WO2018184264A1 - 一种oled中发光层原料的处理方法及应用 - Google Patents

一种oled中发光层原料的处理方法及应用 Download PDF

Info

Publication number
WO2018184264A1
WO2018184264A1 PCT/CN2017/081804 CN2017081804W WO2018184264A1 WO 2018184264 A1 WO2018184264 A1 WO 2018184264A1 CN 2017081804 W CN2017081804 W CN 2017081804W WO 2018184264 A1 WO2018184264 A1 WO 2018184264A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
raw material
emitting layer
emitting
layer
Prior art date
Application number
PCT/CN2017/081804
Other languages
English (en)
French (fr)
Inventor
许杰
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US15/535,698 priority Critical patent/US10297795B2/en
Publication of WO2018184264A1 publication Critical patent/WO2018184264A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/311Purifying organic semiconductor materials

Definitions

  • the present invention relates to the field of OLED technology, and in particular, to a method and application for processing a light-emitting layer raw material in an OLED.
  • OLEDs Organic electroluminescent diodes
  • the structure of the basic OLED mainly includes an anode, a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, an electron injection layer and a cathode which are sequentially stacked, and the light-emitting layer of the OLED has a concentration quenching effect, if a single light is emitted When the material is used as a light-emitting layer, its luminous efficiency is greatly reduced.
  • the OLED luminescent layer is generally formed by co-evaporation of a host illuminant (host) with a guest illuminant (dopant).
  • Vacuum evaporation is a process in which a substance to be film is subjected to evaporation or sublimation in a vacuum environment to precipitate on the surface of the substrate, which generally includes a process of thermal evaporation, a flight of gasified atoms or molecules in an ambient atmosphere, and Deposition process.
  • the doping ratio of dopant to host is generally designed to maximize the ratio of luminous efficiency, but during the flight of gasification atoms or molecules in the evaporation process, due to the Host material. Different from the dissipation ratio of Dopant materials, it will lead to The doping ratio of the final luminescent material changes, which in turn causes a decrease in luminous efficiency.
  • the present invention provides a method for treating a light-emitting layer raw material in an OLED, which is obtained by subjecting a raw material Host and Dopant which are to form a light-emitting layer to alcohol heat treatment to obtain a processed light-emitting layer raw material, so that the two kinds of materials can be obtained.
  • a raw material Host and Dopant which are to form a light-emitting layer to alcohol heat treatment to obtain a processed light-emitting layer raw material, so that the two kinds of materials can be obtained.
  • the material is formed by vacuum evaporation at the later stage, it can be dissipated in the same proportion, and the optimal doping ratio designed before vacuum evaporation is hardly changed, and the influence on the luminous efficiency is alleviated.
  • the present invention provides a method for processing a light-emitting layer raw material in an OLED, comprising the following steps:
  • a light-emitting layer raw material comprising a main light-emitting body and a guest light-emitting body, wherein the main light-emitting body, the guest light-emitting body and the anhydrous ethanol are added to the poly in a vacuum glove box with a protective gas
  • the tetrafluoroethylene inner liner is uniformly mixed to obtain a mixed liquid, and the inner liner is placed in an autoclave and treated at a temperature of 40 to 60 ° C for 18 to 36 hours to obtain a treatment liquid;
  • the pretreatment liquid is centrifuged, a precipitate is collected, and the resulting precipitate is dried to obtain a processed luminescent layer raw material.
  • the processed light-emitting layer raw material can be used for vacuum evaporation to obtain an organic electroluminescent device.
  • the luminescent layer raw materials - the main illuminant (Host) and the guest illuminant (Dopant) do not have sufficient energy to complete crystallization, but can achieve both Adequate mixing and dispersion, and will not affect the subsequent formation of the luminescent layer by vacuum evaporation, and more importantly, it can ensure that the treated Host and Dopant are the same proportion even if there is material dissipation during the evaporation process. Dissipate the ground without affecting the luminous efficiency of the final luminescent layer, facilitating the formation of excitons The area evenly distributes the entire luminescent layer, helping to improve the performance and lifetime of the OLED device.
  • the temperature at the time of the treatment is not too high, so that the Host and the Dopant cannot be effectively vaporized, resulting in failure to evaporate into a light-emitting layer. Further, the temperature of the treatment is 40 to 55 °C.
  • the treatment time is 20-30 hours.
  • the aroma heat treatment time should not be too long, so as not to affect the fact that Host and Dopant cannot be effectively evaporated into a light-emitting layer.
  • the filling degree of the anhydrous ethanol in the polytetrafluoroethylene inner liner is 70-80%. That is, the volume of the anhydrous ethanol is 75-80% of the volume of the polytetrafluoroethylene liner.
  • the concentration of the main illuminant in the mixed solution is 0.2 to 0.6 mol/L.
  • the mass of the guest illuminant does not exceed 3% of the mass of the main illuminant.
  • the vacuum glove box with the protective gas is first vacuumed to the glove box, and then the shielding gas is introduced.
  • the light-emitting layer raw material, absolute ethanol, high-pressure reaction kettle and inner liner were previously placed in a glove box, and the glove box was evacuated, and then a protective gas was introduced.
  • the shielding gas comprises one or more of nitrogen and argon.
  • the centrifugal speed is 8000 to 10000 r/min.
  • the rotational speed of the centrifugation may be 8500, 9000, 9500 r/min; the time of centrifugation may be 5-20 min.
  • the main illuminant (Host) and the guest illuminant (Dopant) are common luminescent materials in the OLED field, and the energy levels of the two are matched to enable the formed luminescent layer to achieve good loading.
  • the Host has electron transport energy, which can effectively convert the composite excitation of electrons and holes to the luminescence of the dopant.
  • the Dopant is preferably a substance that generates luminescence from a triplet excited state at room temperature.
  • the triplet energy gap value (Eg T (Host)) of the main illuminator is greater than the triple line energy gap value (Eg T (Dopant)) of the guest illuminant.
  • the energy of the Host in the light-emitting layer is effectively moved to the Dopant, further improving the luminous efficiency.
  • the host material may, for example, be an amine derivative, a carbazole derivative, an oxadiazole derivative, a triazole derivative, a benzoxazole system, a benzothiazole derivative or the like, but is not limited thereto.
  • the Host material is a carbazole derivative (such as mCP, CBP), DPEPO, etc., and their structural formulas are as follows:
  • Dopant material examples include DPS-DMAC, BP-carbazole, BP-DMOC, and the like represented by the following formulas, and their structural formulas are as follows:
  • the present invention provides a method of preparing an organic electroluminescent device, comprising the steps of:
  • the light-emitting layer is obtained by vacuum evaporation using the processed light-emitting layer raw material provided by the first aspect of the invention.
  • the hole injecting layer, the hole transporting layer, the electron transporting layer, and the electron injecting layer may be prepared by vacuum evaporation or a solution method; and the cathode may be prepared on the electron injecting layer by a conventional process such as vacuum in the art. It is realized by an evaporation process or a sputtering method.
  • each layer of the organic electroluminescent device is conventionally selected in the art, for example, the substrate may be made of glass, plastic, quartz or other flexible materials.
  • the material of the anode layer can be made of conductive metal One or more of oxides (ITO, FTO, CTO), conductive metals (Ag, Al), and alloys.
  • the material of the hole injection layer may be CuPc, MeO-TPD, HATCN, PEDOT: PSS, MoxOx, VxOx, WxOy, etc.; the material of the hole transport layer may be NPB, TPD, TAPC, TFB, OTPD, QTPD , Poly-TPD, PVK, etc.; the material of the electron transport layer may be TPBI, PBD, BCP, Bphen, TAZ, TmPyPB, etc.; the material of the electron injection layer may be LiF, LiQ, CsF, CsCO3, ZnO/PEI ZnO/PEIE, PFN, PFN-Br, etc.
  • the cathode may be made of a metal material such as Ag or Mg.
  • the processed light-emitting layer raw material provided by the first aspect of the present invention is subjected to vacuum evaporation to obtain a light-emitting layer, which is directly in the host compared with the prior art.
  • the external quantum effect of the organic electroluminescent device obtained by the invention is relatively high (up to about 20%), which is basically achieved by the optimal doping ratio of Host and Dopant designed before vacuum evaporation. The efficiency is equal, and the direct evaporation of the current method is only about 10%.
  • the method provided by the second aspect of the present invention can overcome the low cost advantage of the conventional vacuum evaporation to prepare the luminescent layer and reduce the defect of the luminescent layer in the evaporation process while retaining the low cost advantage of the vacuum evaporation process.
  • FIG. 1 is a schematic structural view of an organic electroluminescent device according to Embodiment 2 of the present invention.
  • a method for processing a light-emitting layer raw material in an OLED comprising the following steps:
  • Raw material preparation prepare 5 g of main host material (mCP), 0.15 g of guest light (Dopant) material DPS-DMAC, and prepare 40 mL of anhydrous ethanol;
  • Equipment preparation Put the above-mentioned raw materials, the high-pressure reaction kettle and the inner liner to be used in the glove box, vacuum the glove box, and then pass nitrogen gas to form a vacuum glove box environment with nitrogen gas. ;
  • the inner liner containing the mixed liquid is placed in an autoclave and treated at a temperature of 50 ° C for 24 hours to obtain a treatment liquid;
  • the obtained pretreatment liquid was centrifuged at 9000 r/min for 10 min, and the precipitate was collected, and the obtained precipitate was dried to obtain a treated luminescent layer raw material.
  • a method for preparing an organic electroluminescent device comprising the steps of:
  • a light-emitting layer ie, doped light-emitting layer
  • An electron transport layer, an electron injection layer, and a cathode are sequentially prepared on the light-emitting layer by a vacuum evaporation process to obtain an organic electroluminescence device.
  • 1 is a schematic structural view of an organic electroluminescent device according to Embodiment 2 of the present invention.
  • 1 is an anode conductive substrate, which may be indium tin oxide (commonly known as ITO) conductive glass
  • 2 is a hole injection layer
  • 3 is a hole transport layer
  • 4 is a light emitting layer
  • 5 is an electron transport layer 6 is an electron injection layer.
  • 7 is a cathode and cathode 7 is a magnesium/silver mixture.
  • the main illuminant (host) mCP material and the guest illuminant (Dopant) material are uniformly dispersed in the luminescent layer 4, and the region where the excitons are formed uniformly distributes the entire luminescent layer.
  • a method for preparing an organic electroluminescent device comprising the steps of:
  • a guest light-emitting material (Dpant) material DPS-DMA is evaporated to form a light-emitting layer
  • An electron transport layer, an electron injection layer, and a cathode are sequentially prepared on the light-emitting layer by a vacuum evaporation process to obtain an organic electroluminescence device.
  • the organic electroluminescent device prepared in the second embodiment of the invention has a higher external quantum effect at the blue light wavelength (450-470 nm) (up to 23%), and is basically designed to be optimally mixed with the Host and Dopant before vacuum evaporation.
  • the luminous efficiency that can be achieved by the heterogeneous ratio (3%) is equal.
  • the luminous efficiency of the organic electroluminescent device obtained in Comparative Example 1 was only 10%, and only 50% of the luminous efficiency which can be achieved by the optimum doping ratio designed before vacuum evaporation was achieved.
  • the above comparison shows that the treatment method of the light-emitting layer raw material provided by the invention can make the two materials dissipate in the same proportion when vacuum-deposited to form the light-emitting layer, and hardly change the optimal blending designed before vacuum evaporation.
  • the heterogeneous ratio can overcome the low cost advantage of the vacuum evaporation process while overcoming the defects of low yield of the conventional vacuum evaporation preparation of the luminescent layer and reduction of the luminous efficiency in the evaporation process.
  • a method for treating a raw material of a light-emitting layer in an OLED the steps of which are basically the same as those in the first embodiment, except that 3 g of a main luminescent material (Host) material CBP and 0.06 g of a guest light-emitting material (Dopant) material BP-carbazole are used. Adding 35 mL of absolute ethanol and treating at 60 ° C for 18 hours to obtain a treatment liquid;
  • the obtained pretreatment liquid was centrifuged at 8000 r/min for 8 minutes, and the precipitate was collected, and the obtained precipitate was dried to obtain a raw material of the treated light-emitting layer.
  • the treated light-emitting layer raw material obtained by using the embodiment is used for vacuum evaporation of the light-emitting layer in the organic electroluminescent device, the luminous efficiency of the organic electroluminescent device can reach 20%.
  • a method for processing a light-emitting layer raw material in an OLED the steps of which are basically the same as those in the first embodiment, and the difference is that 4 g of the main luminescent material (Host) material DPEPO, 0.1 g of the guest illuminant (Dopant) material BP-DMOC, Adding 37.5 mL of absolute ethanol and treating at 40 ° C for 36 hours to obtain a treatment liquid;
  • the obtained pretreatment liquid was centrifuged at 10,000 r/min for 5 min, and the precipitate was collected, and the obtained precipitate was dried to obtain a treated luminescent layer raw material.
  • the treated light-emitting layer raw material obtained by using the embodiment is used for vacuum evaporation of the light-emitting layer in the organic electroluminescent device, the luminous efficiency of the organic electroluminescent device can reach 22%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种OLED中发光层原料的处理方法,包括以下步骤:(1)提供发光层原料,发光层原料包括主发光体和客发光体,在通有保护气体的真空手套箱中,将主发光体、客发光体及无水乙醇加入到聚四氟乙烯内衬中,混合均匀,并将内衬放入到高压反应釜中,在40~60℃的温度下处理18~36小时,得到处理液;(2)将预处理液进行离心,收集沉淀,并对所得沉淀进行干燥,得到处理后的发光层原料。得到的处理后的发光层原料实现了主发光体和客发光体的充分混合和分散,且不影响后续采用真空蒸镀法来形成发光层,更重要的是,可以保证两者在真空蒸镀中同比例地耗散,保持发光层要较高的发光效率。还包括一种有机电致发光器件的制备方法。

Description

一种OLED中发光层原料的处理方法及应用
本申请要求于2017年04月05日提交中国专利局、申请号为2017102190625、发明名称为“一种OLED中发光层原料的处理方法及应用”的中国专利申请的优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本发明涉及OLED技术领域,具体涉及一种OLED中发光层原料的处理方法及应用。
背景技术
有机电致发光二极管(OLED)由于具有自发光、反应快、视角广、亮度高、轻薄等优点,其潜在的市场前景被业界看好。基本的OLED的结构主要包括依次层叠的阳极、空穴注入层、空穴传输层、发光层、电子传输层、电子注入层和阴极,而OLED的发光层具有浓度淬灭效应,若以单一发光材料作为发光层的话,会极大降低其发光效率。目前OLED发光层一般采用主发光体(host,主体)与客发光体(dopant,掺杂剂)搭配共蒸镀而形成。
真空蒸镀是将待成膜的物质置于真空环境中进行蒸发或升华,使之在基底表面析出的过程,其大致包括即热蒸发过程、气化原子或分子在环境气氛中的飞行过程和沉积过程。而在进行蒸镀之前,dopant与host的掺杂比例,一般是事先设计成能最大程度增大发光效率的比例,然而在蒸镀过程的气化原子或分子的飞行过程中时,由于Host材料和Dopant材料的耗散比例不同,会导致 最终发光材料的掺杂比例变化,进而引起发光效率降低。
发明内容
有鉴于此,本发明提供了一种OLED中发光层原料的处理方法,该方法通过对要形成发光层的原料Host和Dopant进行醇热处理,得到处理后的发光层原料,这样可以使这两种材料后期在真空蒸镀形成发光层时,可以同比例耗散,几乎不改变真空蒸镀前设计好的最优掺杂比例,减轻对发光效率的影响。
第一方面,本发明提供了一种OLED中发光层原料的处理方法,包括以下步骤:
(1)提供发光层原料,所述发光层原料包括主发光体和客发光体,在通有保护气体的真空手套箱中,将所述主发光体、客发光体及无水乙醇加入到聚四氟乙烯内衬中,混合均匀,得到一混合液,并将内衬放入到高压反应釜中,在40~60℃的温度下处理18~36小时,得到处理液;
(2)将所述预处理液进行离心,收集沉淀,并对所得沉淀进行干燥,得到处理后的发光层原料。
本申请中,所述处理后的发光层原料可以用于真空蒸镀制得有机电致发光器件。
在本发明第一方面提供的处理方法的条件下,所述发光层原料—主发光体(Host)和客发光体(Dopant)并没有充足的能量来完成结晶化,但却可以实现两者更充分的混合和分散,且不会影响后续采用真空蒸镀法来形成发光层,更重要的是,可以保证所述处理后的Host和Dopant即使在蒸镀过程中有材料耗散,也是同比例地耗散而不会影响到最终发光层的发光效率,利于激子形成 的区域均匀分布整个发光层,有助于提高OLED器件的性能和使用寿命。
本申请中,所述处理时的温度不能太高,以免所述Host和Dopant不能有效气化,从而导致不能蒸镀成发光层。进一步地,所述处理的温度为40~55℃。
优选地,所述处理的时间为20-30小时。所述醇热法处理的时间也不能太长,以免影响Host和Dopant不能有效蒸镀成发光层。
其中,所述无水乙醇在所述聚四氟乙烯内衬中的填充度为70-80%。即,所述无水乙醇的体积为所述聚四氟乙烯内衬体积的75-80%。
其中,步骤(1)中,所述主发光体在所述混合液中的浓度为0.2~0.6mol/L。
优选地,所述客发光体的质量不超过所述主发光体的质量的3%。
具体地,所述通有保护气体的真空手套箱是先对手套箱抽真空,之后通入保护气体。
具体地,在实验之前,将所述发光层原料、无水乙醇,高压反应釜及内衬均事先放入到手套箱中,对手套箱抽真空,之后通入保护气体。
其中,所述保护气体包括氮气和氩气中的一种或多种。
优选地,所述离心的转速为8000~10000r/min。例如,离心的转速可以为8500、9000、9500r/min;离心的时间可以是5-20min。
本发明中,所述主发光体(Host)和客发光体(Dopant)均为OLED领域常见的发光材料,所述这两者的能级相匹配,可以使得形成的发光层内能达到良好载流子运输平衡、dopant和host之间的能量转移。所述Host具有电子输送能量,可以有效使电子与空穴的复合激发向dopant的发光转换。所述Dopant优选为在室温产生来自三重线激发状态的发光的物质。
优选地,所述主发光体的三重线能隙值(EgT(Host))大于所述客发光体 的三重线能隙值(EgT(Dopant))。这样发光层中Host的能量有效地向Dopant移动,进一步提高发光效率。
具体地,所述Host材料可以列举示胺衍生物、咔唑衍生物、噁二唑衍生物、三唑衍生物、苯并噁唑系、苯并噻唑系衍生物等,但不限于此。优选地,所述Host材料为咔唑衍生物(如mCP,CBP),DPEPO等,它们的结构式如下所示:
Figure PCTCN2017081804-appb-000001
(mCP,1,3-二-9-咔唑基苯)
Figure PCTCN2017081804-appb-000002
(CBP,4,4'-二(9-咔唑)联苯)
Figure PCTCN2017081804-appb-000003
(DPEPO,二[2-((氧代)二苯基膦基)苯基]醚)。
所述Dopant材料可以列举如下式所示的DPS-DMAC、BP-carbazole、BP-DMOC等,它们的结构式如下所示:
Figure PCTCN2017081804-appb-000004
(DPS-DMAC,双[4-(9,9-二甲基-9,10-二氢吖啶)苯基]硫砜)
Figure PCTCN2017081804-appb-000005
(BP-carbazole,4,4'-二(9-咔唑)-二苯甲酮)
Figure PCTCN2017081804-appb-000006
(BP-DMOC,4,4’-二(9-二甲氧基咔唑)-二苯甲酮)
第二方面,本发明提供了一种有机电致发光器件的制备方法,包括以下步骤:
提供一阳极导电基板,并在所述阳极导电基板上的导电阳极层上依次制备空穴注入层、空穴传输层、发光层、电子传输层、电子注入层和阴极,得到有机电致发光器件;其中,所述发光层是采用本发明第一方面提供的处理后的发光层原料进行真空蒸镀得到。
本发明中,所述空穴注入层、空穴传输层、电子传输层、电子注入层可以采用真空蒸镀或溶液法制备;在所述电子注入层上制备阴极可以采用本领域常规工艺如真空蒸镀工艺、溅射法来实现。
其中,所述有机电致发光器件的各层均本领域的常规选择,例如基板可以采用玻璃、塑料、石英或其他柔性材料。所述阳极层的材料可以采用导电金属 氧化物(ITO、FTO、CTO)、导电金属(Ag、Al)、合金中的一种或多种。所述空穴注入层的材料可采用CuPc、MeO-TPD、HATCN、PEDOT:PSS、MoxOx、VxOx、WxOy等;所述空穴传输层的材料可采用NPB、TPD、TAPC、TFB、OTPD、QTPD、Poly-TPD、PVK等;所述电子传输层的材料可采用TPBI、PBD、BCP、Bphen、TAZ、TmPyPB等;所述电子注入层的材料可采用LiF、LiQ、CsF、CsCO3、ZnO/PEI、ZnO/PEIE、PFN、PFN-Br等。所述阴极可以采用Ag、Mg等金属材料。
本发明第二方面提供的有机电致发光器件的制备方法中,采用本发明第一方面提供的处理后的发光层原料进行真空蒸镀制得发光层,相较于现有技术中直接在Host之上沉积Dopant而言,本发明所得有机电致发光器件的外部量子效应较高(可达到20%左右),基本与真空蒸镀前设计好的Host与Dopant最优掺杂比例所能达到的效率相等,而同期采用现有的方法直接蒸镀的,其发光效率仅为10%左右。因此,本发明第二方面提供的方法,可以在保留真空蒸镀工艺的低成本优势的同时,克服了传统真空蒸镀制备发光层的良品率低、发光效率在蒸镀中降低较多的缺陷。
附图说明
图1为本发明实施例二中有机电致发光器件的结构示意图。
具体实施方式
以下所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这 些改进和润饰也视为本发明的保护范围。
实施例一
一种OLED中发光层原料的处理方法,包括以下步骤:
(1)原料准备:准备5g的主发光体(Host)材料mCP,0.15g的客发光体(Dopant)材料DPS-DMAC,再准备40mL的无水乙醇;
(2)设备准备:将上述各原料,待使用到的高压反应釜及内衬均事先放入到手套箱中,对手套箱抽真空,之后通入氮气,形成一通有氮气的真空手套箱环境;
(3)将5g的mCP,0.15g的DPS-DMAC,加入到50mL的聚四氟乙烯内衬中,再加入40mL的无水乙醇,混合均匀,得到一混合液,其中,mCP在所述混合液中的浓度c(mCP)=0.3064mol/L;
再将装有所述混合液的内衬放入到高压反应釜中,在50℃的温度下处理24小时,得到处理液;
(4)将所得预处理液在9000r/min进行离心10min,收集沉淀,并对所得沉淀进行干燥,得到处理后的发光层原料。
本实施例中所用Host材料mCP、Dopant材料DPS-DMAC的结构式分别如下:
Figure PCTCN2017081804-appb-000007
(mCP),
Figure PCTCN2017081804-appb-000008
(DPS-DMAC)
实施例二
一种有机电致发光器件的制备方法,包括以下步骤:
提供一具有图案化导电阳极层的玻璃基板,在所述阳极导电基板上的导电阳极层上依次真空蒸镀空穴注入层、空穴传输层,
在所述空穴传输层之上,采用实施例一制得的处理后的发光层原料进行真空蒸镀得到一发光层(即,掺杂发光层);
在所述发光层之上采用真空蒸镀工艺依次制备电子传输层、电子注入层和阴极,得到有机电致发光器件。
图1为本发明实施例二中有机电致发光器件的结构示意图。其中,1为阳极导电基板,其可以为氧化铟锡(俗称ITO)导电玻璃,2为空穴注入层,3为空穴传输层,4为发光层,5为电子传输层6为电子注入层,7为阴极,阴极7为镁/银混合物。其中,发光层4中主发光体(Host)mCP材料和客发光体(Dopant)材料均匀分散,利于激子形成的区域均匀分布整个发光层。
对比实施例1:
一种有机电致发光器件的制备方法,包括以下步骤:
提供一具有图案化导电阳极层的玻璃基板,在所述阳极导电基板上的导电阳极层上依次真空蒸镀空穴注入层、空穴传输层,
在所述空穴传输层之上,先真空蒸镀5g的主发光体(Host)材料mCP,之后蒸镀0.15g的客发光体(Dopant)材料DPS-DMA,形成一发光层;
在所述发光层之上采用真空蒸镀工艺依次制备电子传输层、电子注入层和阴极,得到有机电致发光器件。
本发明实施例二制得的有机电致发光器件在蓝光波长(450-470nm)的外部量子效应较高(可达到23%),基本与真空蒸镀前设计好的该Host与Dopant最优掺杂比例(3%)所能达到的发光效率相等。而对比实施例1所得有机电致发光器件的发光效率仅为10%,只达到了真空蒸镀前设计好的最优掺杂比例所能达到的发光效率的50%。这主要是由于真空蒸镀中Host与Dopant不是同比例耗散,而导致最终形成的发光层中两者掺杂比例偏离最优的比例,导致发光效率降低。
以上对比说明,采用本发明提供的发光层原料的处理方法,可以使这两种材料在真空蒸镀形成发光层时,可以同比例耗散,几乎不改变真空蒸镀前设计好的最优掺杂比例,可以在保留真空蒸镀工艺的低成本优势的同时,克服了传统真空蒸镀制备发光层的良品率低、发光效率在蒸镀中降低较多的缺陷。
实施例三
一种OLED中发光层原料的处理方法,其步骤基本与实施例一相同,其区别在于,取3g的主发光体(Host)材料CBP,0.06g的客发光体(Dopant)材料BP-carbazole,加入35mL的无水乙醇,在60℃的温度下处理18小时,得到处理液;
之后将所得预处理液在8000r/min进行离心8min,收集沉淀,并对所得沉淀进行干燥,得到处理后的发光层原料。
采用该实施例制得的处理后的发光层原料用于有机电致发光器件中发光层的真空蒸镀时,该有机电致发光器件的发光效率可达到20%。
实施例四
一种OLED中发光层原料的处理方法,其步骤基本与实施例一相同,其区别在于,取4g的主发光体(Host)材料DPEPO,0.1g的客发光体(Dopant)材料BP-DMOC,加入37.5mL的无水乙醇,在40℃的温度下处理36小时,得到处理液;
之后将所得预处理液在10000r/min进行离心5min,收集沉淀,并对所得沉淀进行干燥,得到处理后的发光层原料。
采用该实施例制得的处理后的发光层原料用于有机电致发光器件中发光层的真空蒸镀时,该有机电致发光器件的发光效率可达到22%。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (16)

  1. 一种OLED中发光层原料的处理方法,其中,包括以下步骤:
    (1)提供发光层原料,所述发光层原料包括主发光体和客发光体,在通有保护气体的真空手套箱中,将所述主发光体、客发光体及无水乙醇加入到聚四氟乙烯内衬中,混合均匀,得到一混合液,并将内衬放入到高压反应釜中,在40~60℃的温度下处理18~36小时,得到处理液;
    (2)将所述预处理液进行离心,收集沉淀,并对所得沉淀进行干燥,得到处理后的发光层原料。
  2. 如权利要求1所述的处理方法,其中,所述处理的温度为40~55℃。
  3. 如权利要求1所述的处理方法,其中,所述处理的时间为20-30小时。
  4. 如权利要求1所述的处理方法,其中,所述无水乙醇在所述聚四氟乙烯内衬中的填充度为70-80%。
  5. 如权利要求1所述的处理方法,其中,所述主发光体在所述混合液中的浓度为0.2~0.6mol/L。
  6. 如权利要求1所述的处理方法,其中,所述客发光体的质量不超过所述主发光体的质量的3%。
  7. 如权利要求1所述的处理方法,其中,所述通有保护气体的真空手套箱是先对手套箱抽真空,之后通入保护气体。
  8. 如权利要求1所述的处理方法,其中,所述保护气体包括氮气和氩气中的一种或多种。
  9. 如权利要求1所述的处理方法,其中,所述离心的转速为8000~10000r/min;所述离心的时间可以是5-20min。
  10. 如权利要求1所述的处理方法,其中,所述主发光体的三重线能隙值大于所述客发光体的三重线能隙值。
  11. 一种有机电致发光器件的制备方法,其中,包括以下步骤:
    (1)提供发光层原料,所述发光层原料包括主发光体和客发光体,在通有保护气体的真空手套箱中,将所述主发光体、客发光体及无水乙醇加入到聚四氟乙烯内衬中,混合均匀,得到一混合液,并将内衬放入到高压反应釜中,在40~60℃的温度下处理18~36小时,得到处理液;
    (2)将所述预处理液进行离心,收集沉淀,并对所得沉淀进行干燥,得到处理后的发光层原料;
    (3)提供一阳极导电基板,并在所述阳极导电基板上的导电阳极层上依次制备空穴注入层、空穴传输层;
    在所述空穴传输层之上,采用上述处理后的发光层原料进行真空蒸镀得到 发光层;
    在所述发光层之上依次制备电子传输层、电子注入层和阴极,得到有机电致发光器件。
  12. 如权利要求11所述的制备方法,其中,所述处理的温度为40~55℃。
  13. 如权利要求11所述的制备方法,其中,所述处理的时间为20-30小时。
  14. 如权利要求11所述的制备方法,其中,所述主发光体在所述混合液中的浓度为0.2~0.6mol/L。
  15. 如权利要求11所述的制备方法,其中,所述客发光体的质量不超过所述主发光体的质量的3%。
  16. 如权利要求11所述的制备方法,其中,所述阳极层的材料选自导电金属氧化物、导电金属及合金中的一种或多种。
PCT/CN2017/081804 2017-04-05 2017-04-25 一种oled中发光层原料的处理方法及应用 WO2018184264A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/535,698 US10297795B2 (en) 2017-04-05 2017-04-25 Treatment method of emitting layer raw material in OLED and application

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2017102190625 2017-04-05
CN201710219062.5A CN106920900B (zh) 2017-04-05 2017-04-05 一种oled中发光层原料的处理方法及应用

Publications (1)

Publication Number Publication Date
WO2018184264A1 true WO2018184264A1 (zh) 2018-10-11

Family

ID=59568534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081804 WO2018184264A1 (zh) 2017-04-05 2017-04-25 一种oled中发光层原料的处理方法及应用

Country Status (3)

Country Link
US (1) US10297795B2 (zh)
CN (1) CN106920900B (zh)
WO (1) WO2018184264A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10868259B2 (en) * 2018-05-30 2020-12-15 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Method for manufacturing OLED light-emitting material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108641707B (zh) * 2018-05-30 2020-04-10 武汉华星光电半导体显示技术有限公司 Oled发光材料的制备方法
CN110854302B (zh) * 2019-10-31 2021-02-26 深圳市华星光电半导体显示技术有限公司 Oled显示面板及其制备方法、oled显示装置
CN111430546A (zh) * 2020-03-19 2020-07-17 电子科技大学 一种基于ZnO电子传输层改性的有机太阳能电池及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050056968A1 (en) * 2003-09-16 2005-03-17 Eastman Kodak Company Forming homogeneous mixtures of organic materials for physical vapor deposition using wet mixing
CN103219473A (zh) * 2013-04-26 2013-07-24 上海大学 具有单发光层结构的白光有机电致发光器件
CN104592991A (zh) * 2015-01-26 2015-05-06 陕西师范大学 一种球状Zn6O(OH)(BO3)3:Eu3+发光材料及其制备方法
CN104882546A (zh) * 2014-02-28 2015-09-02 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
CN106206974A (zh) * 2016-09-06 2016-12-07 苏州大学 热致延迟荧光有机电致发光体系以及使用该体系的发光二极管

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6659139B2 (en) * 2002-01-18 2003-12-09 E. I. Du Pont De Nemours And Company Warp-stretch woven fabric and method for making same
US20050056958A1 (en) * 2003-09-16 2005-03-17 Eastman Kodak Company Forming homogeneous mixtures of organic materials for physical vapor deposition using dry mixing
US8431432B2 (en) * 2007-04-27 2013-04-30 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of light-emitting device
JP2011243337A (ja) 2010-05-17 2011-12-01 Toshiba Mobile Display Co Ltd 有機el装置の製造方法
US20180340033A1 (en) * 2017-05-24 2018-11-29 The Penn State Research Foundation Polymeric additives for morphologically stable organic light emitting diode and methods of manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050056968A1 (en) * 2003-09-16 2005-03-17 Eastman Kodak Company Forming homogeneous mixtures of organic materials for physical vapor deposition using wet mixing
CN103219473A (zh) * 2013-04-26 2013-07-24 上海大学 具有单发光层结构的白光有机电致发光器件
CN104882546A (zh) * 2014-02-28 2015-09-02 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
CN104592991A (zh) * 2015-01-26 2015-05-06 陕西师范大学 一种球状Zn6O(OH)(BO3)3:Eu3+发光材料及其制备方法
CN106206974A (zh) * 2016-09-06 2016-12-07 苏州大学 热致延迟荧光有机电致发光体系以及使用该体系的发光二极管

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10868259B2 (en) * 2018-05-30 2020-12-15 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Method for manufacturing OLED light-emitting material

Also Published As

Publication number Publication date
US20180366686A1 (en) 2018-12-20
CN106920900B (zh) 2018-10-19
CN106920900A (zh) 2017-07-04
US10297795B2 (en) 2019-05-21

Similar Documents

Publication Publication Date Title
Wu et al. High‐Performance Hybrid White Organic Light‐Emitting Diodes with Superior Efficiency/Color Rendering Index/Color Stability and Low Efficiency Roll‐Off Based on a Blue Thermally Activated Delayed Fluorescent Emitter
WO2020042608A1 (zh) 有机电致发光器件及其制备方法和显示装置
TWI640532B (zh) Phosphorescent organic electroluminescent device
KR101419810B1 (ko) 엑시플렉스를 형성하는 공동 호스트를 포함하는 유기 발광 소자
KR101026514B1 (ko) 유기발광장치
EP1986473B1 (en) Organic electroluminescent device
WO2018184264A1 (zh) 一种oled中发光层原料的处理方法及应用
TWI699425B (zh) 有機電致發光元件
WO2020120791A1 (en) Organic light emitting device, a method for manufacturing the same and a composition for use therein
Lv et al. Interfacial Exciplex Host to Release Interfacial Accumulated Charges for Highly Efficient and Bright Solution‐Processed White Organic Light‐Emitting Diodes
CN106008574A (zh) 一种用作有机电致磷光器件主体材料和热致延迟荧光材料的多功能化三芳基硼衍生物
CN111697145B (zh) 非掺杂溶液加工型树枝状热活化延迟荧光电致发光二极管
CN112467058B (zh) 一种三元激基复合物复合材料主体及其oled器件制备
CN104183718A (zh) 有机电致发光装置及其制备方法
CN110660923B (zh) 一种基于AIE材料的荧光/磷光混合型白光OLEDs及其制备方法
CN103594657A (zh) 一种有机电致发光器件及其制备方法
WO2019218970A1 (zh) 一种热活化延迟荧光有机电致发光器件
WO2019095501A1 (zh) 一种oled器件及制备方法
CN111864093B (zh) 一种用于电子传输层的组合物、电子传输层及光电器件
Liu et al. Chroma stability of WOLED with high-voltage
CN113725376B (zh) 有机电致发光器件、制作其的方法及显示面板
WO2022041200A1 (zh) 一种有机电致发光器件
CN104183713A (zh) 顶发射有机电致发光器件及其制备方法
Li et al. High-efficiency white phosphorescent organic light-emitting diodes
CN114551745A (zh) 一种深蓝光oled器件及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17904728

Country of ref document: EP

Kind code of ref document: A1