WO2022041025A1 - 正极材料及包含其的电化学装置和电子装置 - Google Patents

正极材料及包含其的电化学装置和电子装置 Download PDF

Info

Publication number
WO2022041025A1
WO2022041025A1 PCT/CN2020/111604 CN2020111604W WO2022041025A1 WO 2022041025 A1 WO2022041025 A1 WO 2022041025A1 CN 2020111604 W CN2020111604 W CN 2020111604W WO 2022041025 A1 WO2022041025 A1 WO 2022041025A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
present application
metal
lithium
fluoride
Prior art date
Application number
PCT/CN2020/111604
Other languages
English (en)
French (fr)
Inventor
刘小浪
周墨林
徐磊敏
鲁宇浩
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to EP20950697.1A priority Critical patent/EP4207368A4/en
Priority to PCT/CN2020/111604 priority patent/WO2022041025A1/zh
Priority to JP2023512754A priority patent/JP7565433B2/ja
Priority to KR1020237007040A priority patent/KR20230037673A/ko
Priority to CN202080103114.2A priority patent/CN116134642A/zh
Publication of WO2022041025A1 publication Critical patent/WO2022041025A1/zh
Priority to US18/113,641 priority patent/US20230216026A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/5835Comprising fluorine or fluoride salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of energy storage, in particular to a positive electrode material and an electrochemical device and an electronic device including the same, in particular to an all-solid-state secondary lithium battery.
  • the battery is not only required to be light, but also required to have a high capacity and a long operating life.
  • Lithium-ion batteries have taken a mainstream position in the market due to their outstanding advantages such as high energy density, high safety, no memory effect and long working life.
  • the embodiments of the present application provide a positive electrode material, in an attempt to solve at least one problem existing in the related field at least to some extent.
  • Embodiments of the present application also provide a positive electrode, an electrochemical device, and an electronic device using the positive electrode material.
  • the present application provides a positive electrode material, which includes a composite material, and the composite material includes a metal fluoride, wherein the molar ratio of the fluorine element F to the metal element M in the metal fluoride is y , the molar ratio of the fluorine element F and the metal element M in the composite material is z, wherein y ⁇ z ⁇ y+2; and wherein the M includes at least one of Al, Cu, Co, Ni, Mn, Fe or Ag A sort of.
  • the present application provides a method of making a composite material, the method comprising:
  • the molar ratio of fluorine element F to metal element M in the metal fluoride is y; the molar ratio of fluorine element F to metal element M in the positive electrode material is z, y ⁇ z ⁇ y+2;
  • the M includes at least one of Al, Cu, Co, Ni, Mn, Fe or Ag.
  • the present application provides a positive electrode comprising the positive electrode material according to the embodiments of the present application.
  • the present application provides an electrochemical device including the positive electrode according to the embodiments of the present application.
  • the electrochemical device is an all-solid-state secondary lithium battery.
  • an all-solid-state secondary lithium battery includes a positive electrode, a negative electrode, and a solid-state electrolyte.
  • the positive electrode includes the positive electrode material of the above embodiments.
  • the present application provides an electronic device including an electrochemical device according to an embodiment of the present application.
  • the positive electrode material of the present application has the advantages of wide source of raw materials, simple preparation process, easy operation, and low production cost.
  • the lithium battery prepared from the positive electrode material of the present application has improved specific capacity, rate performance and cycle performance of the positive electrode material, as well as better charge-discharge performance.
  • FIG. 1 shows a schematic diagram of the electrochemical reaction of the composite cathode active material in Example 9 of the present application after the first charge and discharge.
  • FIG. 2 shows the curves of the capacity retention rate of the all-solid-state secondary lithium batteries of Comparative Example 2, Comparative Example 4 and Example 4 of the present application as a function of the number of cycles.
  • a list of items joined by the terms "one of,” “one of,” “one of,” or other similar terms can mean that any of the listed items one.
  • the phrase “one of A and B” means A only or B only.
  • the phrase “one of A, B, and C” means A only; B only; or C only.
  • Item A may contain a single element or multiple elements.
  • Item B may contain a single element or multiple elements.
  • Item C may contain a single element or multiple elements.
  • a list of items joined by the terms "at least one of,” “at least one of,” “at least one of,” or other similar terms may mean the listed items any combination of .
  • the phrase “at least one of A and B” means A only; B only; or A and B.
  • the phrase "at least one of A, B, and C” means A only; or B only; C only; A and B (excluding C); A and C (excluding B); B and C (excluding A); or all of A, B, and C.
  • Item A may contain a single element or multiple elements.
  • Item B may contain a single element or multiple elements.
  • Item C may contain a single element or multiple elements.
  • the present application provides a positive electrode material, which includes a composite material, and the composite material includes a metal fluoride, wherein the molar ratio of the fluorine element F to the metal element M in the metal fluoride is y, the molar ratio of the fluorine element F and the metal element M in the composite material is z, wherein y ⁇ z ⁇ y+2; and wherein the M includes Al, Cu, Co, Ni, Mn, Fe or Ag. at least one.
  • the M includes Cu, Fe, or a combination thereof.
  • y ⁇ z ⁇ y+1.5 In some embodiments, y ⁇ z ⁇ y+0.05, y ⁇ z ⁇ y+0.1, y ⁇ z ⁇ y+0.15, y ⁇ z ⁇ y+0.2, y ⁇ z ⁇ y+0.5, y ⁇ z ⁇ y+0.7, y ⁇ z ⁇ y+0.9, y ⁇ z ⁇ y+1, or y ⁇ z ⁇ y+1.2.
  • the composite material further includes fluorinated graphite, the structural formula of the fluorinated graphite is CF x , and the molar ratio of the fluorine element F to the carbon element C in the CF x is x, wherein 0 ⁇ x ⁇ 1.
  • the mass ratio of the graphite fluoride to the metal fluoride is w, 0 ⁇ w ⁇ 0.2. In some embodiments, 0 ⁇ w ⁇ 0.15. In some embodiments, 0 ⁇ w ⁇ 0.1. In some embodiments, 0 ⁇ w ⁇ 0.05. In some embodiments, w may also be 0.02, 0.03, 0.06, 0.07, and the like.
  • the metal fluoride includes at least one of CoF 3 , NiF 3 , MnF 2 , MnF 3 , FeF 3 , FeF 2 , AlF 3 , or CuF 2 . In some embodiments, the metal fluoride includes FeF 3 , CuF 2 , or a combination thereof.
  • the cathode material contains lithium. In some embodiments, the positive electrode material does not contain lithium.
  • the composite material included in the cathode material can be represented as MF y .w(CF x ), wherein the definitions of M, w, x, and y are as described above, respectively.
  • the embodiments of the present application provide a method for preparing a composite material, the method comprising:
  • the molar ratio of fluorine element F to metal element M in the metal fluoride is y; the molar ratio of fluorine element F to metal element M in the composite material is z, y ⁇ z ⁇ y+2;
  • the M includes at least one of Al, Cu, Co, Ni, Mn, Fe or Ag.
  • metal fluoride and graphite fluoride are as defined above.
  • the mixing is performed by a ball mill, V-blender, three-dimensional blender, airflow blender, or horizontal mixer. In some embodiments, the mixing is high energy ball mill mixing.
  • the ball milling is a wet ball milling or a dry ball milling. In some embodiments, the ball milling is a wet ball milling.
  • a ball milling dispersant is used in the ball milling process.
  • the ball milled dispersant includes absolute ethanol.
  • the volume ratio of ball mill material to mill balls is 1:3 to 1:20. In some embodiments, the ratio of ball milling material to milling ball volume is 1:10.
  • the rotational speed in the ball milling step is 300 r/min to 1200 r/min. In some embodiments, the rotational speed in the ball milling step is 800 r/min.
  • the ball milling time is 4 hr to 24 hr. In some embodiments, the ball milling time is 4hr, 6hr, 10hr, 15hr, 20hr, 24hr, or a range of any two of these values.
  • the drying temperature is 60°C to 120°C. In some embodiments, the drying temperature is 60°C, 70°C, 80°C, 100°C, 120°C, or a range of any two of these values.
  • the annealing temperature is 200°C to 600°C. In some embodiments, the annealing temperature is 200°C, 250°C, 300°C, 350°C, 400°C, 500°C, 600°C, or a range of any two of these values.
  • the annealing time is 10 hr to 72 hr. In some embodiments, the annealing time is 10hr, 15hr, 20hr, 25hr, 30hr, 35hr, 40hr, 50hr, 60hr, 65hr, 72hr, or a range of any two of these values.
  • the annealing process is performed in an atmosphere sintering furnace.
  • the atmosphere sintering furnace can be an atmosphere tube furnace, an atmosphere box furnace, or other sintering furnaces with similar atmosphere protection functions.
  • the atmosphere used in the atmosphere sintering furnace is an inert gas.
  • the inert gas is high purity argon or high purity nitrogen.
  • the working principle of solid-state lithium batteries is basically the same as that of traditional lithium-ion batteries.
  • the structural change is to replace traditional liquid organic electrolytes and separators with solid-state electrolytes, making the battery safer.
  • the structure of solid-state lithium battery is also simpler, mainly composed of positive electrode, solid electrolyte and negative electrode.
  • the cathodes used in solid-state lithium batteries are mostly traditional lithium-containing cathode materials, such as LiCoO 2 , LiFePO 4 , and the like.
  • the specific capacity of these lithium-containing cathode materials is far lower than that of the anode, which cannot meet the needs of high-energy density all-solid-state lithium batteries.
  • Solid-state lithium batteries using lithium metal as the negative electrode must be matched with positive electrode materials with higher energy density.
  • Metal fluoride (such as FeF 3 , FeF 2 and CuF 2 , etc.) cathode materials can provide energy densities as high as 1000Wh/Kg to 1600Wh/Kg, much higher than the 600Wh/Kg to 800Wh/Kg of the LiCoO 2 system, so it is very useful potential.
  • lithium-free cathode materials such as metal fluorides often use cheap iron elements, so they also have the advantages of abundant resources, low cost, and environmental friendliness.
  • metal fluoride and other lithium-free cathode materials have the following shortcomings that cannot be ignored: First, the conductivity of metal fluoride is generally low. It is reported that the conductivity of FeF 3 is only 10 -17 S/cm, which is close to that of an insulator. ; In the process of charging and discharging, the discharge voltage is lower than the charging voltage, that is, the so-called voltage hysteresis phenomenon occurs, and the rate and cycle stability of the material are poor. Second, the transition metal ions are easily dissolved from the positive electrode material during the charge and discharge process, enter the electrolyte and have side reactions with it, which accelerates the capacity decay during the cycle.
  • the present invention provides a positive electrode material for a lithium battery.
  • the initial state of the positive electrode material is a composite material of metal fluoride and fluorinated graphite.
  • the composite material of the metal fluoride and fluorinated graphite of the present application has the following advantages as a positive electrode material: (1) the addition of graphite fluoride can significantly improve the specific capacity of the positive electrode material; (2) such as As shown in Figure 1, during the first discharge process, the fluorinated graphite on the surface of the positive electrode material reacts with the lithium ions released from the negative electrode to generate nanocarbons in situ, thereby increasing the conductivity of the positive electrode, which is conducive to stabilizing the discharge voltage and improving the discharge.
  • the graphite fluoride will generate LiF in addition to the in-situ generation of nano-carbon, and these products can also be used as a lithium source to compensate for the excess of the cathode material. Lithium loss during secondary cycling, thereby improving long-term cycling stability.
  • the metal fluoride and fluorinated graphite composite cathode material of the present invention has higher specific capacity and improved rate performance and cycle performance.
  • the lithium battery positive electrode material provided by the present invention has wide raw material sources, simple preparation process, easy operation and low production cost.
  • the all-solid-state secondary lithium battery prepared with the positive electrode material of the present invention has good charge-discharge performance, and has a great application prospect in the field of 3C electronic products and batteries for electric vehicles.
  • Embodiments of the present application provide an electrochemical device including any device that undergoes an electrochemical reaction.
  • the electrochemical device of the present application includes a negative electrode having a negative electrode active material capable of occluding and releasing metal ions; a positive electrode according to embodiments of the present application; an electrolyte; and a separator disposed between the positive electrode and the negative electrode membrane.
  • the electrochemical devices of the present application include, but are not limited to, secondary batteries.
  • the electrochemical device is a lithium secondary battery.
  • the lithium secondary battery includes, but is not limited to, a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery or a lithium ion polymer secondary battery, an all-solid-state secondary lithium battery.
  • the material, composition, and manufacturing method of the negative electrode used in the electrochemical device of the present application may include any of the techniques disclosed in the prior art.
  • the negative electrode is the negative electrode described in US Patent Application US9812739B, which is incorporated herein by reference in its entirety.
  • the negative electrode includes a current collector and a layer of negative active material on the current collector.
  • the anode active material layer includes an anode active material.
  • the negative active material includes, but is not limited to: lithium metal, structured lithium metal, natural graphite, artificial graphite, mesophase microcarbon beads (MCMB), hard carbon, soft carbon, silicon, silicon-carbon Composite, silicon-oxygen material, Li-Sn alloy, Li-Sn-O alloy, Sn, SnO, SnO 2 , lithiated TiO 2 -Li 4 Ti 5 O 12 of spinel structure, Li-Al alloy or any of them combination.
  • MCMB mesophase microcarbon beads
  • the negative active material layer includes a binder.
  • binders include, but are not limited to: polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyfluoro Ethylene, ethylene oxide-containing polymers, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, acrylated styrene-butadiene Rubber, epoxy or nylon.
  • the anode active material layer includes a conductive material.
  • the conductive material includes, but is not limited to: natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber, metal powder, metal fiber, copper, nickel, aluminum, silver, or polyphenylene derivative.
  • the current collector includes, but is not limited to, copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, or a conductive metal clad polymer substrate.
  • the negative electrode may be obtained by mixing an active material, a conductive material, and a binder in a solvent to prepare an active material composition, and coating the active material composition on a current collector.
  • the solvent may include, but is not limited to: deionized water, N-methylpyrrolidone.
  • the negative electrode in the all-solid-state secondary lithium battery is a metallic lithium foil.
  • a positive electrode in an all-solid-state secondary lithium battery includes a positive electrode material and a conductive agent according to any of the embodiments of the present application.
  • the positive electrode includes a current collector and a layer of positive active material on the current collector.
  • the positive electrode active material layer includes the positive electrode material according to the embodiment of the present application.
  • the positive active material layer further includes a binder and/or a conductive agent.
  • the binder improves the bonding of the positive electrode active material particles to each other, and also improves the bonding of the positive electrode active material to the current collector.
  • the binder includes at least one of the following compounds: polyvinyl alcohol, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, containing Ethylene oxide polymers, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, acrylated styrene-butadiene rubber, ring Oxygen resin or nylon, etc.
  • the conductive agent includes at least one of the following compounds: conductive carbon black, carbon fiber, acetylene black, ketjen black, graphene, carbon nanotube.
  • the current collector may include, but is not limited to, aluminum.
  • the positive electrode can be prepared by a preparation method known in the art.
  • the positive electrode can be obtained by mixing an active material, a conductive material, and a binder in a solvent to prepare an active material composition, and coating the active material composition on a current collector.
  • the solvent may include, but is not limited to: N-methylpyrrolidone.
  • the electrolyte that can be used in the embodiments of the present application may be an electrolyte known in the prior art.
  • the electrolyte includes an organic solvent, a lithium salt, and an additive.
  • the organic solvent of the electrolytic solution according to the present application may be any organic solvent known in the prior art that can be used as a solvent of the electrolytic solution.
  • the electrolyte used in the electrolyte solution according to the present application is not limited, and it may be any electrolyte known in the prior art.
  • the additive for the electrolyte according to the present application may be any additive known in the art as an additive for the electrolyte.
  • the organic solvent includes, but is not limited to: ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), propylene carbonate or ethyl propionate.
  • the lithium salt includes at least one of an organic lithium salt or an inorganic lithium salt.
  • the lithium salts include, but are not limited to: lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium difluorophosphate (LiPO 2 F 2 ), bistrifluoromethanesulfonimide Lithium LiN(CF 3 SO 2 ) 2 (LiTFSI), Lithium Bis(fluorosulfonyl)imide Li(N(SO 2 F) 2 )(LiFSI), Lithium Bisoxalate Borate LiB(C 2 O 4 ) 2 (LiBOB) ) or lithium difluorooxalate borate LiBF 2 (C 2 O 4 ) (LiDFOB).
  • LiPF 6 lithium hexafluorophosphate
  • LiBF 4 lithium tetrafluoroborate
  • LiPO 2 F 2 lithium difluorophosphate
  • LiPFSI bistrifluoromethanesulfonimide Lithium LiN(CF 3 SO
  • the concentration of the lithium salt in the electrolyte is: 0.5 mol/L to 3 mol/L, 0.5 mol/mol/L to 2 mol/L, or 0.8 mol/L to 1.5 mol/L.
  • the solid-state electrolyte used in the all-solid-state secondary lithium battery includes at least one of the following compounds: Li 3 YCl 6 , Li 3 YBr 6 , Li 3 OCl, LiPON, Li 0.5 La 0.5 TiO 3 , Li 1+x Al x Ti 2-x (PO 4 ) 3 , Li 7 La 3 Zr 2 O 12 , Li 10 GeP 2 S 12 (LGPS), Li 9.54 Si 1.74 P 1.44 S 11.7 Cl 0.3 , Li 3.25 Ge 0.25 P 0.75 S 4 , Li 11 AlP 2 S 12 and Li 7 P 3 S 11 .
  • a separator is provided between the positive electrode and the negative electrode to prevent short circuits.
  • the material and shape of the separator that can be used in the present application are not particularly limited, and it may be any of the techniques disclosed in the prior art.
  • the separator includes a polymer or inorganic or the like formed from a material that is stable to the electrolyte of the present application.
  • the release film may include a substrate layer and a surface treatment layer.
  • the base material layer is a non-woven fabric, film or composite film with a porous structure, and the material of the base material layer is selected from at least one of polyethylene, polypropylene, polyethylene terephthalate and polyimide.
  • a polypropylene porous membrane, a polyethylene porous membrane, a polypropylene non-woven fabric, a polyethylene non-woven fabric or a polypropylene-polyethylene-polypropylene porous composite membrane can be selected.
  • At least one surface of the base material layer is provided with a surface treatment layer, and the surface treatment layer may be a polymer layer or an inorganic material layer, or a layer formed by mixing a polymer and an inorganic material.
  • the inorganic layer includes inorganic particles and a binder, and the inorganic particles are selected from aluminum oxide, silicon oxide, magnesium oxide, titanium oxide, hafnium oxide, tin oxide, ceria, nickel oxide, zinc oxide, calcium oxide, zirconium oxide, One or a combination of yttrium oxide, silicon carbide, boehmite, aluminum hydroxide, magnesium hydroxide, calcium hydroxide and barium sulfate.
  • the binder is selected from polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, polyamide, polyacrylonitrile, polyacrylate, polyacrylic acid, polyacrylate, polyvinylpyrrolidone, polyvinyl ether, One or a combination of polymethyl methacrylate, polytetrafluoroethylene and polyhexafluoropropylene.
  • the polymer layer contains a polymer, and the material of the polymer is selected from polyamide, polyacrylonitrile, acrylate polymer, polyacrylic acid, polyacrylate, polyvinylpyrrolidone, polyvinyl ether, polyvinylidene fluoride or polyvinylidene fluoride. At least one of (vinylidene fluoride-hexafluoropropylene).
  • the electronic device of the present application may be any device using the electrochemical device according to the embodiments of the present application.
  • the electronic devices include, but are not limited to: notebook computers, pen input computers, mobile computers, e-book players, portable telephones, portable fax machines, portable copiers, portable printers, headsets , VCR, LCD TV, Portable Cleaner, Portable CD Player, Mini Disc, Transceiver, Electronic Notepad, Calculator, Memory Card, Portable Recorder, Radio, Backup Power, Motor, Automobile, motorcycle, Power-assisted Bicycle, Bicycle , lighting equipment, toys, game consoles, clocks, power tools, flashes, cameras, large household batteries or lithium-ion capacitors, etc.
  • lithium batteries The preparation of lithium batteries is described below by taking lithium batteries as an example and in conjunction with specific embodiments. Those skilled in the art will understand that the preparation methods described in this application are only examples, and any other suitable preparation methods are within the scope of this application. .
  • the positive electrode active material powders prepared in Comparative Examples and Examples were subjected to XRD tests.
  • the reference standard for the test is JIS K 0131-1996 General Principles of X-ray Diffraction Analysis.
  • Test working conditions CuK alpha radiation
  • the working current is 250mA
  • the continuous scanning is adopted
  • the working voltage is 40kV
  • the scanning range is 2 ⁇ 10-70°
  • the step size is 0.1°
  • the scanning speed is 0.2 seconds/step.
  • the XRD test principle is that when a beam of monochromatic X-rays is incident on a crystal, since the crystal is composed of a unit cell with atoms regularly arranged, the distance between these regularly arranged atoms is of the same order of magnitude as the wavelength of the incident X-ray, so different atoms scatter.
  • the X-rays interfere with each other and produce strong X-ray diffraction in some special directions.
  • the phase existing in the material is determined.
  • the positive electrode active material powders prepared in Comparative Examples and Examples were subjected to SEM tests.
  • the SEM test standard refers to JY/T010-1996 General Principles of Analytical Scanning Electron Microscopy. Testing principle of scanning electron microscope: Scanning electron microscope is based on the interaction of electrons and matter. It uses a very finely focused high-energy electron beam to scan on the sample to excite various physical information. Through the reception, magnification and display imaging of this information, an observation of the surface topography of the test specimen is obtained.
  • the equipment used in the gram capacity test of the all-solid-state secondary lithium batteries prepared in the comparative examples and examples is a blue electric tester (model CT2001A), and the test environment temperature is normal temperature (25° C.).
  • the test method is to discharge with a constant current at a set rate to the discharge cut-off voltage, and then charge it with a constant current at a certain rate to the charge cut-off voltage.
  • the charging and discharging test rates in the present invention are all 0.1C, with reference to the theoretical specific capacity of FeF 3 of 712 mAh/g and the theoretical specific capacity of CuF 2 of 893 mAh/g.
  • the positive electrode active materials prepared in the Examples and Comparative Examples and the conductive agent Ketjen Black were mixed uniformly.
  • the obtained powder and solid electrolyte Li 7 P 3 S 11 were placed in a stainless steel cold-pressing mold, and cold-pressed under a pressure of 300 MPa to obtain a double-layer sheet of positive electrode and solid electrolyte, wherein the positive electrode active material, solid electrolyte Li 7
  • the mass ratio of P 3 S 11 and the conductive agent Ketjen Black is 60:30:10.
  • the lithium metal foil is placed on the other side of the solid electrolyte in the above-mentioned double-layer sheet, placed together in a cold pressing mold, and a pressure of 200 MPa is further applied to ensure sufficient contact between the lithium metal and the solid electrolyte film, that is, to obtain an all-solid secondary lithium battery.
  • the resulting mixture was transferred to a tube furnace, and heated to 300-500°C at a heating rate of 3°C/min under the protection of a high-purity argon gas flow of 0.3 L/min, followed by annealing for 24 hours. After the annealing is completed, the material is cooled to room temperature with the furnace, and then the material is crushed and sieved to obtain a composite material MF y .w (CF x ) of metal fluoride and fluorinated graphite, which is used as the positive electrode active material of the present application; wherein y is the molar ratio of fluorine element F to metal element M in the metal fluoride; z is the molar ratio of fluorine element F and metal element M in the composite material; x is the fluorine element F and carbon element in the CF x The molar ratio of C; and w is the mass ratio of the graphite fluoride to the metal fluoride. Wherein Example 7 did not perform annealing treatment after drying.
  • Table 2 shows the relevant performance test results of some examples and comparative examples.
  • Table 3 shows the test results of some examples and comparative examples under different charge and discharge rates.
  • indicates that the battery has no charge and discharge capacity after 20 cycles of charge and discharge.
  • the annealing temperature has a significant effect on the gram capacity of the graphite fluoride and iron trifluoride composite cathode active material.
  • the initial discharge and charge capacities of the material are 377.5mAh/g and 232.9mAh/g, respectively.
  • the annealing temperature increased from 150 °C to 350 °C, the initial discharge and charge capacities of the materials were greatly improved, which were 554.8mAh/g and 458.7mAh/g, respectively. This is due to the easier diffusion reaction of CFx with FeF3 lattice with increasing temperature.
  • the electrochemical performance of the copper fluoride material can also be improved by composite treatment of copper fluoride and graphite fluoride.
  • the charge-discharge capacity of the composite cathode material is also related to the fluorocarbon molar ratio x in the fluorinated graphite material. The higher the fluorocarbon molar ratio, the more favorable it is to improve the discharge gram capacity of the material.
  • the solid-state lithium batteries prepared from the positive electrode material of the present invention were charged and discharged at different rates, and the capacity retention rates were all above 85%, while the capacity of the comparative example showed a large attenuation, especially in the comparative example.
  • At high rates of 0.2C and 0.5C there is almost no charge-discharge capacity after 20 cycles. This is because in the embodiment, after the metal fluoride material and the fluorinated graphite material are composited, during the first discharge process, the fluorinated graphite on the surface of the positive electrode material can undergo a conversion reaction with lithium to generate nano-carbon in situ, thereby increasing the conductivity of the positive electrode. It is beneficial to improve the kinetics of the conversion reaction.
  • lithium fluoride will also be generated, which can also be used as a lithium source to compensate for the lithium loss of the cathode material during multiple cycles, thereby improving the material's performance. Long-term cycling stability.
  • FIG. 2 shows the curves of the capacity retention rate of the all-solid-state secondary lithium batteries of Comparative Example 2, Comparative Example 4 and Example 4 of the present application as a function of the number of cycles. It can be seen from Figure 2 that the incorporation of CFx into FeF3 can significantly improve the capacity retention rate of all-solid-state secondary lithium batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

本申请涉及正极材料及包含其的电化学装置和电子装置。本申请提供一种正极材料,其包括一种复合材料,所述复合材料包括金属氟化物,其中所述金属氟化物中氟元素F与金属元素M的摩尔比为y,所述复合材料中氟元素F和金属元素M的摩尔比为z,其中y<z≤y+2;并且其中所述M包括Al、Cu、Co、Ni、Mn、Fe或Ag中的至少一种。本申请的正极材料具有原料来源广泛,制备工艺简单,易于操作,生产成本较低等优点。由本申请正极材料制备的锂电池具有提高的正极材料比容量、倍率性能和循环性能以及较好的充放电性能。

Description

正极材料及包含其的电化学装置和电子装置 技术领域
本申请涉及储能领域,具体涉及一种正极材料及包含其的电化学装置和电子装置,特别是全固态二次锂电池。
背景技术
随着消费电子类的产品如笔记本电脑、手机、平板电脑、移动电源和无人机等的普及,对其中的电化学装置的要求越来越严格。例如,不仅要求电池轻便,而且还要求电池拥有高容量和较长的工作寿命。锂离子电池凭借其具有能量密度高、安全性高、无记忆效应和工作寿命长等突出的优点已经在市场上占据主流地位。
发明内容
本申请实施例提供了一种正极材料,以试图在至少某种程度上解决至少一种存在于相关领域中的问题。本申请实施例还提供了使用该正极材料的正极、电化学装置以及电子装置。
在一个实施例中,本申请提供了一种正极材料,其包括一种复合材料,所述复合材料包括金属氟化物,其中所述金属氟化物中氟元素F与金属元素M的摩尔比为y,所述复合材料中氟元素F和金属元素M的摩尔比为z,其中y<z≤y+2;并且其中所述M包括Al、Cu、Co、Ni、Mn、Fe或Ag中的至少一种。
在另一个实施例中,本申请提供一种制备复合材料的方法,所述方法包括:
(1)将金属氟化物和氟化石墨混合、烘干;和
(2)在200℃至600℃下退火10hr至72hr、破碎、筛分得到复合材料;
其中所述金属氟化物中氟元素F与金属元素M的摩尔比为y;所述正极材料中氟元素F和金属元素M的摩尔比为z,y<z≤y+2;并且
其中所述M包括Al、Cu、Co、Ni、Mn、Fe或Ag中的至少一种。
在另一个实施例中,本申请提供一种正极,其包括根据本申请的实施例所述的正极材料。
在另一个实施例中,本申请提供一种电化学装置,其包括根据本申请的实施例所述的正极。
在一些实施例中,所述电化学装置为全固态二次锂电池。在一些实施例中,全固态二次锂电 池包括正极、负极和固态电解质。在一些实施例中,所述正极包括上述实施例中的正极材料。
在另一个实施例中,本申请提供一种电子装置,其包括根据本申请的实施例所述的电化学装置。
本申请的正极材料具有原料来源广泛,制备工艺简单,易于操作,生产成本较低等优点。由本申请正极材料制备的锂电池具有提高的正极材料比容量、倍率性能和循环性能以及较好的充放电性能。
本申请实施例的额外层面及优点将部分地在后续说明中描述和显示,或是经由本申请实施例的实施而阐释。
附图说明
在下文中将简要地说明为了描述本申请实施例或现有技术所必要的附图以便于描述本申请的实施例。显而易见地,下文描述中的附图仅只是本申请中的部分实施例。对本领域技术人员而言,在不需要创造性劳动的前提下,依然可以根据这些附图中所例示的结构来获得其他实施例的附图。
图1示出了本申请实施例9中复合正极活性材料在首次充放电以后发生的电化学反应示意图。
图2示出了本申请对比例2、对比例4以及实施例4的全固态二次锂电池的容量保持率随循环次数变化的曲线。
具体实施方式
本申请的实施例将会被详细的描示在下文中。本申请的实施例不应该被解释为对本申请的限制。
在本文中以范围格式呈现量、比率和其它数值。应理解,此类范围格式是用于便利及简洁起见,且应灵活地理解,不仅包含明确地指定为范围限制的数值,而且包含涵盖于所述范围内的所有个别数值或子范围,如同明确地指定每一数值及子范围一般。
在具体实施方式及权利要求书中,由术语“中的一者”、“中的一个”、“中的一种”或其他相似术语所连接的项目的列表可意味着所列项目中的任一者。例如,如果列出项目A及B,那么短语“A及B中的一者”意味着仅A或仅B。在另一实例中,如果列出项目A、B及C,那么短语“A、B及C中的一者”意味着仅A;仅B;或仅C。项目A可包含单个元件或多个元件。项目B可包含单个元件或多个元件。项目C可包含单个元件或多个元件。
在具体实施方式及权利要求书中,由术语“中的至少一者”、“中的至少一个”、“中的至少一 种”或其他相似术语所连接的项目的列表可意味着所列项目的任何组合。例如,如果列出项目A及B,那么短语“A及B中的至少一者”意味着仅A;仅B;或A及B。在另一实例中,如果列出项目A、B及C,那么短语“A、B及C中的至少一者”意味着仅A;或仅B;仅C;A及B(排除C);A及C(排除B);B及C(排除A);或A、B及C的全部。项目A可包含单个元件或多个元件。项目B可包含单个元件或多个元件。项目C可包含单个元件或多个元件。
一、正极材料
在一些实施例中,本申请提供了一种正极材料,其包括一种复合材料,所述复合材料包括金属氟化物,其中所述金属氟化物中中氟元素F与金属元素M的摩尔比为y,所述复合材料中氟元素F和金属元素M的摩尔比为z,其中y<z≤y+2;并且其中所述M包括Al、Cu、Co、Ni、Mn、Fe或Ag中的至少一种。
在一些实施例中,所述M包括Cu、Fe或其组合。
在一些实施例中,y<z≤y+1.5。在一些实施例中,y<z≤y+0.05、y<z≤y+0.1、y<z≤y+0.15、y<z≤y+0.2、y<z≤y+0.5、y<z≤y+0.7、y<z≤y+0.9、y<z≤y+1或y<z≤y+1.2。
在一些实施例中,所述复合材料进一步包括氟化石墨,所述氟化石墨的结构式为CF x,所述CF x中氟元素F和碳元素C的摩尔比为x,其中0<x≤1。
在一些实施例中,0<x≤0.9。在一些实施例中,0<x≤0.8。在一些实施例中,0<x≤0.7。在一些实施例中,0<x≤0.6。在一些实施例中,0<x≤0.5、0<x≤0.4、0<x≤0.3或0<x≤0.2。
在一些实施例中,所述氟化石墨与所述金属氟化物的质量比为w,0<w≤0.2。在一些实施例中,0<w≤0.15。在一些实施例中,0<w≤0.1。在一些实施例中,0<w≤0.05。在一些实施例中,w还可以为0.02、0.03、0.06、0.07等。
在一些实施例中,所述金属氟化物包括CoF 3、NiF 3、MnF 2、MnF 3、FeF 3、FeF 2、AlF 3或CuF 2中的至少一种。在一些实施例中,所述金属氟化物包括FeF 3、CuF 2或其组合。
在一些实施例中,所述正极材料中含有锂。在一些实施例中,所述正极材料不含锂。
在一些实施例中,所述正极材料包括的复合材料可表示为MF y.w(CF x),其中M、w、x、y的定义分别如上所述。
二、复合材料的制备方法
本申请实施例提供了一种制备复合材料的方法,所述方法包括:
(1)将金属氟化物和氟化石墨混合、烘干;和
(2)在200℃至600℃下退火10hr至72hr、破碎、筛分得到复合材料;
其中所述金属氟化物中氟元素F与金属元素M的摩尔比为y;所述复合材料中氟元素F和金属元素M的摩尔比为z,y<z≤y+2;并且
其中所述M包括Al、Cu、Co、Ni、Mn、Fe或Ag中的至少一种。
在一些实施例中,金属氟化物和氟化石墨的定义如上所述。
在一些实施例中,混合通过球磨机、V型混料机、三维混料机、气流混料机或卧式搅拌机进行。在一些实施例中,混合为高能球磨混合。
在一些实施例中,球磨为湿法球磨或干法球磨。在一些实施例中,球磨为湿法球磨。
在一些实施例中,球磨过程中使用球磨分散剂。在一些实施例中,球磨分散剂包括无水乙醇。
在一些实施例中,在球磨步骤中,球磨物料与磨球体积比为1:3至1:20。在一些实施例中,球磨物料与磨球体积比例为1:10。
在一些实施例中,球磨步骤中的转速为300r/min至1200r/min。在一些实施例中,球磨步骤中的转速为800r/min。
在一些实施例中,球磨时间为4hr至24hr。在一些实施例中,球磨时间为4hr、6hr、10hr、15hr、20hr、24hr或这些数值中任意两者组成的范围。
在一些实施例中,烘干温度为60℃至120℃。在一些实施例中,烘干温度为60℃、70℃、80℃、100℃、120℃或这些数值中任意两者组成的范围。
在一些实施例中,退火温度为200℃至600℃。在一些实施例中,退火温度为200℃、250℃、300℃、350℃、400℃、500℃、600℃或这些数值中任意两者组成的范围。
在一些实施例中,退火时间为10hr至72hr。在一些实施例中,退火时间为10hr、15hr、20hr、25hr、30hr、35hr、40hr、50hr、60hr、65hr、72hr或这些数值中任意两者组成的范围。
在一些实施例中,退火处理在气氛烧结炉中进行。在一些实施例中,气氛烧结炉可以为气氛管式炉、气氛箱式炉,也可以是其它具有类似气氛保护功能的烧结炉。
在一些实施例中,所述气氛烧结炉用到的气氛为惰性气体。在一些实施例中,惰性气体为高纯氩气或者高纯氮气。
近年来,随着电动汽车、5G时代的到来,人们对高能量密度、高安全性能锂电池的需求也越来越迫切。金属锂具有高的比容量(3860mAh/g)和低电化学势(-3.040V相对标准氢电极), 被认为是最理想的高能量密度负极材料。因此,以锂金属为负极的固态锂电池成为现阶段的研究热点。传统锂离子电池多采用有机液态电解质或凝胶电解质,易燃易爆的有机液体给电池体系带来了极大的安全隐患。
固态锂电池的工作原理与传统锂离子电池基本相同,结构上的改变在于将传统液态有机电解质和隔膜取代为固态电解质,使电池更加安全。并且固态锂电池的结构也更为简单,主要由正极、固态电解质和负极组成。目前,固态锂电池所用到的正极多为传统含锂正极材料,如LiCoO 2、LiFePO 4等。这些含锂正极材料的比容量是远远低于负极的,不能满足高能量密度全固态锂电池的需求。因此,采用锂金属为负极的固态锂电池,必须搭配具有更高能量密度的正极材料。金属氟化物(如FeF 3、FeF 2和CuF 2等)正极材料可提供的能量密度高达1000Wh/Kg至1600Wh/Kg,远高于LiCoO 2体系的600Wh/Kg至800Wh/Kg,因此极具应用潜力。另外,金属氟化物等无锂正极材料多用到廉价的铁元素,因此还具有资源丰富、成本低廉、环境友好等优点。
目前,金属氟化物等无锂正极材料,存在以下不可忽略的缺点:第一、金属氟化物的电导率普遍偏低,据报道FeF 3的电导率仅为10 -17S/cm,近乎于绝缘体;在充放电过程中放电电压低于充电电压,即出现所谓的电压迟滞现象,材料的倍率和循环稳定性能较差。第二、过渡金属离子在充放电过程中易于从正极材料中溶出,进入电解液并与其发生副反应,加速循环过程中的容量衰减。
为解决上述问题,本发明提供了一种锂电池正极材料。所述正极材料初始态为金属氟化物和氟化石墨的复合材料。与金属氟化物正极材料相比,本申请的金属氟化物和氟化石墨的复合材料作为正极材料具有以下优点:(1)氟化石墨的加入可以显著提升正极材料的比容量;(2)如图1所示,在首次放电过程中,正极材料表面的氟化石墨与负极释放的锂离子发生化学反应,原位生成纳米碳,从而增加了正极的电导率,有利于稳定放电电压和提升放电效率;和(3)如图1所示,首次放电反应完成后,氟化石墨除原位生成纳米碳以外,还会生成LiF,这些产物还可以用作锂源,用于弥补正极材料在多次循环过程中的锂损失,从而提高长期循环稳定性能。
除此以外,本发明还取得了以下有益效果:
1)本发明的金属氟化物和氟化石墨复合正极材料,具有更高的比容量以及提高的倍率性能和循环性能。
2)本发明提供的锂电池正极材料,原料来源广泛、制备工艺简单、易于操作且生产成本较低。
3)有本发明正极材料制备的全固态二次锂电池具有较好的充放电性能,在3C电子产品和电动车用电池领域有着较大的应用前景。
三、电化学装置
本申请的实施例提供了一种电化学装置,所述电化学装置包括发生电化学反应的任何装置。
在一些实施例中,本申请的电化学装置包括具有能够吸留、放出金属离子的负极活性物质的负极;根据本申请的实施例的正极;电解液;和置于正极和负极之间的隔离膜。
在一些实施例中,本申请的电化学装置包括,但不限于:二次电池。
在一些实施例中,所述电化学装置是锂二次电池。
在一些实施例中,锂二次电池包括,但不限于:锂金属二次电池、锂离子二次电池、锂聚合物二次电池或锂离子聚合物二次电池、全固态二次锂电池。
1、负极
本申请的电化学装置中使用的负极的材料、构成和其制造方法可包括任何现有技术中公开的技术。在一些实施例中,负极为美国专利申请US9812739B中记载的负极,其以全文引用的方式并入本申请中。
在一些实施例中,负极包括集流体和位于该集流体上的负极活性材料层。在一些实施例中,负极活性材料层包括负极活性材料。在一些实施例中,负极活性材料包括,但不限于:锂金属、结构化的锂金属、天然石墨、人造石墨、中间相微碳球(MCMB)、硬碳、软碳、硅、硅-碳复合物、硅氧材料、Li-Sn合金、Li-Sn-O合金、Sn、SnO、SnO 2、尖晶石结构的锂化TiO 2-Li 4Ti 5O 12、Li-Al合金或其任意组合。
在一些实施例中,负极活性材料层包括粘合剂。在一些实施例中,粘合剂包括,但不限于:聚乙烯醇、羧甲基纤维素、羟丙基纤维素、二乙酰基纤维素、聚氯乙烯、羧化的聚氯乙烯、聚氟乙烯、含亚乙基氧的聚合物、聚乙烯吡咯烷酮、聚氨酯、聚四氟乙烯、聚偏1,1-二氟乙烯、聚乙烯、聚丙烯、丁苯橡胶、丙烯酸(酯)化的丁苯橡胶、环氧树脂或尼龙。
在一些实施例中,负极活性材料层包括导电材料。在一些实施例中,导电材料包括,但不限于:天然石墨、人造石墨、碳黑、乙炔黑、科琴黑、碳纤维、金属粉、金属纤维、铜、镍、铝、银或聚亚苯基衍生物。
在一些实施例中,集流体包括,但不限于:铜箔、镍箔、不锈钢箔、钛箔、泡沫镍、泡沫铜或覆有导电金属的聚合物基底。
在一些实施例中,负极可以通过如下方法获得:在溶剂中将活性材料、导电材料和粘合剂混合, 以制备活性材料组合物,并将该活性材料组合物涂覆在集流体上。
在一些实施例中,溶剂可以包括,但不限于:去离子水、N-甲基吡咯烷酮。
在一些实施例中,全固态二次锂电池中的负极为金属锂箔。
2、正极
本申请实施例提供了一种正极。在一些实施例中,全固态二次锂电池中的正极包括根据本申请任一实施例中的正极材料和导电剂。
在一些实施例中,所述正极包括集流体和位于该集流体上的正极活性材料层。所述正极活性材料层包括根据本申请实施例的正极材料。
在一些实施例中,正极活性材料层还包括粘合剂和/或导电剂。粘合剂提高正极活性材料颗粒彼此间的结合,并且还提高正极活性材料与集流体的结合。
在一些实施例中,粘合剂包括如下化合物中的至少一种:聚乙烯醇、羟丙基纤维素、二乙酰基纤维素、聚氯乙烯、羧化的聚氯乙烯、聚氟乙烯、含亚乙基氧的聚合物、聚乙烯吡咯烷酮、聚氨酯、聚四氟乙烯、聚偏1,1-二氟乙烯、聚乙烯、聚丙烯、丁苯橡胶、丙烯酸(酯)化的丁苯橡胶、环氧树脂或尼龙等。
在一些实施例中,导电剂包括如下化合物中的至少一种:导电碳黑,碳纤维,乙炔黑,科琴黑,石墨烯,碳纳米管。
在一些实施例中,集流体可以包括,但不限于:铝。
正极可以通过本领域公知的制备方法制备。例如,正极可以通过如下方法获得:在溶剂中将活性材料、导电材料和粘合剂混合,以制备活性材料组合物,并将该活性材料组合物涂覆在集流体上。在一些实施例中,溶剂可以包括,但不限于:N-甲基吡咯烷酮。
3、电解液
可用于本申请实施例的电解液可以为现有技术中已知的电解液。
在一些实施例中,所述电解液包括有机溶剂、锂盐和添加剂。根据本申请的电解液的有机溶剂可为现有技术中已知的任何可作为电解液的溶剂的有机溶剂。根据本申请的电解液中使用的电解质没有限制,其可为现有技术中已知的任何电解质。根据本申请的电解液的添加剂可为现有技术中已知的任何可作为电解液添加剂的添加剂。
在一些实施例中,所述有机溶剂包括,但不限于:碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸 二乙酯(DEC)、碳酸甲乙酯(EMC)、碳酸二甲酯(DMC)、碳酸亚丙酯或丙酸乙酯。
在一些实施例中,所述锂盐包括有机锂盐或无机锂盐中的至少一种。
在一些实施例中,所述锂盐包括,但不限于:六氟磷酸锂(LiPF 6)、四氟硼酸锂(LiBF 4)、二氟磷酸锂(LiPO 2F 2)、双三氟甲烷磺酰亚胺锂LiN(CF 3SO 2) 2(LiTFSI)、双(氟磺酰)亚胺锂Li(N(SO 2F) 2)(LiFSI)、双草酸硼酸锂LiB(C 2O 4) 2(LiBOB)或二氟草酸硼酸锂LiBF 2(C 2O 4)(LiDFOB)。
在一些实施例中,所述电解液中锂盐的浓度为:0.5mol/L至3mol/L、0.5mol/mol/L至2mol/L或0.8mol/L至1.5mol/L。
在一些实施例中,用于全固态二次锂电池中的固态电解质包括如下化合物中的至少一种:Li 3YCl 6,Li 3YBr 6,Li 3OCl,LiPON,Li 0.5La 0.5TiO 3、Li 1+xAl xTi 2-x(PO 4) 3、Li 7La 3Zr 2O 12、Li 10GeP 2S 12(LGPS)、Li 9.54Si 1.74P 1.44S 11.7Cl 0.3、Li 3.25Ge 0.25P 0.75S 4、Li 11AlP 2S 12和Li 7P 3S 11
4、隔离膜
在一些实施例中,正极与负极之间设有隔离膜以防止短路。可用于本申请中的隔离膜的材料和形状没有特别限制,其可为任何现有技术中公开的技术。在一些实施例中,隔离膜包括由对本申请的电解液稳定的材料形成的聚合物或无机物等。
例如,隔离膜可包括基材层和表面处理层。基材层为具有多孔结构的无纺布、膜或复合膜,基材层的材料选自聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯和聚酰亚胺中的至少一种。具体的,可选用聚丙烯多孔膜、聚乙烯多孔膜、聚丙烯无纺布、聚乙烯无纺布或聚丙烯-聚乙烯-聚丙烯多孔复合膜。
基材层的至少一个表面上设置有表面处理层,表面处理层可以是聚合物层或无机物层,也可以是混合聚合物与无机物所形成的层。
无机物层包括无机颗粒和粘结剂,无机颗粒选自氧化铝、氧化硅、氧化镁、氧化钛、二氧化铪、氧化锡、二氧化铈、氧化镍、氧化锌、氧化钙、氧化锆、氧化钇、碳化硅、勃姆石、氢氧化铝、氢氧化镁、氢氧化钙和硫酸钡中的一种或几种的组合。粘结剂选自聚偏氟乙烯、偏氟乙烯-六氟丙烯的共聚物、聚酰胺、聚丙烯腈、聚丙烯酸酯、聚丙烯酸、聚丙烯酸盐、聚乙烯呲咯烷酮、聚乙烯醚、聚甲基丙烯酸甲酯、聚四氟乙烯和聚六氟丙烯中的一种或几种的组合。
聚合物层中包含聚合物,聚合物的材料选自聚酰胺、聚丙烯腈、丙烯酸酯聚合物、聚丙烯酸、聚丙烯酸盐、聚乙烯呲咯烷酮、聚乙烯醚、聚偏氟乙烯或聚(偏氟乙烯-六氟丙烯)中的至少一种。
四、电子装置
本申请的电子装置可为任何使用根据本申请的实施例的电化学装置的装置。
在一些实施例中,所述电子装置包括,但不限于:笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、助力自行车、自行车、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池或锂离子电容器等。
下面以锂电池为例并且结合具体的实施例说明锂电池的制备,本领域的技术人员将理解,本申请中描述的制备方法仅是实例,其他任何合适的制备方法均在本申请的范围内。
实施例
以下说明根据本申请的全固态二次锂电池的实施例和对比例进行性能评估。
一、测试方法
1、粉末X射线衍射(XRD)测试:
将对比例与实施例中制备的正极活性材料粉末进行XRD测试。测试参考的标准为JIS K 0131-1996X射线衍射分析法通则。测试工作条件:CuK α辐射
Figure PCTCN2020111604-appb-000001
工作电流250mA,采用连续扫描,工作电压为40kV,扫描范围为2θ10-70°,步长为0.1°,扫描速度为0.2秒/步。
XRD测试原理为当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,通过对材料测得的点阵平面间距及衍射强度与标准物相的衍射数据相比较,确定材料中存在的物相。
2、扫描电子显微镜(SEM)测试:
将对比例与实施例中制备的正极活性材料粉末进行SEM测试。SEM测试标准参考JY/T010-1996分析型扫描电子显微镜方法通则。扫描电镜的测试原理:扫描电子显微镜的制造依据是电子与物质的相互作用,利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。
3、充放电测试:
对比例和实施例中制备的全固态二次锂电池的克容量测试采用的设备为蓝电测试仪(型号CT2001A),测试环境温度均为常温(25℃)。测试方法为按照设定倍率恒流放电至放电截止电压,随后再以一定的倍率恒流充电至充电截止电压。除明确标注以外,本发明中充放电测试倍率均为0.1C, 参考FeF 3的理论比容量712mAh/g和CuF 2的理论比容量893mAh/g。
二、全固态二次锂电池的制备
将实施例和对比例中制备的正极活性材料和导电剂科琴黑混合均匀。将获得的粉体与固态电解质Li 7P 3S 11一起置于不锈钢冷压模具中,在300MPa压力下冷压成型,得到正极和固态电解质的双层薄片,其中正极活性材料、固态电解质Li 7P 3S 11和导电剂科琴黑的质量比为60:30:10。将锂金属箔片放置于上述双层薄片中固态电解质的另一面,一起置于冷压模具中,进一步施加200MPa压力,以保证锂金属与固态电解质薄膜之间充分接触,即获得全固态二次锂电池。
三、正极活性材料的制备
对比例1
称取10g的FeF 3,放入50ml玛瑙球磨罐中,然后加入φ5mm玛瑙球40颗、φ10mm玛瑙球5颗,以500r/min的转速球磨12hr。球磨后,物料沾球磨罐壁,球磨不充分。
对比例2
称取10g的FeF 3,放入50ml玛瑙球磨罐中,然后加入φ5mm玛瑙球40颗、φ10mm玛瑙球5颗,加入20ml无水乙醇,以800r/min的转速球磨12h。将所得物料取出,转移到真空烘箱中80℃烘干,将干燥后的物料过400目筛后得到正极活性材料FeF 3
对比例3
称取10g的CuF 2,放入50ml玛瑙球磨罐中,然后加入φ5mm玛瑙球40颗、φ10mm玛瑙球5颗,加入20ml无水乙醇,以500r/min的转速球磨12h。球磨结束后,物料在乙醇中均匀分散,无沾壁和沉底现象。将所得物料取出,转移到真空烘箱中80℃烘干,将干燥后的物料过400目筛后得到正极活性材料CuF 2
对比例4
称取10g的FeF 3和0.5g的导电碳粉,放入50ml玛瑙球磨罐中,然后加入φ5mm玛瑙球40颗、φ10mm玛瑙球5颗,加入20ml无水乙醇,以500r/min的转速球磨12h。球磨结束后,将物料取出,转移到真空烘箱中80℃烘干,将干燥后的物料过400目筛后得到碳包覆的FeF 3作为正极活性材料。
实施例1
称取10g的FeF 3,放入50ml玛瑙球磨罐中,然后加入φ5mm玛瑙球40颗、φ10mm玛瑙球5颗,加入20ml无水乙醇,以500r/min的转速球磨12h。球磨结束后,物料在乙醇中均匀分散,无沾壁或沉底现象。
实施例2-13
将金属氟化物MF y和氟化石墨CF x放入50ml玛瑙球磨罐中,加入φ5mm玛瑙球40颗、φ10mm玛瑙球5颗,加入20ml无水乙醇,以500r/min的转速球磨12h。球磨结束后,将物料取出,转移到真空烘箱中80℃烘干,过300或400目筛后得到氟化石墨和金属氟化物的均相混合物。将所得混合物物料转移到管式炉中,在0.3L/min的高纯氩气气流保护下,以3℃/min的升温速率升温至300-500℃,保温退火24hr。退火完成后,物料随炉冷却至室温,然后将材料进行破碎、过筛,即得到金属氟化物和氟化石墨的复合材料MF y.w(CF x),作为本申请的正极活性材料;其中y为所述金属氟化物中氟元素F与金属元素M的摩尔比;z为所述复合材料中氟元素F和金属元素M的摩尔比;x为所述CF x中氟元素F和碳元素C的摩尔比;并且w为所述氟化石墨与所述金属氟化物的质量比。其中实施例7在烘干后未进行退火处理。表1示出了实施例2-13中使用的原料种类和用量以及工艺参数。
表1
Figure PCTCN2020111604-appb-000002
其中“—”表示未进行该步处理。
表2示出了部分实施例和对比例的相关性能测试结果。
表2
Figure PCTCN2020111604-appb-000003
表3示出了部分实施例和对比例在不同充放电倍率下的测试结果。
表3
Figure PCTCN2020111604-appb-000004
其中“\”表示充放电循环20圈后,电池已无充放电容量。
由对比例1和实施例1的测试结果可以看出,球磨时不加分散剂时,物料出现较严重的沾罐壁现象,研磨不充分。而加入无水乙醇作为分散剂进行湿磨时,球磨过程中,大颗粒在球磨介质研磨和冲击作用下出现裂纹,分散剂乙醇就会进入形成的裂纹缝隙,阻挡了裂纹的闭合,从而会有效使得裂纹快速扩展下去,大大提高了球磨效率。
由对比例2、对比例4以及实施例2-6的测试结果可以看出,在FeF 3中掺入CF x可以显著改善FeF 3的充放电克容量,并且对充放电克容量的改善效果满足关系:氟化石墨复合处理>导电碳包覆处理>未处理。以上结果说明F元素的掺入是提升FeF 3材料性能的重要因素之一。
由对比例2和实施例7-10的测试结果可以看出,退火温度对氟化石墨和三氟化铁复合正极活性材料的克容量有着显著的影响。当不进行退火处理时,材料的首次放电、充电容量分别为377.5mAh/g、232.9mAh/g。随着退火温度从150℃升高至350℃,材料的首次放电、充电容量均有大幅提升,分别为554.8mAh/g、458.7mAh/g。这是由于随着温度的升高,CF x更容易与FeF 3晶格发生扩散反应。
由对比例3和实施例11-13的测试结果可以看出,通过将氟化铜与氟化石墨进行复合处理,同样可以改善氟化铜材料的电化学性能。除此以外,所述复合正极材料的充放电容量还与氟化石墨材料中的氟碳摩尔比x有关。氟碳摩尔比越高,越有利于提高材料的放电克容量。
由对比例3和实施例13的测试结果可以看出,在氟化铜中掺入CF x以后,由本申请正极活性材料制备的全固态二次锂电池的倍率和循环性能均得到了显著提升。同样条件下,与0.05C倍率充放电相比,实施例13在较高的0.5C倍率下,其放电、充电容量 下降幅度明显减小,说明氟化石墨掺杂显著改善了材料的充放电倍率性能。在稳定充放电循环20圈以后,由本发明正极材料制备的固态锂电池,在不同倍率下进行充放电,其容量保持率均在85%以上,而对比例中容量出现了大幅衰减,特别是较高的0.2C和0.5C倍率下,循环20圈后已经几乎没有充放电容量。这是因为实施例中金属氟化物材料与氟化石墨材料复合以后,在首次放电过程中,正极材料表面的氟化石墨能与锂发生转化反应,原位生成纳米碳,从而增加了正极的电导率,有利于提高转化反应动力学。氟化石墨在首次放电过程中,除原位生成纳米碳以外,还会生成氟化锂,还可以用作锂源,从而弥补正极材料在多次循环过程中的锂损失,从而提高了材料的长期循环稳定性能。
图2示出了本申请对比例2、对比例4以及实施例4的全固态二次锂电池的容量保持率随循环次数变化的曲线。由图2可以看出,在FeF 3中掺入CF x能显著提升全固态二次锂电池的容量保持率。
整个说明书中对“一些实施例”、“部分实施例”、“一个实施例”、“另一举例”、“举例”、“具体举例”或“部分举例”的引用,其所代表的意思是在本申请中的至少一个实施例或举例包含了该实施例或举例中所描述的特定特征、结构、材料或特性。因此,在整个说明书中的各处所出现的描述,例如:“在一些实施例中”、“在实施例中”、“在一个实施例中”、“在另一个举例中”,“在一个举例中”、“在特定举例中”或“举例“,其不必然是引用本申请中的相同的实施例或示例。此外,本文中的特定特征、结构、材料或特性可以以任何合适的方式在一个或多个实施例或举例中结合。
尽管已经演示和描述了说明性实施例,本领域技术人员应该理解上述实施例不能被解释为对本申请的限制,并且可以在不脱离本申请的精神、原理及范围的情况下对实施例进行改变,替代和修改。

Claims (9)

  1. 一种正极材料,其包括一种复合材料,所述复合材料包括金属氟化物,其中所述金属氟化物中氟元素F与金属元素M的摩尔比为y,所述复合材料中氟元素F和金属元素M的摩尔比为z,其中y<z≤y+2;并且
    其中所述M包括Al、Cu、Co、Ni、Mn、Fe或Ag中的至少一种。
  2. 根据权利要求1所述的正极材料,其中所述复合材料进一步包括氟化石墨,所述氟化石墨的结构式为CF x,所述CF x中氟元素F和碳元素C的摩尔比为x,其中0<x≤1。
  3. 根据权利要求2所述的正极材料,其中所述氟化石墨与所述金属氟化物的质量比为w,0<w≤0.2。
  4. 根据权利要求1所述的正极材料,其中所述金属氟化物包括CoF 3、NiF 3、MnF 2、MnF 3、FeF 3、FeF 2、AlF 3或CuF 2中的至少一种。
  5. 一种制备复合材料的方法,所述方法包括:
    (1)将金属氟化物和氟化石墨混合、烘干;和
    (2)在200℃至600℃下退火10hr至72hr、破碎、筛分得到复合材料;
    其中所述金属氟化物中氟元素F与金属元素M的摩尔比为y;所述复合材料中氟元素F和金属元素M的摩尔比为z,y<z≤y+2;并且
    其中所述M包括Al、Cu、Co、Ni、Mn、Fe或Ag中的至少一种。
  6. 一种正极,其包含如权利要求1-4中任一项所述的正极材料或根据权利要求5所述方法制备得到的复合材料。
  7. 一种电化学装置,其包含如权利要求6所述的正极。
  8. 根据权利要求7所述的电化学装置,其为全固态二次锂电池。
  9. 一种电子装置,其包含如权利要求7或8所述的电化学装置。
PCT/CN2020/111604 2020-08-27 2020-08-27 正极材料及包含其的电化学装置和电子装置 WO2022041025A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP20950697.1A EP4207368A4 (en) 2020-08-27 2020-08-27 POSITIVE ELECTRODE MATERIAL AND ELECTROCHEMICAL DEVICE AND ELECTRONIC DEVICE THEREOF
PCT/CN2020/111604 WO2022041025A1 (zh) 2020-08-27 2020-08-27 正极材料及包含其的电化学装置和电子装置
JP2023512754A JP7565433B2 (ja) 2020-08-27 2020-08-27 正極材料、並びにそれを含む電気化学装置及び電子装置
KR1020237007040A KR20230037673A (ko) 2020-08-27 2020-08-27 양극재 및 이를 포함하는 전기화학 디바이스와 전자 디바이스
CN202080103114.2A CN116134642A (zh) 2020-08-27 2020-08-27 正极材料及包含其的电化学装置和电子装置
US18/113,641 US20230216026A1 (en) 2020-08-27 2023-02-24 Positive electrode material, and electrochemical apparatus and electronic apparatus containing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/111604 WO2022041025A1 (zh) 2020-08-27 2020-08-27 正极材料及包含其的电化学装置和电子装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/113,641 Continuation US20230216026A1 (en) 2020-08-27 2023-02-24 Positive electrode material, and electrochemical apparatus and electronic apparatus containing same

Publications (1)

Publication Number Publication Date
WO2022041025A1 true WO2022041025A1 (zh) 2022-03-03

Family

ID=80352260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111604 WO2022041025A1 (zh) 2020-08-27 2020-08-27 正极材料及包含其的电化学装置和电子装置

Country Status (6)

Country Link
US (1) US20230216026A1 (zh)
EP (1) EP4207368A4 (zh)
JP (1) JP7565433B2 (zh)
KR (1) KR20230037673A (zh)
CN (1) CN116134642A (zh)
WO (1) WO2022041025A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117154080B (zh) * 2023-10-31 2024-02-23 有研(广东)新材料技术研究院 一种全固态电池包覆型卤化物正极复合材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9812739B2 (en) 2015-03-31 2017-11-07 Ningde Amperex Technology Limited Electrolyte additive and use thereof in lithium-ion battery
CN107634224A (zh) * 2017-09-14 2018-01-26 辽宁兰晶科技有限公司 一种含氟化铁插层物的外壁氟化多壁碳纳米管的制备方法
CN108172765A (zh) * 2016-12-08 2018-06-15 宁德时代新能源科技股份有限公司 动力电池及其正极极片
CN110112394A (zh) * 2019-05-14 2019-08-09 中国民航大学 一种氟化碳/氟化金属复合正极材料的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5091517B2 (ja) 2007-03-28 2012-12-05 国立大学法人九州大学 フッ化物正極作製法
JP2013073792A (ja) 2011-09-28 2013-04-22 Panasonic Corp 非水電解質二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9812739B2 (en) 2015-03-31 2017-11-07 Ningde Amperex Technology Limited Electrolyte additive and use thereof in lithium-ion battery
CN108172765A (zh) * 2016-12-08 2018-06-15 宁德时代新能源科技股份有限公司 动力电池及其正极极片
CN107634224A (zh) * 2017-09-14 2018-01-26 辽宁兰晶科技有限公司 一种含氟化铁插层物的外壁氟化多壁碳纳米管的制备方法
CN110112394A (zh) * 2019-05-14 2019-08-09 中国民航大学 一种氟化碳/氟化金属复合正极材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4207368A4
WEN LIU ET AL.: "Enhanced electrochemical activity of rechargeable carbon fluorides-sodium battery with catalysts", CARBON, vol. 93, 3 June 2015 (2015-06-03), pages 523 - 532, XP029255420, ISSN: 0008-6223, DOI: 10.1016/j.carbon.2015.05.092 *

Also Published As

Publication number Publication date
EP4207368A1 (en) 2023-07-05
KR20230037673A (ko) 2023-03-16
JP2023538140A (ja) 2023-09-06
EP4207368A4 (en) 2023-10-18
JP7565433B2 (ja) 2024-10-10
CN116134642A (zh) 2023-05-16
US20230216026A1 (en) 2023-07-06

Similar Documents

Publication Publication Date Title
US20220158176A1 (en) Anode material, electrochemical device and electronic device including the same
KR101436762B1 (ko) 부극 재료, 금속 2차 전지 및 부극 재료의 제조 방법
CN111029543B (zh) 负极材料及包含其的电化学装置和电子装置
CN111403693B (zh) 负极活性材料和使用其的负极极片、电化学装置和电子装置
CN111370695B (zh) 负极活性材料及使用其的电化学装置和电子装置
WO2021217617A1 (zh) 负极活性材料、其制备方法、二次电池及包含二次电池的装置
WO2022140973A1 (zh) 负极极片、电化学装置和电子装置
US20220052324A1 (en) Negative electrode material and electrochemical apparatus and electronic apparatus containing the negative electrode material
CN112110448A (zh) 一种氮掺杂碳与纳米硅复合负极材料及其制备方法
CN114144919A (zh) 一种正极极片、包含该正极极片的电化学装置和电子装置
CN117317137A (zh) 电化学装置和电子装置
US20230216026A1 (en) Positive electrode material, and electrochemical apparatus and electronic apparatus containing same
WO2024168471A1 (zh) 二次电池及用电装置
CN113517442B (zh) 负极材料、电化学装置和电子装置
WO2023184125A1 (zh) 电化学装置和电子设备
CN113921914B (zh) 电解液以及使用其的电化学装置和电子装置
CN112599742B (zh) 电化学装置和电子装置
WO2023039877A1 (zh) 一种正极材料、电化学装置和电子装置
WO2022140975A1 (zh) 一种负极极片、包含该负极极片的电化学装置及电子装置
WO2024197436A1 (zh) 正极材料、包含该正极材料的电化学装置和电子装置
JP2024129066A (ja) 負極、ならびにこれを用いた電気化学装置および電子装置
CN114824217A (zh) 一种改性铁酸盐电化学材料及其制备方法和应用
CN113054167A (zh) 负极材料及包含其的电化学装置和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950697

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023512754

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237007040

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202327020333

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020950697

Country of ref document: EP

Effective date: 20230327