WO2022041309A1 - 基于频域分析的电机参数追踪方法、装置、设备和介质 - Google Patents

基于频域分析的电机参数追踪方法、装置、设备和介质 Download PDF

Info

Publication number
WO2022041309A1
WO2022041309A1 PCT/CN2020/113522 CN2020113522W WO2022041309A1 WO 2022041309 A1 WO2022041309 A1 WO 2022041309A1 CN 2020113522 W CN2020113522 W CN 2020113522W WO 2022041309 A1 WO2022041309 A1 WO 2022041309A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
spectrum information
resistance
current
electromotive force
Prior art date
Application number
PCT/CN2020/113522
Other languages
English (en)
French (fr)
Inventor
郑亚军
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声光电科技(常州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声光电科技(常州)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2022041309A1 publication Critical patent/WO2022041309A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
    • G06F17/141Discrete Fourier transforms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems

Definitions

  • the present application relates to the technical field of motor parameter analysis, and in particular, to a motor parameter tracking method, device, device and medium based on frequency domain analysis.
  • Linear motors can provide rich vibration forms, which have been greatly affirmed in the field of haptic feedback and are widely used in daily electronic products. In order to provide various haptic effects with better effects, it is necessary to precisely control the motor parameters of the linear motor, so as to bring a perfect user experience to the user.
  • linear motor has a clear electromechanical coupling form. Therefore, accurate motor parameters are the key to achieve precise motor control.
  • the motor parameters of the motor may fluctuate to a certain extent, which increases the difficulty of motor parameter control.
  • the static resistance of the coil inside the motor when the motor continues to work, the internal temperature will increase, and the static resistance will also change greatly. Therefore, if the static resistance inside the motor can be accurately tracked, it is very helpful for the precise control of the motor.
  • a method for tracking motor parameters based on frequency domain analysis comprising:
  • Discrete Fourier transform is performed on the current data, the voltage data and the induced electromotive force data of each frame respectively, so as to obtain current spectrum information corresponding to the current data, voltage spectrum information corresponding to the voltage data and Electromotive force spectrum information corresponding to the induced electromotive force data;
  • the average static resistance of each frame is calculated according to the total resistance and the motion equivalent resistance.
  • the calculating induced electromotive force data according to the current data includes:
  • the calculating induced electromotive force data according to the current data further includes:
  • the substituting the current data into the motion equation of the motor mover includes:
  • Substituting the motion speed into the induction electric formula includes:
  • the electromechanical coupling coefficient and the moving speed are substituted into the induction electrodynamic formula.
  • the calculating and obtaining the total resistance of each frame according to the current spectrum information and the voltage spectrum information includes:
  • the voltage spectrum information and the current spectrum information of the same frequency point are dot-divided to obtain the total resistance of each of the frequency points.
  • the calculation to obtain the motion equivalent resistance of each frame according to the current spectrum information and the electromotive force spectrum information includes:
  • the electromotive force spectrum information and the current spectrum information of the same frequency point are dot-divided to obtain the motion equivalent resistance of each of the frequency points.
  • calculating the average static resistance of each frame according to the total resistance and the motion equivalent resistance includes:
  • the static resistance of all frequency points is averaged to obtain the average static resistance of each frame.
  • the method further includes:
  • the voltage data of the next frame is reduced according to the average static resistance.
  • a vibrating playback device comprising:
  • a data acquisition module used for collecting current data and voltage data of the number of target frames of the motor, and calculating induced electromotive force data according to the current data
  • a spectrum information acquisition module configured to perform discrete Fourier transform on the current data, the voltage data and the induced electromotive force data of each frame respectively, so as to obtain current spectrum information corresponding to the current data, corresponding to the voltage spectrum information of the voltage data and electromotive force spectrum information corresponding to the induced electromotive force data;
  • the first calculation module is used to calculate the total resistance of each frame according to the current spectrum information and the voltage spectrum information, and calculate the motion equivalent of each frame according to the current spectrum information and the electromotive force spectrum information. resistance;
  • the second calculation module is configured to calculate the average static resistance of each frame according to the total resistance and the motion equivalent resistance.
  • a computer-readable storage medium storing a computer program, when the computer program is executed by a processor, the processor causes the processor to perform the following steps:
  • Discrete Fourier transform is performed on the current data, the voltage data and the induced electromotive force data of each frame respectively, so as to obtain current spectrum information corresponding to the current data, voltage spectrum information corresponding to the voltage data and Electromotive force spectrum information corresponding to the induced electromotive force data;
  • the average static resistance of each frame is calculated according to the total resistance and the motion equivalent resistance.
  • a computer device includes a memory and a processor, the memory stores a computer program, and when the computer program is executed by the processor, the processor performs the following steps:
  • Discrete Fourier transform is performed on the current data, the voltage data and the induced electromotive force data of each frame respectively, so as to obtain current spectrum information corresponding to the current data, voltage spectrum information corresponding to the voltage data and Electromotive force spectrum information corresponding to the induced electromotive force data;
  • the average static resistance of each frame is calculated according to the total resistance and the motion equivalent resistance.
  • the invention provides a motor parameter tracking method, device, equipment and medium based on frequency domain analysis. Since the method of frequency domain analysis and averaging is adopted, the interference of error information in the collected data is reduced, and the calculation accuracy is also improved. . At the same time, since the interference of the motion equivalent resistance is considered, more precise control of the motor and better temperature rise protection can be achieved.
  • FIG. 1 is a schematic flowchart of a motor parameter tracking method based on frequency domain analysis in one embodiment
  • FIG. 2 is a schematic diagram of a voltage waveform diagram in one embodiment
  • FIG. 3 is a schematic diagram of a current waveform diagram in one embodiment
  • FIG. 4 is a schematic diagram of voltage spectrum information in one embodiment
  • FIG. 6 is a schematic diagram of average static resistance in one embodiment
  • FIG. 7 is a schematic structural diagram of a vibration playback device in one embodiment
  • FIG. 8 is a structural block diagram of a computer device in one embodiment.
  • FIG. 1 is a schematic flowchart of a motor parameter tracking method based on frequency domain analysis in one embodiment.
  • the steps provided by the motor parameter tracking method based on frequency domain analysis include:
  • Step 102 Collect current data and voltage data of the target number of motor frames, and calculate induced electromotive force data according to the current data.
  • the motor parameter tracking method provided in this embodiment can perform overall analysis on the collected current data and voltage data, or perform real-time analysis on the collected current data and voltage data.
  • the overall analysis is performed, the current data and voltage data of a larger number of frames are collected and then analyzed by frame.
  • the current value and voltage value of 600 frames of the motor are collected from the current time, see Figure 2 and Figure 3, wherein Figure 2 is a schematic diagram of a voltage waveform diagram, and Figure 3 is a schematic diagram of a current waveform diagram. Then the current value and voltage value of each frame are calculated separately in the figure.
  • the frame length of each frame is the same, usually 10ms-20ms.
  • multiple frames of current data and voltage data can also be framed at intervals and used for subsequent calculations, or after collecting one frame of current data and voltage data each time, every preset After the time is long, the current data and voltage data of the next frame are collected.
  • the induced electromotive force data of the current frame is obtained by calculating the current data of the current frame. Specifically, firstly, the current data i of the current frame is substituted into the motion equation of the motor mover. Among them, the motion equation of the motor mover is as follows:
  • m represents the mover mass of the motor mover
  • c represents the mechanical damping parameter of the motor mover
  • k represents the spring coefficient parameter of the motor mover
  • BL represents the electromechanical coupling coefficient.
  • x represents the motion speed of the motor mover, which is calculated and solved by substituting the current data i of the current frame into the motion equation of the motor mover. Further, after substituting the motion speed x of the motor mover into the induction electric formula, the induction electric formula can be solved.
  • the induction electrodynamic formula is as follows:
  • v is the obtained moving speed of the motor mover
  • ur is the induced electromotive force
  • the current data of each frame is subjected to separate calculation of the motion equation of the motor mover and the calculation of the induced electrodynamic formula, and then the The induced electromotive force data corresponding to each frame of current data will not be repeated here.
  • Step 104 Perform discrete Fourier transform on the current data, voltage data and induced electromotive force data of each frame, respectively, to obtain the current spectrum information corresponding to the current data, the voltage spectrum information corresponding to the voltage data, and the electromotive force spectrum corresponding to the induced electromotive force data. information.
  • FIG. 4 is a schematic diagram of the voltage spectrum information U(f).
  • the discrete Fourier transform is performed on the current data i of each frame to obtain the current spectrum information I(f).
  • FIG. 5 is a schematic diagram of the current spectrum information I(f).
  • the discrete Fourier transform is performed on the induced electromotive force data ur of each frame to obtain the electromotive force spectrum information Ur(f).
  • Step 106 Calculate the total resistance of each frame according to the current spectrum information and the voltage spectrum information, and calculate the motion equivalent resistance of each frame according to the current spectrum information and the electromotive force spectrum information.
  • the total resistance of each frequency point in the frequency spectrum is obtained by dividing the voltage spectrum information and the current spectrum information of the same frequency point.
  • the total resistance of the frequency point of the frequency of 50Hz can be obtained.
  • Step 108 Calculate the average static resistance of each frame according to the total resistance and the motion equivalent resistance.
  • the motion equivalent resistance is first subtracted from the total resistance of the same frequency point to obtain the static resistance of each frequency point.
  • the Z(f) at the frequency of 50Hz is removed from the Rr(f) at the frequency of 50Hz, so as to obtain the static resistance at the frequency of 50Hz, denoted as Re(f).
  • the static resistance Re(f) of all frequency points in the same frame is averaged, that is, the static resistance Re(f) of all frequency points in the spectrogram is added and divided by the total number of frequency points, so as to obtain the value in the frame.
  • the average static resistance of denoted as avgRe(f).
  • the average static resistance of the motor in each frame can be obtained. Referring to FIG. 6, FIG. 6 is a schematic diagram of the integrated average static resistance.
  • step 102 the current data and voltage data of multiple frames are taken at intervals, or the current data and voltage data of one frame are collected at a time, and then the current data and voltage data are collected every preset time length.
  • the collected average static resistance is the average static resistance of the existing time interval.
  • the calculated average static resistance is used to adjust the voltage data of the next frame, so as to obtain a better vibration playing effect and protect the motor.
  • the next frame refers to the next frame after the acquired target number of frames.
  • the next frame refers to the next frame relative to the current acquisition frame.
  • the preset voltage threshold for example, set to 14 ⁇
  • the average static resistance is gradually increasing and the average static resistance of the last frame is 12 ⁇ (less than the preset voltage threshold of 14 ⁇ ), Therefore, by adjusting the power amplifier coefficient (or updating the voltage before outputting), so that the actual output voltage is proportionally amplified to 9V, a better vibration playback effect can be obtained.
  • the voltage data of the next frame is reduced according to the average static resistance.
  • the initial value of the resistance is 9 ⁇ at room temperature of 20°C, while the maximum temperature allowed by the motor coil is 110°C (coil temperature rise coefficient 30°C/ ⁇ ), so the preset resistance threshold is determined to be 12 ⁇ .
  • the preset resistance threshold is determined to be 12 ⁇ .
  • the above-mentioned motor parameter tracking method based on frequency domain analysis adopts the method of frequency domain analysis and averaging, which reduces the interference of error information in the collected data, and also improves the accuracy of calculation. At the same time, since the interference of the motion equivalent resistance is considered, more precise control of the motor and better temperature rise protection can be achieved.
  • a vibration playing device which includes:
  • the data acquisition module 702 is used to collect the current data and voltage data of the target frame quantity of the motor, and calculate the induced electromotive force data according to the current data;
  • the spectrum information acquisition module 704 is used to perform discrete Fourier transform on the current data, voltage data and induced electromotive force data of each frame respectively, so as to obtain the current spectrum information corresponding to the current data, the voltage spectrum information corresponding to the voltage data and the corresponding induction EMF spectrum information of EMF data;
  • the first calculation module 706 is used to calculate the total resistance of each frame according to the current spectrum information and the voltage spectrum information, and calculate the motion equivalent resistance of each frame according to the current spectrum information and the electromotive force spectrum information;
  • the second calculation module 708 is configured to calculate the average static resistance of each frame according to the total resistance and the motion equivalent resistance.
  • the vibration playing device adopts the method of frequency domain analysis and averaging, the interference of error information in the collected data is reduced, and the calculation accuracy is also improved. At the same time, since the interference of the motion equivalent resistance is considered, more precise control of the motor and better temperature rise protection can be achieved.
  • the data acquisition module 702 is further specifically configured to: substitute the current data into the motion equation of the motor mover, and calculate the motion speed of the motor mover according to the current data and the motion equation of the motor mover; substitute the motion speed into the induction motor Formula, the induced electromotive force data is obtained by calculating the motion speed and the induced electromotive force formula.
  • the data acquisition module 702 is further specifically configured to: obtain mechanical damping parameters, spring coefficient parameters, electromechanical coupling coefficients, and mover mass of the motor mover of the motor; The parameters, electromechanical coupling coefficient and current data are substituted into the motion equation of the motor mover; the electromechanical coupling coefficient and the motion speed are substituted into the induction electric formula.
  • the first calculation module 706 is further specifically configured to: in the same frame, perform point division of the voltage spectrum information and the current spectrum information of the same frequency point to obtain the total resistance of each frequency point.
  • the first calculation module 706 is further specifically configured to: in the same frame, perform point division between the electromotive force spectrum information and the current spectrum information of the same frequency point to obtain the motion equivalent resistance of each frequency point.
  • the second calculation module 708 is further specifically configured to: in the same frame, subtract the motion equivalent resistance from the total resistance of the same frequency point to obtain the static resistance of each frequency point; The static resistance is averaged to obtain the average static resistance of each frame.
  • the vibration playback device further includes: a voltage adjustment module, configured to increase the voltage data of the next frame according to the average static resistance when the average static resistance increases and is less than a preset resistance threshold; when the average static resistance is greater than or equal to the preset resistance threshold, reduce the voltage data of the next frame according to the average static resistance.
  • a voltage adjustment module configured to increase the voltage data of the next frame according to the average static resistance when the average static resistance increases and is less than a preset resistance threshold; when the average static resistance is greater than or equal to the preset resistance threshold, reduce the voltage data of the next frame according to the average static resistance.
  • Figure 8 shows an internal structure diagram of a computer device in one embodiment.
  • the computer device includes a processor, memory, and a network interface connected by a system bus.
  • the memory includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium of the computer device stores an operating system, and also stores a computer program, which, when executed by the processor, enables the processor to implement a motor parameter tracking method based on frequency domain analysis.
  • a computer program may also be stored in the internal memory, and when the computer program is executed by the processor, the processor may execute the motor parameter tracking method based on frequency domain analysis.
  • FIG. 8 is only a block diagram of a partial structure related to the solution of the present application, and does not constitute a limitation on the computer equipment to which the solution of the present application is applied. Include more or fewer components than shown in the figures, or combine certain components, or have a different arrangement of components.
  • a computer device comprising a memory, a processor, and a computer program stored in the memory and executable on the processor, the processor implements the following steps when executing the computer program: collecting current data and voltage of a motor target frame quantity Calculate the induced electromotive force data according to the current data; perform discrete Fourier transform on the current data, voltage data and induced electromotive force data of each frame to obtain the current spectrum information corresponding to the current data, the voltage spectrum information corresponding to the voltage data and The electromotive force spectrum information corresponding to the induced electromotive force data; the total resistance of each frame is calculated according to the current spectrum information and the voltage spectrum information, and the motion equivalent resistance of each frame is calculated according to the current spectrum information and the electromotive force spectrum information; according to the total resistance and The motion equivalent resistance is calculated to obtain the average static resistance for each frame.
  • calculating the induced electromotive force data according to the current data includes: substituting the current data into the motion equation of the motor mover, and calculating the motion speed of the motor mover according to the current data and the motion equation of the motor mover; substituting the motion speed into the induction motor Formula, the induced electromotive force data is obtained by calculating the motion speed and the induced electromotive force formula.
  • calculating the induced electromotive force data according to the current data further includes: acquiring the mechanical damping parameter, spring coefficient parameter, electromechanical coupling coefficient and the mover mass of the motor mover of the motor; and substituting the current data into the motion equation of the motor mover, Including: substituting the mover mass, mechanical damping parameter, spring coefficient parameter, electromechanical coupling coefficient and current data into the motor mover motion equation; substituting the motion speed into the induction motor formula, including: substituting the electromechanical coupling coefficient and the motion speed into the induction motor formula formula.
  • calculating the total resistance of each frame according to the current spectrum information and the voltage spectrum information includes: in the same frame, dividing the voltage spectrum information and the current spectrum information of the same frequency point to obtain each frequency spectrum total resistance of the point.
  • calculating the motion equivalent resistance of each frame according to the current spectrum information and the electromotive force spectrum information includes: in the same frame, dividing the electromotive force spectrum information and the current spectrum information of the same frequency point to obtain each frame. The motion equivalent resistance of each frequency point.
  • calculating the average static resistance of each frame according to the total resistance and the motion equivalent resistance includes: in the same frame, subtracting the motion equivalent resistance from the total resistance of the same frequency point to obtain each frequency point The static resistance of all frequency points is averaged to obtain the average static resistance of each frame.
  • the method further includes: when the average static resistance increases and is less than a preset resistance threshold, increasing the voltage of the next frame according to the average static resistance data; when the average static resistance is greater than or equal to the preset resistance threshold, reduce the voltage data of the next frame according to the average static resistance.
  • a computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the following steps are implemented: collecting current data and voltage data of the target number of motor frames, and calculating induced electromotive force data according to the current data.
  • calculating the induced electromotive force data according to the current data includes: substituting the current data into the motion equation of the motor mover, and calculating the motion speed of the motor mover according to the current data and the motion equation of the motor mover; substituting the motion speed into the induction motor Formula, the induced electromotive force data is obtained by calculating the motion speed and the induced electromotive force formula.
  • calculating the induced electromotive force data according to the current data further includes: acquiring the mechanical damping parameter, spring coefficient parameter, electromechanical coupling coefficient and the mover mass of the motor mover of the motor; and substituting the current data into the motion equation of the motor mover, Including: substituting the mover mass, mechanical damping parameter, spring coefficient parameter, electromechanical coupling coefficient and current data into the motor mover motion equation; substituting the motion speed into the induction motor formula, including: substituting the electromechanical coupling coefficient and the motion speed into the induction motor formula formula.
  • calculating the total resistance of each frame according to the current spectrum information and the voltage spectrum information includes: in the same frame, dividing the voltage spectrum information and the current spectrum information of the same frequency point to obtain each frequency spectrum total resistance of the point.
  • calculating the motion equivalent resistance of each frame according to the current spectrum information and the electromotive force spectrum information includes: in the same frame, dividing the electromotive force spectrum information and the current spectrum information of the same frequency point to obtain each frame. The motion equivalent resistance of each frequency point.
  • calculating the average static resistance of each frame according to the total resistance and the motion equivalent resistance includes: in the same frame, subtracting the motion equivalent resistance from the total resistance of the same frequency point to obtain each frequency point The static resistance of all frequency points is averaged to obtain the average static resistance of each frame.
  • the method further includes: when the average static resistance increases and is less than a preset resistance threshold, increasing the voltage of the next frame according to the average static resistance data; when the average static resistance is greater than or equal to the preset resistance threshold, reduce the voltage data of the next frame according to the average static resistance.
  • Nonvolatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in various forms such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Road (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDRSDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous chain Road (Synchlink) DRAM
  • SLDRAM synchronous chain Road (Synchlink) DRAM
  • Rambus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM

Abstract

本申请公开了一种基于频域分析的电机参数追踪方法,该方法包括:采集电机目标帧数量的电流数据及电压数据,根据电流数据计算感应电动势数据;对每一帧的电流数据、电压数据及感应电动势数据分别进行离散傅里叶变换,以得到对应电流数据的电流频谱信息、对应电压数据的电压频谱信息及对应感应电动势数据的电动势频谱信息;根据电流频谱信息及电压频谱信息计算得到每一帧的总电阻,及根据电流频谱信息及电动势频谱信息计算得到每一帧的运动等效电阻;根据总电阻及运动等效电阻计算得到每一帧的平均静态电阻。本发明可精确的分析电机参数,从而实现对电机更精确的控制,以及更好的进行温升保护。此外,还提出了振动播放装置、计算机设备和存储介质。

Description

基于频域分析的电机参数追踪方法、装置、设备和介质 技术领域
本申请涉及电机参数分析技术领域,尤其涉及基于频域分析的电机参数追踪方法、装置、设备和介质。
背景技术
线性电机能够提供丰富的振动形式,在触觉反馈领域获得极大的肯定,在日常电子产品中得到广泛应用。而为提供效果较佳的、多样的触觉效果,需要对线性电机的电机参数进行精确的控制,从而为用户带来完美的用户体验。
线性电机作为一种典型的电磁感应设备,具有较明确的机电耦合形式,因此对电机参数进行准确是实现电机精确控制的关键。但电机在实际工作状态下,受到环境的影响,电机的电机参数可能存在一定的波动,从而增大的电机参数控制的难度。特别是电机内部的线圈静态电阻,当电机持续工作时,内部温度升高,而静态电阻也会出现较大的变化。因此如果能精确的追踪电机内部的静态电阻,那么对于电机的精确控制有非常大的帮助。
申请内容
基于此,有必要针对上述问题,提供可精确分析的基于频域分析的电机参数追踪方法、装置、设备和介质。
一种基于频域分析的电机参数追踪方法,所述方法包括:
采集电机目标帧数量的电流数据及电压数据,根据所述电流数据计算感应电动势数据;
对每一帧的所述电流数据、所述电压数据及所述感应电动势数据分别进行离散傅里叶变换,以得到对应所述电流数据的电流频谱信息、对应所述电压数据的电压频谱信息及对应所述感应电动势数据的电动势频谱信息;
根据所述电流频谱信息及所述电压频谱信息计算得到每一帧的总电阻,及根据所述电流频谱信息及所述电动势频谱信息计算得到每一帧的运动等效电阻;
根据所述总电阻及所述运动等效电阻计算得到每一帧的平均静态电阻。
在其中一个实施例中,所述根据所述电流数据计算感应电动势数据,包括:
将所述电流数据代入电机动子运动方程,根据所述电流数据及所述电机动子运动方程计算得到电机动子的运动速度;
将所述运动速度代入感应电动式公式,根据所述运动速度及所述感应电动式公式计算得到所述感应电动势数据。
在其中一个实施例中,所述根据所述电流数据计算感应电动势数据,还包括:
获取所述电机的机械阻尼参数、弹簧系数参数、机电耦合系数及所述电机动子的动子质量;
所述将所述电流数据代入电机动子运动方程,包括:
将所述动子质量、所述机械阻尼参数、所述弹簧系数参数、所述机电耦合系数及所述电流数据代入所述电机动子运动方程;
所述将所述运动速度代入感应电动式公式,包括:
将所述机电耦合系数及所述将所述运动速度代入感应电动式公式。
在其中一个实施例中,所述根据所述电流频谱信息及所述电压频谱信息计算得到每一帧的总电阻,包括:
在同一帧内,将相同频点的所述电压频谱信息与所述电流频谱信息进行点除,得到每个所述频点的总电阻。
在其中一个实施例中,所述根据所述电流频谱信息及所述电动势频谱信息计算得到每一帧的运动等效电阻,包括:
在同一帧内,将相同频点的所述电动势频谱信息与所述电流频谱信息进行点除,得到每个所述频点的运动等效电阻。
在其中一个实施例中,所述根据所述总电阻及所述运动等效电阻计算得到每一帧的平均静态电阻,包括:
在同一帧内,将相同频点的所述总电阻减去所述运动等效电阻,得到每个频点的静态电阻;
对所有频点的所述静态电阻取平均值,得到每一帧的平均静态电阻。
在其中一个实施例中,在所述根据所述总电阻及所述运动等效电阻计算得到平均静态电阻之后,还包括:
当所述平均静态电阻增大且小于预设电阻阈值时,根据所述平均静态电阻增大下一帧的电压数据;
当所述平均静态电阻大于或等于所述预设电阻阈值时,根据所述平均静态电阻减小下一帧的电压数据。
一种振动播放装置,所述装置包括:
数据采集模块,用于采集电机目标帧数量的电流数据及电压数据,根据所述电流数据计算感应电动势数据;
频谱信息获取模块,用于对每一帧的所述电流数据、所述电压数据及所述感应电动势数据分别进行离散傅里叶变换,以得到对应所述电流数据的电流频谱信息、对应所述电压数据的电压频谱信息及对应所述感应电动势数据的电动势频谱信息;
第一计算模块,用于根据所述电流频谱信息及所述电压频谱信息计算得到每一帧的总电阻,及根据所述电流频谱信息及所述电动势频谱信息计算得到每一帧的运动等效电阻;
第二计算模块,用于根据所述总电阻及所述运动等效电阻计算得到每一帧的平均静态电阻。
一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行如下步骤:
采集电机目标帧数量的电流数据及电压数据,根据所述电流数据计算感应 电动势数据;
对每一帧的所述电流数据、所述电压数据及所述感应电动势数据分别进行离散傅里叶变换,以得到对应所述电流数据的电流频谱信息、对应所述电压数据的电压频谱信息及对应所述感应电动势数据的电动势频谱信息;
根据所述电流频谱信息及所述电压频谱信息计算得到每一帧的总电阻,及根据所述电流频谱信息及所述电动势频谱信息计算得到每一帧的运动等效电阻;
根据所述总电阻及所述运动等效电阻计算得到每一帧的平均静态电阻。
一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行如下步骤:
采集电机目标帧数量的电流数据及电压数据,根据所述电流数据计算感应电动势数据;
对每一帧的所述电流数据、所述电压数据及所述感应电动势数据分别进行离散傅里叶变换,以得到对应所述电流数据的电流频谱信息、对应所述电压数据的电压频谱信息及对应所述感应电动势数据的电动势频谱信息;
根据所述电流频谱信息及所述电压频谱信息计算得到每一帧的总电阻,及根据所述电流频谱信息及所述电动势频谱信息计算得到每一帧的运动等效电阻;
根据所述总电阻及所述运动等效电阻计算得到每一帧的平均静态电阻。
本发明提供了基于频域分析的电机参数追踪方法、装置、设备和介质,由于是采用频域分析并取均值的方式,降低了采集的数据中误差信息的干扰,也提高了计算的准确性。同时由于考虑了运动等效电阻的干扰,可以实现对电机更精确的控制,以及更好的进行温升保护。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
其中:
图1为一个实施例中基于频域分析的电机参数追踪方法的流程示意图;
图2为一个实施例中电压波形图的示意图;
图3为一个实施例中电流波形图的示意图;
图4为一个实施例中电压频谱信息的示意图;
图5为一个实施例中电流频谱信息的示意图;
图6为一个实施例中平均静态电阻的示意图;
图7为一个实施例中振动播放装置的结构示意图;
图8为一个实施例中计算机设备的结构框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图1所示,图1为一个实施例中基于频域分析的电机参数追踪方法的流程示意图,本基于频域分析的电机参数追踪方法提供的步骤包括:
步骤102,采集电机目标帧数量的电流数据及电压数据,根据电流数据计算感应电动势数据。
本实施例提供的电机参数追踪方法可以对采集到的电流数据及电压数据进行整体分析,或对采集到的电流数据及电压数据进行实时分析。当进行整体分析时,采集较多帧数量的电流数据及电压数据后进行分帧分析。例如从当前开始采集电机的600帧的电流值及电压值,参见图2及图3,其中图2为电压 波形图的示意图,图3为电流波形图的示意图。然后图中对每一帧的电流值及电压值进行单独计算。其中每帧的帧长度均相同,通常为10ms-20ms。而当进行实时分析时,从当前开始每采集1帧的电流数据及电压数据便进行后续的计算。
除此之外,为简化计算,也可对多帧数量的电流数据及电压数据进行间隔抽帧后用于后续的计算,或每次采集1帧的电流数据及电压数据后,每隔预设时长后再进行下一帧的电流数据及电压数据的采集。
在一个具体实施例中,当实时采集当前帧的电流数据及电压数据时,通过对当前帧的电流数据进行计算,以得到当前帧的感应电动势数据。具体的,首先将当前帧的电流数据i代入电机动子运动方程。其中,电机动子运动方程如下所示:
mx″+Cx′+kx=BLi
其中,m表示电机动子的动子质量,c表示电机动子的机械阻尼参数,k表示电机动子的弹簧系数参数,BL表示机电耦合系数,这些参数为线性电机的固有物理参数,可以预先调取得到。而x表示电机动子的运动速度,通过将当前帧的电流数据i代入电机动子运动方程后计算求解得到。进一步的,将电机动子的运动速度x代入感应电动式公式后,可求解得到感应电动式。其中,感应电动式公式如下所示:
ur=BLv
其中,v为求得的电机动子的运动速度,ur表示感应电动势。
在另一个具体实施例中,当进行整体分析时,在对电流数据进行分帧处理后,对每一帧的电流数据进行单独的电机动子运动方程计算及感应电动式公式计算后,可得到对应每一帧电流数据的感应电动势数据,在此不做赘述。
步骤104,对每一帧的电流数据、电压数据及感应电动势数据分别进行离散傅里叶变换,以得到对应电流数据的电流频谱信息、对应电压数据的电压频谱信息及对应感应电动势数据的电动势频谱信息。
具体的,根据离散傅里叶公式
Figure PCTCN2020113522-appb-000001
对每一帧的电压数据u进行离散傅里叶变换,得到电压频谱信息U(f)。参见图4,图4为电压频谱信息U(f)的示意图。对每一帧的电流数据i进行离散傅里叶变换,得到电流频谱信息I(f)。参见图5,图5为电流频谱信息I(f)的示意图。对每一帧的感应电动势数据ur进行离散傅里叶变换,得到电动势频谱信息Ur(f)。
步骤106,根据电流频谱信息及电压频谱信息计算得到每一帧的总电阻,及根据电流频谱信息及电动势频谱信息计算得到每一帧的运动等效电阻。
具体的,在同一帧内,通过将相同频点的电压频谱信息与电流频谱信息进行点除,从而得到频谱内每个频点的总电阻。示例性的,将图4内频率为50Hz处频点的幅值与图5内频率为50Hz的处频点的幅值对应相除,即可得到频率为50Hz处频点的总电阻。用公式表示为Rr(f)=Ur(f)./I(f),其中Rr(f)表示总电阻。同理的,在同一帧内,通过将相同频点的电动势频谱信息与电流频谱信息进行点除,从而得到频谱内每个频点的运动等效电阻。用公式表示为Z(f)=U(f)./I(f),其中Z(f)为运动等效电阻。
步骤108,根据总电阻及运动等效电阻计算得到每一帧的平均静态电阻。
具体的,在同一帧内,首先将相同频点的总电阻减去运动等效电阻,得到每个频点的静态电阻。示例性的,如将频率为50Hz处频点的Z(f)将去频率为50Hz处频点的Rr(f),从而得到频率为50Hz处频点的静态电阻,记为Re(f)。进一步的,对同一帧内的所有频点的静态电阻Re(f)取平均值,即将频谱图内所有频点的静态电阻Re(f)相加后除于频点总数,从而得到该帧内的平均静态电阻,记为avgRe(f)。通过上述计算后可得到电机每一帧的平均静态电阻。参见图6,图6为整合后的平均静态电阻的示意图。
在另一个具体实施例中,当步骤102中采用对多帧数量的电流数据及电压数据进行间隔抽帧,或每次采集1帧的电流数据及电压数据后,每隔预设时长后再进行下一帧的电流数据及电压数据采集的方式,采集到的平均静态电阻为 存在时间间隔的平均静态电阻。而通过平滑曲线将间隔的平均静态电阻进行顺序连接,可得到连续的平均静态电阻,同样可用于参数的准确追踪分析。
进一步的,计算得到的平均静态电阻用于对下一帧的电压数据进行调整,以求获得较佳的振动播放效果以及对电机进行保护。在其中一个实施例中,当进行整体分析时,该下一帧指的是采集的目标帧数量后的下一帧。当进行实时分析时,该下一帧指的是相对于当前采集帧的下一帧。示例性的,当进行整体分析时,若整体分析时间段内的平均静态电阻逐渐增大且小于预设电压阈值(例如设定为14Ω),则通过适当提高功放倍数(或在输出前对电压进行更新),从而增大下一帧的电压数据,以达到期望振动效果。例如,若电机的原电压为6V,原电阻为9Ω,在电机工作一段时间后,计算得到平均静态电阻正逐渐增大且最后一帧的平均静态电阻为12Ω(小于预设电压阈值14Ω),因此通过调整功放系数(或在输出前对电压进行更新),使实际输出电压等比放大为9V,可获得较佳的振动播放效果。
在另一个具体实施例中,当平均静态电阻大于或等于预设电阻阈值时,根据平均静态电阻减小下一帧的电压数据。例如,电阻由常温20℃下初始值9Ω,而电机线圈所允许的最高温度为110℃(线圈温升系数30℃/Ω),因此确定预设电阻阈值为12Ω。当平均静态电阻大于或等于该预设电阻阈值时,适当减小下一帧的电压数据,或直接控制振动播放装置停止工作,从而达到保护电机的效果。
上述基于频域分析的电机参数追踪方法,由于是采用频域分析并取均值的方式,降低了采集的数据中误差信息的干扰,也提高了计算的准确性。同时由于考虑了运动等效电阻的干扰,可以实现对电机更精确的控制,以及更好的进行温升保护。
在一个实施例中,如图7所示,提出了一种振动播放装置,该装置包括:
数据采集模块702,用于采集电机目标帧数量的电流数据及电压数据,根 据电流数据计算感应电动势数据;
频谱信息获取模块704,用于对每一帧的电流数据、电压数据及感应电动势数据分别进行离散傅里叶变换,以得到对应电流数据的电流频谱信息、对应电压数据的电压频谱信息及对应感应电动势数据的电动势频谱信息;
第一计算模块706,用于根据电流频谱信息及电压频谱信息计算得到每一帧的总电阻,及根据电流频谱信息及电动势频谱信息计算得到每一帧的运动等效电阻;
第二计算模块708,用于根据总电阻及运动等效电阻计算得到每一帧的平均静态电阻。
上述振动播放装置,由于是采用频域分析并取均值的方式,降低了采集的数据中误差信息的干扰,也提高了计算的准确性。同时由于考虑了运动等效电阻的干扰,可以实现对电机更精确的控制,以及更好的进行温升保护。
在一个实施例中,数据采集模块702,还具体用于:将电流数据代入电机动子运动方程,根据电流数据及电机动子运动方程计算得到电机动子的运动速度;将运动速度代入感应电动式公式,根据运动速度及感应电动式公式计算得到感应电动势数据。
在一个实施例中,数据采集模块702,还具体用于:获取电机的机械阻尼参数、弹簧系数参数、机电耦合系数及电机动子的动子质量;将动子质量、机械阻尼参数、弹簧系数参数、机电耦合系数及电流数据代入电机动子运动方程;将机电耦合系数及将运动速度代入感应电动式公式。
在一个实施例中,第一计算模块706,还具体用于:在同一帧内,将相同频点的电压频谱信息与电流频谱信息进行点除,得到每个频点的总电阻。
在一个实施例中,第一计算模块706,还具体用于:在同一帧内,将相同频点的电动势频谱信息与电流频谱信息进行点除,得到每个频点的运动等效电阻。
在一个实施例中,第二计算模块708,还具体用于:在同一帧内,将相同 频点的总电阻减去运动等效电阻,得到每个频点的静态电阻;对所有频点的静态电阻取平均值,得到每一帧的平均静态电阻。
在一个实施例中,振动播放装置还包括:电压调整模块,用于当平均静态电阻增大且小于预设电阻阈值时,根据平均静态电阻增大下一帧的电压数据;当平均静态电阻大于或等于预设电阻阈值时,根据平均静态电阻减小下一帧的电压数据。
图8示出了一个实施例中计算机设备的内部结构图。如图8所示,该计算机设备包括通过系统总线连接的处理器、存储器和网络接口。其中,存储器包括非易失性存储介质和内存储器。该计算机设备的非易失性存储介质存储有操作系统,还可存储有计算机程序,该计算机程序被处理器执行时,可使得处理器实现基于频域分析的电机参数追踪方法。该内存储器中也可储存有计算机程序,该计算机程序被处理器执行时,可使得处理器执行基于频域分析的电机参数追踪方法。本领域技术人员可以理解,图8中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
一种计算机设备,包括存储器、处理器以及存储在该存储器中并可在该处理器上执行的计算机程序,该处理器执行该计算机程序时实现如下步骤:采集电机目标帧数量的电流数据及电压数据,根据电流数据计算感应电动势数据;对每一帧的电流数据、电压数据及感应电动势数据分别进行离散傅里叶变换,以得到对应电流数据的电流频谱信息、对应电压数据的电压频谱信息及对应感应电动势数据的电动势频谱信息;根据电流频谱信息及电压频谱信息计算得到每一帧的总电阻,及根据电流频谱信息及电动势频谱信息计算得到每一帧的运动等效电阻;根据总电阻及运动等效电阻计算得到每一帧的平均静态电阻。
在一个实施例中,根据电流数据计算感应电动势数据,包括:将电流数据代入电机动子运动方程,根据电流数据及电机动子运动方程计算得到电机动子 的运动速度;将运动速度代入感应电动式公式,根据运动速度及感应电动式公式计算得到感应电动势数据。
在一个实施例中,根据电流数据计算感应电动势数据,还包括:获取电机的机械阻尼参数、弹簧系数参数、机电耦合系数及电机动子的动子质量;将电流数据代入电机动子运动方程,包括:将动子质量、机械阻尼参数、弹簧系数参数、机电耦合系数及电流数据代入电机动子运动方程;将运动速度代入感应电动式公式,包括:将机电耦合系数及将运动速度代入感应电动式公式。
在一个实施例中,根据电流频谱信息及电压频谱信息计算得到每一帧的总电阻,包括:在同一帧内,将相同频点的电压频谱信息与电流频谱信息进行点除,得到每个频点的总电阻。
在一个实施例中,根据电流频谱信息及电动势频谱信息计算得到每一帧的运动等效电阻,包括:在同一帧内,将相同频点的电动势频谱信息与电流频谱信息进行点除,得到每个频点的运动等效电阻。
在一个实施例中,根据总电阻及运动等效电阻计算得到每一帧的平均静态电阻,包括:在同一帧内,将相同频点的总电阻减去运动等效电阻,得到每个频点的静态电阻;对所有频点的静态电阻取平均值,得到每一帧的平均静态电阻。
在一个实施例中,在根据总电阻及运动等效电阻计算得到平均静态电阻之后,还包括:当平均静态电阻增大且小于预设电阻阈值时,根据平均静态电阻增大下一帧的电压数据;当平均静态电阻大于或等于预设电阻阈值时,根据平均静态电阻减小下一帧的电压数据。
一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被处理器执行时实现如下步骤:采集电机目标帧数量的电流数据及电压数据,根据电流数据计算感应电动势数据;对每一帧的电流数据、电压数据及感应电动势数据分别进行离散傅里叶变换,以得到对应电流数据的电流频谱信息、对应电压数据的电压频谱信息及对应感应电动势数据的电动势频谱信 息;根据电流频谱信息及电压频谱信息计算得到每一帧的总电阻,及根据电流频谱信息及电动势频谱信息计算得到每一帧的运动等效电阻;根据总电阻及运动等效电阻计算得到每一帧的平均静态电阻。
在一个实施例中,根据电流数据计算感应电动势数据,包括:将电流数据代入电机动子运动方程,根据电流数据及电机动子运动方程计算得到电机动子的运动速度;将运动速度代入感应电动式公式,根据运动速度及感应电动式公式计算得到感应电动势数据。
在一个实施例中,根据电流数据计算感应电动势数据,还包括:获取电机的机械阻尼参数、弹簧系数参数、机电耦合系数及电机动子的动子质量;将电流数据代入电机动子运动方程,包括:将动子质量、机械阻尼参数、弹簧系数参数、机电耦合系数及电流数据代入电机动子运动方程;将运动速度代入感应电动式公式,包括:将机电耦合系数及将运动速度代入感应电动式公式。
在一个实施例中,根据电流频谱信息及电压频谱信息计算得到每一帧的总电阻,包括:在同一帧内,将相同频点的电压频谱信息与电流频谱信息进行点除,得到每个频点的总电阻。
在一个实施例中,根据电流频谱信息及电动势频谱信息计算得到每一帧的运动等效电阻,包括:在同一帧内,将相同频点的电动势频谱信息与电流频谱信息进行点除,得到每个频点的运动等效电阻。
在一个实施例中,根据总电阻及运动等效电阻计算得到每一帧的平均静态电阻,包括:在同一帧内,将相同频点的总电阻减去运动等效电阻,得到每个频点的静态电阻;对所有频点的静态电阻取平均值,得到每一帧的平均静态电阻。
在一个实施例中,在根据总电阻及运动等效电阻计算得到平均静态电阻之后,还包括:当平均静态电阻增大且小于预设电阻阈值时,根据平均静态电阻增大下一帧的电压数据;当平均静态电阻大于或等于预设电阻阈值时,根据平均静态电阻减小下一帧的电压数据。
需要说明的是,上述基于频域分析的电机参数追踪方法、装置、设备及计算机可读存储介质属于一个总的发明构思,基于频域分析的电机参数追踪方法、装置、设备及计算机可读存储介质实施例中的内容可相互适用。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,该程序可存储于一非易失性计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种基于频域分析的电机参数追踪方法,其特征在于,所述方法包括:
    采集电机目标帧数量的电流数据及电压数据,根据所述电流数据计算感应电动势数据;
    对每一帧的所述电流数据、所述电压数据及所述感应电动势数据分别进行离散傅里叶变换,以得到对应所述电流数据的电流频谱信息、对应所述电压数据的电压频谱信息及对应所述感应电动势数据的电动势频谱信息;
    根据所述电流频谱信息及所述电压频谱信息计算得到每一帧的总电阻,及根据所述电流频谱信息及所述电动势频谱信息计算得到每一帧的运动等效电阻;
    根据所述总电阻及所述运动等效电阻计算得到每一帧的平均静态电阻。
  2. 根据权利要求1所述的基于频域分析的电机参数追踪方法,其特征在于,所述根据所述电流数据计算感应电动势数据,包括:
    将所述电流数据代入电机动子运动方程,根据所述电流数据及所述电机动子运动方程计算得到电机动子的运动速度;
    将所述运动速度代入感应电动式公式,根据所述运动速度及所述感应电动式公式计算得到所述感应电动势数据。
  3. 根据权利要求2所述的基于频域分析的电机参数追踪方法,其特征在于,所述根据所述电流数据计算感应电动势数据,还包括:
    获取所述电机的机械阻尼参数、弹簧系数参数、机电耦合系数及所述电机动子的动子质量;
    所述将所述电流数据代入电机动子运动方程,包括:
    将所述动子质量、所述机械阻尼参数、所述弹簧系数参数、所述机电耦合系数及所述电流数据代入所述电机动子运动方程;
    所述将所述运动速度代入感应电动式公式,包括:
    将所述机电耦合系数及所述将所述运动速度代入感应电动式公式。
  4. 根据权利要求1所述的基于频域分析的电机参数追踪方法,其特征在于,所述根据所述电流频谱信息及所述电压频谱信息计算得到每一帧的总电阻,包括:
    在同一帧内,将相同频点的所述电压频谱信息与所述电流频谱信息进行点除,得到每个所述频点的总电阻。
  5. 根据权利要求1所述的基于频域分析的电机参数追踪方法,其特征在于,所述根据所述电流频谱信息及所述电动势频谱信息计算得到每一帧的运动等效电阻,包括:
    在同一帧内,将相同频点的所述电动势频谱信息与所述电流频谱信息进行点除,得到每个所述频点的运动等效电阻。
  6. 根据权利要求1所述的基于频域分析的电机参数追踪方法,其特征在于,所述根据所述总电阻及所述运动等效电阻计算得到每一帧的平均静态电阻,包括:
    在同一帧内,将相同频点的所述总电阻减去所述运动等效电阻,得到每个频点的静态电阻;
    对所有频点的所述静态电阻取平均值,得到每一帧的平均静态电阻。
  7. 根据权利要求1所述的基于频域分析的电机参数追踪方法,其特征在于,在所述根据所述总电阻及所述运动等效电阻计算得到平均静态电阻之后,还包括:
    当所述平均静态电阻增大且小于预设电阻阈值时,根据所述平均静态电阻增大下一帧的电压数据;
    当所述平均静态电阻大于或等于所述预设电阻阈值时,根据所述平均静态电阻减小下一帧的电压数据。
  8. 一种振动播放装置,其特征在于,所述装置包括:
    数据采集模块,用于采集电机目标帧数量的电流数据及电压数据,根据所述电流数据计算感应电动势数据;
    频谱信息获取模块,用于对每一帧的所述电流数据、所述电压数据及所述感应电动势数据分别进行离散傅里叶变换,以得到对应所述电流数据的电流频谱信息、对应所述电压数据的电压频谱信息及对应所述感应电动势数据的电动势频谱信息;
    第一计算模块,用于根据所述电流频谱信息及所述电压频谱信息计算得到每一帧的总电阻,及根据所述电流频谱信息及所述电动势频谱信息计算得到每一帧的运动等效电阻;
    第二计算模块,用于根据所述总电阻及所述运动等效电阻计算得到每一帧的平均静态电阻。
  9. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行如权利要求1至7中任一项所述方法的步骤。
  10. 一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行如权利要求1至7中任一项所述方法的步骤。
PCT/CN2020/113522 2020-08-24 2020-09-04 基于频域分析的电机参数追踪方法、装置、设备和介质 WO2022041309A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010856065.1 2020-08-24
CN202010856065.1A CN112100569B (zh) 2020-08-24 2020-08-24 基于频域分析的电机参数追踪方法、装置、设备和介质

Publications (1)

Publication Number Publication Date
WO2022041309A1 true WO2022041309A1 (zh) 2022-03-03

Family

ID=73754268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113522 WO2022041309A1 (zh) 2020-08-24 2020-09-04 基于频域分析的电机参数追踪方法、装置、设备和介质

Country Status (2)

Country Link
CN (1) CN112100569B (zh)
WO (1) WO2022041309A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113704966B (zh) * 2021-07-22 2024-04-09 西安空间无线电技术研究所 一种识别调控囚禁离子振动模式及耦合强度的方法
CN113702829B (zh) * 2021-08-31 2024-03-08 歌尔股份有限公司 振动电机的扫频特性曲线生成方法、装置及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110276301A1 (en) * 2010-05-06 2011-11-10 I Shou University System for computing machine parameters of an induction machine
CN103376362A (zh) * 2012-04-25 2013-10-30 珠海格力电器股份有限公司 磁阻电机绕组阻值和换相位置的检测方法及装置
CN108183647A (zh) * 2017-12-28 2018-06-19 深圳市英威腾电气股份有限公司 一种异步电机离线静态参数辨识方法及其装置
CN109150049A (zh) * 2018-08-08 2019-01-04 同济大学 一种静止坐标系电机分布式参数模型建立方法
CN110289747A (zh) * 2019-07-25 2019-09-27 青岛远洋船员职业学院 一种直线振荡电机的等效磁路建模方法
CN111030546A (zh) * 2019-12-19 2020-04-17 深圳市显控科技股份有限公司 永磁电机离线参数识别方法和装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4286842B2 (ja) * 2005-03-30 2009-07-01 株式会社ピーシーエヌ 車載バッテリー管理装置
TW201018084A (en) * 2008-10-29 2010-05-01 Ultimax Tw Co Ltd Electric damper
WO2010111412A2 (en) * 2009-03-24 2010-09-30 Infinirel Corporation Systems, devices and methods for predicting power electronics failure
CN102291080B (zh) * 2011-07-08 2013-02-13 哈尔滨工业大学 基于自适应补偿的异步电机参数辨识方法
US20140275886A1 (en) * 2013-03-14 2014-09-18 Streamline Automation, Llc Sensor fusion and probabilistic parameter estimation method and apparatus
CN104836486B (zh) * 2015-04-09 2017-08-04 哈尔滨工程大学 一种基于fpga的无刷直流电机节能控制系统及控制方法
US9954495B1 (en) * 2016-10-24 2018-04-24 Synaptics Incorporated PVT invariant peaking stage for continuous time linear equalizer
CN108270382B (zh) * 2016-12-30 2021-01-22 杭州三花研究院有限公司 一种控制方法及装置
CN106788061B (zh) * 2017-01-24 2019-04-30 东南大学 一种基于降阶电流环的永磁同步电机转动惯量识别方法
GB2569800B (en) * 2017-12-22 2022-09-07 Thermo Fisher Scient Bremen Gmbh Method and device for crosstalk compensation
CN109581237A (zh) * 2018-11-15 2019-04-05 山东金人电气有限公司 一种动力电池动态内阻检测方法,设备及计算机可读存储介质
CN110474593B (zh) * 2018-12-25 2021-04-13 中国科学院长春光学精密机械与物理研究所 一种直流无刷电机电枢等效电阻电感测量方法
CN109787235B (zh) * 2019-01-29 2020-09-01 国网湖南省电力有限公司 新能源发电机组全功率范围谐波特性模型获取方法及系统
CN110736926A (zh) * 2019-10-14 2020-01-31 湖南银河电气有限公司 电机运行状态的特征参数提取方法和装置
CN110995079B (zh) * 2019-12-16 2023-04-28 瑞声科技(新加坡)有限公司 电机振动信号的生成方法、装置、终端及存储介质
CN111478630B (zh) * 2019-12-30 2023-11-10 瑞声科技(新加坡)有限公司 一种马达稳态单频失真补偿方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110276301A1 (en) * 2010-05-06 2011-11-10 I Shou University System for computing machine parameters of an induction machine
CN103376362A (zh) * 2012-04-25 2013-10-30 珠海格力电器股份有限公司 磁阻电机绕组阻值和换相位置的检测方法及装置
CN108183647A (zh) * 2017-12-28 2018-06-19 深圳市英威腾电气股份有限公司 一种异步电机离线静态参数辨识方法及其装置
CN109150049A (zh) * 2018-08-08 2019-01-04 同济大学 一种静止坐标系电机分布式参数模型建立方法
CN110289747A (zh) * 2019-07-25 2019-09-27 青岛远洋船员职业学院 一种直线振荡电机的等效磁路建模方法
CN111030546A (zh) * 2019-12-19 2020-04-17 深圳市显控科技股份有限公司 永磁电机离线参数识别方法和装置

Also Published As

Publication number Publication date
CN112100569B (zh) 2024-04-02
CN112100569A (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
WO2022041309A1 (zh) 基于频域分析的电机参数追踪方法、装置、设备和介质
US10080085B2 (en) Loudspeaker nonlinear compensation method and apparatus
US9363599B2 (en) Systems and methods for protecting a speaker
US9357300B2 (en) Systems and methods for protecting a speaker
DE102014115719A1 (de) Verfahren zur Schätzung des Membranhubs eines Lautsprechers
EP2538699B1 (en) Control of a loudspeaker output
WO2011095952A1 (en) Control of a loudspeaker output
TW201328172A (zh) 系統線性化技術
TW201737723A (zh) 用於具有截斷的非因果性之揚聲器電子識別的系統及方法
CN110907827B (zh) 一种马达瞬态失真测量方法及系统
WO2022110351A1 (zh) 线性马达超行程控制方法、装置、计算机设备及存储介质
Aboutanios Estimation of the frequency and decay factor of a decaying exponential in noise
CN110794170A (zh) 一种加速度计两自由度动态模型参数辨识的方法
US9362878B1 (en) Systems and methods for protecting a speaker
Li et al. A new approach for filtering and derivative estimation of noisy signals
Tan et al. Identification of a Wiener–Hammerstein system using an incremental nonlinear optimisation technique
WO2020124934A1 (zh) 一种伺服电机负载惯量的测定方法
CN112198795B (zh) 机电伺服控制方法、系统、终端设备及存储介质
CN111752149B (zh) 一种用于伺服电机指定时间吸引的数字重复控制器设计方法
Volosnikov Measurement System Based on Nonrecursive Filters with the Optimal Correction of the Dynamic Measurement Error
CN110518858B (zh) 转子位置估算方法、装置、计算机设备和存储介质
Widanage et al. Estimating the frequency response of a system in the presence of an integrator
CN117555241B (zh) 一种振镜电机的时滞补偿非线性控制方法及其相关装置
Deb et al. System identification: parameter estimation of transfer function
WO2012078367A2 (en) Complex adaptive phase estimation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20950978

Country of ref document: EP

Kind code of ref document: A1