smooth inner wall provided on the lower side of the first internal thread 23. By setting the relief structure 24, on the one hand, the  difficulty of manufacturing the third accommodating portion 203 can be reduced and the successful drafting can be ensured; on the other hand, it is conducive to reducing the resistance of the pipe wall of the first container 100 to extend down.
The first accommodating portion 201, the second accommodating portion 202, and the third accommodating portion 203 can be integral, or partially or completely separated. For example, as shown in FIG. 7, the first accommodating portion 201, the second accommodating portion 202, and the third accommodating portion 203 can be integral. As shown in FIG. 12, the first accommodating portion 201 and the third accommodating portion 203 can be integral. The first accommodating portion 201 and the third accommodating portion 203 configured to accommodate the second reagent can be separated.
The container provided in the embodiment of the application can match the volume of the first reagent to be added according to the second reagent set by detection or experiment. By designing parameters such as the thread height of different sizes, the moving distance of the partition 13 and the diameter of the piercer 21, containers of different sizes can be designed to meet different test requirements.
Please refer to FIG. 8. In an embodiment, the cover 30 is a hollow structure with both ends open, and has a bottom end close to the second end and a top end away from the second end. The combination cover 300 also includes a second seal 31 provided on the top end and an engaging member 32 pressed on the second seal 31.
The second seal 31 includes: a base, a peripheral portion provided on the outer periphery of the base and configured to form a seal at the position where the cover 30 matches the first container 100, and a convex portion provided on one side of the base and configured to form a seal on the top end of the cover 30 and selectively on the first end 11 of the first container 100. The cover 30 is provided with an annular mounting slot for mounting the peripheral portion, and the convex portion is sealedly matched with the inner wall of the first container 100. Specifically, the second seal 31 can be made of a material with elasticity, and can be matched with the first container 100 by means of interference fit.
In order to ensure the tightness of the position where the second seal 31 matches  the first container 100, the convex portion can be a cylinder with the outer diameter identical to or slightly larger than the aperture of the first container 100, and at least one annular convex can be provided on the side wall of the cylinder, and the annular convex acts as a sealing ring. In order to better ensure the tightness when the second seal 31 matches the first container 100, the annular convex can be more than one along the axial direction, for example, as shown in FIG. 8, the annular convex can be two.
In this embodiment, in order to conveniently install the second seal 31 in a specific shape in the cover 30 and sealedly match the first container 100, the top end of the cover 30 is provided with an open end. During installation, the second seal 31 can be installed in the cover 30 from the open end to seal the cover 30. Subsequently, the sealing contact can be formed by selectively matching the upper end of the first container 100 according to the service state.
In order to locate the second seal 31, especially when the second seal 31 seals the first container 100, in order to prevent displacement of the second seal 31, an engaging member 32 is also provided on the upper side of the second seal 31 (i.e., one side away from the first container 100) . Specifically, the engaging member 32 can be wholly in a circular shape, and a first engaging portion 320 is provided on the outer wall of the engaging member 32. The cover 30 is provided with a first clamping slot 302 matched with the first engaging portion 320 on the inner wall close to the top end. The first engaging portion 320 is matched with the first clamping slot 302 to form a clamping structure for fixing the second seal 31. The engaging member 32 and the cover 30 form the clamping structure to restrict the second seal 31.
In this embodiment, the combination cover 300 can at least move axially relative to the first container 100 to switch an open or closed state of the window 301.
Specifically, the relative movement relationship between the combination cover 300 and the first container 100 can be set according to their specific matching structure. For example, a relative movement between the combination cover 300 and the first container 100 can only occur. Specifically, the combination cover 300 can move axially relative to the first container 100. Alternatively, the combination cover  300 and the first container 100 can be in a combination of relative movement and relative rotation. To be specific, the combination can include rotating relative to the first container 100, moving and then rotating. In addition, the combination can include rotating relative to the first container 100. Specifically, the combination cover 300 can rotate axially relative to the first container 100, thereby changing the position of the window 301 relative to the first container 100, and switching the open or close state of the window 301.
In an embodiment, the outer wall of the cylinder is provided with a first fitting portion 16, and the inner wall of the cover 30 is provided with a second fitting portion 303. When the cover 30 is in the second position relative to the cylinder, the first fitting portion 16 is fitted with the second fitting portion 303 to form a locking structure.
In this embodiment, the combination cover 300 can move axially relative to the first container 100. A locking mechanism is formed by the first fitting portion 16 on the outer wall of the cylinder and the second fitting portion 303 on the cover 30. When the cover 30 is in the second position relative to the cylinder, the locking mechanism can ensure that the cover 30 is axially fixed relative to the cylinder. Under the action of external forces such as vibration, the cover 30 is not easy to move relative to the first container 100, and the window 301 is automatically opened.
Specifically, the first fitting portion 16 can include a plurality of second clamping slots arranged at intervals around the circumferential direction of the cylinder. The second fitting portion 303 is a plurality of second engaging portions arranged at intervals around the circumferential direction of the cover 30. Alternatively, the first fitting portion 16 can include a plurality of second clamping slots arranged at intervals along the axial direction of the cylinder. The second fitting portion 303 is a plurality of second engaging portions arranged at intervals around the circumferential direction of the cover 30. The second clamping slots and the second engaging portions can form a locking structure to prevent accidental loosening of the combination cover 300 when in the second position relative to the first container 100.
In an embodiment, in order to prevent the combination cover 300 from detaching  from the first container 100 when opened, the outer wall of the cylinder close to the first end 11 is also provided with a third engaging portion 17. When the second engaging portion is engaged with the third engaging portion 17, the cover 30 is located at the farthest position away from the second end 12, and the window 301 is in an open state.
The second position can be the farthest position of the cover 30 away from the second end 12. Of course, the second position can also be lower than the farthest position.
As shown in FIGS. 5-6, in a particular embodiment, the first fitting portion 16 is a plurality of second clamping slots arranged at intervals around the circumferential direction of the cylinder, and the third engaging portion 17 is a convex rib matched with the second clamping slots. When the cover is in the first position relative to the cylinder, the convex rib can be clamped into the second clamping slots, so as to restrict the cover 30 and prevent the accidental loosening of the cover 30 relative to the cylinder.
As shown in FIG. 9, in another particular embodiment, the first fitting portion 16 includes: at least two second clamping slots arranged at intervals along the axial direction of the cylinder, and a through portion connecting the two second clamping slots; and the third engaging portion 17 is two snaps arranged at intervals. In particular, the through portion can be a through groove formed on the outer surface of the cylinder to connect the upper and lower second clamping slots. The through portion can be symmetrically installed on the outer wall of the intermediate portion of the first cylinder.
When the cover 30 is installed in coordination with the cylinder, the snaps of the cover 30 can be clamped through a clamping slot close to the upper end of the cylinder. After the cover 30 rotates relative to the cylinder by some angle, the snaps of the cover 30 are matched with the through portion. Then, the cover 30 axially moves relative to the cylinder until it cannot move any more. At this time, the cover 30 rotates relative to the cylinder by some angle again, such that the snaps at the lower end of the cover 30 are clamped into the second clamping slots at the lower end of the  cylinder to lock and match the snaps and the second clamping slots. In this case, the cover 30 cannot be opened axially, the window 301 is closed, and the first cavity 110 is in a sealed state. The snaps, when rotated in a reverse direction, can be detached from the second clamping slots, and then pulled upward to open the cover 30.
Please refer to FIGS. 10, 11 and 12. There is also provided another container in the Description of the present application. The main structure, component, and function of the container are similar to those provided in the embodiments. The application mainly demonstrates the difference therebetween. Please refer to the specific description of the embodiments for the similarities, which are not further described herein.
In this embodiment, the piercer 21 is arranged in the first container 100. To be specific, the piercer 21 comprises a puncture portion 211 and a base 212 located at one end of the puncture portion 211, the base 212 is sealedly matched with the cylinder, and the partition 13 is fitted over the puncture portion 211. As shown in FIG. 13, the piercer 21 can be particularly an injection molded part with high hardness. An annular groove can be provided on the outer wall of the base 212, and a sealing ring 214 can be arranged in the annular groove. The sealing ring 214 can be made of rubber material to ensure the tightness when the piercer 21 matches the inner wall of the cylinder.
In this embodiment, the partition 13 is hermetically wrapped outside the piercer 21.Specifically, the partition 13 can include a first portion sealedly matched with the inner wall of the first container 100 and a second portion wrapped outside the puncture portion 211.
In this embodiment, the first seal 22 can be a sealing sheet arranged at the open end of the second container 200. A second external thread 25 is provided on the outer wall of the second container 200, and a second internal thread 18 matching the second external thread 25 is provided on the inner wall of the first container 100 close to the first end 11. The second external thread 25 of the second container 200 has a starting end and a termination end. The termination end is matched with the outer wall of the second container 200 to form a position limiting portion.
In specific use, the upper end of the second container 200 extends into the second end of the first container 100, before the partition 13 and the first seal 22 are pierced, the partition 13 is restricted by the position limiting portion 14 on the inner wall of the first container 100. After the partition 13 and the first seal 22 are pierced by the piercer 21, the second container 200 is further rotated relative to the first container 100. The second container 200 can drive the partition 13 and the piercer 21 to move towards the first end 12 of the first container 100. At the moment when the second end 12 of the container 100 is matched with the position limiting portion of the second container 200, the second container 200 stands still relative to the first container 100. In this case, it can ensure that a certain amount of the first reagent in the first container 100 is dripped into the second container 200 through the channel of the piercer 21.
Based on the container provided in the embodiment, the Description of the present application provides a corresponding use method, comprising the steps of:
S10: moving the cover 30 away from a second end 12 of the cylinder to a first position and opening the window 301, moving the cover 30 close to the second end 12 of the cylinder to a second position and closing the window 301 after placing a sample containing an analyte into the first container 100 through the window 301; contacting the sample with the first reagent contained in the first container 100; and
S12: installing the second container 200 on the second end 12, piercing, by the piercer 21, the partition 13 and the first seal 22, and then dripping a predetermined volume of the first reagent into the second reagent of the second container 200 in the process of the second container 200 approaching the first end 11.
The sample includes a main body for carrying the analyte, and an operation portion connected with the main body. The method further comprises: breaking at least a part of the operation portion to prevent the analyte (sample) from being contaminated, when the window 301 is closed.
In a specific application scenario, when the container is used for extraction and detection of viruses, the main operation steps include: packaging of the reagent before use and formal use.
When the reagent is packaged, the method includes:
1.1 Packaging of the first reagent: putting the partition 13 into the bottom of the first container 100 and sealing one end of the first container 100 in a corresponding clean production environment. Putting the second seal 31 into the cover 30 and fixing with the engaging member 32 to form the combination cover 300. Putting the first reagent into the first container 100 and covering tightly with the combination cover 300, such that the snaps at the bottom of the outer cover are clamped into the corresponding slot of the first container 100 and are locked to prevent the combination cover 300 from being opened before use.
1.2 Packaging of the second reagent: loading the second reagent into the second container 200, loading the piercer 21, and tightly packaging with the first seal 22 to complete packaging of the second reagent in the corresponding clean environment. The piercer 21 can be protected by the protective cover 223 before use.
During formal use, the method includes:
2.1 Opening the combination cover 300, placing the analyte through the window 301 of the cover 30, and breaking the excess hand-held portion. Locking the cover 30 and the cylinder tightly, in order to ensure that the cover cannot be opened. Generally, the length of the sample entering the cylinder ranges from 2cm to 3cm.
2.2 Shaking the first container 100 sufficiently to ensure that the analyte is in full contact with the first reagent.
2.3 Connecting the second container 200 with the first container 100, pushing in and rotating until it rotates to the end, and determining that 2-3 drops of the first reagent are dripped into the second container 200.
2.4 Placing the container in test instrument and operating the test instrument to read data.
In a specific embodiment, the first reagent and the second reagent required for detection of viruses can be packaged in two containers (the first container 100 and the second container 200) , respectively, when the container provided in the application is applied to the virus inspection. The subsequent testers can complete the test in a common environment through simple operations. The operation steps are particularly  included as follows:
After the sample is collected, the hand contact part is broken by the analyte, and the sample that enters the first container 100 is only kept 2cm to 3cm long to prevent the sample from being contaminated. After the sample enters the first container 100, the first container 100 is locked and no longer opened. The tester only needs to shake the first container 100 by hand to ensure that the sample is fully soaked so as to facilitate the extraction of nucleic acids. Then, the first container 100 is connected with the second container 200 and completely rotated. In this way, the piercer 21 in the second container 200 can pierce the first container 100 and push the piston to move, so that 2-3 drops (specified dose) of the test solution are dripped into the first reagent. Then the container is put into the test instrument to read data.
In general, when the container provided in the embodiment of the application is used for biological tests and chemical experiments in a closed environment, for example, when extraction and detection of viruses are carried out, it solves the problem that tests must be carried out in a biological laboratory and a biological safety cabinet, and reduces security risks, improves detection efficiency, greatly shortens detection waiting time, and reduces inspection costs.
It should be noted that in the description of the application, the terms "first" , "second" are only used to describe the objective and distinguish similar objects. There is no sequence therebetween, nor can it be understood to indicate or imply relative importance. In addition, unless otherwise specified, "a plurality of" means two or more in the description of the present application.
The embodiments in the Description are described in a progressive manner. The same and similar parts of the embodiments can be referred to each other. Each embodiment focuses on differences from the other embodiments.
The above are only embodiments of the present invention. Although the embodiments disclosed in the present invention are as described above, the content is only used to facilitate the understanding of the present invention, and is not intended to limit the present invention. Any person skilled in the technical field of the present invention can make any modifications and changes in the form and details of the  embodiments without departing from the spirit and scope disclosed by the present invention. However, the patent protection scope of the present invention is still subject to the scope defined by the claims.

Claims (22)

  1. A container, comprising:
    a first container being a hollow cylinder with two open ends which are a first end and a second end, in which a movable partition partitioning the cylinder into a first cavity containing a first reagent and a second cavity is arranged;
    a combination cover movably arranged at the first end comprising: a cover provided with a window, wherein when the cover is in a first position relative to the cylinder, the window is in an open state, and when the cover is in a second position relative to the cylinder, the window is in a closed state and the combination cover seals the first end;
    a second container movably sealedly arranged at the second end, in which a third cavity containing a second reagent is formed, wherein one side of the third cavity away from the second end near which a first seal is provided is a plugged end; and
    a piercer arranged in the first container or the second container, in which at least one through channel is formed, capable of piercing the partition and the first seal in the process of the second container moving towards the side close to the first container, and the first reagent in the first cavity can flow into the third cavity through the channel.
  2. The container according to claim 1, wherein in the process of the second container moving towards the side close to the first container, the second container has an initial butt position relative to the first container, when the piercer pierces the first seal and the partition, the second container has a puncture position relative to the first container, before the piercer pierces the first seal and the partition, the partition stands still relative to the first container; after the piercer pierces the first seal and the partition, the second container drives the partition to reach a termination position after continuing to move a predetermined distance, and a predetermined amount of the first reagent is dripped into the third cavity through the channel.
  3. The container according to claim 2, wherein an inner wall of the first container is provided with a position limiting portion configured to limit the partition or the first seal along an axis direction of the cylinder.
  4. The container according to claim 3, wherein the piercer is arranged in the second container, the first seal is provided with a crown configured to seal one side of the second cavity close to the second end, and a plug portion extending into the third cavity and sealing a position where the piercer matches the third cavity.
  5. The container according to claim 4, wherein a first external thread is provided on an outer wall of the cylinder close to the second end, and a first internal thread matching the first external thread is provided on an inner wall of the second container.
  6. The container according to claim 5, wherein the third cavity is provided with a first accommodating portion configured to install the piercer, a second accommodating portion configured to accommodate a second reagent, and a third accommodating portion provided on an outer periphery of the first accommodating portion, the first internal thread is provided on the third accommodating portion, and the third accommodating portion is formed with a relief structure on one side away from the first internal thread.
  7. The container according to claim 6, wherein the first seal further comprises a protective sleeve connected to the crown and fitted over the piercer.
  8. The container according to claim 1, wherein the cover has a hollow structure with both ends open, and has a bottom end close to the second end and a top end away from the second end, and the combination cover also includes a second seal provided on the top end and an engaging member pressed on the second seal.
  9. The container according to claim 8, wherein the engaging member is generally in a circular shape, a first engaging portion is provided on an outer wall of the engaging member, a first clamping slot matched with the first engaging portion is provided on an inner wall of the cover close to the top end, and the first engaging portion is matched with the first clamping slot to form an engaging structure for fixing the second seal.
  10. The container according to claim 1, wherein the combination cover can at least move axially relative to the first container to switch an open or closed state of the window.
  11. The container according to claim 10, wherein the outer wall of the cylinder is  provided with a first fitting portion, and the inner wall of the cover is provided with a second fitting portion, when the cover is in the second position relative to the cylinder, the first fitting portion is fitted with the second fitting portion to form a locking structure.
  12. The container according to claim 11, wherein the first fitting portion comprises a plurality of second clamping slots arranged at intervals around a circumferential direction of the cylinder or along an axial direction of the cylinder, and the second fitting portion is a plurality of second engaging portions arranged at intervals around the circumferential direction of the cover.
  13. The container according to claim 12, wherein the outer wall of the cylinder close to the first end is also provided with a third engaging portion, when the second engaging portion is engaged with the third engaging portion, the cover is located at the farthest position away from the second end, and the window is in an open state.
  14. The container according to claim 13, wherein the first fitting portion is a plurality of second clamping slots arranged at intervals around the circumferential direction of the cylinder, and the third engaging portion is an annular convex rib.
  15. The container according to claim 13, wherein the first fitting portion comprises: at least two second clamping slots arranged at intervals along the axial direction of the cylinder, and a through portion connecting the two second clamping slots; and the third engaging portion is two snaps arranged at intervals.
  16. The container according to claim 4, wherein the partition 13 comprises any of a rubber plug and a piston.
  17. The container according to claim 16, wherein when the partition is a rubber plug, the rubber plug is wholly arranged in the cylinder by interference fit, and the rubber plug is provided in the middle with a to-be-pierced portion; the position limiting portion is located on one side of the rubber plug close to the first end, after the second container moves a first distance close to the position limiting portion and after the piercer pierces the to-be-pierced portion restricted by the position limiting portion, the second container can drive the rubber plug to cross the position limiting portion and then move a second distance towards the first end; or
    when the partition is a piston, the piston comprises: a main body of the to-be-pierced portion provided in the middle of one end, and a sealing ring sleeved on an outer wall of the main body, the sealing ring is in interference fit with the cylinder, the position limiting portion is located on one side of the piston close to the second end, after the second container moves a first distance to contact the position limiting portion, the piercer pierces the to-be-pierced portion, the second container can cross the position limiting portion and drive the piston to move a second distance towards the first end.
  18. The container according to claim 3, wherein the piercer is arranged in the first container, the piercer comprises a puncture portion and a base located at one end of the puncture portion, the base is sealedly matched with the cylinder, and the partition is fitted over the piercer.
  19. The container according to claim 18, wherein the outer wall of the second container is provided with a second external thread and the inner wall of the first container close to the first end is provided with a second internal thread matching the second external thread.
  20. A method of using the container according to claim 1, comprising:
    moving the cover away from a second end of the cylinder to a first position and opening the window, moving the cover close to the second end of the cylinder to a second position and closing the window after placing a sample containing an analyte into the first container through the window; contacting the sample with the first reagent contained in the first container; and
    installing the second container on the second end, piercing, by the piercer, the partition and the first seal, and then dripping a predetermined volume of the first reagent into the second reagent of the second container in the process of the second container approaching the first end.
  21. The method of using the container according to claim 20, wherein
    in the process of the second container moving towards the side close to the first container, the second container has an initial butt position relative to the first container,
    when the piercer pierces the first seal and the partition, the second container has a puncture position relative to the first container,
    before the piercer pierces the first seal and the partition, the partition stands still relative to the first container;
    after the piercer pierces the first seal and the partition, the second container drives the partition to reach a termination position after continuing to move a predetermined distance, and a predetermined amount of the first reagent is dripped into the third cavity through the channel.
  22. The method of using the container according to claim 21, wherein the puncture position is spaced apart from the termination position by a second distance, the second distance is determined according to volume and flow cross-sectional area of the first cavity, volume and viscosity of the first reagent, a target amount of the first reagent required for testing and a flow cross-sectional area of the piercer.
PCT/CN2020/119636 2020-08-24 2020-09-30 Container and method of using the same WO2022041402A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010857063.4 2020-08-24
CN202010857063.4A CN112141483A (en) 2020-08-24 2020-08-24 Container and method of using same

Publications (1)

Publication Number Publication Date
WO2022041402A1 true WO2022041402A1 (en) 2022-03-03

Family

ID=73888135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119636 WO2022041402A1 (en) 2020-08-24 2020-09-30 Container and method of using the same

Country Status (2)

Country Link
CN (1) CN112141483A (en)
WO (1) WO2022041402A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116875425A (en) * 2023-07-24 2023-10-13 北京万泰生物药业股份有限公司 Nucleic acid extraction and purification device, reagent combination, nucleic acid extraction and purification system and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115629213B (en) * 2022-12-22 2023-05-09 长沙市动植物疫病预防控制中心 Poultry virus antigen detection card

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100310426A1 (en) * 2007-09-06 2010-12-09 Siemens Healthcare Diagnostics Inc. Reagent cartridge
CN207163794U (en) * 2017-08-30 2018-03-30 安徽康润医疗科技有限公司 A kind of just sample collector for processing device
CN108871908A (en) * 2018-09-06 2018-11-23 杭州优思达生物技术有限公司 Biological sample processing unit
CN109562883A (en) * 2016-08-11 2019-04-02 仪器实验室公司 Dual chamber reagent mixing container
CN110229745A (en) * 2019-07-22 2019-09-13 安图实验仪器(郑州)有限公司 Push type reaction tube
CN110283706A (en) * 2019-07-22 2019-09-27 安图实验仪器(郑州)有限公司 Spiral reaction tube

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100310426A1 (en) * 2007-09-06 2010-12-09 Siemens Healthcare Diagnostics Inc. Reagent cartridge
CN109562883A (en) * 2016-08-11 2019-04-02 仪器实验室公司 Dual chamber reagent mixing container
CN207163794U (en) * 2017-08-30 2018-03-30 安徽康润医疗科技有限公司 A kind of just sample collector for processing device
CN108871908A (en) * 2018-09-06 2018-11-23 杭州优思达生物技术有限公司 Biological sample processing unit
CN110229745A (en) * 2019-07-22 2019-09-13 安图实验仪器(郑州)有限公司 Push type reaction tube
CN110283706A (en) * 2019-07-22 2019-09-27 安图实验仪器(郑州)有限公司 Spiral reaction tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116875425A (en) * 2023-07-24 2023-10-13 北京万泰生物药业股份有限公司 Nucleic acid extraction and purification device, reagent combination, nucleic acid extraction and purification system and method
CN116875425B (en) * 2023-07-24 2024-03-12 北京万泰生物药业股份有限公司 Nucleic acid extraction and purification device, reagent combination, nucleic acid extraction and purification system and method

Also Published As

Publication number Publication date
CN112141483A (en) 2020-12-29

Similar Documents

Publication Publication Date Title
US10472622B2 (en) Cassette for sample preparation
WO2022041402A1 (en) Container and method of using the same
EP0859664B1 (en) Stopper having a cavity for reagents and an assay method using said stopper
CN101600963B (en) Percutaneous biological fluid sampling and pre shaking devices and methods
EP3380837B1 (en) Assay device
US7958793B2 (en) Sample system for fluid samples
JPH07287019A (en) Apparatus and method for noncontaminative treatment of reaction chain
WO2020107641A1 (en) Biological reaction device provided with microfluidic or nanofluidic structure
WO2024031805A1 (en) Integrated extraction kit
CN112779117B (en) Detection cartridge with isolation effect for nucleic acid detection experiment
US9999887B2 (en) Apparatus for analyzing a test liquid
WO2023124961A1 (en) Reaction cartridge and detection apparatus
EP3938104B1 (en) Specimen container for specimen pre-processing
CN213832505U (en) Container with a lid
CN213832506U (en) Receiving container
US20230158492A1 (en) Set of chambers containing reagents
CN116555007A (en) Detection device and detection method
CN212640435U (en) Closed integrated pathogen detection card box
CN213832504U (en) Container for holding reagents
CN219871354U (en) Liquid specimen detection device
CN215757344U (en) Detection device
EP4230149A1 (en) Device for collecting a sample, a kit comprising such device and a method using such device or kit
WO2024040428A1 (en) Detection device and method for extracting nucleic acids
EP3995208A1 (en) Set of chambers containing reagents
EP4326161A1 (en) Swab tube

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951070

Country of ref document: EP

Kind code of ref document: A1