WO2022039226A1 - 複合材料製パネル構造体およびその製造方法 - Google Patents

複合材料製パネル構造体およびその製造方法 Download PDF

Info

Publication number
WO2022039226A1
WO2022039226A1 PCT/JP2021/030385 JP2021030385W WO2022039226A1 WO 2022039226 A1 WO2022039226 A1 WO 2022039226A1 JP 2021030385 W JP2021030385 W JP 2021030385W WO 2022039226 A1 WO2022039226 A1 WO 2022039226A1
Authority
WO
WIPO (PCT)
Prior art keywords
rib
panel structure
filler
composite material
layer
Prior art date
Application number
PCT/JP2021/030385
Other languages
English (en)
French (fr)
Inventor
昭夫 川又
陽一 中村
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to EP21858370.6A priority Critical patent/EP4201661A1/en
Priority to JP2022543993A priority patent/JP7426492B2/ja
Publication of WO2022039226A1 publication Critical patent/WO2022039226A1/ja
Priority to US18/109,856 priority patent/US20230192978A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0003Producing profiled members, e.g. beams
    • B29D99/0005Producing noodles, i.e. composite gap fillers, characterised by their construction
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/001Producing wall or panel-like structures, e.g. for hulls, fuselages, or buildings
    • B29D99/0014Producing wall or panel-like structures, e.g. for hulls, fuselages, or buildings provided with ridges or ribs, e.g. joined ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3055Cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3076Aircrafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/20All layers being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/24Thermosetting resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Definitions

  • the present invention relates to a composite material panel structure manufactured by press molding and a manufacturing method thereof, and more particularly to a composite material panel structure reinforced by ribs erected on a substrate portion and a manufacturing method thereof.
  • Patent Document 1 describes a fiber-reinforced plastic molded product having ribs protruding from a plate-shaped portion, which is manufactured by press molding.
  • the plate-shaped portion has a fiber volume content (Vf) of 50 to 70%, the average thickness is 1.5 mm or less, and the rib has an average width of 0.1 to 1.5 mm.
  • fibers are present across the plate and ribs.
  • the Vf of the fiber in the plate-shaped portion is specified and the average width of the rib is specified.
  • the plate-shaped portion (substrate portion) is limited to a thin-walled product having an average thickness of 1.5 mm or less, and the rib thickness is also within the range of 0.1 to 1.5 mm. Limited to. Therefore, the method disclosed in Patent Document 1 cannot be applied to a panel structure having a plate-shaped portion having a wall thickness of 1.5 mm or more.
  • the height of the rib is not particularly limited, but it is exemplified that 50 mm or less is desirable as an example of the upper limit.
  • the higher the height of the rib the more difficult it may be for the fiber to exist up to the tip of the rib. This is also shown in the fact that Patent Document 1 only mentions an example in which the height of the rib is 5.0 mm or less.
  • the present invention has been made to solve such a problem, and has a substrate portion and a rib, and arranges fibers at the tip of the rib regardless of the thickness and height of the substrate portion and the rib. It is an object of the present invention to provide a panel structure made of a composite material capable of providing a panel structure made of a composite material.
  • the composite material panel structure according to the present invention is a panel structure which is a press-molded product made of a composite material containing reinforcing fibers and a matrix resin in order to solve the above-mentioned problems, and is a substrate portion and the said.
  • the composite is provided with ribs that are erected with respect to the substrate portion, and the number of layers is determined in the substrate portion based on the required plate thickness of the substrate portion calculated from the volume of the substrate portion and the ribs.
  • a basic layer, which is a material layer, is laminated, and a doubler layer, which is a composite material layer, is laminated in addition to the basic layer on at least the rib base portion on which the rib stands, and the tip of the rib is laminated.
  • the structure is such that the reinforcing fibers are arranged up to the portion.
  • the method for manufacturing a panel structure made of a composite material according to the present invention includes a substrate portion and ribs erected on the substrate portion, and contains a reinforcing fiber and a matrix resin in order to solve the above-mentioned problems.
  • a prepreg laminated body is formed by laminating a double ply, which is a prepreg, on a rib base portion to be formed, and the prepreg laminated body is press-molded by a molding die.
  • the reinforcing fibers are arranged up to the tip of the rib by laminating a doubler layer exceeding the standard number of laminated layers on the rib base.
  • a panel structure having a reinforcing structure can be manufactured only by press molding, and reinforcing fibers can be provided up to the tip of the rib, which is a reinforcing structure, without being limited by the thickness and height of the substrate portion and the rib. Can be placed. Therefore, since the strength and rigidity of the substrate portion can be improved, a panel structure having good strength and rigidity can be manufactured at low cost.
  • the composite material having the substrate portion and the ribs and capable of arranging the fibers at the tip of the ribs without being limited by the thickness and height of the substrate portion and the ribs by the above configuration. It has the effect of being able to provide a panel structure made of steel.
  • FIG. 1 is a schematic perspective view showing an example of the configuration of the panel structure according to the embodiment.
  • FIG. 2 is a schematic cross-sectional view showing an example of a typical configuration of a rib and a rib base portion included in the panel structure shown in FIG.
  • FIG. 3A is a diagram further illustrating the cross-sectional structure of the rib and the rib base portion shown in FIG. 2
  • FIG. 3B is a diagram schematically showing the rib base region included in the rib base portion shown in FIG. 3A.
  • 3C is a diagram schematically showing a region excluding a filler region for theoretically calculating the rib base region shown in FIG. 3B.
  • FIG. 4A and 4B are schematic cross-sectional views showing an example of a prepreg laminated body used for manufacturing a panel structure in the present embodiment.
  • 5A is a schematic view showing a typical example of a molding die when the panel structure shown in FIG. 1 is manufactured by press molding using a laminated body as shown in FIG. 4A
  • FIG. 5B is a schematic view showing FIG. 5A.
  • the schematic diagram shown in the above it is a partial schematic diagram in which the cavity of the prepreg laminated body and the molding die is enlarged.
  • 6A is a schematic view showing another example of a molding die when the panel structure shown in FIG. 1 is manufactured by press molding using a laminated body as shown in FIG. 4B
  • FIG. 6B is shown in FIG. 6A.
  • FIG. 7A is a schematic diagram showing a typical example of a molding mold when manufacturing the panel structure shown in FIG. 1 using a conventional prepreg laminated body
  • FIG. 7B is a schematic diagram shown in the schematic diagram shown in FIG. 7A.
  • FIG. 8A is an external photograph showing a specific example of the panel structure as an embodiment
  • FIG. 8B is a photograph showing a cross section of a rib of the panel structure shown in FIG. 8A.
  • composite panel structure A typical example of the composite panel structure according to the present disclosure will be specifically described with reference to FIGS. 1 and 2.
  • the composite panel structure may be abbreviated as "panel structure" as appropriate.
  • the panel structure according to the present embodiment is a press-molded product made of a composite material containing reinforcing fibers and a matrix resin.
  • the specific configuration of the panel structure is not particularly limited, but for example, as shown in FIG. 1, the panel structure 10 includes the web portion 11, the rib 12, and the flange portions 13a and 13b.
  • the direction in which the rib 12 extends along the web portion 11 is defined as the X axis
  • the direction in which the flange portions 13a and 13b extend is defined as the Y axis
  • the direction in which the rib 12 is erected is defined as the Z axis.
  • the web portion 11 is used as the substrate portion, and the portion of the web portion 11 on which the rib 12 stands is referred to as the rib base portion 14.
  • the cross section of the panel structure 10 is "Z-shaped".
  • the flange portion 13a is located on one side edge portion of the flat plate-shaped web 11, is bent toward the first surface side in the Z-axis direction, and extends in the Y-axis direction.
  • the flange portion 13b is located on the other side edge portion of the web portion 11, is bent in the Z-axis direction toward the second surface side, which is the surface opposite to the first surface, and extends in the Y-axis direction.
  • the rib 12 is erected on the first surface of the web portion 11 in the Z-axis direction and extends in the X-axis direction, which is the direction from one side edge portion of the web portion 11 to the other side edge portion. One end of the rib 12 is connected to the flange portion 13a.
  • the specific shape and thickness of the substrate portion are not particularly limited, and can be appropriately designed according to the application.
  • the specific shape, thickness and height of the rib 12 are also not particularly limited.
  • the thickness or width (or height) depends on various conditions such as the type, use, and usage conditions of the panel structure 10. Etc. can be set as appropriate.
  • FIG. 2 is a schematic view showing a cross-sectional structure of a rib 12 and a rib base portion 14 in the panel structure 10 shown in FIG.
  • the horizontal direction in FIG. 2 corresponds to the X-axis direction
  • the vertical direction in FIG. 2 corresponds to the Z-axis direction.
  • the upper surface in the figure corresponds to the first surface of the substrate portion
  • the lower surface in the figure corresponds to the second surface of the substrate portion.
  • the panel structure 10 is composed of at least reinforcing fibers and a matrix resin, and the substrate portion includes a laminated structure of a composite material layer containing reinforcing fibers.
  • the layer of the reinforcing fiber is schematically shown by a thick line or a white line, and the layer containing the reinforcing fiber is treated as a composite material layer.
  • the "required plate thickness" of the web portion 11 and the "reference number of laminated plates” for realizing the required plate thickness are set in advance according to the application of the panel structure 10.
  • the web 11 is composed of only a composite material layer having a standard number of laminated layers.
  • the web portion 11 is composed of 6 composite material layers 21 schematically shown by thick line reinforcing fiber layers, but is not limited to 6 layers, and the actual plate thickness of the panel structure 10 and the like. It may be decided according to. Further, in FIG. 2, the spacing between the composite material layers 21 is non-uniform, but it goes without saying that this is also just for convenience in the illustration.
  • the composite material layer 21 that realizes the required plate thickness of the web portion 11 is referred to as a "basic layer 21" for convenience. Most of the web portion 11 is composed of only the basic layer 21.
  • a double layer 22 which is a composite material layer other than the basic layer 21 is laminated on the rib base portion 14.
  • the doubler layer 22 is a composite material layer that is laminated in excess of the standard number of laminated layers.
  • the doubler layer 22 is shown as a composite material layer with white lines to distinguish it from the basic layer 21.
  • the number of layers of the double layer 22 is three, but the specific number of layers is not limited.
  • the number of layers of the doubler layer 22 can be set in a preferable range of the number of layers based on the design volume of the panel structure 10. For example, assuming that the design volume of the panel structure 10 is the "molding reference volume", the total number of laminated layers of the basic layer 21 and the doubler layer 22 is from the molding reference volume or more to 1.25 times or less of the molding reference volume. The number of layers within the range. Generally, the molding reference volume can be set based on the cavity of the molding die used during press molding.
  • the substrate portion and the rib 12 should be able to be formed.
  • the rib 12 may not be properly formed even if the prepreg laminated body having the number of laminated layers that simply realizes the required plate thickness is press-molded. .. Therefore, when the panel structure 10 having the ribs 12 is press-molded, it is preferable to set the number of layers of the doubler layer 22 based on the molding reference volume.
  • the number of layers of the doubler layer 22 is less than 1.0 times the same as the reference volume for molding, even if the doubler layer 22 is additionally laminated, it may not be possible to press-mold the appropriate rib 12.
  • the number of layers of the doubler layer 22 exceeds 1.25 times the molding reference volume, the fiber volume content of the rib 12 and the rib base portion 14 may theoretically become excessive.
  • the matrix resin 20 is considered to flow out to a portion other than the rib 12 and the rib base portion 14, and therefore the fiber volume content in the rib 12 and the rib base portion 14 Can be considered to increase.
  • the upper limit of the fiber volume content in which no decrease in strength is observed is considered to be + 5% of the nominal value.
  • the number of layers of the doubler layer 22, which is an additional amount with respect to the basic layer 21, is 1.25 times or less of the molding reference volume, it can be considered to correspond to the upper limit of the fiber volume content.
  • the number of laminated double layers 22 exceeds 1.25 times the molding reference volume depending on various conditions.
  • the doubler layer 22 is additionally laminated on the basic layer 21, the reinforcing fibers are arranged up to the tip of the rib 12.
  • the rib 12 is not limited to this.
  • the filler layer 23 which is a composite material layer, may be laminated on the filler region 15 shown by the broken line in the rib base portion 14. ..
  • the filler region 15 and the filler layer 23 will be specifically described with reference to FIG. 3A, which further schematically describes the schematic cross-sectional structure of the rib base portion 14 shown in FIG.
  • first surface and the second surface are illustrated with reference numerals as “first surface 11a” and “second surface 11b”.
  • the plurality of composite material layers constituting the substrate portion can be schematically divided into a first surface side laminated body 16a and a second surface side laminated body 16b.
  • the first surface side laminated body 16a is a portion on the first surface 11a side of the web portion 11 which is a substrate portion.
  • the second surface side laminated body 16b is a portion on the second surface 11b side of the web portion 11 which is a substrate portion.
  • the rib 12 is configured such that two first surface side laminated bodies 16a face each other and are bonded to each other, and at the base of the rib 12, the two first surface side laminated bodies 16a are curved in opposite directions in the Y-axis direction. Is bent. Therefore, the rib 12 has a structure in which the rib 12 is erected from the substrate portion which is the web portion 11. Further, the second surface side laminated body 16b is arranged so as to be in contact with the surface of the first surface side laminated body 16a on the second surface 11b side.
  • a filler region having a triangular cross section between the rib 12, the first surface side laminated body 16a, and the second surface side laminated body 16b, as shown in the schematic cross-sectional view of FIG. 3A. 15 is specified.
  • the region 15 is an elongated region having a triangular cross section extending along the X-axis direction.
  • the stretching direction of the rib 12 is the vertical direction of the paper surface.
  • the filler region 15 is included in the rib base 14 of the web portion 11.
  • the filler layer 23 is laminated only on the portion corresponding to the filler region 15 of the rib base portion 14.
  • a filler layer 23 is laminated on the rib base portion 14 in addition to the doubler layer 22 as a composite material layer exceeding the standard number of laminated layers. This makes it possible to further improve the quality of the portion of the second surface 11b of the panel structure 10 on the opposite side of the rib 12, that is, the portion of the first surface 11a facing the rib 12.
  • the second surface 11b of the panel structure 10 has a dent at a position corresponding to the rib 12. May occur. This dent affects the function, strength, etc. of the panel structure 10 depending on the application, and may deteriorate the surface quality.
  • the panel structure 10 when the panel structure 10 is used as one of the components and the second surface 11b of the panel structure 10 is arranged on the outermost side of the structure, there is no dent on the second surface 11b. Is preferable. Alternatively, even when the second surface 11b of the panel structure 10 is brought into close contact with other components, it is preferable that the second surface 11b does not have a dent. Further, when the web portion 11 of the panel structure 10 is required to have strength, if a dent is present on the second surface 11b, the strength is lowered due to the undulating fibers. From this viewpoint as well, it is preferable that the second surface 11b does not have a dent. For such applications, it is preferable to additionally laminate the filler layer 23 in addition to the doubler layer 22 on the rib base portion 14.
  • the specific number of layers of the filler layer 23 is not particularly limited. For example, if there is no particular problem even if the second surface 11b has a dent, the filler layer 23 is unnecessary. Further, when it is sufficient to appropriately reduce the dent of the second surface 11b, an appropriate filler layer 23 may be additionally laminated according to the design volume of the filler region 15.
  • the number of laminated filler layers 23 is from the filler reference volume or more to the filler reference volume. It is preferable to set the number of layers to be within the range of 3.0 times or less. In calculation, if the additional amount of the filler layer 23 is 3.0 times or less of the filler reference volume, it can be considered to correspond to the above-mentioned upper limit of the fiber volume content (+ 5% of the nominal value).
  • the number of laminated filler layers 23 is less than the filler reference volume, it may not be possible to avoid dents on the second surface 11b. On the other hand, when the number of laminated filler layers 23 exceeds 3.0 times the filler reference volume, the fiber volume content of the rib base portion 14 may become excessive.
  • the molding reference volume which is the reference for the number of layers of the doubler layer 22, may be set based on the cavity of the molding die used at the time of press molding as described above.
  • the filler reference volume which is a reference for the number of laminated filler layers 23, can be theoretically calculated based on the thickness of the rib 12 and the degree of bending near the rib base portion 14.
  • FIG. 3B is an enlarged schematic view of the rib base portion 14 shown in FIG. 3A.
  • FIG. 3C is a schematic diagram showing the rib base region 17 shown in FIGS. 3A and 3B.
  • the filler region 15 described above is located on the first surface side laminated body 16a facing each other on the first surface 11a side of the rib base portion 14 and on the second surface side 11b side, and faces the first surface side laminated body 16a. It can be set as a region between the second surface side laminated body 16b. Further, the rib base region 17 surrounded by a broken line in FIG. 3A is set as a region composed of a curved portion of the first surface side laminated body 16a facing each other in the rib base portion 14 and a filler region 15 between them. Will be done.
  • the rib base region 17 will be described more specifically. As shown in FIG. 3B, it is assumed that the curved portion of the first surface side laminated body 16a is approximated to a quarter circle having a radius R (a fan shape having a central angle of 90 ° obtained by dividing a perfect circle having a radius R into 1/4). .. At this time, the thickness tH of the first surface side laminated body 16a is tA / 2, which is half the thickness tA of the rib 12.
  • the length of the rib base region 17 in the Z-axis direction is R + tH.
  • the length of the rib base region 17 in the Y-axis direction is 2R + 2tH.
  • the shaded region excluding the filler region 15 can be approximated to a state in which quarter circles having a radius of R + tH are arranged in parallel in the Y-axis direction.
  • the area of the cross section of the filler region 15 is from (R + tH) ⁇ (2R + 2tH) which is the area of the rib base region 17 to ⁇ ⁇ (R + tH) 2 ⁇ (2) which is the area of the shaded area shown in FIG. 3C. It can be calculated as the area obtained by subtracting / 4).
  • the filler region 15 is an elongated region extending along the stretching direction of the rib 12 in the X-axis direction. Therefore, the volume of the filler region 15, that is, the filler reference volume can be calculated as the volume obtained by multiplying the area of the cross section of the filler region 15, that is, the length of the rib 12, that is, the length of the filler region 15.
  • the prepreg and the laminated body thereof used for manufacturing the panel structure 10 will be described with reference to FIGS. 4A and 4B.
  • the first surface and the second surface are designated as "first surface 11a” and "second surface 11b" for convenience of explanation.
  • the lower side of the drawing is the first surface 11a
  • the upper side of the drawing is the second surface 11b.
  • the panel structure 10 is a "press molded body" manufactured by press molding.
  • a prepreg is generally used.
  • the prepreg is a sheet body in which a substrate made of reinforcing fibers is impregnated with a matrix resin 20.
  • a plurality of prepregs are laminated to form a prepreg laminated body 30A or 30B as shown in FIG. 4A or FIG. 4B.
  • the panel structure 10 is manufactured by press-molding the repreg laminate 30A or 30B. A more specific manufacturing method of the panel structure 10 according to the present disclosure will be described later.
  • Both the basic layer 21 and the doubler layer 22 are prepregs, that is, sheets whose base material is impregnated with the matrix resin 20 before being press-molded. Therefore, in FIGS. 4A or 4B, the prepreg corresponding to the basic layer 21 is shown as the basic ply 31, and the prepreg corresponding to the doubler layer 22 is shown as the double ply 32.
  • the prepreg laminate 30A shown in FIG. 4A is composed of a basic ply 31 and a double ply 32, and the prepreg laminate 30B shown in FIG. 4B is located at a portion corresponding to a filler region 15 in addition to the basic ply 31 and the double ply 32. It is composed of a filler ply 33.
  • the double ply 32 is laminated at a position corresponding to at least the rib 12.
  • the dimensions or shape of the double ply 32 are not limited.
  • the filler ply 33 is laminated at a position corresponding to the filler region 15 so as to have a triangular cross-sectional shape corresponding to the filler region 15.
  • the filler ply 33 is laminated in the central portion of the prepreg laminated body 30B in a triangular shape whose width gradually narrows as it is located on the first surface 11a.
  • the number of layers of the basic ply 31, the number of layers of the double ply 32, and the number of layers of the filler ply 33 are all not particularly limited. It can be appropriately set based on the thickness of the substrate portion or rib 12 required for the manufactured panel structure 10, the cavity volume of the molding die, the design volume of the filler region 15, and the like.
  • the thickness of the substrate portion or the rib 12 corresponds to the required plate thickness and the like described above.
  • the cavity volume corresponds to the molding reference volume described above.
  • the design volume of the filler region 15 is based on the filler reference volume described above.
  • the doubler ply 32 becomes the doubler layer 22 of the panel structure 10 by press molding.
  • the filler ply 33 becomes the filler layer 23 of the panel structure 10 by press molding. Therefore, the number of laminated double ply 32 can be set to be within the range from the cavity volume of the molding die or more to 1.25 times or less of the cavity volume. This is in the range of 1.0 times or more of the molding reference volume to 1.25 times or less of the molding reference volume.
  • the number of laminated filler plies 33 can be set to a number within the range from the filler reference volume or more to 3.0 times or less of the filler reference volume.
  • the method of setting the number of laminated composite material layers or prepregs based on a reference volume is not particularly limited, and the knowledge of the conventional manufacturing method can be used.
  • the specific types of the matrix resin 20 and the reinforcing fibers constituting the prepreg are not particularly limited.
  • known applicable materials can be appropriately selected and used depending on the use of the panel structure 10 and the like.
  • Typical examples of the matrix resin 20 used for the composite material include a thermosetting resin and a thermoplastic resin.
  • the specific type of the thermosetting resin is not particularly limited, but typical examples thereof include epoxy resin, polyester resin, vinyl ester resin, phenol resin, cyanate ester resin, polyimide resin, and polyamide resin.
  • thermosetting resins can be used alone or in combination of two or more. Further, the more specific chemical structure of these thermosetting resins is not particularly limited. These thermosetting resins may be a polymer obtained by polymerizing various known monomers, or may be a copolymer obtained by polymerizing a plurality of monomers. Further, the average molecular weight of the thermosetting resin, the structure of the main chain and the side chain, and the like are not particularly limited.
  • thermoplastic resin is not particularly limited, but engineering plastics such as polyphenylene sulfide (PPS), polyetheretherketone (PEEK), and polyetherimide (PEI) are preferably used.
  • PPS polyphenylene sulfide
  • PEEK polyetheretherketone
  • PEI polyetherimide
  • the more specific chemical structure of these thermoplastic resins is not particularly limited.
  • thermoplastic resins may be a polymer obtained by polymerizing various known monomers, or may be a copolymer obtained by polymerizing a plurality of monomers. Further, the average molecular weight of the thermoplastic resin, the structure of the main chain and the side chain, and the like are not particularly limited.
  • additives can be added to the matrix resin 20.
  • examples of the additive include known curing agents, curing accelerators, reinforcing materials other than fiber substrates, fillers, and the like.
  • the specific types and compositions of these additives are not particularly limited, and known types or compositions can be preferably used.
  • the matrix resin 20 contains a component other than the resin, it can be interpreted as a resin composition composed of the resin and other components.
  • the specific type of the reinforcing fiber is not particularly limited, but for example, carbon fiber, polyester fiber, PBO (polyparaphenylene benzobisoxazole) fiber, boron fiber, aramid fiber, glass fiber, silica fiber (quartz fiber), silicon carbide. (SiC) fiber, nylon fiber, etc. can be mentioned. Only one type of these reinforcing fibers may be used, or two or more types may be used in combination as appropriate.
  • the base material of the reinforcing fiber is not particularly limited, but woven fabrics, braids, knitted fabrics, non-woven fabrics and the like can be typically used.
  • continuous fiber or long fiber may be used.
  • a plurality of types of fiber materials, fillers or reinforcing materials can be used in combination.
  • short fibers can be used in addition to continuous fibers as reinforcing fibers, and particulate fillers or reinforcing materials or fillers can be used instead of fibrous ones.
  • filler or the reinforcing material known materials can be preferably used depending on the type of the composite material or the matrix resin 20.
  • the reinforcing fiber is preferably at least one of a continuous fiber and a notched continuous fiber.
  • the reinforcing fibers used in the prepreg are preferably continuous fibers.
  • the continuous fiber may or may not have a notch, and may or may not have a notch in combination.
  • the continuous fiber may be a base material such as a woven fabric or a braid. Further, the notch may be formed partially or entirely with respect to the base material.
  • FIGS. 5A, 5B, 6A, 6B, and 6B are shown for convenience in explaining the formation of the rib 12 by press molding.
  • 7A and 7B the formation of the flange portions 13a and 13b is not shown.
  • the method of manufacturing the panel structure 10 by press-molding the prepreg laminated body 30A is taken as an example of the first manufacturing method. Further, a method of manufacturing the panel structure 10 by press-molding the prepreg laminated body 30B is referred to as a second manufacturing method example.
  • the molding die 40 used at the time of press molding is used for manufacturing the panel structure 10, and the upper die 41, the lower die 42, the upper hot plate 43, and the lower hot plate 44. Etc. are provided.
  • the upper mold 41 corresponds to the second surface of the web portion 11 which is the substrate portion
  • the lower mold 42 corresponds to the first surface of the web portion 11 and the rib 12.
  • a cavity 45 in which the prepreg laminated body 30 is installed is formed between the upper mold 41 and the lower mold 42.
  • the cavity 45 includes a space corresponding to the flange portions 13a and 13b, but the space corresponding to the flange portions 13a and 13b is not shown.
  • An upper heating plate 43 is provided on the outside of the upper mold 41, and a lower heating plate 44 is provided on the outside of the lower mold 42.
  • the outside of the upper mold 41 is the upper side
  • the outside of the lower mold 42 is the lower side. Heat and pressure are applied from these hot plates 43 and 44 to the upper mold 41 and the lower mold 42.
  • the prepreg laminate 30A interposed between the upper mold 41 and the lower mold 42 is heated and pressed, that is, hot pressed, and the panel structure 10 is formed.
  • the lower mold 42 has an uneven structure corresponding to at least the rib 12. Therefore, in the example shown in FIG. 5A, the lower mold 42 has a configuration in which a plurality of mold members are fastened and fixed by the fastening member 46.
  • the molding die 40 is not limited to the configuration shown in FIG. 5A.
  • the prepreg laminated body 30A is arranged between the upper mold 41 and the lower mold 42. Subsequently, as shown in the lower part of FIG. 5B, the upper mold 41 and the lower mold 42 are heated and pressed, that is, hot-pressed by the upper and lower heating plates 43 and 44.
  • the arrow at the bottom of FIG. 5B indicates the pressurizing direction.
  • the double ply 32 is introduced into the space corresponding to the rib 12 in the cavity 45 together with the basic ply 31.
  • a composite material layer derived from the basic ply 31 and the double ply 32 is formed on the rib 12, and the reinforcing fibers are arranged up to the tip of the rib 12. Therefore, the strength and rigidity of the rib 12 provided on the substrate portion can be improved.
  • a molded product made of a composite material contains a complicated three-dimensional structure such as a rib 12
  • the prepregs are laminated so as to have a three-dimensional shape corresponding to the complicated structure, so that the stacking time becomes long.
  • autoclave molding since it is usually difficult to press-mold a laminate in which a prepreg is laminated on a complicated three-dimensional shape, autoclave molding is practically used. However, in autoclave molding, the molding time becomes long. As described above, it takes a lot of time to manufacture a panel structure having a three-dimensional structure by applying the conventional technique, so that mass production is difficult.
  • the prepreg laminated body 30A is substantially flat plate-shaped, press molding is possible, and a panel structure having a complicated three-dimensional shape including ribs 12 can be easily lowered. It can be manufactured at a cost. Further, conventionally, it has been difficult to arrange continuous fibers at the rib tips of a panel structure in which the thickness and height of the substrate portion and the ribs are not limited, but a prepreg laminated body in which a doubler layer 22 is added to the rib base portion 14. By press-molding 30A, the reinforcing fibers can be arranged on the entire rib 12 including the tip portion of the rib 12 and the rib base portion 14, so that the panel structure 10 having improved strength and rigidity can be manufactured.
  • the upper mold 41 corresponds to the second surface of the web portion 11 which is the substrate portion
  • the lower mold 42 corresponds to the first surface of the web portion 11 and the rib 12.
  • the prepreg laminated body 30B is arranged between the upper mold 41 and the lower mold 42 so that the laminated filler ply 33 has an inverted triangular shape.
  • the upper mold 41 and the lower mold 42 are heated and pressed, that is, hot-pressed by the upper and lower heating plates 43 and 44, and the prepreg laminated body 30B interposed between the upper mold 41 and the lower mold 42. Is press-molded.
  • the double ply 32 is introduced into the space corresponding to the rib 12 in the cavity 45 together with the basic ply 31. Further, the filler ply 33 is introduced into the space corresponding to the filler region 15 in the cavity 45. As a result, a composite material layer derived from the basic ply 31 and the double ply 32 is formed on the rib 12, and the reinforcing fibers are arranged up to the tip of the rib 12.
  • a composite material layer derived from the filler ply 33 is formed in the filler region 15 in the rib base portion 14. Since the reinforcing fibers are arranged on the entire rib 12 and the filler region 15 is satisfactorily filled by the filler layer 23, the strength of the rib 12 can be improved and the recess on the second surface of the web portion 11 which is the substrate portion can be improved. Can be effectively avoided or suppressed.
  • the reinforcing fibers do not sufficiently flow or stretch because they are press-molded using the prepreg laminate 130 composed of only the basic ply 31.
  • the reinforcing fibers are not sufficiently arranged on the rib 12.
  • the web portion 11 which is the substrate portion there is a possibility that a dent may occur on the second surface opposite to the rib 12.
  • a dabra layer which is a calculated "excessive" composite material layer
  • a doubler layer which is an excess composite material layer
  • the reinforcing fibers cannot be arranged on the entire rib, considering the common general technical knowledge. That is, it is considered that the reinforcing fibers are not arranged on the entire rib because it is not considered that the reinforcing fibers flow or stretch well at the time of press molding according to the common general technical knowledge.
  • the rib base portion has an important region in press molding called the "filler region" defined in the present disclosure. Therefore, in the present disclosure, a composite material layer, that is, a filler layer, which fills the filler region is further added. As a result, first, the reinforcing fibers can be arranged up to the tip of the rib. In addition to this, the possibility of dents on the second surface of the panel structure can be effectively suppressed or avoided.
  • the reinforcing fibers can be arranged up to the tip of the rib and the dent on the second surface of the panel structure can be suppressed or avoided without being limited by the thickness of the substrate and the rib. It became clear by the verification.
  • FIG. 8A is a plan photograph showing an embodiment of the panel structure 10, and corresponds to a state in which the panel structure 10 shown in FIG. 1 is photographed from the left side of FIG.
  • FIG. 8B is a cross-sectional photograph of the rib 12 included in the panel structure 10 shown in FIG. 8A.
  • the photographs of FIGS. 8A and 8B are representative examples of the above-mentioned experimental verification by the present inventors.
  • the panel structure 10 shown in FIGS. 8A and 8B is manufactured by additionally laminating a doubler layer on a basic layer and press-molding. As is clear from FIG. 8B, it is observed that the reinforcing fibers are arranged up to the tip of the rib 12. Therefore, according to the present disclosure, it can be seen that the panel structure 10 in which the reinforcing fibers are arranged up to the tip of the rib 12 can be manufactured by press molding.
  • the specific shape of the panel structure 10 according to the present disclosure is not limited to the structure shown in FIG.
  • the panel structure 10 includes a substrate portion and ribs, and the substrate portion is formed by laminating a plurality of composite material layers, and the ribs can be formed into a plate-like structure that stands up against the substrate portion. Therefore, the panel structure 10 as shown in FIG. 1 does not have to have a Z-shaped cross section, and at least one of both side edges may not be a flange portion. Further, the extending direction of the rib does not have to be the direction perpendicular to the side edge portion as shown in FIG.
  • a structure in which a doubler layer is laminated in addition to the composite material layer can be formed on at least the rib base portion 14 of the substrate portion.
  • the composite material layer is a basic layer constituting the substrate portion
  • the doubler layer is an additional composite material layer
  • the rib 12 is arranged with reinforcing fibers up to the tip portion thereof.
  • the web portion 11 which is a substrate portion has a flat plate shape, but the web portion 11 can have a curved structure depending on the use of the panel structure 10. ..
  • the rib 12 is typically provided to reinforce the substrate portion.
  • the web portion 11 is a substrate portion. Therefore, the thickness and height of the rib 12 can be set to a thickness or height according to the strength and rigidity required for the substrate portion. Similarly, the thickness, width, height, etc. of the flange portions 13a, 13b or other structural portions included in the panel structure 10 can be appropriately set.
  • FIG. 2 schematically shows the filler layer 23 laminated in the filler region 15.
  • the typical range of the number of laminated filler layers 23 is not limited to the range of 1.0 times or more and 3.0 times or less of the above-mentioned filler reference volume. Although it depends on various conditions, it is only an example, but a preferable range of the number of laminated filler layers 23 is 1.2 times or more and 1.5 times or less of the filler reference volume. When the number of laminated filler layers 23 is within this range, the second surface 11b of the substrate portion (web portion 11) is substantially free from dents. Further, when the number of laminated filler layers 23 is within this range, it is possible to easily realize uniform arrangement of the matrix resin 20 and the reinforcing fibers in the rib base portion 14.
  • the prepreg laminate 30A or 30B may include a material layer other than the prepreg, that is, the composite material layer, depending on the use of the panel structure 10. That is, the panel structure 10 according to the present disclosure may include a material other than the composite material.
  • a resin layer formed of an extensible resin or a resin composition can be laminated on the first surface 11a or the second surface 11b of the prepreg laminate 30A or 30B. By press-molding the prepreg laminate 30A or 30B containing such a resin layer, the panel structure 10 having the resin layer formed on the surface can be manufactured.
  • the resin layer on the surface may be used for the purpose of imparting machinability or for improving the appearance of the panel structure 10, but is not particularly limited.
  • the machinability includes, for example, the property of preventing the occurrence of burrs or hangnail during the above-mentioned drilling.
  • the prepreg laminate 30A or 30B can include a metal mesh layer or a metal foil as another material layer. Since the metal mesh layer or the metal foil also has extensibility, it can be suitably used as another material layer of the panel structure 10 according to the present disclosure.
  • a copper mesh layer can be laminated on the surface of the prepreg laminated body 30A or 30B. By heat-press molding the prepreg laminate 30A or 30B including the copper mesh layer, the panel structure 10 having the copper mesh on the surface can be manufactured.
  • the prepreg laminate 30A or 30B can include a material layer of a non-conductive composite material as another material layer.
  • the non-conductive composite material include glass fiber reinforced plastic (GFRP) and the like.
  • the non-conductive composite material can be laminated over the entire surface of the prepreg laminate 30A or 30B, or can be partially laminated. By heat-press molding a laminate containing such a layer of a non-conductive composite material, a panel structure 10 having a layer of the non-conductive composite material on the surface can be manufactured.
  • the non-conductive composite material on the surface can be typically used as a countermeasure against electrolytic corrosion.
  • measures against electrolytic corrosion include measures for suppressing corrosion of the metal member when CFRP and a metal member having a distant ionization tendency come into contact with each other.
  • the specific type of the conductive composite material is not particularly limited, and known materials can be preferably used. Further, the use of the non-conductive composite material is not limited to the measures against electrolytic corrosion, and can be used for other known uses.
  • the panel structure according to the present disclosure is a panel structure which is a press-molded product made of a composite material containing reinforcing fibers and a matrix resin, and is erected on the substrate portion and the substrate portion.
  • the substrate portion is provided with ribs, and a basic layer, which is a composite material layer whose number of layers is determined based on the required plate thickness of the substrate portion calculated from the volume of the substrate portion and the ribs, is laminated on the substrate portion.
  • a doubler layer which is a composite material layer, is laminated on at least the rib base portion on which the rib stands, and the reinforcing fibers are arranged up to the tip of the rib. It is a configuration that is.
  • a doubler layer exceeding the standard number of laminated layers is laminated on the rib base portion.
  • a panel structure having a reinforcing structure in which reinforcing fibers are arranged up to the tip of the rib only by press molding.
  • the reinforcing fibers are arranged up to the tip of the rib which is a reinforcing structure without being limited by the thickness and height of the substrate portion and the rib, the strength and rigidity of the substrate portion can be improved. As a result, a panel structure having good strength and rigidity can be manufactured at low cost.
  • the total number of laminated layers of the basic layer and the doubler layer is from the molding reference volume or more to the above.
  • the configuration may be such that the number of layers is within the range of 1.25 times or less of the molding reference volume.
  • the composite material layer curvedly connected to the ribs and forming a part of the substrate portion is used as the first surface side laminate, and the side opposite to the ribs.
  • the composite material layer arranged on the surface of the first surface side laminate and constituting the substrate portion is used as the second surface side laminate, and is between the first surface side laminate and the second surface side laminate.
  • the composite material filler layer may be arranged only in the filler region.
  • the number of laminated composite material filler layers is from the filler reference volume or more to the filler reference volume.
  • the configuration may be such that the number of layers is within the range of 3.0 times or less the volume.
  • the method for manufacturing a panel structure according to the present disclosure includes a substrate portion and ribs erected on the substrate portion, and is a composite for producing a panel structure made of a composite material containing reinforcing fibers and a matrix resin.
  • the prepreg laminate is laminated to form a prepreg laminate, and the prepreg laminate is press-molded by a molding die.
  • the reinforcing fibers can be arranged up to the tip of the rib, which is a reinforcing structure, without being limited by the thickness and height of the substrate portion and the rib. Further, since the reinforcing fibers are arranged up to the tip of the rib which is the reinforcing structure, the strength and rigidity of the substrate portion can be improved. As a result, a panel structure having good strength and rigidity can be manufactured at low cost.
  • the total number of laminated layers of the basic ply and the double ply is within the range from the cavity volume of the molding die or more to 1.25 times or less of the cavity volume.
  • the configuration may be such that the number of layers is the same.
  • the rib and the composite material layer curvedly connected to the rib and forming a part of the substrate portion are placed on the first surface side.
  • the composite material layer which is arranged on the surface of the first surface side laminate opposite to the rib and constitutes the substrate portion is the second surface side laminate, and the first surface side laminate and the first surface side laminate are used.
  • the number of laminated filler plies is from the filler reference volume or more to the filler.
  • the configuration may be such that the number of layers is within the range of 3.0 times or less of the reference volume.
  • the specific use of the panel structure 10 according to the present disclosure is not particularly limited, and the aerospace field, the automobile / motorcycle field, the railway field, the marine field, the industrial equipment field, the medical equipment field, the sporting goods field, the building civil engineering field, etc. It can be suitably used as a panel-shaped member used in various fields of the above. More preferably, it is used in the aerospace field such as aircraft or spacecraft.
  • Panel structure 11 Web part (board part) 11a: First surface 11b: Second surface 12: Ribs 13a, 13b: Flange portion 14: Rib base portion 15: Filler region 16a: First surface side laminated body 16b: Second surface side laminated body 17: Rib base region 20 : Matrix resin 21: Basic layer (composite material layer, reinforcing fiber) 22: Doubler layer (composite material layer, reinforcing fiber) 23: Filler layer (composite material layer, reinforcing fiber) 30A, 30B: prepreg laminated body 31: basic ply (prepreg) 32: Double ply (prepreg) 33: Filler ply (prepreg) 40: Molding die 41: Upper die 42: Lower die 43: Upper hot plate 44: Lower hot plate 45: Cavity 46: Fastening member

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Composite Materials (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

パネル構造体(10)の基板部(例えばウェブ部(11))において、予め設定される厚さ(必要板厚)を実現するために必要な複合材料層の積層数を基準積層数とする。基板部のうち少なくともリブ基底部(14)には、基準積層数に追加する複合材料層であるダブラ層(22)が積層されているとともに、リブ(12)にはその先端部まで強化繊維(基本層(21)およびダブラ層(22))が配置している。リブ基底部(14)には、ダブラ層(22)に加えて、フィラー領域(15)に対応する部位のみに位置する複合材料層であるフィラー層(23)が積層されてもよい。

Description

複合材料製パネル構造体およびその製造方法
 本発明は、プレス成形により製造される複合材料製パネル構造体とその製造方法に関し、特に、基板部に対して立設するリブにより補強された複合材料製パネル構造体とその製造方法とに関する。
 複合材料製部品は、航空機用部品に限らず、大量生産の製造効率の観点からプレス成形により製造する手法が従来から検討されている。例えば、特許文献1では、プレス成形により製造される、板状部から突出するリブを有する繊維強化プラスチック成形品が記載されている。この成形品では、板状部が繊維の体積含有率(Vf)が50~70%、平均厚さが1.5mm以下であり、リブは、平均幅が0.1~1.5mmであり、さらに、板状部とリブにわたって繊維が存在している。特許文献1では、リブにおける繊維のVfを板状部と同様のレベルにするため、板状部における繊維のVfを特定するとともに、リブの平均幅を特定する構成となっている。
国際公開第2019/078242号公報
 特許文献1に開示の成形品では、板状部(基板部)が平均厚さ1.5mm以下の薄肉のものに限定されているとともに、リブの厚さも0.1~1.5mmの範囲内に限定されている。したがって、特許文献1に開示の手法は、1.5mm以上の肉厚の板状部を有するようなパネル構造体には適用できない。
 また、特許文献1では、リブの高さは特に限定されていないが、上限の一例として50mm以下が望ましいことが例示されている。ただし、リブの高さが高くなるほど、リブの先端まで繊維を存在させることが困難になる場合もある。このことは、特許文献1では、リブの高さとして5.0mm以下の実施例しか挙げられていない点にも示されている。
 本発明はこのような課題を解決するためになされたものであって、基板部およびリブを有し、基板部およびリブの厚さおよび高さによらず、リブの先端に繊維を配置させることが可能な、複合材料製パネル構造体を提供することを目的とする。
 本発明に係る複合材料製パネル構造体は、前記の課題を解決するために、強化繊維およびマトリクス樹脂を含有する複合材料製のプレス成形品であるパネル構造体であって、基板部と、当該基板部に対して立設するリブと、を備え、前記基板部には、前記基板部および前記リブの体積から算出される前記基板部の必要板厚に基づいて積層数が決定された前記複合材料層である基本層が積層され、前記基板部のうち、少なくとも前記リブが立設するリブ基底部には、前記基本層に加えて複合材料層であるダブラ層が積層され、前記リブの先端部まで前記強化繊維が配置している
構成である。
 本発明に係る複合材料製パネル構造体の製造方法は、前記の課題を解決するために、基板部と、基板部に対して立設するリブとを含み、強化繊維およびマトリクス樹脂を含有する複合材料製のパネル構造体を製造する複合材料製パネル構造体の製造方法であって、前記基板部が必要板厚となる数のプリプレグである基本プライ、および前記基板部のうち前記リブが立設するリブ基底部にプリプレグであるダブラプライを積層してプリプレグ積層体を形成し、前記プリプレグ積層体を成形型によりプレス成形する構成である。
 前記構成によれば、リブ基底部には基準積層数を超えるダブラ層が積層されることにより、当該リブの先端部まで強化繊維が配置している。これにより、プレス成形するだけで、補強構造を有するパネル構造体を製造できるとともに、基板部およびリブの厚さおよび高さに制限されることなく、補強構造であるリブの先端部まで強化繊維を配置できる。そのため、基板部の強度および剛性を良好にできるので、良好な強度および剛性を有するパネル構造体を低コストで製造できる。
 本発明の上記目的、他の目的、特徴、および利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
 本発明では、以上の構成により、基板部およびリブを有し、基板部およびリブの厚さおよび高さに制限されることなく、リブの先端にも繊維を配置させることが可能な、複合材料製パネル構造体を提供できる、という効果を奏する。
図1は、実施の形態に係るパネル構造体の構成の一例を示す模式的斜視図である。 図2は、図1に示すパネル構造体が備えるリブおよびリブ基底部の代表的な構成の一例を示す模式的断面図である。 図3Aは、図2に示すリブおよびリブ基底部の断面構造をさらに模式化した図であり、図3Bは、図3Aに示すリブ基底部に含まれるリブ基底領域を模式的に示す図であり、図3Cは、図3Bに示すリブ基底領域を理論的に計算するためのフィラー領域を除いた領域を模式的に示す図である。 図4A、図4Bは、本実施の形態でパネル構造体の製造に用いられるプリプレグ積層体の一例を示す模式的断面図である。 図5Aは、図1に示すパネル構造体を、図4Aのような積層体を用いてプレス成形で製造する際の成形型の代表的な一例を示す模式図であり、図5Bは、図5Aに示す模式図において、プリプレグ積層体および成形型のキャビティを拡大した部分模式図である。 図6Aは、図1に示すパネル構造体を、図4Bのような積層体を用いてプレス成形で製造する際の成形型の他の例を示す模式図であり、図6Bは、図6Aに示す模式図において、プリプレグ積層体および成形型のキャビティを拡大した部分模式図である。 図7Aは、従来のプリプレグ積層体を用いて図1に示すパネル構造体を製造する際の成形型の代表的な一例を示す模式図であり、図7Bは、図7Aに示す模式図において、プリプレグ積層体および成形型のキャビティを拡大した部分模式図である。 図8Aは、実施例であるパネル構造体の具体例を示す外観写真であり、図8Bは、図8Aに示すパネル構造体のリブの断面を示す写真である。
 以下、本発明の代表的な実施の形態を、図面を参照しながら説明する。なお、以下では全ての図を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。
 [複合材料製パネル構造体]
 本開示に係る複合材料製パネル構造体の代表的な一例について、図1および図2を参照して具体的に説明する。なお、以下の説明では、説明の便宜上、複合材料製パネル構造体を、適宜「パネル構造体」と略す場合がある。
 本実施の形態に係るパネル構造体は、強化繊維およびマトリクス樹脂を含有する複合材料製のプレス成形品である。パネル構造体の具体的な構成は特に限定されないが、例えば、図1に示すように、ウェブ部11、リブ12、フランジ部13a,13bを備えたパネル構造体10であるここで、説明のためにウェブ部11に沿ってリブ12が延伸する方向をX軸、フランジ部13a、13bが延伸する方向をY軸、リブ12が立設する方向をZ軸とする。
 本実施の形態では、ウェブ部11を基板部とし、ウェブ部11においてリブ12が立設する部位をリブ基底部14とする。
 図1に示すように、パネル構造体10の横断面は「Z形」である。フランジ部13aは平板状のウェブ11の一方の側縁部に位置し、第一面側にZ軸方向に折れ曲がってY軸方向に延伸する。フランジ部13bはウェブ部11の他方の側縁部に位置し、第一面の反対側の表面である第二面側にZ軸方向に折れ曲がってY軸方向に延伸する。リブ12は、ウェブ部11の第一面にZ軸方向に立設し、ウェブ部11の一方の側縁部から他方の側縁部に向かう方向であるX軸方向に延伸している。リブ12の一方の端部は、フランジ部13aにつながっている。
 パネル構造体10において、基板部の具体的な形状および厚さは特に限定されず、その用途に応じて適宜設計できる。リブ12の具体的な形状、厚さおよび高さも特に限定されない。パネル構造体10がフランジ部13a,13bあるいは他の構造部位を有する場合には、当該パネル構造体10の種類、用途、使用条件等の諸条件に応じて、厚さまたは幅(あるいは高さ)等を適宜設定できる。
 [リブおよびリブ基底部]
 次に、パネル構造体10のリブ12およびリブ基底部14について図2を参照して説明する。図2は、図1に示すパネル構造体10におけるリブ12およびリブ基底部14の断面構成を示す模式図である。
 図2の横方向がX軸方向に対応し、図2の縦方向がZ軸方向に相当する。また、ウェブ11において図中上側の表面が基板部の第一面に相当し、図中下側の表面が基板部の第二面に相当する。
 パネル構造体10は、少なくとも強化繊維およびマトリクス樹脂から構成され、基板部は強化繊維を含む複合材料層の積層構造を含む。図2では、強化繊維の層を太線または白抜き線で模式的に図示し、強化繊維を含む層を複合材料層として取り扱う。
 パネル構造体10の用途等に応じて、ウェブ部11の「必要板厚」および必要板厚を実現するための「基準積層数」が予め設定される。ウェブ11は基準積層数の複合材料層のみで構成される。
 図2に示す例では、ウェブ部11は模式的に太線の強化繊維の層で示す6層の複合材料層21からなるが、6層に限定されず、実際のパネル構造体10の板厚等に応じて決定すればよい。また、図2では、複合材料層21の間隔が不均一であるが、これも図示の便宜に過ぎないことは言うまでもない。
 図2においてウェブ部11の必要板厚を実現する複合材料層21を便宜上「基本層21」と称する。ウェブ部11のほとんどは基本層21のみで構成される。リブ基底部14には、基本層21以外の複合材料層であるダブラ層22が積層される。このダブラ層22は、言い換えれば、基準積層数を超えて積層される複合材料層である。図2では、ダブラ層22は、基本層21と区別するために白抜き線の複合材料層として図示する。
 図2に示す例では、ダブラ層22の積層数は3層であるが、具体的な積層数は限定されない。
 ダブラ層22の積層数は、パネル構造体10の設計上の体積に基づいて積層数の好ましい範囲を設定できる。例えば、パネル構造体10の設計上の体積を「成形基準体積」とすると、基本層21とダブラ層22との合計積層数は、成形基準体積以上から成形基準体積の1.25倍以下までの範囲内となる積層数である。一般的には、成形基準体積はプレス成形時に用いられる成形型のキャビティに基づいて設定できる。
 本来であれば、必要板厚を実現する積層数で複合材料層を積層すれば、基板部およびリブ12を成形できるはずである。しかしながら、本発明者らの鋭意検討によれば、単に必要板厚を実現する積層数からなるプリプレグ積層体をプレス成形しても、適切にリブ12を形成できない場合があることが明らかとなった。そのため、リブ12を有するパネル構造体10をプレス成形する場合には、成形基準体積に基づいてダブラ層22の積層数を設定することが好ましい。
 例えば、ダブラ層22の積層数が成形基準体積と同等の1.0倍未満であると、ダブラ層22を追加積層したとしても、適切なリブ12をプレス成形できなくなる場合がある。一方、ダブラ層22の積層数が成形基準体積の1.25倍を超えた場合、理論上、リブ12およびリブ基底部14の繊維体積含有率が過剰になる可能性がある。
 基本層21に対してダブラ層22が追加されると、強化繊維の層だけでなくマトリクス樹脂20も追加される。ダブラ層22の追加により複合材料層の積層体積が増加すれば、マトリクス樹脂20はリブ12およびリブ基底部14以外の部分に流出すると考えられるため、リブ12およびリブ基底部14における繊維体積含有率が増加すると見なせる。
 一般的に、強度低下が見られない繊維体積含有率の上限値は、ノミナル値の+5%と考えられる。計算上、基本層21に対する追加量であるダブラ層22の積層数が成形基準体積の1.25倍以下であれば、繊維体積含有率の上限値に対応すると見なせる。もちろん、諸条件によってはダブラ層22の積層数が成形基準体積の1.25倍を超えても何ら問題ない場合もあることは言うまでもない。
 パネル構造体10においては、図2に示すように、基本層21に対してダブラ層22を追加積層しているため、リブ12の先端部まで強化繊維が配置されている。図2では、リブ12において、2層のダブラ層22と3層の基本層21とを図示しているが、これに限定されない。
 さらに、本実施の形態に係るパネル構造体10では、ダブラ層22に加えて、リブ基底部14内にて破線で示すフィラー領域15に、複合材料層であるフィラー層23を積層しても良い。このフィラー領域15およびフィラー層23について、図2に示すリブ基底部14の模式的な断面構造をさらに模式化した図3Aに基づいて具体的に説明する。
 説明の便宜上、第一面および第二面を「第一面11a」および「第二面11b」として符号を付して図示する。
 基板部を構成する複数の複合材料層は、図3Aに示すように、第一面側積層体16aおよび第二面側積層体16bに模式的に区分できる。第一面側積層体16aは基板部であるウェブ部11の第一面11a側となる部位である。第二面側積層体16bは基板部であるウェブ部11の第二面11b側となる部位である。
 リブ12は2つの第一面側積層体16a同士が対向して貼り合わされて構成されており、当該リブ12の根元では2つの第一面側積層体16aが互いにY軸方向反対向きに湾曲して折り曲げられている。そのため、リブ12は、ウェブ部11である基板部から立設する構造となる。また、第二面側積層体16bは、第一面側積層体16aの第二面11b側の表面に接するように配置される。
 このような構造において、リブ12と第一面側積層体16aと第二面側積層体16bとの間には、図3Aの模式的断面図に示すように、三角形状の断面を有するフィラー領域15が規定される。当該領域15は、X軸方向に沿って延伸する三角形状の断面を有する細長い領域である。図3Aでは、リブ12の延伸方向は紙面の鉛直方向である。
 [フィラー領域]
 図3Aおよび図2に示すように、フィラー領域15は、ウェブ部11のリブ基底部14に含まれる。本実施の形態では、リブ基底部14のフィラー領域15に対応する部位のみにフィラー層23を積層する。
 リブ基底部14に対して、基準積層数を超える複合材料層として、ダブラ層22に加えてフィラー層23を積層する。これにより、特にパネル構造体10の第二面11bにおいて、リブ12の反対側すなわち第一面11aのリブ12に対向する側の部位の品質をより一層良好にできる。
 諸条件にもよるが、ダブラ層22のみが追加積層され、フィラー層23が追加積層されていない場合には、パネル構造体10の第二面11bには、リブ12に対応する位置に凹みが生じることがある。この凹みは、用途によってはパネル構造体10の機能、強度等に影響を及ぼし、表面品質を低下させる可能性がある。
 例えば、パネル構造体10を構成要素の一つとして用いたときに、当該パネル構造体10の第二面11bを構造上の最外側に配置させる場合には、第二面11bに凹みが存在しない方が好ましい。あるいは、パネル構造体10の第二面11bを他の構成要素と密接させる場合にも、第二面11bに凹みが存在しない方が好ましい。また、パネル構造体10のウェブ部11に強度要求がある場合には、第二面11bに凹みが存在すると繊維がうねっていることによる強度低下が生じる。この観点でも、第二面11bには凹みが存在しない方が好ましい。このような用途では、リブ基底部14に対してダブラ層22に加えてフィラー層23を追加積層することが好ましい。
 フィラー層23を追加積層する場合、具体的なフィラー層23の積層数は特に限定されない。例えば、第二面11bに凹みが生じても特に問題がない場合には、フィラー層23は不要である。また、第二面11bの凹みを適度に軽減する程度でよい場合、フィラー領域15の設計上の体積に応じて、適当なフィラー層23を追加積層すればよい。
 さらに、第二面11bに凹みが生じることを回避する場合、フィラー領域15の設計上の体積をフィラー基準体積としたときに、フィラー層23の積層数は、フィラー基準体積以上からフィラー基準体積の3.0倍以下までの範囲内となる積層数に設定することが好ましい。計算上、フィラー層23の追加量がフィラー基準体積の3.0倍以下であれば、前述した繊維体積含有率の上限値(ノミナル値の+5%)に対応すると見なせる。
 もしフィラー層23の積層数がフィラー基準体積未満であれば、第二面11bに凹みが生じることを回避できない可能性がある。一方、フィラー層23の積層数がフィラー基準体積の3.0倍を超えた場合、リブ基底部14の繊維体積含有率が過剰になる可能性がある。
 ここで、ダブラ層22の積層数の基準となる成形基準体積は、前記の通り、プレス成形時に用いられる成形型のキャビティに基づいて設定すればよい。フィラー層23の積層数の基準となるフィラー基準体積は、リブ12の厚さとリブ基底部14付近の湾曲の程度に基づいて理論的に計算できる。
 フィラー基準体積の計算方法について、図3Aに加えて、図3Bおよび図3Cに基づいて具体的に説明する。図3Bは、図3Aに示すリブ基底部14を拡大した模式図である。図3Cは、図3Aおよび図3Bに示すリブ基底領域17を示す模式図である。
 前述したフィラー領域15は、リブ基底部14の第一面11a側で互いに対向する第一面側積層体16aと、第二面11b側に位置し、これら第一面側積層体16aに対向する第二面側積層体16bとの間の領域として設定できる。また、図3Aにおいて破線で囲んだリブ基底領域17は、リブ基底部14のうち互いに対向する第一面側積層体16aの湾曲部分と、その間のフィラー領域15と、により構成される領域として設定される。
 リブ基底領域17をより具体的に説明する。図3Bに示すように、第一面側積層体16aの湾曲部分を半径Rの四分円(半径Rの真円を1/4に分割した、中心角90°の扇形)に近似したとする。このとき、第一面側積層体16aの厚さtHは、リブ12の厚さtAの半分であるtA/2になる。リブ基底領域17のZ軸方向の長さはR+tHとなる。リブ基底領域17のY軸方向の長さは2R+2tHとなる。さらに、図3Cに示すように、リブ基底領域17の横断面においてフィラー領域15を除いた網掛け領域は、半径R+tHの四分円がY軸方向に並列した状態に近似できる。
 それゆえ、フィラー領域15の横断面の面積は、リブ基底領域17の面積である(R+tH)×(2R+2tH)から、図3Cに示す網掛け領域の面積であるπ×(R+tH)2×(2/4)を減算した面積として計算できる。フィラー領域15は、X軸方向であるリブ12の延伸方向に沿って延伸する細長い領域である。そのため、フィラー領域15の体積すなわちフィラー基準体積は、フィラー領域15の横断面の面積にリブ12の長さすなわちフィラー領域15の長さを乗算した体積として計算できる。
 [プリプレグおよび積層体]
 次に、パネル構造体10を製造するために用いられるプリプレグおよびその積層体について、図4A、図4Bを参照して説明する。なお、図4A、図4Bにおいても、図3Aと同様に、説明の便宜上、第一面および第二面を「第一面11a」および「第二面11b」として符号を付して図示する。図4A、図4Bに示す例では、図面下側が第一面11aであり、図面上側が第二面11bである。
 前記の通り、本実施の形態に係るパネル構造体10は、プレス成形により製造される「プレス成形体」である。当該構成を有するパネル構造体10を製造する際には、一般的にはプリプレグが用いられる。プリプレグは、強化繊維で構成される基材にマトリクス樹脂20を含浸したシート体である。
 本実施の形態における代表的な一例では、まず、プリプレグを複数枚積層して図4Aまたは図4Bに示すようにプリプレグ積層体30Aまたは30Bを形成する。当該リプレグ積層体30Aまたは30Bをプレス成形することによりパネル構造体10を製造する。なお、本開示に係るパネル構造体10のより具体的な製造方法については後述する。
 基本層21およびダブラ層22のいずれも、プレス成形される前はプリプレグすなわち基材にマトリクス樹脂20を含浸したシート体である。そこで、図4Aまたは図4Bにおいては、基本層21に対応するプリプレグを基本プライ31として図示し、ダブラ層22に対応するプリプレグをダブラプライ32として図示する。
 図4Aに示すプリプレグ積層体30Aは、基本プライ31およびダブラプライ32で構成されるが、図4Bに示すプリプレグ積層体30Bは、基本プライ31およびダブラプライ32に加えて、フィラー領域15に対応する部位にフィラープライ33から構成される。
 ここで、プリプレグ積層体30Aまたは30Bにおいて、ダブラプライ32は少なくともリブ12に対応する位置に積層される。ただし、ダブラプライ32の寸法または形状等は限定されない。
 プリプレグ積層体30Bにおいて、フィラープライ33は、フィラー領域15に対応する位置に、フィラー領域15に対応する三角形状の断面形状となるように積層される。図4Bに示す例では、プリプレグ積層体30Bの中央部に、第一面11aに位置するに伴って徐々に幅が狭くなる三角形状にフィラープライ33が積層されている。
 なお、基本プライ31の積層数、ダブラプライ32の積層数、およびフィラープライ33の積層数はいずれも特に限定されない。製造されるパネル構造体10に求められる基板部またはリブ12の厚さ、成形型のキャビティ体積、あるいはフィラー領域15の設計上の体積等に基づいて適宜設定できる。基板部またはリブ12の厚さは前述した必要板厚等に対応する。キャビティ体積は、前述した成形基準体積に対応する。フィラー領域15の設計上の体積は、前述したフィラー基準体積に基づく。
 ダブラプライ32はプレス成形によりパネル構造体10のダブラ層22となる。フィラープライ33はプレス成形によりパネル構造体10のフィラー層23となる。そのため、ダブラプライ32の積層数は、成形型のキャビティ体積以上から当該キャビティ体積の1.25倍以下までの範囲内となる積層数に設定できる。これは成形基準体積1.0倍以上から成形基準体積の1.25倍以下の範囲内である。同様に、フィラープライ33の積層数は、フィラー基準体積以上からフィラー基準体積の3.0倍以下までの範囲内となる積層数に設定できる。
 また、成形基準体積またはフィラー基準体積等の基準体積に基づいて複合材料層またはプリプレグの積層数を設定する手法については特に限定されず、従来の製造方法の知見を利用できる。
 プリプレグを構成するマトリクス樹脂20および強化繊維の具体的な種類は特に限定されない。マトリクス樹脂20および強化繊維としては、パネル構造体10の用途等に応じて公知の適用可能な材料を適宜選択して用いることができる。
 複合材料に用いられるマトリクス樹脂20としては、代表的には、熱硬化性樹脂および熱可塑性樹脂が挙げられる。熱硬化性樹脂の具体的な種類は特に限定されないが、代表的には、例えば、エポキシ樹脂、ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、シアネートエステル樹脂、ポリイミド樹脂、ポリアミド樹脂等が挙げられる。
 これら熱硬化性樹脂は単独種で用いることができ、あるいは、複数種を組み合わせて用いることができる。また、これら熱硬化性樹脂のより具体的な化学構造も特に限定されない。これら熱硬化性樹脂は、公知の種々のモノマーが重合されたポリマーであってもよいし、複数のモノマーが重合されたコポリマーであってもよい。また、熱硬化性樹脂の平均分子量、主鎖および側鎖の構造等についても特に限定されない。
 熱可塑性樹脂の具体的な種類も特に限定されないが、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド(PEI)等のエンジニアリングプラスチックが好適に用いられる。これら熱可塑性樹脂のより具体的な化学構造は特に限定されない。
 これら熱可塑性樹脂は、公知の種々のモノマーが重合されたポリマーであってもよいし、複数のモノマーが重合されたコポリマーであってもよい。また、熱可塑性樹脂の平均分子量、主鎖および側鎖の構造等についても特に限定されない。
 マトリクス樹脂20には、公知の添加剤等の他の成分を添加することができる。例えば、添加剤としては、公知の硬化剤、硬化促進剤、繊維基材以外の補強材または充填材等を挙げることができる。これら添加剤の具体的な種類、組成等についても特に限定されず、公知の種類または組成のものを好適に用いることができる。
 マトリクス樹脂20が樹脂以外の他の成分を含有する場合には、樹脂および他の成分により構成される樹脂組成物と解釈できる。
 強化繊維の具体的な種類は特に限定されないが、例えば、炭素繊維、ポリエステル繊維、PBO(ポリパラフェニレンベンゾビスオキサゾール)繊維、ボロン繊維、アラミド繊維、ガラス繊維、シリカ繊維(石英繊維)、炭化ケイ素(SiC)繊維、ナイロン繊維、等を挙げることができる。これら強化繊維は、1種類のみが用いられてもよいし2種類以上が適宜組み合わせて用いることができる。また、強化繊維の基材は特に限定されないが、代表的には、織物、組物、編物、不織布等を用いることができる。
 強化繊維として連続繊維もしくは長繊維(不連続繊維であるが繊維の長さが長いもの)を用いられても良い。また、強化繊維としては、複数種類の繊維材料または充填材もしくは補強材を併用することができる。例えば、強化繊維として連続繊維に加えて短繊維を用いることができ、繊維状ではなく粒子状の充填材または補強材すなわちフィラーを用いることができる。充填材もしくは補強材としては、複合材料またはマトリクス樹脂20の種類に応じて公知のものを好適に用いることができる。
 本開示においては、強化繊維は、連続繊維および切込み入り連続繊維の少なくとも一方であることが好ましい。言い換えれば、プリプレグに用いられる強化繊維は、連続繊維であることが好ましい。当該連続繊維には切込みが入ってもよいし切込みが入っていなくてもよいし、切込みのあるものとないものが併用されてもよい。強化繊維が切込みを有するものである場合、連続繊維が織物または組物等の基材であればよい。また、切込みは、基材に対して部分的に形成されてもよいし、全体的に形成されてもよい。
 [パネル構造体の製造方法]
 次に、パネル構造体の製造方法について、図5A、図5B、図6A、図6B、並びに図7A、図7Bを参照して具体的に説明する。
 なお、パネル構造体10として図1ではフランジ部13a,13bを備える構成を図示しているが、プレス成形によりリブ12の形成を説明する便宜上、図5A、図5B、図6A、図6B、図7A、および図7Bにおいては、フランジ部13a,13bの形成に関しては図示を省略している。
 本実施の形態では、プリプレグ積層体30Aをプレス成形することによりパネル構造体10を製造する方法を第一の製造方法例とする。また、プリプレグ積層体30Bをプレス成形することによりパネル構造体10を製造する方法を第二の製造方法例とする。
 図5Aに示すように、プレス成形時に用いられる成形型40は、パネル構造体10を製造するために用いられるものであり、上型41、下型42、上側熱盤43、下側熱盤44等を備えている。
 図5Aに示す例では、上型41が基板部であるウェブ部11の第二面に対応し、下型42がウェブ部11の第一面およびリブ12に対応する。上型41と下型42との間には、プリプレグ積層体30が設置されるキャビティ45が形成されている。なお、キャビティ45には、フランジ部13a,13bに対応する空間が含まれるが、フランジ部13a,13bに対応する空間は図示を省略している。
 上型41の外側には上側熱盤43が設けられ、下型42の外側には下側熱盤44が設けられている。上型41の外側を上側とし、下型42の外側を下側とする。これら熱盤43,44から上型41および下型42に対して熱および圧力が加えられる。これにより、上型41および下型42の間に介在するプリプレグ積層体30Aが加熱加圧すなわちホットプレスされ、パネル構造体10が成形される。
 下型42は、少なくともリブ12に対応する凹凸構造が形成されている。そのため、図5Aに示す例では、下型42は、複数の型部材を締結部材46で締結固定された構成を有している。なお、成形型40は図5Aに示す構成に限定されない。
 図5B上に示すように、まず上型41および下型42の間にプリプレグ積層体30Aを配置する。続いて、図5B下に示すように、上下の熱盤43,44により上型41および下型42を加熱加圧すなわちホットプレスする。なお、図5B下の矢印は、加圧方向を示している。このようなプレス成形により、プリプレグである基本プライ31およびダブラプライ32を構成するマトリクス樹脂20が流動し、強化繊維もマトリクス樹脂20とともに流動または伸展する。もしくは強化繊維は流動するとともに伸展することもある。
 その結果、基本プライ31とともにダブラプライ32が、キャビティ45のうちリブ12に対応する空間に導入される。これにより、図5B下に示すように、リブ12には、基本プライ31およびダブラプライ32に由来する複合材料層が形成され、リブ12の先端部まで強化繊維が配置される。このため、基板部に設けられるリブ12の強度および剛性を向上させることができる。
 一般的に、複合材料製成形品がリブ12のような複雑な立体構造を含む場合、当該複雑な構造に対応する立体形状となるようにプリプレグが積層されため、積層時間が長くなる。また、複雑な立体形状にプリプレグを積層した積層体をプレス成形することは通常困難であるため、実用上ではオートクレーブ成形が用いられている。しかしながら、オートクレーブ成形では、成形時間が長くなってしまう。このように従来技術を適用して立体構造からなるパネル構造体を製造するためには多大な時間を必要とするため大量生産が難しかった。
 これに対して、本実施の形態によれば、プリプレグ積層体30Aは実質的に平板状であるためプレス成形が可能であり、リブ12を含む複雑な立体形状からなるパネル構造体を容易に低コストで製造することができる。また、従来、基板部およびリブの厚さおよび高さに制限がないパネル構造体のリブ先端に連続繊維を配置することは難しかったが、リブ基底部14にダブラ層22を追加したプリプレグ積層体30Aをプレス成形することで、リブ12の先端部を含めたリブ12およびリブ基底部14全体に強化繊維が配置できるため、強度および剛性を向上させたパネル構造体10を製造することができる。
 次に、第二の製造方法例について、図6A、図6Bを参照して説明する。図6Aおよび図6Bに示す例では、上型41が基板部であるウェブ部11の第二面に対応し、下型42がウェブ部11の第一面およびリブ12に対応する。
 図6B上に示すように、まず上型41および下型42の間に、積層されたフィラープライ33が逆三角形状になるようにプリプレグ積層体30Bを配置する。
 続いて、図6Bに示すように、上下の熱盤43,44により上型41および下型42が加熱加圧すなわちホットプレスされ、上型41および下型42の間に介在するプリプレグ積層体30Bがプレス成形される。このとき、プリプレグである基本プライ31、ダブラプライ32およびフィラープライ33を構成するマトリクス樹脂20が流動し、強化繊維もマトリクス樹脂20とともに流動または伸展する。もしくは強化繊維は流動するとともに伸展することもある。
 その結果、基本プライ31とともにダブラプライ32が、キャビティ45のうちリブ12に対応する空間に導入される。さらに、キャビティ45のうちフィラー領域15に相当する空間には、フィラープライ33が導入される。これにより、リブ12には、基本プライ31およびダブラプライ32に由来する複合材料層が形成され、リブ12の先端部まで強化繊維が配置される。
 さらに、リブ基底部14におけるフィラー領域15には、フィラープライ33に由来する複合材料層が形成される。リブ12の全体に強化繊維が配置されるとともに、フィラー領域15がフィラー層23により良好に充填されるため、リブ12の強度を向上できるとともに、基板部であるウェブ部11の第二面における凹みの発生を有効に回避または抑制できる。
 これに対して、従来技術では、図7Aおよび図7Bに示すように、基本プライ31のみからなるプリプレグ積層体130を使用してプレス成形するため強化繊維は十分に流動または伸展しない。これにより、従来の比較パネル構造体100では、リブ12に強化繊維が十分に配置されない。また、図7B下に示すように、基板部であるウェブ部11では、リブ12の反対側である第二面には凹みが生ずるおそれがある。
 本開示においては、基本層に加えて、計算上「過剰な」複合材料層であるダブラ層を追加する。過剰な複合材料層であるダブラ層をリブ基底部付近に追加したとしても、技術常識を考慮すれば、リブ全体に強化繊維を配置できないと考えられる。すなわち、技術常識では、プレス成形時には、強化繊維が良好に流動または伸展するとは考えられないため、リブ全体に強化繊維が配置されないと考えられる。ところが、本発明者らの鋭意検討の結果、ダブラ層を追加することで、リブの先端部まで強化繊維を配置することが可能であることが明らかとなった。
 さらには、本発明者らの鋭意検討の結果、リブ基底部には、本開示で規定する「フィラー領域」というプレス成形において重要となる領域が存在することが明らかとなった。そのため、本開示では、フィラー領域を充填するような複合材料層すなわちフィラー層をさらに追加する。これにより、まず、リブの先端部まで強化繊維を配置できる。これに加えて、パネル構造体の第二面に凹みが生じる可能性を有効に抑制または回避できる。リブの先端部まで強化繊維を配置できること、パネル構造体の第二面の凹みを抑制または回避できることは、基板部およびリブの厚さに制限されることなく実現できることは、本発明者らによる実験的な検証で明らかとなった。
 次に、パネル構造体10の具体的な実施例について、図8A、図8Bを例示して説明する。図8Aはパネル構造体10の実施例を示す平面写真であり、図1に示すパネル構造体10を図1の左側から撮影した状態に相当する。図8Bは、図8Aに示すパネル構造体10が備えるリブ12の断面写真である。図8Aおよび図8Bの写真は、前述した本発明者らによる実験的な検証の代表的な一例である。
 図8Aおよび図8Bに示すパネル構造体10は、基本層に対してダブラ層を追加積層して、プレス成形により製造したものである。図8Bから明らかなように、リブ12の先端部まで強化繊維が配置していることが観察される。したがって、本開示によれば、プレス成形により当該リブ12の先端部まで強化繊維が配置されたパネル構造体10を製造できることがわかる。
 [変形例]
 本開示に係るパネル構造体10の具体的な形状は図1に示す構造に限定されない。パネル構造体10は、基板部とリブとを備え、基板部が複数の複合材料層が積層されたものであり、リブが基板部に対して立設する板状である構造にできる。したがって、図1に示すようなパネル構造体10は、Z形断面ではなくてもよいし、両側縁部の少なくとも一方がフランジ部でなくてもよい。また、リブの延伸方向も図1に示すような側縁部に対して直行する方向でなくてもよい。ただし、前述したように、基板部のうち少なくともリブ基底部14には、複合材料層に加えてダブラ層が積層される構造にできる。複合材料層は、基板部を構成する基本となる層であり、ダブラ層は、追加的な複合材料層であり、リブ12にはその先端部まで強化繊維が配置している。
 本開示に係るパネル構造体10において、例えば、図1では、基板部であるウェブ部11は平坦な板状であるが、ウェブ部11は、パネル構造体10の用途に応じて湾曲構造にできる。リブ12は、代表的には、基板部を補強するために設けられる。図1ではウェブ部11が基板部である。そのため、リブ12の厚さおよび高さは、基板部に求められる強度および剛性に応じた厚さまたは高さに設定できる。同様に、パネル構造体10が備えるフランジ部13a,13bあるいは他の構造部位の厚さまたは幅、あるいは高さ等を適宜設定できる。
 図2にはフィラー領域15に積層されるフィラー層23を模式的に図示した。当該フィラー層23の積層数の代表的な範囲は、前述したフィラー基準体積の1.0倍以上3.0倍以下の範囲内に限定されない。諸条件にもよるが、あくまで一例であるが、フィラー層23の積層数の好ましい範囲としては、フィラー基準体積の1.2倍以上1.5倍以下を挙げることができる。フィラー層23の積層数がこの範囲内であれば、基板部(ウェブ部11)の第二面11bに凹みが実質的に生じない。また、フィラー層23の積層数がこの範囲内であれば、リブ基底部14において、マトリクス樹脂20および強化繊維の均等的な配置を実現しやすくできる。
 プリプレグ積層体30Aまたは30Bは、パネル構造体10の用途によっては、プリプレグすなわち複合材料層以外の他の材料層を含むことができる。つまり、本開示に係るパネル構造体10は、複合材料以外の他の材料を含むことができる。あくまで一例であるが、プリプレグ積層体30Aまたは30Bの第一面11aまたは第二面11bには、伸展性を有する樹脂または樹脂組成物により形成された樹脂層を積層することができる。このような樹脂層を含むプリプレグ積層体30Aまたは30Bをプレス成形することで、表面に樹脂層が形成されたパネル構造体10を製造できる。
 表面の樹脂層としては、機械加工性を付与する目的、あるいは、パネル構造体10の外観を向上する目的のものが挙げられるが、特に限定されない。なお、機械加工性とは、例えば、前述した穴開け時にバリまたはささくれ等の発生を防止する性質が挙げられる。
 プリプレグ積層体30Aまたは30Bは、他の材料層として金属メッシュ層あるいは金属箔を含むことができる。金属メッシュ層または金属箔も伸展性を有するので、本開示に係るパネル構造体10の他の材料層として好適に用いることができる。例えば、プリプレグ積層体30Aまたは30Bの表面には、銅メッシュ層を積層することができる。銅メッシュ層を含むプリプレグ積層体30Aまたは30Bを加熱加圧成形することで、表面に銅メッシュを備えるパネル構造体10を製造できる。
 また、プリプレグ積層体30Aまたは30Bは、他の材料層として非導電性複合材料の材料層を含むことができる。非導電性複合材料としては、ガラス繊維強化プラスチック(GFRP)等が挙げられる。非導電性複合材料は、プリプレグ積層体30Aまたは30Bの表面全体に積層することができ、あるいは、部分的に積層することができる。このような非導電性複合材料の層を含む積層体を加熱加圧成形することで、表面に非導電性複合材料の層を備えるパネル構造体10を製造できる。
 表面の非導電性複合材料は、代表的には、電食対策に用いることができる。電食対策とは、例えばCFRPとイオン化傾向の遠い金属部材とが接触する際に、当該金属部材の腐食を抑制するための対策が挙げられる。当該被導電性複合材料の具体的な種類は特に限定されず公知のものを好適に用いることができる。また、非導電性複合材料の用途も電食対策に限定されず、公知の他の用途で用いることができる。
 このように、本開示に係るパネル構造体は、強化繊維およびマトリクス樹脂を含有する複合材料製のプレス成形品であるパネル構造体であって、基板部と、当該基板部に対して立設するリブと、を備え、前記基板部には、前記基板部および前記リブの体積から算出される前記基板部の必要板厚に基づいて積層数が決定された前記複合材料層である基本層が積層され、前記基板部のうち、少なくとも前記リブが立設するリブ基底部には、前記基本層に加えて複合材料層であるダブラ層が積層され、前記リブの先端部まで前記強化繊維が配置している構成である。
 前記構成によれば、基板部の補強構造となるリブを備える複合材料製パネル構造体において、リブ基底部には基準積層数を超えるダブラ層が積層される。これにより、プレス成形するだけで当該リブの先端部まで強化繊維が配置された、補強構造を有するパネル構造体を製造できる。さらに、基板部およびリブの厚さおよび高さに制限されることなく、補強構造であるリブの先端部まで強化繊維が配置しているので、基板部の強度および剛性を良好にできる。その結果、良好な強度および剛性を有するパネル構造体を低コストで製造できる。
 前記構成の複合材料製パネル構造体においては、前記パネル構造体の設計上の体積を成形基準体積としたとき、前記基本層と前記ダブラ層との合計積層数は、前記成形基準体積以上から前記成形基準体積の1.25倍以下までの範囲内となる積層数である構成であってもよい。
 また、前記構成の複合材料製パネル構造体においては、前記リブおよび前記リブと湾曲してつながり前記基板部の一部を構成する複合材料層を第一面側積層体とし、前記リブと反対側の前記第一面側積層体表面に配置され、前記基板部を構成する複合材料層を第二面側積層体とし、前記第一面側積層体と前記第二面側積層体との間に生じる、前記リブに沿って延伸する三角形状の断面を有する領域をフィラー領域としたときに、前記フィラー領域のみに複合材料フィラー層が配置されている構成であってもよい。
 また、前記構成の複合材料製パネル構造体においては、前記フィラー領域の設計上の体積をフィラー基準体積としたときに、前記複合材料フィラー層の積層数は、前記フィラー基準体積以上から前記フィラー基準体積の3.0倍以下までの範囲内となる積層数である構成であってもよい。
 また、本開示に係るパネル構造体の製造方法は、基板部と、基板部に対して立設するリブとを含み、強化繊維およびマトリクス樹脂を含有する複合材料製のパネル構造体を製造する複合材料製パネル構造体の製造方法であって、前記基板部が必要板厚となる数のプリプレグである基本プライ、および前記基板部のうち前記リブが立設するリブ基底部にプリプレグであるダブラプライを積層してプリプレグ積層体を形成し、前記プリプレグ積層体を成形型によりプレス成形する構成である。
 前記構成によれば、基板部の補強構造となるリブを備える複合材料製パネル構造体をプレス成形により製造する際に、リブ基底部に基準積層数を超える枚数のプリプレグを層積層する。これにより、プレス成形されて得られるパネル構造体においては、基板部およびリブの厚さおよび高さに制限されることなく、補強構造であるリブの先端部まで強化繊維を配置できる。また、補強構造であるリブは、その先端部まで強化繊維が配置されているので、基板部の強度および剛性を良好にできる。その結果、良好な強度および剛性を有するパネル構造体を低コストで製造できる。
 前記構成の複合材料製パネル構造体の製造方法においては、前記基本プライと前記ダブラプライとの合計積層数は、前記成形型のキャビティ体積以上から前記キャビティ体積の1.25倍以下までの範囲内となる積層数である構成であってもよい。
 また、前記構成の複合材料製パネル構造体の製造方法においては、前記パネル構造体において、前記リブおよび前記リブと湾曲してつながり前記基板部の一部を構成する複合材料層を第一面側積層体とし、前記リブと反対側の前記第一面側積層体表面に配置され、前記基板部を構成する複合材料層を第二面側積層体とし、前記第一面側積層体と前記第二面側積層体との間に生じる、前記リブに沿って延伸する三角形状の断面を有する領域をフィラー領域としたときに、前記フィラー領域のみにプリプレグであるフィラープライを積層する構成であってもよい。
 また、前記構成の複合材料製パネル構造体の製造方法においては、前記フィラー領域の設計上の体積をフィラー基準体積としたときに、前記フィラープライの積層数は、前記フィラー基準体積以上から前記フィラー基準体積の3.0倍以下までの範囲内となる積層数である構成であってもよい。
 本開示に係るパネル構造体10の具体的な用途は特に限定されず、航空宇宙分野、自動車・二輪車分野、鉄道分野、海洋分野、産業機器分野、医療機器分野、スポーツ用品分野、建築土木分野等のさまざまな分野において用いられるパネル状部材として好適に用いることができる。より好ましくは、航空機または宇宙機等の航空宇宙分野に用いられる。
 なお、本発明は前記実施の形態の記載に限定されるものではなく、特許請求の範囲に示した範囲内で種々の変更が可能であり、異なる実施の形態や複数の変形例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施の形態についても本発明の技術的範囲に含まれる。
 また、上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
10:パネル構造体
11:ウェブ部(基板部)
11a:第一面
11b:第二面
12:リブ
13a,13b:フランジ部
14:リブ基底部
15:フィラー領域
16a:第一面側積層体
16b:第二面側積層体
17:リブ基底領域
20:マトリクス樹脂
21:基本層(複合材料層、強化繊維)
22:ダブラ層(複合材料層、強化繊維)
23:フィラー層(複合材料層、強化繊維)
30A,30B:プリプレグ積層体
31:基本プライ(プリプレグ)
32:ダブラプライ(プリプレグ)
33:フィラープライ(プリプレグ)
40:成形型
41:上型
42:下型
43:上側熱盤
44:下側熱盤
45:キャビティ
46:締結部材
 

Claims (11)

  1.  強化繊維およびマトリクス樹脂を含有する複合材料製のプレス成形品であるパネル構造体であって、
     基板部と、
     当該基板部に対して立設するリブと、を備え、
     前記基板部には、前記基板部および前記リブの体積から算出される前記基板部の必要板厚に基づいて積層数が決定された前記複合材料層である基本層が積層され、
     前記基板部のうち、少なくとも前記リブが立設するリブ基底部には、前記基本層に加えて複合材料層であるダブラ層が積層され、
     前記リブの先端部まで前記強化繊維が配置している、
    複合材料製パネル構造体。
  2.  前記パネル構造体の設計上の体積を成形基準体積としたとき、
     前記基本層と前記ダブラ層との合計積層数は、前記成形基準体積以上から前記成形基準体積の1.25倍以下までの範囲内となる積層数である、
    請求項1に記載の複合材料製パネル構造体。
  3.  前記リブおよび前記リブと湾曲してつながり前記基板部の一部を構成する複合材料層を第一面側積層体とし、
     前記リブと反対側の前記第一面側積層体表面に配置され、前記基板部を構成する複合材料層を第二面側積層体とし、
     前記第一面側積層体と前記第二面側積層体との間に生じる、前記リブに沿って延伸する三角形状の断面を有する領域をフィラー領域としたときに、
     前記フィラー領域のみに複合材料フィラー層が配置されている、
    請求項1または2に記載の複合材料製パネル構造体。
  4.  前記フィラー領域の設計上の体積をフィラー基準体積としたときに、
     前記複合材料フィラー層の積層数は、前記フィラー基準体積以上から前記フィラー基準体積の3.0倍以下までの範囲内となる積層数である、
    請求項3に記載の複合材料製パネル構造体。
  5.  前記強化繊維は、連続繊維および切込み入り連続繊維の少なくとも一方である、
    請求項1から4のいずれか1項に記載の複合材料製パネル構造体。
  6.  航空機用、宇宙機用または自動車用である、
    請求項1から5のいずれか1項に記載の複合材料製パネル構造体。
  7.  前記強化繊維が炭素繊維であり、前記マトリクス樹脂が熱硬化性樹脂または熱可塑性樹脂である、
    請求項1から6のいずれか1項に記載の複合材料製パネル構造体。
  8.  基板部と、基板部に対して立設するリブとを含み、強化繊維およびマトリクス樹脂を含有する複合材料製のパネル構造体を製造する複合材料製パネル構造体の製造方法であって、
     前記基板部が必要板厚となる数のプリプレグである基本プライ、および前記基板部のうち前記リブが立設するリブ基底部にプリプレグであるダブラプライを積層してプリプレグ積層体を形成し、
     前記プリプレグ積層体を成形型によりプレス成形する、
    複合材料製パネル構造体の製造方法。
  9.  前記基本プライと前記ダブラプライとの合計積層数は、前記成形型のキャビティ体積以上から前記キャビティ体積の1.25倍以下までの範囲内となる積層数である、
    請求項8に記載の複合材料製パネル構造体の製造方法。
  10.  前記パネル構造体において、
     前記リブおよび前記リブと湾曲してつながり前記基板部の一部を構成する複合材料層を第一面側積層体とし、
     前記リブと反対側の前記第一面側積層体表面に配置され、前記基板部を構成する複合材料層を第二面側積層体とし、
     前記第一面側積層体と前記第二面側積層体との間に生じる、前記リブに沿って延伸する三角形状の断面を有する領域をフィラー領域としたときに、
     前記フィラー領域のみにプリプレグであるフィラープライを積層する、
    請求項8または9に記載の複合材料製パネル構造体の製造方法。
  11.  前記フィラー領域の設計上の体積をフィラー基準体積としたときに、
     前記フィラープライの積層数は、前記フィラー基準体積以上から前記フィラー基準体積の3.0倍以下までの範囲内となる積層数である、
    請求項10に記載の複合材料製パネル構造体の製造方法。
     
PCT/JP2021/030385 2020-08-19 2021-08-19 複合材料製パネル構造体およびその製造方法 WO2022039226A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21858370.6A EP4201661A1 (en) 2020-08-19 2021-08-19 Composite material panel structure and manufacturing method thereof
JP2022543993A JP7426492B2 (ja) 2020-08-19 2021-08-19 複合材料製パネル構造体およびその製造方法
US18/109,856 US20230192978A1 (en) 2020-08-19 2023-02-15 Composite material panel structural body and method of manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020138648 2020-08-19
JP2020-138648 2020-08-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/109,856 Continuation US20230192978A1 (en) 2020-08-19 2023-02-15 Composite material panel structural body and method of manufacturing same

Publications (1)

Publication Number Publication Date
WO2022039226A1 true WO2022039226A1 (ja) 2022-02-24

Family

ID=80323526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030385 WO2022039226A1 (ja) 2020-08-19 2021-08-19 複合材料製パネル構造体およびその製造方法

Country Status (4)

Country Link
US (1) US20230192978A1 (ja)
EP (1) EP4201661A1 (ja)
JP (1) JP7426492B2 (ja)
WO (1) WO2022039226A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038429A1 (en) * 2006-09-28 2008-04-03 Toray Industries, Inc. Fiber-reinforced plastic and process for production thereof
JP2009196146A (ja) * 2008-02-20 2009-09-03 Toray Ind Inc プレス成形方法および成形体
JP2014510879A (ja) * 2011-01-24 2014-05-01 ザ・ボーイング・カンパニー 滑らかなランナウトを持つ一体型補剛材を有する複合構造物およびその作製方法
JP2014151648A (ja) * 2013-02-07 2014-08-25 Boeing Co 短繊維材料を含む空隙充填材を有する複合構造を作製する方法及びシステム
WO2019078242A1 (ja) 2017-10-20 2019-04-25 東レ株式会社 繊維強化プラスチック成形品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038429A1 (en) * 2006-09-28 2008-04-03 Toray Industries, Inc. Fiber-reinforced plastic and process for production thereof
JP2009196146A (ja) * 2008-02-20 2009-09-03 Toray Ind Inc プレス成形方法および成形体
JP2014510879A (ja) * 2011-01-24 2014-05-01 ザ・ボーイング・カンパニー 滑らかなランナウトを持つ一体型補剛材を有する複合構造物およびその作製方法
JP2014151648A (ja) * 2013-02-07 2014-08-25 Boeing Co 短繊維材料を含む空隙充填材を有する複合構造を作製する方法及びシステム
WO2019078242A1 (ja) 2017-10-20 2019-04-25 東レ株式会社 繊維強化プラスチック成形品

Also Published As

Publication number Publication date
US20230192978A1 (en) 2023-06-22
JPWO2022039226A1 (ja) 2022-02-24
JP7426492B2 (ja) 2024-02-01
EP4201661A1 (en) 2023-06-28

Similar Documents

Publication Publication Date Title
WO2020071417A1 (ja) 複合材料製航空機用部品およびその製造方法
US7491289B2 (en) Methods of forming metal foil ply replacement in composite structures
EP2484518A1 (en) Resin laminated plate
CN102785443B (zh) 一种具有缓冲层板复合的层结构复合材料保险杠及其制备方法
JP2007261141A (ja) プリプレグ積層体及び繊維強化プラスチック
US20090280294A1 (en) Panel structure and relative process for making it
US6509078B1 (en) Composite material
KR20090084042A (ko) 운송차량용 일체형 복합소재 차체 및 그 제조방법
JP2008246981A (ja) 繊維強化複合材料の製造方法
JP2020062893A (ja) 繊維強化樹脂成形品および繊維強化樹脂成形品の製造方法
KR20160133605A (ko) 자동차 부품용 보강재 및 이를 포함하는 자동차 부품
WO2022039226A1 (ja) 複合材料製パネル構造体およびその製造方法
TW201817782A (zh) 片材
JP5651925B2 (ja) 繊維強化複合材料成形品とその製造方法
JP6665149B2 (ja) 繊維強化樹脂体及びその製造方法
WO2020203971A1 (ja) 複合材料製パネル構造体およびその製造方法
JP2016147964A (ja) 繊維強化熱可塑性樹脂部材
JP2005262818A (ja) 強化繊維基材、プリフォームおよび強化繊維基材の製造方法
KR20190031908A (ko) 섬유 강화 플라스틱 시트와 이를 포함하는 적층체
JP2012051151A (ja) 繊維強化成形体
JP7148442B2 (ja) 積層体の製造方法
KR102075264B1 (ko) 섬유강화 플라스틱 샌드위치 패널
JP4525176B2 (ja) 繊維強化プラスチック、および、その製造方法
JP6746973B2 (ja) プリフォーム用基材、強化繊維プリフォーム、繊維強化樹脂成形体および繊維強化樹脂成形体の製造方法
JP3493131B2 (ja) バイセクトタイプの繊維強化プラスチック製のハニカムコアの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21858370

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022543993

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021858370

Country of ref document: EP

Effective date: 20230320