WO2022041200A1 - 一种有机电致发光器件 - Google Patents

一种有机电致发光器件 Download PDF

Info

Publication number
WO2022041200A1
WO2022041200A1 PCT/CN2020/112492 CN2020112492W WO2022041200A1 WO 2022041200 A1 WO2022041200 A1 WO 2022041200A1 CN 2020112492 W CN2020112492 W CN 2020112492W WO 2022041200 A1 WO2022041200 A1 WO 2022041200A1
Authority
WO
WIPO (PCT)
Prior art keywords
lumo
homo
etl
htl
organic electroluminescent
Prior art date
Application number
PCT/CN2020/112492
Other languages
English (en)
French (fr)
Inventor
马坤
陈磊
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202080001762.7A priority Critical patent/CN114450816A/zh
Priority to US17/312,186 priority patent/US11925042B2/en
Priority to PCT/CN2020/112492 priority patent/WO2022041200A1/zh
Publication of WO2022041200A1 publication Critical patent/WO2022041200A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers

Definitions

  • the present invention relates to an organic electroluminescent device in which a dual host material having a specific P:N ratio is used, and the energy level and mobility of the functional layer material are adjusted to be within a specific range, which enables a wide variety of P:N: Better device performance can be produced under the N ratio, thus providing more possibilities for device selection.
  • OLEDs organic electroluminescent displays
  • two-component host materials are mostly used in light-emitting devices based on phosphorescent host materials, one of which is an electron-type material (N-type) and the other material is a hole-type material (P-type material). type), electrons and holes combine at the interface after conduction through the two materials.
  • N-type electron-type material
  • P-type material hole-type material
  • type electrons and holes combine at the interface after conduction through the two materials.
  • the two materials used in dual host materials are more widely sourced, and a combination of different materials can be used to achieve better device performance.
  • the present invention relates to an organic electroluminescent device that defines the relationship between the P:N ratio in the host of the emissive layer and the energy level and mobility of the functional layer material, which enables it to operate at various P:N ratios Both can produce better device performance, thus providing more possibilities for device selection. Furthermore, it was surprisingly found that when the P:N ratio in the host of the light-emitting layer is within a certain range, by setting the mobilities of the hole transport layer and the electron transport layer to be within a certain range, a better device performance.
  • the present invention relates to an organic electroluminescent device in which a dual host material with a specific P:N ratio is used and the energy level and mobility of the functional layer material are adjusted to be within a specific range.
  • the present invention relates to an organic electroluminescent device comprising an anode, a hole transport layer (HTL), an electron blocking layer (EBL), an emissive layer (EML), a hole blocking layer (HBL), an electron transport layer (ETL), a cathode, wherein the light-emitting layer comprises at least one phosphorescent guest compound and at least two host materials, and the host materials are N-type materials and P-type materials, respectively, wherein the weight of the N-type material and the P-type material is The ratio P:N is 1:5 to 5:1, characterized by:
  • HTL The mobility of HTL is 5.0 ⁇ 10 -6 cm 2 /Vs to 1.0 ⁇ 10 -3 cm 2 /Vs;
  • the ETL mobility ranges from 5.0 ⁇ 10 -8 cm 2 /Vs to 8.0 ⁇ 10 -6 cm 2 /Vs
  • the HTL mobility ranges from 1.0 ⁇ 10 -5 cm 2 /Vs to 9.0 ⁇ 10 -4 cm 2 /Vs,
  • the HTL mobility ranges from 5.5 ⁇ 10 -4 cm 2 /Vs to 8.0 ⁇ 10 -4 cm 2 /Vs
  • P:N is 1:4 to 4:1, preferably 1:3 to 3:1.
  • the present invention relates to an organic electroluminescent device, characterized in that:
  • the HTL mobility ranges from 5.5 ⁇ 10 -4 cm 2 /Vs to 8.0 ⁇ 10 -4 cm 2 /Vs
  • the HTL mobility ranges from 5.5 ⁇ 10 -4 cm 2 /Vs to 8.0 ⁇ 10 -4 cm 2 /Vs
  • the HTL mobility ranges from 5.5 ⁇ 10 -4 cm 2 /Vs to 8.0 ⁇ 10 -4 cm 2 /Vs
  • the HTL mobility ranges from 5.5 ⁇ 10 -4 cm 2 /Vs to 8.0 ⁇ 10 -4 cm 2 /Vs
  • the HTL mobility ranges from 8.0 ⁇ 10 -5 cm 2 /Vs to 8.0 ⁇ 10 -4 cm 2 /Vs
  • the total concentration of phosphorescent guest compound is 5-20 wt%, preferably 8-14 wt%, more preferably 9-12 wt%, based on the sum of the weights of host material and guest material.
  • the structure of the organic light-emitting device of the present invention is known in the art. As shown in FIG. 1, it includes an anode and a cathode on a substrate, and an organic layer between the anode and the cathode, and the organic layer may be a multi-layer structure.
  • the organic material layer may include a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, an electron transport layer.
  • the organic material layer of the present invention may further include an electron injection layer.
  • the anode material can be transparent conductive materials such as indium tin oxide (ITO), indium zinc oxide (IZO), tin dioxide (SnO 2 ), and zinc oxide (ZnO) known in the prior art, or silver and its alloys , metal materials such as aluminum and its alloys, organic conductive materials such as polydioxyethylthiophene (PEDOT), and multi-layer structures of the above materials.
  • transparent conductive materials such as indium tin oxide (ITO), indium zinc oxide (IZO), tin dioxide (SnO 2 ), and zinc oxide (ZnO) known in the prior art, or silver and its alloys , metal materials such as aluminum and its alloys, organic conductive materials such as polydioxyethylthiophene (PEDOT), and multi-layer structures of the above materials.
  • the cathode material can be selected from, but not limited to, LiF/Al, ITO, metals, oxides, and other materials.
  • the metal may be selected from Mg, Ag, Al and alloys thereof, preferably from Mg/Ag alloys and Mg/Al alloys.
  • the oxide may be selected from yttrium oxide, scandium oxide and rare earth metal oxides.
  • HTL hole transport layer
  • EBL electron blocking layer
  • the light-emitting layer may contain a host material and a guest material, wherein the host material is a dual host, ie, contains N-type and P-type host materials.
  • the P-type material is selected from the group consisting of triarylamine derivatives, carbazole derivatives, fused carbazole derivatives, carbazole triphenylene derivatives, and dibenzofurans and benzofuranyl diphenyls One or more of the furan derivatives;
  • the N-type material is selected from triazine derivatives, pyrimidine derivatives, diazaphosphacyclopentadiene derivatives, indole substituted by electron-deficient heteroaromatic groups One or more of carbazole derivatives, and indenocarbazole derivatives substituted with electron-deficient heteroaromatic groups.
  • the N-type and P-type host materials respectively include, but are not limited to, combinations of one or more of the conventional materials shown below:
  • the guest material of the light-emitting layer may be selected from, but not limited to, a combination of one or more of GD-1 to GD-10 listed below:
  • ETL electron transport layer
  • HBL hole blocking layer
  • the material of the electron injection layer is selected from, but not limited to, LiF, Yb, LIQ, Mg:LiF, and the like.
  • HTL and ETL can be vapor-deposited individually or co-evaporated (doped) with two or more materials.
  • each layer is known in the art, for example:
  • Anode 10-300nm, preferably 50-250nm, more preferably 100-200nm;
  • Hole transport layer 10-200nm, preferably 50-150nm, more preferably 80-120nm;
  • Electron blocking layer 0.5-20 nm, preferably 0.8-10 nm, more preferably 0.8-5 nm;
  • Light-emitting layer 5-100nm, preferably 10-50nm, more preferably 20-40nm;
  • Hole blocking layer 0.5-20nm, preferably 0.8-10nm, more preferably 0.8-5nm;
  • Electron transport layer 5-100nm, preferably 10-50nm, more preferably 20-40nm;
  • Electron injection layer 0.5-20nm, preferably 0.8-10nm, more preferably 0.8-5nm;
  • Cathode 10-300 nm, preferably 50-250 nm, more preferably 100-200 nm.
  • the present invention also relates to a method of preparing the OLED device of the present invention, which comprises stacking the layers in sequence.
  • the layers of the OLED device of the present invention can be stacked using an evaporation process.
  • the specific process of the evaporation process can be: using the method of electric current heating to evaporate the desired material into atoms or molecules, these atoms and molecules will be separated from the material itself due to thermal motion, move upward, move During the process, it contacts with the substrate, and condensation accumulates on the substrate to form various film layers.
  • the process of preparing each film layer by high-temperature vapor deposition is performed in an environment with a vacuum degree higher than 4 ⁇ 10 -4 Pa, preferably 1 ⁇ 10 -5 Pa to 1 ⁇ 10 -6 Pa.
  • the evaporation rate is 0.01-10 nm/s, preferably 0.05-2 nm/s.
  • Fig. 1 is the schematic diagram of the structure of the OLED device of the present invention, wherein:
  • FIG. 2 shows the difference in efficiency and lifetime of the OLED device of the present invention under different ratios of PN components.
  • FIG. 3 shows changes in exciton recombination regions of the OLED devices of Example 1 and Comparative Example 1.
  • the preparation process of organic electroluminescent device is as follows:
  • the light-emitting layer of the device is vacuum-evaporated on the electron blocking layer.
  • LiF was vacuum-evaporated to a thickness of 0.5 nm on the electron transport layer (ETL) as an electron injection layer.
  • ETL electron transport layer
  • the HOMO and LUMO of the HTL layer and ETL layer are as follows:
  • the HOMO and LUMO of the EML layer, HBL layer and EBL layer are as follows:
  • LUMO -2.25eV

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机电致发光器件,其中使用具有特定P:N比例的双主体材料,并且调节功能层材料的能级和迁移率以使其处于特定范围内,这使得在多种P:N比例下都可以产生较好的器件性能,从而为器件的选择提供更多可能性。

Description

一种有机电致发光器件 技术领域
本发明涉及一种有机电致发光器件,其中使用具有特定P:N比例的双主体材料,并且调节功能层材料的能级和迁移率以使其处于特定范围内,这使得在多种P:N比例下都可以产生较好的器件性能,从而为器件的选择提供更多可能性。
发明背景
近年来,有机电致发光显示器(OLED)作为一种新型的平板显示逐渐受到更多的关注。由于其具有主动发光、发光亮度高、分辨率高、宽视角、响应速度快、低能耗以及可柔性化等特点,成为目前市场上炙手可热的主流显示产品。
随着OLED技术的不断推进,人们对于影响OLED的高效有机材料及器件性能的研究更加关注,一个效率好寿命长的有机电致发光器件通常是器件结构与各种有机材料的优化搭配的结果。这为设计及开发各种结构的功能化材料与器件的结构提供了极大的机遇和挑战。
目前,在基于磷光主体材料的发光器件中大多使用的是双组分主体材料(双主体),其中一种材料作为电子型材料(N型),另外一种材料则作为空穴型材料(P型),电子和空穴经过两种材料的传导后,在界面处结合。相比于双极性材料,双主体材料中使用的两种材料来源更加广泛,并且可以采取不同材料的组合方式来实现更好的器件性能。
然而,双主体材料中的P型和N型比例对于发光层乃至整个器件的影响都是巨大的,如何找到P型和N型的不同比例与其他功能层之间的对应的最佳匹配关系,这对于器件性能有着重大意义。
发明内容
发明人在实验期间令人惊讶地发现,当磷光的双主体材料在P:N比例发生变化时,对器件的性能会造成比较大的影响,而造成影响的原因可能 是因为随着P:N比例的变化,在发光层中的激子复合区域会发生变化。特别是当P:N比例相差较大时,很容易使复合区域向某一方向偏移,从而导致效率以及寿命的变化。然而,影响发光层激子复合区域的因素除了P:N的比例之外,还有功能层与发光层主体材料之间的能级和迁移率之间的关系。因此,本发明涉及一种有机电致发光器件,其限定了发光层主体中P:N比例与功能层材料的能级与迁移率之间的关系,这使得其在多种P:N比例下都可以产生较好的器件性能,从而为器件的选择提供更多可能性。此外,令人惊讶地发现,当发光层主体中P:N比例处于特定范围内时,通过设定空穴传输层和电子传输层的迁移率以使其处于特定范围内,可以产生较好的器件性能。
因此,本发明涉及一种有机电致发光器件,其中使用具有特定P:N比例的双主体材料,并且调节功能层材料的能级和迁移率以使其处于特定范围内。
具体地,本发明涉及一种有机电致发光器件,其包括阳极、空穴传输层(HTL)、电子阻挡层(EBL)、发光层(EML)、空穴阻挡层(HBL)、电子传输层(ETL)、阴极,其中所述发光层包含至少一种磷光客体化合物和至少两种主体材料,且所述主体材料分别为N型材料和P型材料,其中N型材料与P型材料的重量比P:N为1:5至5:1,其特征在于:
0.02eV≤HOMO(HTL)-HOMO(EML)≤0.65eV,
优选地,
0.20eV≤HOMO(HTL)-HOMO(EML)≤0.60eV,
更优选地,
0.35eV≤HOMO(HTL)-HOMO(EML)≤0.60eV。
在本发明的一个实施方案中,其特征在于:
0.25eV≤LUMO(EML)-LUMO(ETL)≤1.00eV,
优选地,
0.30eV≤LUMO(EML)-LUMO(ETL)≤0.60eV,
更优选地,
0.25eV≤LUMO(EML)-LUMO(ETL)≤0.50eV。
在本发明的一个实施方案中,其特征在于:
0.01eV≤HOMO(HTL)-HOMO(EBL)≤0.28eV,
优选地,
0.03eV≤HOMO(HTL)-HOMO(EBL)≤0.25eV,
更优选地,
0.05eV≤HOMO(HTL)-HOMO(EBL)≤0.20eV。
在本发明的一个实施方案中,其特征在于:
1.00eV≤LUMO(HBL)-LUMO(ETL)≤1.50eV,
优选地,
1.00eV≤LUMO(HBL)-LUMO(ETL)≤1.30eV,
更优选地,
1.00eV≤LUMO(HBL)-LUMO(ETL)≤1.10eV。
在本发明的一个实施方案中,其特征在于:
(3)HTL迁移率为5.0×10 -6cm 2/Vs至1.0×10 -3cm 2/Vs;
ETL迁移率为5.0×10 -8cm 2/Vs至8.0×10 -6cm 2/Vs,
优选地,
(3)HTL迁移率为1.0×10 -5cm 2/Vs至9.0×10 -4cm 2/Vs,
ETL迁移率为8.0×10 -8cm 2/Vs至6.0×10 -6cm 2/Vs;
更优选地,
(3)HTL迁移率为5.5×10 -4cm 2/Vs至8.0×10 -4cm 2/Vs,
ETL迁移率为1.0×10 -7cm 2/Vs至3.0×10 -6cm 2/Vs;
其中所述迁移率根据SCLC方法测试。
在本发明的一个实施方案中,P:N为1:4至4:1,优选为1:3至3:1。
在本发明的又一实施方案中,本发明涉及一种有机电致发光器件,其特征在于:
当P:N比例为7:3时,
(1)0.40eV≤HOMO(HTL)-HOMO(EML)≤0.55eV,
0.28eV≤LUMO(EML)-LUMO(ETL)≤0.40eV;
当P:N为6:4时,
(1)0.45eV≤HOMO(HTL)-HOMO(EML)≤0.55eV,
0.30eV≤LUMO(EML)-LUMO(ETL)≤0.40eV。
在本发明的一个实施方案中,其特征在于:
当P:N比例为7:3时,
(2)0.05eV≤HOMO(HTL)-HOMO(EBL)≤0.15eV,
1.00eV≤LUMO(HBL)-LUMO(ETL)≤1.10eV;
当P:N为6:4时,
(2)0.10eV≤HOMO(HTL)-HOMO(EBL)≤0.20eV,
1.00eV≤LUMO(HBL)-LUMO(ETL)≤1.10eV。
在本发明的一个实施方案中,其特征在于:
当P:N比例为7:3时,
(3)HTL迁移率为5.5×10 -4cm 2/Vs至8.0×10 -4cm 2/Vs,
ETL迁移率为1.0×10 -7cm 2/Vs至7.0×10 -7cm 2/Vs;
当P:N为6:4时,
(3)HTL迁移率为5.5×10 -4cm 2/Vs至8.0×10 -4cm 2/Vs,
ETL迁移率为1.0×10 -7cm 2/Vs至3.0×10 -7cm 2/Vs;
其中所述迁移率根据SCLC方法测试。
在本发明的一个实施方案中,其特征在于:
当P:N比例为5:5时,
(1)0.40eV≤HOMO(HTL)-HOMO(EML)≤0.50eV,
0.25eV≤LUMO(EML)-LUMO(ETL)≤0.35eV。
在本发明的一个实施方案中,其特征在于:
当P:N比例为5:5时,
(2)0.05eV≤HOMO(HTL)-HOMO(EBL)≤0.15eV,
1.00eV≤LUMO(HBL)-LUMO(ETL)≤1.10eV。
在本发明的一个实施方案中,其特征在于:
当P:N比例为5:5时,
(3)HTL迁移率为5.5×10 -4cm 2/Vs至8.0×10 -4cm 2/Vs,
ETL迁移率为5.0×10 -7cm 2/Vs至8.0×10 -7cm 2/Vs;
其中所述迁移率根据SCLC方法测试。
在本发明的一个实施方案中,其特征在于:
当P:N比例为4:6时,
(1)0.45eV≤HOMO(HTL)-HOMO(EML)≤0.60eV,
0.25≤LUMO(EML)-LUMO(ETL)≤0.40eV;
当P:N比例为3:7时,
(1)0.40eV≤HOMO(HTL)-HOMO(EML)≤0.55eV,
0.27≤LUMO(EML)-LUMO(ETL)≤0.35eV。
在本发明的一个实施方案中,其特征在于:
当P:N比例为4:6时,
(2)0.10eV≤HOMO(HTL)-HOMO(EBL)≤0.20eV,
1.00≤LUMO(HBL)-LUMO(ETL)≤1.10eV;
当P:N比例为3:7时,
(2)0.10eV≤HOMO(HTL)-HOMO(EBL)≤0.20eV;
0.50≤LUMO(HBL)-LUMO(ETL)≤1.0eV。
在本发明的一个实施方案中,其特征在于:
当P:N比例为4:6时,
(3)HTL迁移率为5.5×10 -4cm 2/Vs至8.0×10 -4cm 2/Vs,
ETL迁移率为9.0×10 -7cm 2/Vs至2.0×10 -6cm 2/Vs;
当P:N比例为3:7时,
(3)HTL迁移率为8.0×10 -5cm 2/Vs至8.0×10 -4cm 2/Vs,
ETL迁移率为1.0×10 -7cm 2/Vs至6.0×10 -7cm 2/Vs;
其中所述迁移率根据SCLC方法测试。
在本发明的一个实施方案中,LUMO(EML)≤-2.0eV并且HOMO(EML)≥-6.0eV。
在本发明的一个实施方案中,磷光客体化合物的总浓度为5-20重量%,优选为8-14重量%,更优选为9-12重量%,基于主体材料和客体材料的重量之和。
本发明的有机发光器件的结构是本领域所已知的。如图1所示,其包 括位于基板上的阳极和阴极,以及位于阳极和阴极之间的有机层,所述有机层可以为多层结构。例如,该有机材料层可以包括空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层。本发明的有机材料层还可包括电子注入层。
阳极材料可以是现有技术中已知的铟锡氧(ITO)、铟锌氧(IZO)、二氧化锡(SnO 2)、氧化锌(ZnO)等透明导电材料,也可以是银及其合金、铝及其合金等金属材料,也可以是聚二氧乙基噻吩(PEDOT)等有机导电材料,及上述材料的多层结构。
阴极材料可选自但不限于LiF/Al、ITO、金属、氧化物等材料。所述金属可选自Mg、Ag、Al及其合金,优选选自Mg/Ag合金和Mg/Al合金。所述氧化物可选自氧化钇、氧化钪和稀土金属氧化物。
位于发光层与阳极之间的是空穴传输层(HTL)和电子阻挡层(EBL),其材料可选自但不限于以下所列的HT-1至HT-10的一种或多种的组合。
Figure PCTCN2020112492-appb-000001
Figure PCTCN2020112492-appb-000002
发光层可包含主体材料和客体材料,其中主体材料是双主体,即包含N型和P型主体材料。在本发明的一个实施方案中,P型材料选自三芳基胺衍生物、咔唑衍生物、稠合咔唑衍生物、咔唑三亚苯衍生物以及二苯并呋喃和苯并呋喃基二苯并呋喃衍生物中的一种或多种;N型材料选自三嗪衍生物、嘧啶衍生物、二氮杂磷杂环戊二烯衍生物、被缺电子杂芳族基团取代的吲哚并咔唑衍生物,和被缺电子杂芳族基团取代的茚并咔唑衍生物中的一种或多种。优选地,N型和P型主体材料分别包括但不限于如下中所示常规材料的一种或多种的组合:
P型:
Figure PCTCN2020112492-appb-000003
N型:
Figure PCTCN2020112492-appb-000004
发光层的客体材料可选自但不限于以下所列的GD-1至GD-10的一种或多种的组合:
Figure PCTCN2020112492-appb-000005
Figure PCTCN2020112492-appb-000006
电子传输层(ETL)和空穴阻挡层(HBL)的材料包括但不限于以下所列的ET-1至ET-10的一种或多种的组合:
Figure PCTCN2020112492-appb-000007
Figure PCTCN2020112492-appb-000008
电子注入层的材料选自但不限于LiF、Yb、LIQ、Mg:LiF等。
HTL,ETL可以单独蒸镀,也可以两种或更多种材料共同蒸镀(掺杂)。
各层的膜厚是本领域所已知的,例如分别为:
阳极:10-300nm,优选为50-250nm,更优选为100-200nm;
空穴传输层:10-200nm,优选为50-150nm,更优选为80-120nm;
电子阻挡层:0.5-20nm,优选为0.8-10nm,更优选为0.8-5nm;
发光层:5-100nm,优选为10-50nm,更优选为20-40nm;
空穴阻挡层:0.5-20nm,优选为0.8-10nm,更优选为0.8-5nm;
电子传输层:5-100nm,优选为10-50nm,更优选为20-40nm;
电子注入层:0.5-20nm,优选为0.8-10nm,更优选为0.8-5nm;
阴极:10-300nm,优选为50-250nm,更优选为100-200nm。
本发明还涉及一种制备本发明的OLED器件的方法,其包括依次层叠各层。本发明的OLED器件的各层可采用蒸镀工艺层叠。
在本发明的实施方案中,蒸镀工艺的具体过程可以为:利用电流加热的方法,把所需材料蒸发成原子或者分子,这些原子和分子由于热运动,会脱离材料本身,向上运动,运动过程中与衬底接触,在衬底上积累凝结,形成各膜层。其中,通过高温蒸镀制备各个膜层的过程均在高于4×10 -4Pa,优选1×10 -5Pa至1×10 -6Pa的真空度的环境中进行。蒸镀速率为0.01-10nm/s,优选为0.05-2nm/s。
附图说明
图1是本发明OLED器件结构的示意图,其中:
101     阳极
102     空穴传输层
103     电子阻挡层
104     发光层
105     空穴阻挡层
106     电子传输层
107     阴极
图2是本发明OLED器件在PN组分不同比例下的效率及寿命的差异。
图3是实施例1和比较例1的OLED器件的激子复合区域的变化。
实施例
有机电致发光器件制备过程如下:
(1)将带有ITO的玻璃板在清洗剂中超声处理,在去离子水中冲洗,在丙酮-乙醇混合溶剂中超声除油,在洁净环境下烘烤至完全除去水份;
(2)把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10 -6Pa,在上述阳极层膜上真空蒸镀空穴传输层,蒸镀速率为0.1nm/s,蒸镀膜厚为100nm;空穴传输材料见表1
(3)在空穴传输层之上真空蒸镀3,3′-二(9H-咔唑-9-基)-1,1′-联苯(mCBP),从而形成器件的电子阻挡层,蒸镀速率为0.05nm/s,膜层厚度为1nm;
(4)在电子阻挡层之上真空蒸镀器件的发光层,发光层包括双主体材料P-7和N-1,且P:N=7:3~3:7,客体材料选用GD-1,利用多源共蒸的方法,主体材料和客体材料的重量比为90:10,调节主体材料的蒸镀速率为0.1nm/s,客体材料GD-1蒸镀速率按照主体材料的1/9比例设定,蒸镀总膜厚为30nm;
(5)在发光层之上真空蒸镀2,9-二甲基-4,7-二苯基-1,10-菲罗啉(BCP),从而形成器件的空穴阻挡层,蒸镀速率为0.05nm/s,膜层厚度为1nm;
(6)空穴阻挡层之上真空蒸镀器件的电子传输层,蒸镀速率为0.1nm/s,蒸镀总膜厚为30nm;电子传输材料如表1;
(7)在电子传输层(ETL)上真空蒸镀厚度为0.5nm的LiF作为电子注入 层。
(8)厚度为150nm的Al层作为器件的阴极。
表1
Figure PCTCN2020112492-appb-000009
其中HTL层和ETL层的HOMO和LUMO如下:
表2
HTL HOMO LUMO 迁移率 ETL HOMO LUMO 迁移率
HT-1 -5.23 -2.24 5.3*10 -4 ET-1 -6.45 -3.20 4.6*10 -7
HT-2 -5.44 -2.37 6.8*10 -4 ET-5 -6.5 -3.26 5.7*10 -7
HT-5 -5.37 -2.34 6.4*10 -4 ET-4 -6.47 -3.30 2.3*10 -7
HT-6 -5.35 -2.40 7.2*10 -4 ET-8 -6.42 -3.28 1.2*10 -6
其中EML层、HBL层和EBL层的HOMO和LUMO如下:
EML:HOMO=-5.90eV    LUMO=-2.96eV
HBL:HOMO=-5.40eV    LUMO=-2.25eV
EBL:HOMO=-5.53eV    LUMO=-2.31eV
从表1-2和图3的数据可以看出,当发光层与功能层之间的能级和迁移率得到有效的匹配时,对于激子复合区域,器件的效率和寿命有着很好的影响。

Claims (19)

  1. 一种有机电致发光器件,其包括阳极、空穴传输层(HTL)、电子阻挡层(EBL)、发光层(EML)、空穴阻挡层(HBL)、电子传输层(ETL)、阴极,其中所述发光层包含至少一种磷光客体化合物和至少两种主体材料,且所述主体材料分别为N型材料和P型材料,其中N型材料与P型材料的重量比P:N为1:5至5:1,其特征在于:
    0.02eV≤HOMO(HTL)-HOMO(EML)≤0.65eV。
  2. 如权利要求1所述的有机电致发光器件,其特征在于:
    0.25eV≤LUMO(EML)-LUMO(ETL)≤1.00eV。
  3. 如权利要求1或2所述的有机电致发光器件,其特征在于:
    0.01eV≤HOMO(HTL)-HOMO(EBL)≤0.28eV。
  4. 如权利要求3所述的有机电致发光器件,其特征在于:
    1.00eV≤LUMO(HBL)-LUMO(ETL)≤1.50eV。
  5. 如权利要求1-4中任一项所述的有机电致发光器件,其特征在于:
    HTL迁移率为5.0×10 -6cm 2/Vs至1.0×10 -3cm 2/Vs,
    ETL迁移率为5.0×10 -8cm 2/Vs至8.0×10 -6cm 2/Vs,
    其中所述迁移率根据SCLC方法测试。
  6. 如权利要求1-4中任一项所述的有机电致发光器件,其中P:N的重量比为1:4至4:1,优选为1:3至3:1。
  7. 如权利要求1-6中任一项所述的有机电致发光器件,其特征在于:
    当P:N比例为7:3时,
    (1)0.40eV≤HOMO(HTL)-HOMO(EML)≤0.55eV,
    0.28eV≤LUMO(EML)-LUMO(ETL)≤0.40eV;
    当P:N为6:4时,
    (1)0.45eV≤HOMO(HTL)-HOMO(EML)≤0.55eV,
    0.30eV≤LUMO(EML)-LUMO(ETL)≤0.40eV。
  8. 如权利要求7所述的有机电致发光器件,其特征在于:
    当P:N比例为7:3时,
    (2)0.05eV≤HOMO(HTL)-HOMO(EBL)≤0.15eV,
    1.00eV≤LUMO(HBL)-LUMO(ETL)≤1.10eV;
    当P:N为6:4时,
    (2)0.10eV≤HOMO(HTL)-HOMO(EBL)≤0.20eV,
    1.00eV≤LUMO(HBL)-LUMO(ETL)≤1.10eV。
  9. 如权利要求7或8所述的有机电致发光器件,其特征在于:
    当P:N比例为7:3时,
    (3)HTL迁移率为5.5×10 -4cm 2/Vs至8.0×10 -4cm 2/Vs,
    ETL迁移率为1.0×10 -7cm 2/Vs至7.0×10 -7cm 2/Vs;
    当P:N为6:4时,
    (3)HTL迁移率为5.5×10 -4cm 2/Vs至8.0×10 -4cm 2/Vs,
    ETL迁移率为1.0×10 -7cm 2/Vs至3.0×10 -7cm 2/Vs;
    其中所述迁移率根据SCLC方法测试。
  10. 如权利要求1-6中任一项所述的有机电致发光器件,其特征在于:
    当P:N比例为5:5时,
    (1)0.40eV≤HOMO(HTL)-HOMO(EML)≤0.50eV,
    0.25eV≤LUMO(EML)-LUMO(ETL)≤0.35eV。
  11. 如权利要求10所述的有机电致发光器件,其特征在于:
    当P:N比例为5:5时,
    (2)0.05eV≤HOMO(HTL)-HOMO(EBL)≤0.15eV,
    1.00eV≤LUMO(HBL)-LUMO(ETL)≤1.10eV。
  12. 如权利要求10或11所述的有机电致发光器件,其特征在于:
    当P:N比例为5:5时,
    (3)HTL迁移率为5.5×10 -4cm 2/Vs至8.0×10 -4cm 2/Vs,
    ETL迁移率为5.0×10 -7cm 2/Vs至8.0×10 -7cm 2/Vs;
    其中所述迁移率根据SCLC方法测试。
  13. 如权利要求1-6中任一项所述的有机电致发光器件,其特征在于:
    当P:N比例为4:6时,
    (1)0.45eV≤HOMO(HTL)-HOMO(EML)≤0.60eV,
    0.25≤LUMO(EML)-LUMO(ETL)≤0.40eV;
    当P:N比例为3:7时,
    (1)0.40eV≤HOMO(HTL)-HOMO(EML)≤0.55eV,
    0.27≤LUMO(EML)-LUMO(ETL)≤0.35eV。
  14. 如权利要求13所述的有机电致发光器件,其特征在于:
    当P:N比例为4:6时,
    (2)0.10eV≤HOMO(HTL)-HOMO(EBL)≤0.20eV,
    1.00≤LUMO(HBL)-LUMO(ETL)≤1.10eV;
    当P:N比例为3:7时,
    (2)0.10eV≤HOMO(HTL)-HOMO(EBL)≤0.20eV;
    0.50≤LUMO(HBL)-LUMO(ETL)≤1.0eV。
  15. 如权利要求13或14所述的有机电致发光器件,其特征在于:
    当P:N比例为4:6时,
    (3)HTL迁移率为5.5×10 -4cm 2/Vs至8.0×10 -4cm 2/Vs,
    ETL迁移率为9.0×10 -7cm 2/Vs至2.0×10 -6cm 2/Vs;
    当P:N比例为3:7时,
    (3)HTL迁移率为8.0×10 -5cm 2/Vs至8.0×10 -4cm 2/Vs,
    ETL迁移率为1.0×10 -7cm 2/Vs至6.0×10 -7cm 2/Vs;
    其中所述迁移率根据SCLC方法测试。
  16. 如权利要求1-15中任一项所述的有机电致发光器件,其特征在于:LUMO(EML)≤-2.0eV且HOMO(EML)≥-6.0eV。
  17. 如权利要求1-16中任一项所述的有机电致发光器件,其特征在于:其中磷光客体化合物的总浓度为5-20重量%,基于主体材料和客体材料的重量之和。
  18. 如权利要求1-17中任一项所述的有机电致发光器件,其特征在于:所述P型材料选自三芳基胺衍生物、咔唑衍生物、稠合咔唑衍生物、咔唑三亚苯衍生物以及二苯并呋喃和苯并呋喃基二苯并呋喃衍生物中的一种或多种;所述N型材料选自三嗪衍生物、嘧啶衍生物、二氮杂磷杂环戊二烯衍生物、被缺电子杂芳族基团取代的吲哚并咔唑衍生物和被缺电子杂芳族基 团取代的茚并咔唑衍生物中的一种或多种。
  19. 一种制备如权利要求1-18中任一项所述的有机电致发光器件的方法,其包括依次层叠各层。
PCT/CN2020/112492 2020-08-31 2020-08-31 一种有机电致发光器件 WO2022041200A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080001762.7A CN114450816A (zh) 2020-08-31 2020-08-31 一种有机电致发光器件
US17/312,186 US11925042B2 (en) 2020-08-31 2020-08-31 Organic electroluminescent device
PCT/CN2020/112492 WO2022041200A1 (zh) 2020-08-31 2020-08-31 一种有机电致发光器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/112492 WO2022041200A1 (zh) 2020-08-31 2020-08-31 一种有机电致发光器件

Publications (1)

Publication Number Publication Date
WO2022041200A1 true WO2022041200A1 (zh) 2022-03-03

Family

ID=80354315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112492 WO2022041200A1 (zh) 2020-08-31 2020-08-31 一种有机电致发光器件

Country Status (3)

Country Link
US (1) US11925042B2 (zh)
CN (1) CN114450816A (zh)
WO (1) WO2022041200A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110140089A1 (en) * 2008-05-13 2011-06-16 Fuji Electric Holdings Co., Ltd. Organic el device
CN106558652A (zh) * 2015-09-30 2017-04-05 乐金显示有限公司 有机发光装置
CN108232025A (zh) * 2018-01-31 2018-06-29 昆山国显光电有限公司 一种有机电致发光器件
CN109994636A (zh) * 2018-01-02 2019-07-09 固安鼎材科技有限公司 一种有机电致发光器件

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200080882A (ko) * 2018-12-27 2020-07-07 엘지디스플레이 주식회사 유기발광다이오드 및 유기발광표시장치
CN111697143A (zh) * 2019-03-15 2020-09-22 三星显示有限公司 有机发光装置及包括所述有机发光装置的显示设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110140089A1 (en) * 2008-05-13 2011-06-16 Fuji Electric Holdings Co., Ltd. Organic el device
CN106558652A (zh) * 2015-09-30 2017-04-05 乐金显示有限公司 有机发光装置
CN109994636A (zh) * 2018-01-02 2019-07-09 固安鼎材科技有限公司 一种有机电致发光器件
CN108232025A (zh) * 2018-01-31 2018-06-29 昆山国显光电有限公司 一种有机电致发光器件

Also Published As

Publication number Publication date
US11925042B2 (en) 2024-03-05
CN114450816A (zh) 2022-05-06
US20220320450A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
TWI640532B (zh) Phosphorescent organic electroluminescent device
CN111864098B (zh) 一种有机电致发光器件及显示装置
CN110931649A (zh) 一种有机电致发光器件及显示装置
CN110492007B (zh) 一种吖啶化合物及其在机电致发光器件中的应用
CN110911575B (zh) 一种有机电致发光器件及显示装置
CN108832008B (zh) 激基复合物在有机发光二极管中的应用
CN111416049B (zh) 双激基复合物主体材料在制备磷光oled器件中的应用
CN112909197B (zh) 超荧光叠层器件及其制备方法、显示面板和显示装置
CN109273614A (zh) 一种有机电致发光器件和显示装置
WO2023124164A1 (zh) 一种有机电致发光器件和显示装置
WO2018184264A1 (zh) 一种oled中发光层原料的处理方法及应用
KR20150077587A (ko) 유기 전계 발광 소자
CN112397666B (zh) 一种叠层oled器件及包含其的显示装置
CN106008574B (zh) 一种用作有机电致磷光器件主体材料和热致延迟荧光材料的多功能化三芳基硼衍生物
CN109256474B (zh) 一种有机电致发光器件和显示装置
WO2022041200A1 (zh) 一种有机电致发光器件
CN111224008A (zh) 一种有机电致发光器件及显示装置
CN113328045B (zh) 发光器件及发光装置
CN112382730B (zh) 有机发光二极管和制备方法,显示面板和显示装置
CN109390486A (zh) 一种有机电致发光器件和显示装置
CN111933811B (zh) 一种有机电致发光器件及显示装置
CN110289361B (zh) 一种有机电致发光器件
WO2020252953A1 (zh) 电致发光器件及其制备方法、电子设备
CN105633303A (zh) 一种有机磷光器件的制备方法
CN111864093B (zh) 一种用于电子传输层的组合物、电子传输层及光电器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20950869

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/10/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20950869

Country of ref document: EP

Kind code of ref document: A1