WO2022039106A1 - 有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2022039106A1
WO2022039106A1 PCT/JP2021/029801 JP2021029801W WO2022039106A1 WO 2022039106 A1 WO2022039106 A1 WO 2022039106A1 JP 2021029801 W JP2021029801 W JP 2021029801W WO 2022039106 A1 WO2022039106 A1 WO 2022039106A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
unsubstituted
substituted
substituent
general formula
Prior art date
Application number
PCT/JP2021/029801
Other languages
English (en)
French (fr)
Inventor
淳一 泉田
相原 高
峯香 李
丁浩 柳
剛史 山本
和行 駿河
淳旭 車
性フン 朱
炳善 粱
志丸 金
Original Assignee
保土谷化学工業株式会社
エスエフシー カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 保土谷化学工業株式会社, エスエフシー カンパニー リミテッド filed Critical 保土谷化学工業株式会社
Priority to JP2022543924A priority Critical patent/JPWO2022039106A1/ja
Priority to CN202180050636.5A priority patent/CN115885022A/zh
Priority to US18/021,251 priority patent/US20230345817A1/en
Priority to KR1020237004531A priority patent/KR20230051663A/ko
Priority to EP21858253.4A priority patent/EP4198104A1/en
Publication of WO2022039106A1 publication Critical patent/WO2022039106A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene

Definitions

  • the present invention relates to an organic electroluminescence element which is a self-luminous element suitable for various display devices, and more particularly, an organic electroluminescence element using a specific arylamine compound (hereinafter, abbreviated as an organic EL element). It is about.
  • the organic EL element is a self-luminous element, it is brighter and has better visibility than the liquid crystal element, and can display clearly, so that active research has been conducted.
  • Non-Patent Document 2 Devices that utilize thermally activated delayed fluorescence (TADF) light emission have also been developed.
  • TADF thermally activated delayed fluorescence
  • the light emitting layer can also be produced by doping a charge-transporting compound generally called a host material with a fluorescent compound, a phosphorescent compound, or a material that emits delayed fluorescence.
  • a charge-transporting compound generally called a host material
  • a fluorescent compound e.g., a fluorescent compound
  • a phosphorescent compound e.g., a fluorescent compound
  • a material that emits delayed fluorescence e.g., a material that emits delayed fluorescence.
  • the charges injected from both electrodes are recombined in the light emitting layer to obtain light emission, but it is important how efficiently both hole and electron charges are transferred to the light emitting layer. It is necessary to use an element with excellent carrier balance.
  • the hole injection property and the electron blocking property that blocks the electrons injected from the cathode the probability of recombination between holes and electrons is improved, and excitons generated in the light emitting layer are generated. High emission efficiency can be obtained by confining. Therefore, the role played by the hole transport material is important, and a hole transport material having high hole injection property, high hole mobility, high electron blocking property, and high electron durability is required. ing.
  • the heat resistance and amorphousness of the material are also important for the life of the device.
  • thermal decomposition occurs even at a low temperature due to the heat generated when the element is driven, and the material deteriorates.
  • the thin film crystallizes even in a short time, and the device deteriorates. Therefore, the material used is required to have high heat resistance and good amorphous property.
  • NPD N, N'-diphenyl-N, N'-di ( ⁇ -naphthyl) benzidine
  • various aromatic amine derivatives are known.
  • NPD has a good hole transporting ability
  • the glass transition point (Tg) which is an index of heat resistance
  • Tg glass transition point
  • device characteristics deteriorate due to crystallization (for example).
  • Patent Document 4 a compound having an excellent mobility with a hole mobility of 10 -3 cm 2 / Vs or more is known (for example, Patent Document).
  • Patent Document 2 because the electron blocking property is insufficient, some of the electrons pass through the light emitting layer, and improvement in light emitting efficiency cannot be expected. There has been a demand for a material having a high mobility, a thin film that is more stable, and a high heat resistance. Further, although there is a report of a highly durable aromatic amine derivative (see, for example, Patent Document 3), it was used as a charge transport material used for an electrophotographic photosensitive member, and there was no example of using it as an organic EL element. ..
  • an arylamine compound having a substituted carbazole structure As a compound having improved properties such as heat resistance and hole injection property, an arylamine compound having a substituted carbazole structure has been proposed (see, for example, Patent Documents 4 and 5), and these compounds are hole-injected. Although the elements used for the layer or the hole transport layer have been improved in heat resistance and luminous efficiency, they are not yet sufficient, and further lower drive voltage and higher luminous efficiency are required. ..
  • Japanese Unexamined Patent Publication No. 8-048656 Japanese Patent No. 3194657 Japanese Patent No. 494840 Japanese Unexamined Patent Publication No. 2006-151979 International Publication No. 2008/6626 International Publication No. 2014/09310
  • An object of the present invention is for an organic EL element having excellent hole injection / transport performance, electron blocking ability, stability in a thin film state, and durability as a material for a highly efficient and highly durable organic EL element. Further, various materials for organic EL devices, which are excellent in hole and electron injection / transport performance, electron blocking ability, stability in a thin film state, and durability, are provided. It is an object of the present invention to provide an organic EL element having high efficiency, low driving voltage, and long life by combining them so that the characteristics of the materials can be effectively exhibited.
  • the physical properties that the organic compound to be provided by the present invention should have are (1) good hole injection characteristics, (2) high hole mobility, and (3) electron blocking ability. It can be mentioned that it is excellent in (4) the thin film state is stable, and (5) it is excellent in heat resistance. Further, the physical characteristics that the organic EL element to be provided by the present invention should have are (1) high luminous efficiency and high power efficiency, (2) low luminous start voltage, and (3) practical drive. It can be mentioned that the voltage is low and (4) it has a long life.
  • the arylamine compound having a specific structure is excellent in hole injection / transport ability, thin film stability and durability. Therefore, it was found that when these are selected as the material of the hole transport layer, the holes injected from the anode side can be efficiently transported. Further, as a result of producing various organic EL devices combined with a light emitting material having a specific structure and evaluating the characteristics of the devices, the present invention has been completed.
  • the following organic EL elements are provided.
  • an organic electroluminescence element having at least an anode, a first hole transport layer, a second hole transport layer, a light emitting layer, an electron transport layer and a cathode in this order
  • the second hole transport layer has the following general formula (1).
  • An organic EL element comprising an arylamine compound.
  • R 1 to R 4 may be the same or different from each other, and may have a hydrogen atom, a heavy hydrogen atom, a carbonyl group, a cyano group, a substituent, and a silyl group and a substituent.
  • a phosphino group which may have a substituent a phosphinoxide group which may have a substituent, a linear or branched alkyl group having 1 to 6 carbon atoms which may have a substituent, and a substituent.
  • it represents an unsubstituted aromatic hydrocarbon group having 6 to 25 carbon atoms.
  • L represents a divalent group or a single bond of an aromatic hydrocarbon having 6 to 20 substituted or unsubstituted ring-forming carbon atoms.
  • R 5 to R 7 represent a hydrogen atom, a deuterium atom, a linear or branched alkyl group having 1 to 6 carbon atoms which may have a substituent, a halogen atom, and a cyano group.
  • R 1 and R 2 may be the same or different from each other, and may have a hydrogen atom, a substituent, a silyl group, or a substituted or unsubstituted ring-forming carbon atom number 6. 20 to 20 aromatic hydrocarbon groups, R 3 is a silyl group which may have a substituent or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 25 carbon atoms, and R 4 1) The organic EL according to 1) above, wherein is a hydrogen atom, a silyl group which may have a substituent, or an aromatic hydrocarbon group having a substituted or unsubstituted ring-forming carbon atom number of 6 to 25. element.
  • R 1 and R 2 may be the same or different from each other, and are substituted with a hydrogen atom, an unsubstituted phenyl group, an unsubstituted naphthyl group, an unsubstituted biphenylyl group, and a naphthyl group. It is either a phenyl group or an unsubstituted terphenylyl group , and R3 is substituted with an unsubstituted biphenylyl group, a phenyl group substituted with a naphthyl group, a phenyl group substituted with two phenyl groups, or a phenyl group. 1) or 2) above, wherein R4 is either an unsubstituted phenyl group, an unsubstituted naphthyl group, or a phenyl group substituted naphthyl group.
  • Organic EL element is either an unsubstituted phenyl group, an unsubstituted nap
  • R 1 is any of an unsubstituted phenyl group, an unsubstituted biphenylyl group, a naphthyl group substituted phenyl group, and an unsubstituted terphenylyl group
  • R 2 is a hydrogen atom. It is any of an unsubstituted phenyl group, an unsubstituted naphthyl group, an unsubstituted biphenylyl group, a naphthyl group substituted phenyl group, and an unsubstituted terphenylyl group
  • R 3 is an unsubstituted phenyl group and R 4.
  • organic EL element according to any one of 1) to 3) above, wherein 4 is any of an unsubstituted phenyl group, an unsubstituted naphthyl group, and a phenyl group substituted naphthyl group.
  • At least one of R 1 to R 4 is either a triphenylsilyl group or a phenyl group substituted with a triphenylsilyl group, the above 1) or.
  • Q1 to Q3 may be the same or different from each other, and represent a substituted or unsubstituted aromatic hydrocarbon or a substituted or unsubstituted aromatic heterocycle.
  • Y 1 to Y 3 may be the same or different from each other and may be any one selected from N-R 8 , CR 9 R 10 , O, S, Se or SiR 11 R 12 and its R 8 to R 12 may be the same or different from each other, and may have a hydrogen atom, a hydrocarbon atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, or a substituent, and have 1 to 6 carbon atoms.
  • R 9 and R 10 , and R 11 and R 12 are bonded to each other via a single bond, substituted or unsubstituted methylene group, oxygen atom or sulfur atom, and monosubstituted amino group to form a ring. You may.
  • Rings may be formed by bonding with each other via a linking group such as a methylene group, an oxygen atom, a sulfur atom, and a monosubstituted amino group.
  • Aromatic hydrocarbon groups having 6 to 25 carbon atoms in “substituted or unsubstituted ring-forming aromatic hydrocarbon groups having 6 to 25 carbon atoms” represented by R 1 to R 4 in the general formula (1).
  • group include a phenyl group, a biphenylyl group, a terphenylyl group, a naphthyl group, an anthrasenyl group, a phenanthrenyl group, a fluorenyl group, an indenyl group, a pyrenyl group, a peryleneyl group, a fluoranthenyl group, a triphenylenyl group and the like. Can be done.
  • an aromatic hydrocarbon group having 6 to 20 ring-forming carbon atoms is exemplified as a group defined as "an aromatic hydrocarbon group having 6 to 20 ring-forming carbon atoms". be able to.
  • the "substituent" in the "linear or branched alkyl group having 1 to 6 carbon atoms having a substituent” represented by R 1 to R 7 in the general formula (1) is specifically heavy. Hydrogen atom, cyano group, nitro group; halogen atom such as fluorine atom, chlorine atom, bromine atom, iodine atom; linear or branched with 1 to 6 carbon atoms such as methyloxy group, ethyloxy group, propyloxy group Alkyloxy group; Alkenyl group such as vinyl group and allyl group; Aryloxy group such as phenyloxy group and trilloxy group; Arylalkyloxy group such as benzyloxy group and phenethyloxy group; Aromatic hydrocarbon groups such as naphthyl group, anthrasenyl group, phenanthrenyl group, fluorenyl group, indenyl group, pyrenyl group, peryleneyl group, fluorantheny
  • Substituted di-substituted amino groups groups such as aromatic hydrocarbon groups, or di-substituted amino groups substituted with substituents selected from aromatic heterocyclic groups can be mentioned, and these substituents are further added. , The above-exemplified substituent may be substituted.
  • Cyril group having a substituent "phosphino group having a substituent”, “phosphinoxide group having a substituent”, or “having a substituent” represented by R 1 to R 4 in the general formula (1).
  • substituents include a heavy hydrogen atom, a cyano group, a nitro group; a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like.
  • Halogen atom such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group 1 to 6 linear or branched alkyl group; linear or branched alkyloxy group having 1 to 6 carbon atoms such as methyloxy group, ethyloxy group, propyloxy group; vinyl group, allyl group, etc.
  • Alkenyl group Alkenyl group; aryloxy group such as phenyloxy group and triloxy group; arylalkyloxy group such as benzyloxy group and phenethyloxy group; Aromatic hydrocarbon groups such as indenyl group, pyrenyl group, peryleneyl group, fluoranthenyl group, triphenylenyl group; pyridyl group, pyrimidinyl group, triazinyl group, thienyl group, furyl group, pyrrolyl group, quinolyl group, isoquinolyl group, benzofuranyl.
  • aryloxy group such as phenyloxy group and triloxy group
  • arylalkyloxy group such as benzyloxy group and phenethyloxy group
  • Aromatic hydrocarbon groups such as indenyl group, pyrenyl group, peryleneyl group, fluoranthenyl group, triphenylenyl group;
  • Aromatic heterocyclic groups such as groups, benzothienyl groups, indolyl groups, carbazolyl groups, benzoxazolyl groups, benzothiazolyl groups, quinoxalinyl groups, benzoimidazolyl groups, pyrazolyl groups, dibenzofuranyl groups, dibenzothienyl groups, carbolinyl groups; diphenyl Disubstituted amino group substituted with aromatic hydrocarbon group such as amino group, dinaphthylamino group; disubstituted amino group substituted with aromatic heterocyclic group such as dipyridylamino group, dithienylamino group; aromatic carbide Examples include groups such as di-substituted amino groups substituted with a substituent selected from a hydrogen group or an aromatic heterocyclic group, these substituents are further substituted with the above-exemplified substituents. Is also good.
  • the "divalent group of an aromatic hydrocarbon having 6 to 20 substituted or unsubstituted ring-forming carbon atoms" represented by L in the general formula (1) has 6 to 6 substituted or unsubstituted ring-forming carbon atoms.
  • Specific examples of the "aromatic hydrocarbons having 6 to 20 ring-forming carbon atoms" of "20 aromatic hydrocarbons” include benzene, biphenyl, terphenyl, naphthalene, anthracene, acenaphthalene, fluorene, phenanthrene, and indan. You can give pyrene, triphenylene, etc.
  • the “divalent group of a group hydrocarbon” represents a divalent group formed by removing two hydrogen atoms from the above-mentioned "aromatic hydrocarbon having 6 to 20 ring-forming carbon atoms".
  • the "substituent" in the "divalent group of an aromatic hydrocarbon having a ring-forming carbon atom of 6 to 20 having a substituent” represented by L in the general formula (1) is a heavy hydrogen atom. , Cyano group, nitro group; halogen atom such as fluorine atom, chlorine atom, bromine atom, iodine atom; methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, Linear or branched alkyl group having 1 to 6 carbon atoms such as n-pentyl group, isopentyl group, neopentyl group and n-hexyl group; 1 carbon atom number such as methyloxy group, ethyloxy group and propyloxy group.
  • Cyano group nitro group
  • halogen atom such as fluorine atom, chlorine atom
  • alkenyl groups such as vinyl and allyl groups
  • aryloxy groups such as phenyloxy and trilloxy groups
  • arylalkyloxy groups such as benzyloxy and phenethyloxy groups
  • Aromatic hydrocarbon groups such as phenyl group, biphenylyl group, terphenylyl group, naphthyl group, anthrasenyl group, phenanthrenyl group, fluorenyl group, indenyl group, pyrenyl group, peryleneyl group, fluoranthenyl group, triphenylenyl group; pyridyl group, pyrimidinyl group.
  • R 1 is a "hydrogen atom", a “silyl group which may have a substituent", or a “substituted or unsubstituted aromatic carbonization having 6 to 20 ring-forming carbon atoms".
  • "Hydrogen group” is preferable, "hydrogen atom”, “substituted or unsubstituted phenyl group”, “unsubstituted naphthyl group”, “unsubstituted biphenylyl group”, “unsubstituted terphenylyl group”, “triphenylsilyl group”.
  • R 1 is substituted with "hydrogen atom”, “unsubstituted phenyl group”, “unsubstituted naphthyl group”, “unsubstituted biphenylyl group”, “unsubstituted terphenylyl group”, and “naphthyl group”.
  • "Phenyl group”, “triphenylsilyl group”, “phenyl group substituted with triphenylsilyl group” are more preferable, “hydrogen atom”, “unsubstituted phenyl group”, “unsubstituted naphthyl group”, An “unsubstituted biphenylyl group” is more preferred.
  • R 2 is a "hydrocarbon atom", a “silyl group which may have a substituent", or a “substituted or unsubstituted aromatic carbonization having 6 to 20 ring-forming carbon atoms".
  • a “hydrocarbon group” is preferred, a “hydrocarbon atom”, a “substituted or unsubstituted phenyl group", an “unsubstituted naphthyl group", an “unsubstituted biphenylyl group”, an "unsubstituted terphenylyl group", a "triphenylsilyl group".
  • hydrocarbon atom and "unsubstituted phenyl group” are further preferable.
  • Phenyl group "triphenylsilyl group” and “phenyl group substituted with triphenylsilyl group” are more preferable, and "hydrogen atom” and “unsubstituted phenyl group” are further preferable.
  • R3 "a silyl group which may have a substituent” or "an substituted or unsubstituted aromatic hydrocarbon group having 6 to 25 ring-forming carbon atoms” is preferable.
  • "Substituted or unsubstituted phenyl group”, “substituted or unsubstituted biphenyl group”, “substituted or unsubstituted naphthyl group”, “triphenylsilyl group” are more preferable, and "substituted or unsubstituted phenyl group”.
  • "Unsubstituted biphenylyl group", "naphthyl group having a substituent” are more preferable.
  • the "substituent" of the "phenyl group having a substituent", the "biphenyl group having a substituent", and the "naphthyl group having a substituent” includes “phenyl group”, “naphthyl group”, and “triphenyl”.
  • a “silyl group” is preferable, and a “phenyl group” and a “naphthyl group” are more preferable. It is also preferable to have a plurality of (for example, two) "phenyl groups”.
  • R 3 includes "unsubstituted phenyl group”, “unsubstituted biphenyl group”, “naphthyl group having a substituent", “triphenylsilyl group”, and “phenyl substituted with a triphenylsilyl group”.
  • “Group” is more preferable, "unsubstituted phenyl group”, “unsubstituted biphenylyl group”, “phenyl group substituted with naphthyl group”, “phenyl group substituted with two phenyl groups”, “phenyl group”.
  • a naphthyl group substituted with is more preferred.
  • hydrocarbon atom or “silyl group which may have a substituent” or "substituted or unsubstituted aromatic carbonic acid having 6 to 25 ring-forming carbon atoms".
  • a “hydrocarbon group” is preferable, a “substituted or unsubstituted phenyl group", a “substituted or unsubstituted naphthyl group” and a “triphenylsilyl group” are more preferable, and a "substituted or unsubstituted naphthyl group” is further preferable.
  • a "phenyl group” and a “triphenylsilyl group” are preferable, and a “phenyl group” is more preferable.
  • R 4 is substituted with "unsubstituted phenyl group", “unsubstituted naphthyl group”, “phenyl group substituted naphthyl group”, “triphenylsilyl group”, and “triphenylsilyl group”.
  • "Phenyl group” is more preferable, and "unsubstituted naphthyl group” and "phenyl group substituted naphthyl group” are further preferable.
  • R 1 to R 4 is a triphenylsilyl group or a phenyl group substituted with a triphenylsilyl group.
  • R 5 to R 7 are hydrogen atoms, and it is more preferable that all of R 5 to R 7 are hydrogen atoms.
  • L a divalent group of an aromatic hydrocarbon having 6 to 20 substituted or unsubstituted ring-forming carbon atoms
  • 2 hydrogen atoms are obtained from benzene, biphenyl, or naphthalene.
  • a divalent group formed by removing the individual groups is more preferable, and a 1,4-phenylene group is further preferable.
  • Aromatic carbonization in “substituted or unsubstituted aromatic hydrocarbons” or “substituted or unsubstituted aromatic heterocycles” represented by Q1 to Q3 in the general formula (2) and the general formula (3).
  • Hydrogen or “aromatic heterocycle” include benzene, naphthalene, anthracene, fluorene, phenanthrene, pyridine, pyrimidine, triazine, pyrrole, furan, thiophene, quinoline, isoquinolin, inden, benzofuran, benzothiophene, and indol.
  • Indolin Indolin, carbazole, carbolin, benzoxazole, benzothiazole, quinoxalin, benzoimidazole, pyrazole, dibenzofuran, dibenzothiophene, naphthylidine, phenanthrene, acrydin and the like.
  • these may have a substituent, and as the substituent, "silyl group having a substituent” and “phosphino group having a substituent” represented by R 1 to R 4 in the general formula (1).
  • "Phosphinoxide groups with substituents”, or "Aromatic hydrocarbon groups with ring-forming carbon atoms of 6 to 25 with substituents” may be similar to those shown as “substituents”. can. Further, these substituents may be bonded to each other via a single bond, substituted or unsubstituted methylene group, oxygen atom or sulfur atom to form a ring.
  • B is defined as a boron atom
  • P is a phosphorus atom
  • Y1 to Y3 in the general formula (2) and the general formula ( 3 ) may be the same or different from each other, and are included in N-R 8 , CR 9 R 10 , O, S, Se or SiR 11 R 12 .
  • N-R 8 is a nitrogen atom having R 8 as a substituent
  • CR 9 R 10 is a carbon atom having R 9 and R 10 as a substituent
  • O is an oxygen atom
  • S is a sulfur atom
  • Se is a selenium atom
  • SiR 11 R 12 is defined as a silicon atom having R 11 and R 12 as substituents.
  • R 8 to R 12 are adjacent Q 1 , Q 2 or Q 3 , respectively, that is, Q 1 and Y 2 when Y 1 is N-R 8 , CR 9 R 10 , or SiR 11 R 12 .
  • Q2 or Q3 if is N - R8 , CR 9R10 , or SiR11R12
  • Q3 if Y3 is N - R8 , CR9R10 , or SiR11R12 .
  • Each may be bonded to each other via a linking group such as a single bond, substituted or unsubstituted methylene group, oxygen atom, sulfur atom, monosubstituted amino group to form a ring.
  • R 9 and R 10 , and R 11 and R 12 are bonded to each other via a single bond, substituted or unsubstituted methylene group, oxygen atom or sulfur atom, and monosubstituted amino group to form a ring. You may.
  • the definitions of R 8 to R 12 will be described in more detail below.
  • Y 1 to Y 3 in the general formula (2) and the general formula (3) are N-R 8 , CR 9 R 10 , O, S, Se or SiR 11 R 12 , they are represented by R 8 to R 12 .
  • R 8 to R 12 "A linear or branched alkyl group having 1 to 6 carbon atoms which may have a substituent” and "a cycloalkyl group having 5 to 10 carbon atoms which may have a substituent".
  • a linear or branched alkyl group having 1 to 6 carbon atoms or “carbon” in “a linear or branched alkenyl group having 2 to 6 carbon atoms which may have a substituent”.
  • cycloalkyl group having 5 to 10 atoms or the "linear or branched alkenyl group having 2 to 6 carbon atoms” include a methyl group, an ethyl group, an n-propyl group and an isopropyl group.
  • Isopropenyl group, 2-butenyl group and the like can be mentioned.
  • substituents may have a substituent, and as the substituent, "a linear or branched having 1 to 6 carbon atoms having a substituent” represented by R 1 to R 7 in the general formula (1).
  • substituents in “alkyl groups in the form” can be mentioned.
  • Y 1 to Y 3 in the general formula (2) and the general formula (3) are N-R 8 , CR 9 R 10 , O, S, Se or SiR 11 R 12 , they are represented by R 8 to R 12 .
  • Specific examples of the "linear or branched alkyloxy group having 1 to 6 carbon atoms” or “cycloalkyloxy group having 5 to 10 carbon atoms" in the "group” include a methyloxy group and an ethyloxy group.
  • n-propyloxy group isopropyloxy group, n-butyloxy group, tert-butyloxy group, n-pentyloxy group, n-hexyloxy group, cyclopentyloxy group, cyclohexyloxy group, cycloheptyloxy group, cyclooctyloxy group, Examples thereof include 1-adamantyloxy group and 2-adamantyloxy group.
  • substituents may have a substituent, and as the substituent, "a linear or branched having 1 to 6 carbon atoms having a substituent” represented by R 1 to R 7 in the general formula (1).
  • substituents in “alkyl groups in the form” can be mentioned.
  • Y 1 to Y 3 in the general formula (2) and the general formula (3) are N-R 8 , CR 9 R 10 , O, S, Se or SiR 11 R 12 , they are represented by R 8 to R 12 .
  • Specific examples of the "aromatic hydrocarbon group” and “aromatic heterocyclic group” in the “substituted or unsubstituted aromatic hydrocarbon group” and “substituted or unsubstituted aromatic heterocyclic group” are phenyl.
  • Examples thereof include a group, a biphenylyl group, a terphenylyl group, a naphthyl group, an anthrasenyl group, a phenylanthrenyl group, a pyridyl group, a pyrimidinyl group, a triazineyl group, a fryl group, a pyrrolyl group and a thienyl group.
  • these groups may have a substituent, and as the substituent, they have a "silyl group having a substituent” and a “substituted group” represented by R 1 to R 4 in the general formula (1).
  • substituents phosphino groups
  • phosphinoxide groups having substituents or "aromatic hydrocarbon groups having ring-forming carbon atoms of 6 to 25 having substituents” are given. be able to.
  • Y 1 to Y 3 in the general formula (2) and the general formula (3) are N-R 8 , CR 9 R 10 , O, S, Se or SiR 11 R 12 , they are represented by R 8 to R 12 .
  • Specific examples of the "aryloxy group" in the "substituted or unsubstituted aryloxy group” include phenyloxy group, biphenylyloxy group, terphenylyloxy group, naphthyloxy group, anthracenyloxy group, and fe. Examples thereof include a nanthrenyloxy group, a fluorenyloxy group, an indenyloxy group, a pyrenyloxy group, and a perylenyloxy group.
  • these groups may have a substituent, and as the substituent, they have a "silyl group having a substituent” and a “substituted group” represented by R 1 to R 4 in the general formula (1).
  • substituents phosphino groups
  • phosphinoxide groups having substituents or "aromatic hydrocarbon groups having ring-forming carbon atoms of 6 to 25 having substituents” are given. be able to.
  • the "aromatic hydrocarbon” in the “substituted or unsubstituted aromatic hydrocarbon” or the “substituted or unsubstituted aromatic heterocycle” of Q1 to Q3 is preferable, and benzene and naphthalene are more preferable.
  • R 8 to R 12 when Y 1 to Y 3 are N-R 8 , CR 9 R 10 or SiR 11 R 12 , R 8 to R 12 have a substituent. It may have a linear or branched alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms which may have a substituent, and a substituent. It has a linear or branched alkenyl group having 2 to 6 carbon atoms, a linear or branched alkyloxy group having 1 to 6 carbon atoms which may have a substituent, and a substituent.
  • It may be a cycloalkyloxy group having 5 to 10 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group, or a substituted or unsubstituted aryloxy group, and R 8 has a substituent. It may have a linear or branched alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms which may have a substituent, and a carbon which may have a substituent. More preferably, it is a linear or branched alkenyl group having 2 to 6 atoms, or a substituted or unsubstituted aromatic hydrocarbon group.
  • NR8 , O, S are preferable, and O, S are more preferable as Y1.
  • at least one of Y 2 and Y 3 is preferably N-R 8 , and more preferably Y 2 and Y 3 are N-R 8 .
  • R8 a "substituted or unsubstituted aromatic hydrocarbon group" is preferable, and a substituted or unsubstituted phenyl group, biphenylyl group, terphenylyl group, and naphthyl group are more preferable.
  • the general formula (2) or the general formula (3) has a skeletal structure represented by the following general formula (4), general formula (5), general formula (6), or general formula (7). Can be formed.
  • X 2 , Y 1, Y 2, and Y 3 are the same as the definitions in the general formula (2) and the general formula (3).
  • Y 4 is any one selected from N-R 8 , CR 9 R 10 , O, S, Se or SiR 11 R 12 and is R. 8 to R 12 are the same as the definitions in the general formula (2) and the general formula (3).
  • Z may be the same or different from each other, and may be CR 13 or N (nitrogen atom), and each R 13 may be the same or different from each other.
  • It may be a linear or branched alkylsilyl group having 3 to 10 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, a substituted or unsubstituted aryloxy.
  • each R 13 can be bonded to each other at each group, or can be bonded to an adjacent substituent to form an alicyclic group, an aromatic single ring or a polycyclic ring, and the alicyclic group can be formed.
  • Aromatic monocyclic or polycyclic carbon atoms can be replaced with any one or more complex atoms selected from N, S and O.
  • a linear or branched alkyl group having 1 to 6 carbon atoms which may have a substituent represented by R13 in the general formula (4) to the general formula (7) or "substituent".
  • substituents may have a substituent, and as the substituent, "a linear or branched having 1 to 6 carbon atoms having a substituent” represented by R 1 to R 7 in the general formula (1).
  • substituents in “alkyl groups in the form” can be mentioned.
  • a linear or branched alkyloxy group having 1 to 6 carbon atoms which may have a substituent represented by R13 in the general formula (4) to the general formula (7).
  • Specific examples of the "linear or branched alkyloxy group having 1 to 6 carbon atoms” include a methyloxy group, an ethyloxy group, an n-propyloxy group, an isopropyloxy group, an n-butyloxy group, and a tert-butyloxy group. Examples include a group, an n-pentyloxy group, an n-hexyloxy group and the like.
  • substituents may have a substituent, and as the substituent, "a linear or branched having 1 to 6 carbon atoms having a substituent” represented by R 1 to R 7 in the general formula (1).
  • substituents in “alkyl groups in the form” can be mentioned.
  • linear or branched alkylthioxy group having 1 to 6 carbon atoms which may have a substituent represented by R13 in the general formula (4) to the general formula (7).
  • Specific examples of the "linear or branched alkylthioxy group having 1 to 6 carbon atoms” include a methylthioxy group, an ethylthioxy group, an n-propyltioxy group, an isopropylthioxy group, an n-butyltioxy group, and an isobutyl.
  • Examples thereof include a thioxy group, a tert-butyltioxy group, an n-pentylthioxy group, an isopentylthioxy group, a neopentyltioxy group, an n-hexyltioxy group and the like.
  • substituents may have a substituent, and as the substituent, "a linear or branched having 1 to 6 carbon atoms having a substituent” represented by R 1 to R 7 in the general formula (1).
  • substituents in “alkyl groups in the form” can be mentioned.
  • Specific examples of the "linear or branched alkylamino group having 1 to 6 carbon atoms” include a methylamine group, an ethylamine group, an n-propylamine group, an isopropylamine group, an n-butylamine group, and an isobutylamine group. , Tart-butylamine group, n-pentylamine group, isopentylamine group, neopentylamine group, n-hexylamine group and the like.
  • substituents may have a substituent, and as the substituent, "a linear or branched having 1 to 6 carbon atoms having a substituent” represented by R 1 to R 7 in the general formula (1).
  • substituents in “alkyl groups in the form” can be mentioned.
  • Specific examples of the “linear or branched alkylsilyl group having 3 to 10 carbon atoms” include a trimethylsilyl group, a triethylsilyl group, a tri-n-propylsilyl group, a triisopropylsilyl group, and an n-butyldimethylsilyl group. Examples include a group, an isobutyldimethylsilyl group, a tert-butyldimethylsilyl group and the like.
  • substituents may have a substituent, and as the substituent, "a linear or branched having 1 to 6 carbon atoms having a substituent” represented by R 1 to R 7 in the general formula (1).
  • substituents in “alkyl groups in the form” can be mentioned.
  • Aromatic hydrocarbons in “substituted or unsubstituted aromatic hydrocarbon groups” or “substituted or unsubstituted aromatic heterocyclic groups” represented by R13 in the general formulas (4) to (7).
  • Specific examples of the "hydrocarbon group” or “aromatic heterocyclic group” include a phenyl group, a biphenylyl group, a turphenylyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a pyridyl group, a pyrimidinyl group, a triazinyl group, a frill group, and a pyrrolyl group. , Thienyl groups, etc. can be mentioned.
  • these may have a substituent, and as the substituent, "silyl group having a substituent” and “phosphino group having a substituent” represented by R 1 to R 4 in the general formula (1).
  • "Phosphinoxide groups with substituents”, or "Aromatic hydrocarbon groups with ring-forming carbon atoms of 6 to 25 with substituents” may be similar to those shown as “substituents”. can.
  • aryloxy group in the "substituted or unsubstituted aryloxy group” represented by R13 in the general formula (4) to the general formula (7) include a phenyloxy group and a biphenylyloxy. Examples thereof include a group, a terphenylyloxy group, a naphthyloxy group, an anthrasenyloxy group, a phenylanthrenyloxy group, a fluorenyloxy group, an indenyloxy group, a pyrenyloxy group, a perylenyloxy group and the like.
  • these may have a substituent, and as the substituent, "silyl group having a substituent” and “phosphino group having a substituent” represented by R 1 to R 4 in the general formula (1).
  • "Phosphinoxide groups with substituents”, or "Aromatic hydrocarbon groups with ring-forming carbon atoms of 6 to 25 with substituents” may be similar to those shown as “substituents”. can.
  • arylthioxy group in the "substituted or unsubstituted arylthioxy group” represented by R13 in the general formula (4) to the general formula (7) include a phenylthioxy group.
  • Biphenylyltioxy group, terphenylyltioxy group, naphthyltioxy group, anthrasenyltioxy group, phenylanthrenyltioxy group, fluorenyltioxy group, indenyltioxy group, pyrenyltioxy group, perylenyltioxy group You can give a group.
  • these may have a substituent, and as the substituent, "silyl group having a substituent” and “phosphino group having a substituent” represented by R 1 to R 4 in the general formula (1).
  • "Phosphinoxide groups with substituents”, or "Aromatic hydrocarbon groups with ring-forming carbon atoms of 6 to 25 with substituents” may be similar to those shown as “substituents”. can.
  • arylamino group in the "substituted or unsubstituted arylamino group” represented by R13 in the general formula (4) to (7) include a phenylamino group and a biphenylylamino.
  • examples thereof include a group, a terphenylylamino group, a naphthylamino group, an anthracenylamino group, a phenanthrenylamino group, a fluorenylamino group, an indenylamino group, a pyrenylamino group, a peryleneylamino group and the like.
  • these may have a substituent, and as the substituent, "silyl group having a substituent” and “phosphino group having a substituent” represented by R 1 to R 4 in the general formula (1).
  • "Phosphinoxide groups with substituents”, or "Aromatic hydrocarbon groups with ring-forming carbon atoms of 6 to 25 with substituents” may be similar to those shown as “substituents”. can.
  • arylsilyl group in the "substituted or unsubstituted arylsilyl group” represented by R13 in the general formula (4) to (7) include a triphenylsilyl group and trinaphthyl. Examples thereof include a silyl group and a terphenylyl silyl group.
  • these may have a substituent, and as the substituent, "silyl group having a substituent” and “phosphino group having a substituent” represented by R 1 to R 4 in the general formula (1).
  • "Phosphinoxide groups with substituents”, or "Aromatic hydrocarbon groups with ring-forming carbon atoms of 6 to 25 with substituents” may be similar to those shown as “substituents”. can.
  • the arylamine compound represented by the general formula (1) according to the present invention has a higher hole mobility than the conventional hole transport material, has excellent electron blocking ability and amorphous property, and is a stable thin film. Since it is in a state, the organic EL device of the present invention using these as a constituent material of the hole transport layer can realize a high efficiency, low drive voltage, and long life organic EL device.
  • the hole transport layer has a two-layer structure of a first hole transport layer and a second hole transport layer, and the second hole transport layer located on the light emitting layer side is described by the above general formula (1). ),
  • the electron blocking performance of the arylamine compound can be fully utilized, and a more efficient and long-life organic EL element can be realized.
  • the arylamine compound represented by the general formula (1) it is a figure which shows the structural formula of the compound (1-1) to (1-15). As an example of the arylamine compound represented by the general formula (1), it is a figure which shows the structural formula of the compound (1-16) to (1-27). As an example of the arylamine compound represented by the general formula (1), it is a figure which shows the structural formula of the compound (1-28)-(1-39). As an example of the arylamine compound represented by the general formula (1), it is a figure which shows the structural formula of the compound (1-40) to (1-51). As an example of the arylamine compound represented by the general formula (1), it is a figure which shows the structural formula of the compound (1-52)-(1-63).
  • the arylamine compound represented by the general formula (1) it is a figure which shows the structural formula of the compound (1-64)-(1-76).
  • the compound represented by the general formula (2) it is a figure which shows the structural formula of the compound (2-1)-(2-11).
  • the compound represented by the general formula (2) it is a figure which shows the structural formula of the compound (2-12)-(2-26).
  • the compound represented by the general formula (3) it is a figure which shows the structural formula of the compound (3-1) to (3-12). It is a figure which shows the organic EL element composition of the Example and the comparative example of this invention.
  • arylamine compounds represented by the general formula (1) which are suitably used for the organic EL device of the present invention, specific examples of preferable compounds are shown in FIGS. 1 to 6, but are limited to these compounds. It's not a thing.
  • Purification of the arylamine compound represented by the general formula (1) was carried out by purification by column chromatograph, adsorption purification by silica gel, activated charcoal, activated clay, etc., recrystallization and crystallization method by solvent, sublimation purification method and the like. Compound identification was performed by NMR analysis. As physical property values, the glass transition point (Tg) and the work function were measured. The glass transition point (Tg) is an index of the stability of the thin film state, and the work function is an index of the hole transport property and the hole blocking property.
  • the compound used in the organic EL element of the present invention is purified by column chromatography, adsorption and purification with silica gel, activated charcoal, activated white clay, etc., recrystallization with a solvent, crystallization method, etc., and finally sublimation. Those purified by the purification method were used.
  • the glass transition point (Tg) was measured with a high-sensitivity differential scanning calorimeter (DSC3100SA, manufactured by Bruker AXS) using powder.
  • the work function was obtained by forming a thin film of 100 nm on an ITO substrate and using an ionization potential measuring device (PYS-202, manufactured by Sumitomo Heavy Industries, Ltd.).
  • the structure of the organic EL element of the present invention is sequentially composed of an anode, a hole transport layer, a light emitting layer, an electron transport layer and a cathode on a substrate, and holes are injected between the anode and the hole transport layer.
  • Examples thereof include those having a layer, those having a hole blocking layer between the light emitting layer and the electron transport layer, and those having an electron injection layer between the electron transport layer and the cathode.
  • the hole transport layer has a two-layer structure of a first hole transport layer and a second hole transport layer, and in this case, the second hole transport layer is a light emitting layer. It is preferably adjacent to, in which case it can function as an electron blocking layer.
  • an electrode material having a large work function such as ITO and gold is used.
  • hole injection layer of the organic EL element of the present invention materials such as starburst type triphenylamine derivatives and various triphenylamine tetramers; porphyrin compounds typified by copper phthalocyanine; acceptors such as hexacyanoazatriphenylene.
  • a sex heterocyclic compound, a coating type polymer material, or the like can be used.
  • these materials can be formed into a thin film by a known method such as a spin coating method or an inkjet method.
  • Examples of the hole-transporting material that can be used as the hole-transporting layer of the organic EL element of the present invention include N, N'-diphenyl-N, N'-di (m-tolyl) benzidine (TPD), NPD, N, and so on.
  • Benzidine derivatives such as N, N', N'-tetrabiphenylyl benzidine, 1,1-bis [4- (di-4-trilamino) phenyl] cyclohexane (TAPC), especially two triphenylamine structures in the molecule ,
  • An arylamine compound having a structure linked by a divalent group free of a single bond or a hetero atom for example, N, N, N', N'-tetrabiphenylylbenzidine and the like, and represented by the above general formula (1). It is preferable to use an arylamine compound having only one triphenylamine structure in the molecule, such as a triphenylamine derivative.
  • an arylamine compound having a structure in which three or more triphenylamine structures are linked in a molecule by a divalent group containing no single bond or a hetero atom for example, various triphenylamine trimers and tetramers, etc.
  • Organic amine compounds such as various triphenylamine derivatives can be used. These may be formed alone, or may be used as a single layer formed by mixing with other materials, and may be used as a single layer formed by themselves, layers formed by mixing them, or layers formed by mixing them. It may be a laminated structure of a layer formed by mixing with a layer formed alone. In addition to the vapor deposition method, these materials can be formed into a thin film by a known method such as a spin coating method or an inkjet method.
  • a material usually used for the layer is further P-doped with trisbromophenylamine hexachloroantimon, a radialene derivative (see, for example, Patent Document 6) or the like.
  • a polymer compound having the structure of a benzidine derivative such as TPD in its partial structure can be used.
  • the arylamine compound represented by the general formula (1) is used as the second hole transport layer located on the light emitting layer side of the organic EL device of the present invention.
  • the hole-transporting material that can be mixed with or simultaneously used with the arylamine compound represented by the general formula (1) include 4,4', 4''-tri (N-carbazolyl) triphenylamine (TCTA).
  • these may be formed alone, or may be used as a single layer formed by mixing with other materials, and may be used as a single layer formed by themselves, layers formed by mixing them, or layers formed by mixing them. It may be a laminated structure of a layer formed by mixing with a layer formed alone.
  • these materials can be formed into a thin film by a known method such as a spin coating method or an inkjet method.
  • a blue light emitting dopant such as a pyrene derivative having a pyrene skeleton in the molecule and a compound represented by the general formula (2) or the general formula (3) is preferably used.
  • a blue light emitting dopant such as a pyrene derivative having a pyrene skeleton in the molecule and a compound represented by the general formula (2) or the general formula (3)
  • various metal complexes, anthracene derivatives, bisstyrylbenzene derivatives, pyrene derivatives, oxazole derivatives, polyparaphenylene vinylene derivatives and the like can be used.
  • the light emitting layer may be composed of a host material and a dopant material.
  • an anthracene derivative having an anthracene skeleton in the molecule is preferably used as the host material.
  • an indole ring is used.
  • a heterocyclic compound having a carbazole ring as a partial structure of the fused ring, a carbazole derivative, a thiazole derivative, a benzimidazole derivative, a polydialkylfluorene derivative and the like can be used.
  • a pyrene derivative having a pyrene skeleton in the molecule and a compound represented by the general formula (2) or the general formula (3) are preferably used, but in addition, an indole ring is used as a partial structure of the fused ring.
  • Complex ring compound, heterocyclic compound having carbazole ring as a partial structure of fused ring, carbazole derivative, thiazole derivative, benzimidazole derivative, polydialkylfluorene derivative, quinacridone, coumarin, rubrene, perylene, and their derivatives, benzopyrane derivative, Indenofenantrene derivatives, rhodamine derivatives, aminostyryl derivatives and the like can be used.
  • These may be formed alone, or may be used as a single layer formed by mixing with other materials, and may be used as a single layer formed by themselves, layers formed by mixing them, or layers formed by mixing them. It may be a laminated structure of a layer formed by mixing with a layer formed alone.
  • a phosphorescent illuminant as a light emitting material.
  • a phosphorescent body of a metal complex such as iridium or platinum can be used.
  • Blue phosphorescent bodies such as FIrpic and FIr6 are used, and the host material at this time is 4,4'-di (N-carbazolyl) biphenyl (CBP), TCTA, mCP as the host material for hole injection and transportability.
  • CBP 4,4'-di (N-carbazolyl) biphenyl
  • TCTA 4,4'-di (N-carbazolyl) biphenyl
  • mCP as the host material for hole injection and transportability.
  • Carbazole derivatives such as, etc. can be used.
  • p-bis (triphenylsilyl) benzene (UGH2) and 2,2', 2''-(1,3,5-phenylene) -tris (1-phenyl-1H-benzimidazole) ) (TPBI) or the like can be used, and a high-performance organic EL element can be manufactured.
  • the phosphorescent light-emitting material it is preferable to dope the phosphorescent light-emitting material to the host material by co-deposited in the range of 1 to 30% by weight with respect to the entire light-emitting layer in order to avoid concentration quenching.
  • Non-Patent Document 3 a material that emits delayed fluorescence such as a CDCB derivative such as PIC-TRZ, CC2TA, PXZ-TRZ, 4CzIPN as a light emitting material.
  • a material that emits delayed fluorescence such as a CDCB derivative such as PIC-TRZ, CC2TA, PXZ-TRZ, 4CzIPN.
  • These materials can be thin-film formed by a known method such as a spin coating method or an inkjet method in addition to the vapor deposition method.
  • a phenanthroline derivative such as bathocuproine (BCP) or a quinolinol derivative such as aluminum (III) bis (2-methyl-8-quinolinate) -4-phenylphenolate (BAlq).
  • BCP bathocuproine
  • BAlq quinolinol derivative
  • compounds having a hole blocking action such as various rare earth complexes, triazole derivatives, triazine derivatives, and oxadiazole derivatives can be used.
  • These materials may also serve as materials for the electron transport layer. These may be formed alone, or may be used as a single layer formed by mixing with other materials, and may be used as a single layer formed by themselves, layers formed by mixing them, or layers formed by mixing them. It may be a laminated structure of a layer formed by mixing with a layer formed alone.
  • these materials can be formed into a thin film by a known method such as a spin coating method or an inkjet method.
  • metal complexes of quinolinol derivatives such as Alq 3 and BAlq, various metal complexes, triazole derivatives, triazine derivatives, oxadiazole derivatives, pyridine derivatives, pyrimidine derivatives, and benzimidazole derivatives.
  • Thiasiazol derivative, anthracene derivative, carbodiimide derivative, quinoxalin derivative, pyridoindole derivative, phenanthroline derivative, silol derivative and the like can be used.
  • These may be formed alone, or may be used as a single layer formed by mixing with other materials, and may be used as a single layer formed by themselves, layers formed by mixing them, or layers formed by mixing them. It may be a laminated structure of a layer formed by mixing with a layer formed alone.
  • these materials can be formed into a thin film by a known method such as a spin coating method or an inkjet method.
  • alkali metal salts such as lithium fluoride and cesium fluoride
  • alkaline earth metal salts such as magnesium fluoride
  • metal complexes of quinolinol derivatives such as lithium quinolinol, aluminum oxide and the like.
  • Metal oxides or metals such as itterbium (Yb), samarium (Sm), calcium (Ca), strontium (Sr), cesium (Cs) can be used, but in the preferred choice of electron transport layer and cathode. , This can be omitted.
  • a material usually used for the layer which is further N-doped with a metal such as cesium, can be used.
  • an electrode material having a low work function such as aluminum, or an alloy having a lower work function such as a magnesium silver alloy, a magnesium indium alloy, or an aluminum magnesium alloy is used as an electrode material.
  • an arylamine compound having a structure in which 2 to 6 triphenylamine structures are linked in a molecule and a divalent group containing no single bond or heteroatom, and a benzoazole ring structure are provided. It is preferable to use an amine compound having an amine compound, an amine compound having an aromatic heterocyclic group in the molecule, or the like. These may be formed alone, or may be used as a single layer formed by mixing different materials, or may be used as a single layer formed by themselves, a layer formed by mixing them, or a layer formed by mixing them. It may be a laminated structure of a layer formed by mixing with a layer formed alone. In addition to the vapor deposition method, these materials can be formed into a thin film by a known method such as a spin coating method or an inkjet method.
  • Tris (dibenzylideneacetone) dipalladium (0) 1.9 g and 2,2'-bis (diphenylphosphino) -1,1'-binaphthyl 2.6 g were added and heated, and the mixture was stirred under reflux for 14 hours. After cooling to 80 ° C. and removing inorganic substances by hot filtration, the filtrate was concentrated. By recrystallizing the residue with toluene and heptane, (4-naphthalene-1-yl-phenyl)-[1,1';2',1'']terphenyl-4'-yl-amine 37.0 g of a brown solid (yield 78.1%) was obtained.
  • Example 1 ⁇ (4'-Naphthalene-1-yl-biphenyl-4-yl)-(4-naphthalene-1-yl-phenyl)-[1,1': 2', 1''] terphenyl-4'-yl -Synthesis of amine (1-44)>
  • 4-bromo- [1,1': 4', 1''] terphenyl was replaced with 1- (4'-bromo-biphenyl-4-yl) naphthalene, and the same operation was performed ( 4'-Naphthalene-1-yl-biphenyl-4-yl)-(4-Naphthalene-1-yl-phenyl)-[1,1': 2', 1''] terphenyl-4'-yl-amine 4.5 g (48% yield) of the white solid of (1-44) was obtained.
  • the glass transition point (Tg) of the arylamine compound represented by the general formula (1) was measured with a high-sensitivity differential scanning calorimeter (DSC3100SA, manufactured by Bruker AXS). The measurement results are shown below.
  • Glass transition point (Tg) Compound 1 of Example 1 (1-13) 111.1 ° C.
  • Compound 2 of Example 2 (1-17) 109.7 ° C.
  • Compound 3 of Example 3 (1-30) 123.7 ° C.
  • Compound 6 of Example 6 (1-44) 118.7 ° C.
  • Compound 10 of Example 10 (1-62) 124.0 ° C.
  • the arylamine compound represented by the general formula (1) has a glass transition point (Tg) of 100 ° C. or higher, indicating that the thin film state is stable.
  • a thin-film vapor deposition film having a thickness of 100 nm is produced on an ITO substrate, and an ionization potential measuring device (PYS-202, manufactured by Sumitomo Heavy Industries, Ltd.) is used. The work function was measured. The measurement results are shown below.
  • Example 1 Compound (1-13) 5.69eV Compound 2 of Example 2 (1-17) 5.65 eV Compound 3 of Example 3 (1-30) 5.69 eV Compound 4 of Example 4 (1-32) 5.75 eV Compound (1-41) of Example 5 5.69eV Compound 6 of Example 6 (1-44) 5.71 eV Compound 7 of Example 7 (1-58) 5.75 eV Compound 8 of Example 8 (1-14) 5.71 eV Compound 9 of Example 9 (1-27) 5.72 eV Compound 10 of Example 10 (1-62) 5.71 eV Compound 11 of Example 11 (1-68) 5.69eV
  • the arylamine compound represented by the general formula (1) shows a suitable energy level as compared with the work function of 5.4 eV possessed by general hole transport materials such as NPD and TPD, and is good positive. It can be seen that it has a hole transporting ability and an excellent electron blocking ability.
  • the organic EL element has a hole injection layer 3, a first hole transport layer 4, and a second hole on a glass substrate 1 on which a reflective ITO electrode is previously formed as a transparent anode 2.
  • the transport layer 5, the light emitting layer 6, the electron transport layer 7, the electron injection layer 8, the cathode 9, and the capping layer 10 were vapor-deposited in this order.
  • an ITO having a film thickness of 50 nm, a reflective film of a silver alloy having a film thickness of 100 nm, and an ITO having a film thickness of 5 nm are formed in this order, and ultrasonically washed in isopropyl alcohol.
  • isopropyl alcohol was carried out for 20 minutes, and then dried on a hot plate heated to 250 ° C. for 10 minutes.
  • the glass substrate with ITO was mounted in a vacuum vapor deposition machine and the pressure was reduced to 0.001 Pa or less.
  • an electron acceptor (Acceptor-1) having the following structural formula and a compound (HTM-1) having the following structural formula were used, and the vapor deposition rate ratio was Acceptor-1: compound.
  • a compound (HTM-1) having the following structural formula was formed on the hole injection layer 3 as the first hole transport layer 4 so as to have a film thickness of 140 nm.
  • the compound (1-13) of Example 1 was formed on the first hole transport layer 4 as the second hole transport layer 5 so as to have a film thickness of 5 nm.
  • the compound (2-11) of Example 12 and the compound (EMH-1) having the following structural formula were used as the light emitting layer 6, and the vapor deposition rate ratio was compound (2-11) :.
  • a compound (ETM-1) having the following structural formula and a compound (ETM-2) having the following structural formula are used as the electron transport layer 7, and the vapor deposition rate ratio is compound (ETM-1): compound (ETM).
  • ETM-2 Two-way vapor deposition was performed at a vapor deposition rate of 50:50, and the film was formed to have a film thickness of 30 nm.
  • Lithium fluoride was formed on the electron transport layer 7 as an electron injection layer 8 so as to have a film thickness of 1 nm.
  • a magnesium-silver alloy was formed on the electron injection layer 8 as a cathode 9 so as to have a film thickness of 12 nm.
  • CPL-1 having the following structural formula was formed as the capping layer 10 so as to have a film thickness of 60 nm.
  • the emission characteristics of the produced organic EL device were measured by applying a DC voltage in the atmosphere at room temperature. The results are summarized in Table 1.
  • Example 15 the organic EL under the same conditions except that the compound (1-17) of Example 2 was used instead of the compound (1-13) of Example 1 as the material of the second hole transport layer 5.
  • the element was manufactured.
  • the characteristics of the produced organic EL device were measured at room temperature in the atmosphere. Table 1 summarizes the measurement results of the light emission characteristics when a DC voltage is applied to the manufactured organic EL element.
  • Example 15 the organic EL under the same conditions except that the compound (1-30) of Example 3 was used instead of the compound (1-13) of Example 1 as the material of the second hole transport layer 5.
  • the element was manufactured.
  • the characteristics of the produced organic EL device were measured at room temperature in the atmosphere. Table 1 summarizes the measurement results of the light emission characteristics when a DC voltage is applied to the manufactured organic EL element.
  • Example 15 the organic EL under the same conditions except that the compound (1-32) of Example 4 was used instead of the compound (1-13) of Example 1 as the material of the second hole transport layer 5.
  • the element was manufactured.
  • the characteristics of the produced organic EL device were measured at room temperature in the atmosphere. Table 1 summarizes the measurement results of the light emission characteristics when a DC voltage is applied to the manufactured organic EL element.
  • Example 15 the organic EL under the same conditions except that the compound (1-41) of Example 5 was used instead of the compound (1-13) of Example 1 as the material of the second hole transport layer 5.
  • the element was manufactured.
  • the characteristics of the produced organic EL device were measured at room temperature in the atmosphere. Table 1 summarizes the measurement results of the light emission characteristics when a DC voltage is applied to the manufactured organic EL element.
  • Example 15 the organic EL under the same conditions except that the compound (1-44) of Example 6 was used instead of the compound (1-13) of Example 1 as the material of the second hole transport layer 5.
  • the element was manufactured.
  • the characteristics of the produced organic EL device were measured at room temperature in the atmosphere. Table 1 summarizes the measurement results of the light emission characteristics when a DC voltage is applied to the manufactured organic EL element.
  • Example 15 the organic EL under the same conditions except that the compound (1-58) of Example 7 was used instead of the compound (1-13) of Example 1 as the material of the second hole transport layer 5.
  • the element was manufactured.
  • the characteristics of the produced organic EL device were measured at room temperature in the atmosphere. Table 1 summarizes the measurement results of the light emission characteristics when a DC voltage is applied to the manufactured organic EL element.
  • Example 15 the organic EL under the same conditions except that the compound (1-14) of Example 7 was used instead of the compound (1-13) of Example 1 as the material of the second hole transport layer 5.
  • the element was manufactured.
  • the characteristics of the produced organic EL device were measured at room temperature in the atmosphere. Table 1 summarizes the measurement results of the light emission characteristics when a DC voltage is applied to the manufactured organic EL element.
  • Example 15 the organic EL under the same conditions except that the compound (1-27) of Example 7 was used instead of the compound (1-13) of Example 1 as the material of the second hole transport layer 5.
  • the element was manufactured.
  • the characteristics of the produced organic EL device were measured at room temperature in the atmosphere. Table 1 summarizes the measurement results of the light emission characteristics when a DC voltage is applied to the manufactured organic EL element.
  • Example 15 the organic EL under the same conditions except that the compound (1-62) of Example 7 was used instead of the compound (1-13) of Example 1 as the material of the second hole transport layer 5.
  • the element was manufactured.
  • the characteristics of the produced organic EL device were measured at room temperature in the atmosphere. Table 1 summarizes the measurement results of the light emission characteristics when a DC voltage is applied to the manufactured organic EL element.
  • Example 15 the organic EL under the same conditions except that the compound (1-68) of Example 7 was used instead of the compound (1-13) of Example 1 as the material of the second hole transport layer 5.
  • the element was manufactured.
  • the characteristics of the produced organic EL device were measured at room temperature in the atmosphere. Table 1 summarizes the measurement results of the light emission characteristics when a DC voltage is applied to the manufactured organic EL element.
  • Example 15 For comparison, the same applies to Example 15 except that the compound (HTM-2) having the following structural formula is used in place of the compound (1-13) of Example 1 as the material of the second hole transport layer 5.
  • An organic EL element was manufactured under the conditions of. The characteristics of the produced organic EL device were measured at room temperature in the atmosphere. Table 1 summarizes the measurement results of the light emission characteristics when a DC voltage is applied to the manufactured organic EL element.
  • Example 2 For comparison, the same applies to Example 15 except that the compound (HTM-3) having the following structural formula is used in place of the compound (1-13) of Example 1 as the material of the second hole transport layer 5.
  • An organic EL element was manufactured under the conditions of. The characteristics of the produced organic EL device were measured at room temperature in the atmosphere. Table 1 summarizes the measurement results of the light emission characteristics when a DC voltage is applied to the manufactured organic EL element.
  • Example 3 For comparison, the same applies to Example 15 except that the compound (HTM-4) having the following structural formula is used in place of the compound (1-13) of Example 1 as the material of the second hole transport layer 5.
  • An organic EL element was manufactured under the conditions of. The characteristics of the produced organic EL device were measured at room temperature in the atmosphere. Table 1 summarizes the measurement results of the light emission characteristics when a DC voltage is applied to the manufactured organic EL element.
  • the device life was measured using the organic EL devices manufactured in Examples 15 to 25 and Comparative Examples 1 to 3. The results are summarized in Table 1.
  • the element life is equivalent to 95% when the emission brightness (initial brightness) at the start of light emission is 2000 cd / m 2 and the constant current drive is performed, and the emission brightness is 1900 cd / m 2 (when the initial brightness is 100%). It was measured as the time until it decayed to 95% decay).
  • the luminous efficiency when a current with a current density of 10 mA / cm 2 is passed is from 7.94 to 9.34 cd / A of the organic EL elements of Comparative Examples 1 to 3 from Examples 15 to.
  • the 25 organic EL elements had high efficiency of 9.68 to 10.75 cd / A.
  • the power efficiency is as high as 8.94 to 9.78 lm / W for the organic EL elements of Examples 15 to 25, compared with 7.30 to 8.61 lm / W for the organic EL elements of Comparative Examples 1 to 3. It was efficiency.
  • the element life (95% attenuation) is significantly extended to 345 to 627 hours for the organic EL elements of Examples 15 to 25, compared with 306 to 335 hours for the organic EL elements of Comparative Examples 1 to 3. You can see that there is.
  • the arylamine compound having a specific structure represented by the general formula (1) according to the present invention has holes as compared with the arylamine compound used as a conventional hole transport material.
  • the organic EL element used together with the blue light emitting layer of the present invention has high light emission efficiency as compared with the conventional organic EL element because of its high mobility and excellent electron blocking ability. Moreover, it was found that an organic EL element having a long life can be realized.
  • the organic EL device using the arylamine compound having a specific structure of the present invention can improve the luminous efficiency and the durability of the organic EL device, for example, for home electric appliances and lighting applications. Can be deployed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

【課題】 本発明の課題は、正孔の注入・輸送性能、電子阻止能力、薄膜状態での安定性や耐久性に優れた有機EL素子用の材料を提供し、さらには、該材料および、正孔および電子の注入・輸送性能、電子阻止能力、薄膜状態での安定性、耐久性に優れた有機EL素子用の各種材料を、それぞれの材料が有する特性が効果的に発揮できるように組み合わせることで、高効率、低駆動電圧、長寿命の有機EL素子を提供することにある。 【解決手段】 特定の構造を有するトリアリールアミン化合物が、正孔の注入・輸送能力、薄膜の安定性および耐久性に優れている点に着目し、第二正孔輸送層を構成する材料として特定のアリールアミン化合物を選別して有機EL素子を作製し、本発明を完成するに至った。

Description

有機エレクトロルミネッセンス素子
 本発明は、各種の表示装置に好適な自発光素子である有機エレクトロルミネッセンス素子に関するものであリ、詳しくは特定のアリールアミン化合物を用いた有機エレクトロルミネッセンス素子(以下、有機EL素子と略称する)に関するものである。
 有機EL素子は自己発光性素子であるため、液晶素子に比べて明るく視認性に優れ、鮮明な表示が可能であることから、活発な研究がなされてきた。
 1987年にイーストマン・コダック社のC.W.Tangらは各種の役割を各材料に分担した積層構造素子を開発することにより有機材料を用いた有機EL素子を実用的なものにした。彼らは電子を輸送することのできる蛍光体と正孔を輸送することのできる有機物とを積層し、両方の電荷を蛍光体の層の中に注入して発光させることにより、10V以下の電圧で1000cd/m以上の高輝度が得られるようになった(例えば、特許文献1および特許文献2参照)。
 現在まで、有機EL素子の実用化のために多くの改良がなされ、積層構造の各種の役割をさらに細分化して、基板上に順次に、陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、陰極を設けた電界発光素子によって高効率と耐久性が達成されるようになってきた(例えば、非特許文献1参照)。
 また、発光効率のさらなる向上を目的として三重項励起子の利用が試みられ、燐光発光性化合物の利用が検討されている(例えば、非特許文献2参照)。
 そして、熱活性化遅延蛍光(TADF)による発光を利用する素子も開発されている。2011年に九州大学の安達らは、熱活性化遅延蛍光材料を用いた素子によって5.3%の外部量子効率を実現させた(例えば、非特許文献3参照)。
 発光層は、一般的にホスト材料と称される電荷輸送性の化合物に、蛍光性化合物や燐光発光性化合物または遅延蛍光を放射する材料をドープして作製することもできる。前記非特許文献に記載されているように、有機EL素子における有機材料の選択は、その素子の効率や耐久性など諸特性に大きな影響を与える(例えば、非特許文献1~3参照)。
 有機EL素子においては、両電極から注入された電荷が発光層で再結合して発光が得られるが、正孔、電子の両電荷を如何に効率良く発光層に受け渡すかが重要であり、キャリアバランスに優れた素子とする必要がある。また、正孔注入性を高め、陰極から注入された電子をブロックする電子阻止性を高めることによって、正孔と電子が再結合する確率を向上させ、さらには発光層内で生成した励起子を閉じ込めることによって、高発光効率を得ることができる。そのため、正孔輸送材料の果たす役割は重要であり、正孔注入性が高く、正孔の移動度が大きく、電子阻止性が高く、さらには電子に対する耐久性が高い正孔輸送材料が求められている。
 また、素子の寿命に関しては材料の耐熱性やアモルファス性も重要である。耐熱性が低い材料では、素子駆動時に生じる熱により、低い温度でも熱分解が起こり、材料が劣化する。アモルファス性が低い材料では、短い時間でも薄膜の結晶化が起こり、素子が劣化してしまう。そのため使用する材料には耐熱性が高く、アモルファス性が良好な性質が求められる。
 これまで有機EL素子に用いられてきた正孔輸送材料としては、N,N’-ジフェニル-N,N’-ジ(α-ナフチル)ベンジジン(NPD)や種々の芳香族アミン誘導体が知られていた(例えば、特許文献1および特許文献2参照)。NPDは良好な正孔輸送能力を持っているが、耐熱性の指標となるガラス転移点(Tg)が96℃と低く、高温条件下では結晶化による素子特性の低下が起こってしまう(例えば、非特許文献4参照)。また、前記特許文献に記載の芳香族アミン誘導体の中には、正孔の移動度が10-3cm/Vs以上と優れた移動度を有する化合物が知られているが(例えば、特許文献1および特許文献2参照)、電子阻止性が不十分であるため、電子の一部が発光層を通り抜けてしまい、発光効率の向上が期待できないなど、さらなる高効率化のため、より電子阻止性が高く、薄膜がより安定で耐熱性の高い材料が求められていた。また、耐久性の高い芳香族アミン誘導体の報告があるが(例えば、特許文献3参照)、電子写真感光体に用いられる電荷輸送材料として用いたもので、有機EL素子として用いた例はなかった。
 耐熱性や正孔注入性などの特性を改良した化合物として、置換カルバゾール構造を有するアリールアミン化合物が提案されているが(例えば、特許文献4および特許文献5参照)、これらの化合物を正孔注入層または正孔輸送層に用いた素子では、耐熱性や発光効率などの改良はされているものの、未だ十分とはいえず、さらなる低駆動電圧化や、さらなる高発光効率化が求められている。
 有機EL素子の素子特性の改善や素子作製の歩留まり向上のために、正孔および電子の注入・輸送性能、薄膜の安定性や耐久性に優れた材料を組み合わせることで、正孔および電子が高効率で再結合できる、発光効率が高く、駆動電圧が低く、長寿命な素子が求められている。
 また、有機EL素子の素子特性を改善させるために、正孔および電子の注入・輸送性能、薄膜の安定性や耐久性に優れた材料を組み合わせることで、キャリアバランスのとれた高効率、低駆動電圧、長寿命な素子が求められている。
特開平8-048656号公報 特許第3194657号公報 特許第4943840号公報 特開2006-151979号公報 国際公開第2008/62636号 国際公開第2014/009310号
応用物理学会第9回講習会予稿集55~61ページ(2001) 応用物理学会第9回講習会予稿集23~31ページ(2001) Appl.Phys.Let.,98,083302(2011) 有機EL討論会第三回例会予稿集13~14ページ(2006)
 本発明の目的は、高効率、高耐久性の有機EL素子用の材料として、正孔の注入・輸送性能、電子阻止能力、薄膜状態での安定性、や耐久性に優れた有機EL素子用の材料を提供し、さらには、該材料および、正孔および電子の注入・輸送性能、電子阻止能力、薄膜状態での安定性、耐久性に優れた有機EL素子用の各種材料を、それぞれの材料が有する特性が効果的に発揮できるように組み合わせることで、高効率、低駆動電圧、長寿命の有機EL素子を提供することにある。
 本発明が提供しようとする有機化合物が具備すべき物理的な特性としては、(1)正孔の注入特性が良いこと、(2)正孔の移動度が大きいこと、(3)電子阻止能力に優れていること、(4)薄膜状態が安定であること、(5)耐熱性に優れていることをあげることができる。また、本発明が提供しようとする有機EL素子が具備すべき物理的な特性としては、(1)発光効率および電力効率が高いこと、(2)発光開始電圧が低いこと、(3)実用駆動電圧が低いこと、(4)長寿命であること、をあげることができる。
 そこで上記の目的を達成するために、本発明者らは検討を鋭意行った結果、特定の構造を有するアリールアミン化合物が正孔の注入・輸送能力、薄膜の安定性および耐久性に優れているため、これらを正孔輸送層の材料として選択すると、陽極側から注入された正孔を効率良く輸送できるという知見を得た。更に、特定の構造を有する発光材料等と組み合わせた種々の有機EL素子を作製し、素子の特性評価を行った結果、本発明を完成するに至った。
 すなわち本発明によれば、以下の有機EL素子が提供される。
 1)少なくとも陽極、第一正孔輸送層、第二正孔輸送層、発光層、電子輸送層および陰極をこの順に有する有機エレクトロルミネッセンス素子において、前記第二正孔輸送層が下記一般式(1)で表されるアリールアミン化合物を含有することを特徴とする有機EL素子。
Figure JPOXMLDOC01-appb-C000004
 
                         (1)
 前記一般式(1)中、R~Rは相互に同一でも異なってもよく、水素原子、重水素原子、カルボニル基、シアノ基、置換基を有していてもよいシリル基、置換基を有していてもよいホスフィノ基、置換基を有していてもよいホスフィンオキサイド基、置換基を有していてもよい炭素原子数1~6の直鎖状もしくは分岐状のアルキル基、置換もしくは無置換の環形成炭素原子数6~25の芳香族炭化水素基を表す。Lは置換もしくは無置換の環形成炭素原子数6~20の芳香族炭化水素の2価基、または単結合を表す。R~Rは水素原子、重水素原子、置換基を有していてもよい炭素原子数1~6の直鎖状もしくは分岐状のアルキル基、ハロゲン原子、シアノ基を表す。
 2)前記式(1)において、R、Rは相互に同一でも異なってもよく、水素原子、置換基を有していてもよいシリル基または置換もしくは無置換の環形成炭素原子数6~20の芳香族炭化水素基であり、Rは置換基を有していてもよいシリル基または置換もしくは無置換の環形成炭素原子数6~25の芳香族炭化水素基であり、Rは水素原子、置換基を有していてもよいシリル基または置換もしくは無置換の環形成炭素原子数6~25の芳香族炭化水素基であることを特徴とする、前記1)記載の有機EL素子。
 3)前記式(1)において、R、Rは相互に同一でも異なってもよく、水素原子、無置換のフェニル基、無置換のナフチル基、無置換のビフェニリル基、ナフチル基で置換されたフェニル基、無置換のターフェニリル基のいずれかであり、Rは無置換のビフェニリル基、ナフチル基で置換されたフェニル基、2個のフェニル基で置換されたフェニル基、フェニル基で置換されたナフチル基のいずれかであり、Rは無置換のフェニル基、無置換のナフチル基、フェニル基で置換されたナフチル基のいずれかであることを特徴とする、前記1)または2)記載の有機EL素子。
 4)前記式(1)において、Rは無置換のフェニル基、無置換のビフェニリル基、ナフチル基で置換されたフェニル基、無置換のターフェニリル基のいずれかであり、Rは水素原子、無置換のフェニル基、無置換のナフチル基、無置換のビフェニリル基、ナフチル基で置換されたフェニル基、無置換のターフェニリル基のいずれかであり、Rは無置換のフェニル基であり、Rは無置換のフェニル基、無置換のナフチル基、フェニル基で置換されたナフチル基のいずれかであることを特徴とする、前記1)~3)のいずれかに記載の有機EL素子。
 5)前記式(1)において、R~Rのうち少なくとも1つがトリフェニルシリル基、またはトリフェニルシリル基で置換されたフェニル基のいずれかであることを特徴とする、前記1)または2)記載の有機EL素子。
 6)前記式(1)において、R~Rの全てが水素原子であることを特徴とする、前記1)~5)のいずれかに記載の有機EL素子。
 7)前記式(1)において、Lが1,4-フェニレン基であることを特徴とする、前記1)~6)のいずれかに記載の有機EL素子。
 8)前記青色発光層が、青色発光性ドーパントとして、分子中にピレン骨格を有するピレン誘導体を含有することを特徴とする、前記1)~7)のいずれかに記載の有機EL素子。
 9)前記青色発光層が、青色発光性ドーパントとして、下記一般式(2)または一般式(3)で表される化合物を含有することを特徴とする、前記1)~7)のいずれかに記載の有機EL素子。
Figure JPOXMLDOC01-appb-C000005
 
                         (2)
Figure JPOXMLDOC01-appb-C000006
 
                         (3)
 一般式(2)および一般式(3)中、QないしQは相互に同一でも異なってもよく、置換もしくは無置換の芳香族炭化水素、または置換もしくは無置換の芳香族複素環を表す。XはB、P、P=O、またはP=Sを表す。YないしYは相互に同一でも異なってもよく、N-R、CR10、O、S、SeまたはSiR1112の中から選択されるいずれか1つであり、そのRないしR12は相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換のアリールオキシ基を表す。また、RとR10、R11とR12はそれぞれの基同士で単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子、一置換アミノ基を介して互いに結合して環を形成してもよい。ただし、YないしYがN-R、CR10、またはSiR1112の場合、RないしR12はそれぞれ隣接するQないしQと、単結合、置換もしくは無置換のメチレン基、酸素原子、硫黄原子、一置換アミノ基などの連結基を介して互いに結合して環を形成してもよい。
 10)前記青色発光層が、分子中にアントラセン骨格を有するアントラセン誘導体を含有することを特徴とする、前記1)~9)のいずれかに記載の有機EL素子。
 一般式(1)中のR~Rで表される「置換基を有していてもよい炭素原子数1~6の直鎖状もしくは分岐状のアルキル基」における「炭素原子数1~6の直鎖状もしくは分岐状のアルキル基」としては、具体的に、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基などをあげることができる。
 一般式(1)中のR~Rで表される「置換もしくは無置換の環形成炭素原子数6~25の芳香族炭化水素基」における「炭素原子数6~25の芳香族炭化水素基」としては、具体的に、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などをあげることができる。
 前記例示した基の中で、環形成炭素原子数が6~20である芳香族炭化水素基は、「環形成炭素原子数6~20の芳香族炭化水素基」として定義される基として例示することができる。
 一般式(1)中のR~Rで表される「置換基を有する炭素数1~6の直鎖状もしくは分岐状のアルキル基」における「置換基」としては、具体的に、重水素原子、シアノ基、ニトロ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチルオキシ基、エチルオキシ基、プロピルオキシ基などの炭素原子数1~6の直鎖状もしくは分岐状のアルキルオキシ基;ビニル基、アリル基などのアルケニル基;フェニルオキシ基、トリルオキシ基などのアリールオキシ基;ベンジルオキシ基、フェネチルオキシ基などのアリールアルキルオキシ基;フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などの芳香族炭化水素基;ピリジル基、ピリミジニル基、トリアジニル基、チエニル基、フリル基、ピロリル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルボリニル基などの芳香族複素環基;ジフェニルアミノ基、ジナフチルアミノ基などの芳香族炭化水素基で置換されたジ置換アミノ基;ジピリジルアミノ基、ジチエニルアミノ基などの芳香族複素環基で置換されたジ置換アミノ基;芳香族炭化水素基、または芳香族複素環基から選択される置換基で置換されたジ置換アミノ基のような基をあげることができ、これらの置換基はさらに、前記例示した置換基が置換していても良い。
 一般式(1)中のR~Rで表される「置換基を有するシリル基」、「置換基を有するホスフィノ基」、「置換基を有するホスフィンオキサイド基」、または「置換基を有する環形成炭素原子数6~25の芳香族炭化水素基」における「置換基」としては、具体的に、重水素原子、シアノ基、ニトロ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基などの炭素原子数1~6の直鎖状もしくは分岐状のアルキル基;メチルオキシ基、エチルオキシ基、プロピルオキシ基などの炭素原子数1~6の直鎖状もしくは分岐状のアルキルオキシ基;ビニル基、アリル基などのアルケニル基;フェニルオキシ基、トリルオキシ基などのアリールオキシ基;ベンジルオキシ基、フェネチルオキシ基などのアリールアルキルオキシ基;フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などの芳香族炭化水素基;ピリジル基、ピリミジニル基、トリアジニル基、チエニル基、フリル基、ピロリル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルボリニル基などの芳香族複素環基;ジフェニルアミノ基、ジナフチルアミノ基などの芳香族炭化水素基で置換されたジ置換アミノ基;ジピリジルアミノ基、ジチエニルアミノ基などの芳香族複素環基で置換されたジ置換アミノ基;芳香族炭化水素基、または芳香族複素環基から選択される置換基で置換されたジ置換アミノ基のような基をあげることができ、これらの置換基はさらに、前記例示した置換基が置換していても良い。
 一般式(1)中のLで表される「置換もしくは無置換の環形成炭素原子数6~20の芳香族炭化水素の2価基」における「置換もしくは無置換の環形成炭素原子数6~20の芳香族炭化水素」の「環形成炭素原子数6~20の芳香族炭化水素」としては、具体的に、ベンゼン、ビフェニル、ターフェニル、ナフタレン、アントラセン、アセナフタレン、フルオレン、フェナントレン、インダン、ピレン、トリフェニレンなどをあげることができる。
 そして、一般式(1)中のLで表される「置換もしくは無置換の環形成炭素原子数6~20の芳香族炭化水素の2価基」における「環形成炭素原子数6~20の芳香族炭化水素の2価基」は、上記「環形成炭素原子数6~20の芳香族炭化水素」から水素原子を2個取り除いてできる2価基を表す。
 一般式(1)中のLで表される「置換基を有する環形成炭素原子数6~20の芳香族炭化水素の2価基」における「置換基」としては、具体的に、重水素原子、シアノ基、ニトロ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基などの炭素原子数1~6の直鎖状もしくは分岐状のアルキル基;メチルオキシ基、エチルオキシ基、プロピルオキシ基などの炭素原子数1~6の直鎖状もしくは分岐状のアルキルオキシ基;ビニル基、アリル基などのアルケニル基;フェニルオキシ基、トリルオキシ基などのアリールオキシ基;ベンジルオキシ基、フェネチルオキシ基などのアリールアルキルオキシ基;フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などの芳香族炭化水素基;ピリジル基、ピリミジニル基、トリアジニル基、チエニル基、フリル基、ピロリル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルボリニル基などの芳香族複素環基;ジフェニルアミノ基、ジナフチルアミノ基などの芳香族炭化水素基で置換されたジ置換アミノ基;ジピリジルアミノ基、ジチエニルアミノ基などの芳香族複素環基で置換されたジ置換アミノ基;芳香族炭化水素基、または芳香族複素環基から選択される置換基で置換されたジ置換アミノ基のような基をあげることができ、これらの置換基はさらに、前記例示した置換基が置換していても良い。
 前記一般式(1)において、Rとしては、「水素原子」、「置換基を有していてもよいシリル基」または「置換もしくは無置換の環形成炭素原子数6~20の芳香族炭化水素基」が好ましく、「水素原子」、「置換もしくは無置換のフェニル基」、「無置換のナフチル基」、「無置換のビフェニリル基」、「無置換のターフェニリル基」、「トリフェニルシリル基」がより好ましく、「水素原子」、「無置換のフェニル基」、「無置換のナフチル基」、「無置換のビフェニリル基」がさらに好ましい。
 ここで、「置換基を有するフェニル基」の「置換基」としては、「フェニル基」、「ビフェニル基」、「ナフチル基」、「トリフェニルシリル基」が好ましい。
 具体的に、Rとしては「水素原子」、「無置換のフェニル基」、「無置換のナフチル基」、「無置換のビフェニリル基」、「無置換のターフェニリル基」、「ナフチル基で置換されたフェニル基」、「トリフェニルシリル基」、「トリフェニルシリル基で置換されたフェニル基」がより好ましく、「水素原子」、「無置換のフェニル基」、「無置換のナフチル基」、「無置換のビフェニリル基」がさらに好ましい。
 前記一般式(1)において、Rとしては、「水素原子」、「置換基を有していてもよいシリル基」または「置換もしくは無置換の環形成炭素原子数6~20の芳香族炭化水素基」が好ましく、「水素原子」、「置換もしくは無置換のフェニル基」、「無置換のナフチル基」、「無置換のビフェニリル基」、「無置換のターフェニリル基」、「トリフェニルシリル基」がより好ましく、「水素原子」、「無置換のフェニル基」がさらに好ましい。
 ここで、「置換基を有するフェニル基」の「置換基」としては、「フェニル基」、「ビフェニル基」、「ナフチル基」、「トリフェニルシリル基」が好ましい。
 具体的に、Rとしては「水素原子」、「無置換のフェニル基」、「無置換のナフチル基」、「無置換のビフェニリル基」、「無置換のターフェニリル基」、「ナフチル基で置換されたフェニル基」、「トリフェニルシリル基」、「トリフェニルシリル基で置換されたフェニル基」がより好ましく、「水素原子」、「無置換のフェニル基」がさらに好ましい。
 前記一般式(1)において、Rとしては、「置換基を有していてもよいシリル基」または「置換もしくは無置換の環形成炭素原子数6~25の芳香族炭化水素基」が好ましく、「置換もしくは無置換のフェニル基」、「置換もしくは無置換のビフェニル基」、「置換もしくは無置換のナフチル基」、「トリフェニルシリル基」がより好ましく、「置換もしくは無置換のフェニル基」、「無置換のビフェニリル基」、「置換基を有するナフチル基」がさらに好ましい。
 ここで、「置換基を有するフェニル基」、「置換基を有するビフェニル基」、「置換基を有するナフチル基」の「置換基」としては、「フェニル基」、「ナフチル基」、「トリフェニルシリル基」が好ましく、「フェニル基」、「ナフチル基」がより好ましい。また、「フェニル基」を複数個(例えば、2個)有することも好ましい。
 具体的に、Rとしては「無置換のフェニル基」、「無置換のビフェニル基」、「置換基を有するナフチル基」、「トリフェニルシリル基」、「トリフェニルシリル基で置換されたフェニル基」がより好ましく、「無置換のフェニル基」、「無置換のビフェニリル基」、「ナフチル基で置換されたフェニル基」、「2個のフェニル基で置換されたフェニル基」、「フェニル基で置換されたナフチル基」がさらに好ましい。
 前記一般式(1)において、Rとしては、「水素原子」または「置換基を有していてもよいシリル基」または「置換もしくは無置換の環形成炭素原子数6~25の芳香族炭化水素基」が好ましく、「無置換のフェニル基」、「置換もしくは無置換のナフチル基」、「トリフェニルシリル基」がより好ましく、「置換もしくは無置換のナフチル基」がさらに好ましい。
 ここで、「置換基を有するナフチル基」の「置換基」としては、「フェニル基」、「トリフェニルシリル基」が好ましく、「フェニル基」がより好ましい。
 具体的に、Rとしては「無置換のフェニル基」、「無置換のナフチル基」、「フェニル基で置換されたナフチル基」、「トリフェニルシリル基」、「トリフェニルシリル基で置換されたフェニル基」がより好ましく、「無置換のナフチル基」、「フェニル基で置換されたナフチル基」がさらに好ましい。
 一般式(1)において、R~Rのうち少なくとも1つがトリフェニルシリル基、またはトリフェニルシリル基で置換されたフェニル基であることが好ましい。
 また、R~Rは水素原子であることが好ましく、R~Rの全てが水素原子であることが、より好ましい。
 前記一般式(1)において、Lとしては、「置換もしくは無置換の環形成炭素原子数6~20の芳香族炭化水素の2価基」が好ましく、ベンゼン、ビフェニル、またはナフタレンから水素原子を2個取り除いてできる2価基がより好ましく、1,4-フェニレン基がさらに好ましい。
 一般式(2)および一般式(3)中のQ~Qで表される「置換もしくは無置換の芳香族炭化水素」または「置換もしくは無置換の芳香族複素環」における「芳香族炭化水素」または「芳香族複素環」としては、具体的に、ベンゼン、ナフタレン、アントラセン、フルオレン、フェナントレン、ピリジン、ピリミジン、トリアジン、ピロール、フラン、チオフェン、キノリン、イソキノリン、インデン、ベンゾフラン、ベンゾチオフェン、インドール、インドリン、カルバゾール、カルボリン、ベンゾオキサゾール、ベンゾチアゾール、キノキサリン、ベンゾイミダゾール、ピラゾール、ジベンゾフラン、ジベンゾチオフェン、ナフチリジン、フェナントロリン、アクリジンなどをあげることができる。
 また、これらは置換基を有していてよく、置換基として、前記一般式(1)中のR~Rで表される「置換基を有するシリル基」、「置換基を有するホスフィノ基」、「置換基を有するホスフィンオキサイド基」、または「置換基を有する環形成炭素原子数6~25の芳香族炭化水素基」における「置換基」として示したものと同様のものをあげることができる。また、これらの置換基同士が単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
 一般式(2)および一般式(3)中のXはB、P、P=O、またはP=Sを表す。Bはホウ素原子、Pはリン原子、P=Oは酸素原子が二重結合で結合したリン原子、またはP=Sは硫黄原子が二重結合で結合したリン原子と定義する。
 一般式(2)および一般式(3)中のY~Yは相互に同一でも異なってもよく、N-R、CR10、O、S、SeまたはSiR1112の中から選択されるいずれか1つである。N-RはRを置換基として有する窒素原子、CR10はRおよびR10を置換基として有する炭素原子、Oは酸素原子、Sは硫黄原子、Seはセレン原子、また、SiR1112はR11およびR12を置換基として有するシリコン原子と定義する。
 ここで、R~R12はそれぞれ隣接するQ、QまたはQ、すなわち、YがN-R、CR10、またはSiR1112の場合はQと、YがN-R、CR10、またはSiR1112の場合はQもしくはQと、YがN-R、CR10、またはSiR1112の場合はQと、それぞれが単結合、置換もしくは無置換のメチレン基、酸素原子、硫黄原子、一置換アミノ基などの連結基を介して互いに結合して環を形成してもよい。
 また、RとR10、R11とR12はそれぞれの基同士で単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子、一置換アミノ基を介して互いに結合して環を形成してもよい。
 なお、R~R12の定義は更に下記の記載で詳細な説明をする。
 一般式(2)および一般式(3)中のY~YがN-R、CR10、O、S、SeまたはSiR1112の場合、R~R12で表される「置換基を有していてもよい炭素原子数1~6の直鎖状もしくは分岐状のアルキル基」、「置換基を有していてもよい炭素原子数5~10のシクロアルキル基」または「置換基を有していてもよい炭素原子数2~6の直鎖状もしくは分岐状のアルケニル基」における「炭素原子数1~6の直鎖状もしくは分岐状のアルキル基」、「炭素原子数5~10のシクロアルキル基」または「炭素原子数2~6の直鎖状もしくは分岐状のアルケニル基」としては、具体的に、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基、ビニル基、アリル基、イソプロペニル基、2-ブテニル基などをあげることができる。
 また、これらは置換基を有していてよく、置換基として、前記一般式(1)中のR~Rで表される「置換基を有する炭素数1~6の直鎖状もしくは分岐状のアルキル基」における「置換基」として示したものと同様のものをあげることができる。
 一般式(2)および一般式(3)中のY~YがN-R、CR10、O、S、SeまたはSiR1112の場合、R~R12で表される「置換基を有していてもよい炭素原子数1~6の直鎖状もしくは分岐状のアルキルオキシ基」または「置換基を有していてもよい炭素原子数5~10のシクロアルキルオキシ基」における「炭素原子数1~6の直鎖状もしくは分岐状のアルキルオキシ基」または「炭素原子数5~10のシクロアルキルオキシ基」としては、具体的に、メチルオキシ基、エチルオキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、tert-ブチルオキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基、1-アダマンチルオキシ基、2-アダマンチルオキシ基などをあげることができる。
 また、これらは置換基を有していてよく、置換基として、前記一般式(1)中のR~Rで表される「置換基を有する炭素数1~6の直鎖状もしくは分岐状のアルキル基」における「置換基」として示したものと同様のものをあげることができる。
 一般式(2)および一般式(3)中のY~YがN-R、CR10、O、S、SeまたはSiR1112の場合、R~R12で表される「置換もしくは無置換の芳香族炭化水素基」、「置換もしくは無置換の芳香族複素環基」における「芳香族炭化水素基」、「芳香族複素環基」としては、具体的に、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、ピリジル基、ピリミジニル基、トリアジニル基、フリル基、ピロリル基、チエニル基などをあげることができる。
 また、これらの基は置換基を有していてよく、置換基として、前記一般式(1)中のR~Rで表される「置換基を有するシリル基」、「置換基を有するホスフィノ基」、「置換基を有するホスフィンオキサイド基」、または「置換基を有する環形成炭素原子数6~25の芳香族炭化水素基」における「置換基」として示したものと同様のものをあげることができる。
 一般式(2)および一般式(3)中のY~YがN-R、CR10、O、S、SeまたはSiR1112の場合、R~R12で表される「置換もしくは無置換のアリールオキシ基」における「アリールオキシ基」としては、具体的に、フェニルオキシ基、ビフェニリルオキシ基、ターフェニリルオキシ基、ナフチルオキシ基、アントラセニルオキシ基、フェナントレニルオキシ基、フルオレニルオキシ基、インデニルオキシ基、ピレニルオキシ基、ペリレニルオキシ基などをあげることができる。
 また、これらの基は置換基を有していてよく、置換基として、前記一般式(1)中のR~Rで表される「置換基を有するシリル基」、「置換基を有するホスフィノ基」、「置換基を有するホスフィンオキサイド基」、または「置換基を有する環形成炭素原子数6~25の芳香族炭化水素基」における「置換基」として示したものと同様のものをあげることができる。
 前記一般式(2)および一般式(3)において、Q~Qの「置換もしくは無置換の芳香族炭化水素」または「置換もしくは無置換の芳香族複素環」における「芳香族炭化水素」または「芳香族複素環」としては、ベンゼン、ナフタレン、フェナントレン、ピリジン、ピリミジン、インデン、ベンゾフラン、ベンゾチオフェン、インドールが好ましく、ベンゼン、ナフタレンがより好ましい。
 前記一般式(2)および一般式(3)において、Y~YがN-R、CR10またはSiR1112である場合、R~R12は、置換基を有していてもよい炭素原子数1~6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換基を有していてもよい炭素原子数2~6の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1~6の直鎖状もしくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5~10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、または置換もしくは無置換のアリールオキシ基であることが好ましく、Rは置換基を有していてもよい炭素原子数1~6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換基を有していてもよい炭素原子数2~6の直鎖状もしくは分岐状のアルケニル基、または置換もしくは無置換の芳香族炭化水素基であることがより好ましい。
 前記一般式(2)および一般式(3)において、Yとしては、N-R、O、Sが好ましく、O、Sがより好ましい。
 また、一般式(2)において、YとYのうち少なくとも一方はN-Rであることが好ましく、YおよびYがN-Rであることがより好ましい。ここで、Rとしては、「置換もしくは無置換の芳香族炭化水素基」が好ましく、置換もしくは無置換のフェニル基、ビフェニリル基、ターフェニリル基、ナフチル基がより好ましい。
 本発明によれば、前記一般式(2)または一般式(3)は、下記一般式(4)、一般式(5)、一般式(6)、または一般式(7)に示す骨格構造を形成することができる。
Figure JPOXMLDOC01-appb-C000007
 
                         (4)
Figure JPOXMLDOC01-appb-C000008
 
                         (5)
Figure JPOXMLDOC01-appb-C000009
 
                         (6)
Figure JPOXMLDOC01-appb-C000010
 
                         (7)
 一般式(4)ないし一般式(7)中、X、Y1、2、は、前記一般式(2)および一般式(3)中の定義と同一である。
 一般式(6)ないし一般式(7)中、YはN-R、CR10、O、S、SeまたはSiR1112の中から選択されるいずれか1つであり、R~R12は前記一般式(2)および一般式(3)中の定義と同一である。
 一般式(4)ないし一般式(7)中、Zはそれぞれが相互に同一でも異なってもよく、CR13またはN(窒素原子)であり、それぞれのR13は相互に同一でも異なってもよく、水素原子、重水素原子、ハロゲン原子、シアノ基、ニトロ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルチオキシ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルアミノ基、置換基を有していてもよい炭素原子数3ないし10の直鎖状もしくは分岐状のアルキルシリル基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、置換もしくは無置換のアリールオキシ基、置換もしくは無置換のアリールチオキシ基、置換もしくは無置換のアリールアミノ基、置換もしくは無置換のアリールシリル基を表す。また、それぞれのR13はそれぞれの基同士で互いに結合したり、隣接する置換基と結合して脂環族、芳香族の単一環または多環を形成したりすることができ、前記脂環族、芳香族の単一環または多環の炭素原子はN、SおよびOの中から選択されたいずれか一つまたは複数の複素原子で置換されることができる。
 一般式(4)ないし一般式(7)中の、R13で表される「置換基を有していてもよい炭素原子数1~6の直鎖状もしくは分岐状のアルキル基」または「置換基を有していてもよい炭素原子数5~10のシクロアルキル基」における「炭素原子数1~6の直鎖状もしくは分岐状のアルキル基」または「炭素原子数5~10のシクロアルキル基」としては、具体的に、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基などをあげることができる。
 また、これらは置換基を有していてよく、置換基として、前記一般式(1)中のR~Rで表される「置換基を有する炭素数1~6の直鎖状もしくは分岐状のアルキル基」における「置換基」として示したものと同様のものをあげることができる。
 一般式(4)ないし一般式(7)中の、R13で表される「置換基を有していてもよい炭素原子数1~6の直鎖状もしくは分岐状のアルキルオキシ基」における「炭素原子数1~6の直鎖状もしくは分岐状のアルキルオキシ基」としては、具体的に、メチルオキシ基、エチルオキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、tert-ブチルオキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基などをあげることができる。
 また、これらは置換基を有していてよく、置換基として、前記一般式(1)中のR~Rで表される「置換基を有する炭素数1~6の直鎖状もしくは分岐状のアルキル基」における「置換基」として示したものと同様のものをあげることができる。
 一般式(4)ないし一般式(7)中の、R13で表される「置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルチオキシ基」における「炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルチオキシ基」としては、具体的に、メチルチオキシ基、エチルチオキシ基、n-プロピルチオキシ基、イソプロピルチオキシ基、n-ブチルチオキシ基、イソブチルチオキシ基、tert-ブチルチオキシ基、n-ペンチルチオキシ基、イソペンチルチオキシ基、ネオペンチルチオキシ基、n-ヘキシルチオキシ基などをあげることができる。
 また、これらは置換基を有していてよく、置換基として、前記一般式(1)中のR~Rで表される「置換基を有する炭素数1~6の直鎖状もしくは分岐状のアルキル基」における「置換基」として示したものと同様のものをあげることができる。
 一般式(4)ないし一般式(7)中の、R13で表される「置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルアミノ基」における「炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルアミノ基」としては、具体的に、メチルアミン基、エチルアミン基、n-プロピルアミン基、イソプロピルアミン基、n-ブチルアミン基、イソブチルアミン基、tert-ブチルアミン基、n-ペンチルアミン基、イソペンチルアミン基、ネオペンチルアミン基、n-ヘキシルアミン基などをあげることができる。
 また、これらは置換基を有していてよく、置換基として、前記一般式(1)中のR~Rで表される「置換基を有する炭素数1~6の直鎖状もしくは分岐状のアルキル基」における「置換基」として示したものと同様のものをあげることができる。
 一般式(4)ないし一般式(7)中の、R13で表される「置換基を有していてもよい炭素原子数3ないし10の直鎖状もしくは分岐状のアルキルシリル基」における「炭素原子数3ないし10の直鎖状もしくは分岐状のアルキルシリル基」としては、具体的に、トリメチルシリル基、トリエチルシリル基、トリ-n-プロピルシリル基、トリイソプロピルシリル基、n-ブチルジメチルシリル基、イソブチルジメチルシリル基、tert-ブチルジメチルシリル基などをあげることができる。
 また、これらは置換基を有していてよく、置換基として、前記一般式(1)中のR~Rで表される「置換基を有する炭素数1~6の直鎖状もしくは分岐状のアルキル基」における「置換基」として示したものと同様のものをあげることができる。
 一般式(4)ないし一般式(7)中の、R13で表される「置換もしくは無置換の芳香族炭化水素基」または「置換もしくは無置換の芳香族複素環基」における「芳香族炭化水素基」または「芳香族複素環基」としては、具体的に、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、ピリジル基、ピリミジニル基、トリアジニル基、フリル基、ピロリル基、チエニル基などをあげることができる。
 また、これらは置換基を有していてよく、置換基として、前記一般式(1)中のR~Rで表される「置換基を有するシリル基」、「置換基を有するホスフィノ基」、「置換基を有するホスフィンオキサイド基」、または「置換基を有する環形成炭素原子数6~25の芳香族炭化水素基」における「置換基」として示したものと同様のものをあげることができる。
 一般式(4)ないし一般式(7)中の、R13で表される「置換もしくは無置換のアリールオキシ基」における「アリールオキシ基」としては、具体的に、フェニルオキシ基、ビフェニリルオキシ基、ターフェニリルオキシ基、ナフチルオキシ基、アントラセニルオキシ基、フェナントレニルオキシ基、フルオレニルオキシ基、インデニルオキシ基、ピレニルオキシ基、ペリレニルオキシ基などをあげることができる。
 また、これらは置換基を有していてよく、置換基として、前記一般式(1)中のR~Rで表される「置換基を有するシリル基」、「置換基を有するホスフィノ基」、「置換基を有するホスフィンオキサイド基」、または「置換基を有する環形成炭素原子数6~25の芳香族炭化水素基」における「置換基」として示したものと同様のものをあげることができる。
 一般式(4)ないし一般式(7)中の、R13で表される「置換もしくは無置換のアリールチオキシ基」における「アリールチオキシ基」としては、具体的に、フェニルチオキシ基、ビフェニリルチオキシ基、ターフェニリルチオキシ基、ナフチルチオキシ基、アントラセニルチオキシ基、フェナントレニルチオキシ基、フルオレニルチオキシ基、インデニルチオキシ基、ピレニルチオキシ基、ペリレニルチオキシ基などをあげることができる。
 また、これらは置換基を有していてよく、置換基として、前記一般式(1)中のR~Rで表される「置換基を有するシリル基」、「置換基を有するホスフィノ基」、「置換基を有するホスフィンオキサイド基」、または「置換基を有する環形成炭素原子数6~25の芳香族炭化水素基」における「置換基」として示したものと同様のものをあげることができる。
 一般式(4)ないし一般式(7)中の、R13で表される「置換もしくは無置換のアリールアミノ基」における「アリールアミノ基」としては、具体的に、フェニルアミノ基、ビフェニリルアミノ基、ターフェニリルアミノ基、ナフチルアミノ基、アントラセニルアミノ基、フェナントレニルアミノ基、フルオレニルアミノ基、インデニルアミノ基、ピレニルアミノ基、ペリレニルアミノ基などをあげることができる。
 また、これらは置換基を有していてよく、置換基として、前記一般式(1)中のR~Rで表される「置換基を有するシリル基」、「置換基を有するホスフィノ基」、「置換基を有するホスフィンオキサイド基」、または「置換基を有する環形成炭素原子数6~25の芳香族炭化水素基」における「置換基」として示したものと同様のものをあげることができる。
 一般式(4)ないし一般式(7)中の、R13で表される「置換もしくは無置換のアリールシリル基」における「アリールシリル基」としては、具体的に、トリフェニルシリル基、トリナフチルシリル基、ターフェニリルシリル基などをあげることができる。
 また、これらは置換基を有していてよく、置換基として、前記一般式(1)中のR~Rで表される「置換基を有するシリル基」、「置換基を有するホスフィノ基」、「置換基を有するホスフィンオキサイド基」、または「置換基を有する環形成炭素原子数6~25の芳香族炭化水素基」における「置換基」として示したものと同様のものをあげることができる。
 本発明にかかる前記一般式(1)で表されるアリールアミン化合物は、従来の正孔輸送材料より正孔の移動度が大きく、優れた電子の阻止能力およびアモルファス性を有し、安定な薄膜状態であるため、これらを正孔輸送層の構成材料として使用した、本発明の有機EL素子は、高効率、低駆動電圧、長寿命の有機EL素子を実現することができる。
 さらに、本発明においては、正孔輸送層を第一正孔輸送層と第二正孔輸送層の2層構造とし、発光層側に位置する第二正孔輸送層を、前記一般式(1)のアリールアミン化合物により形成することによって、該アリールアミン化合物が有する電子阻止性能を最大限に活用することができ、より高効率で長寿命の有機EL素子を実現することができる。
一般式(1)で表されるアリールアミン化合物の例示として、化合物(1-1)~(1-15)の構造式を示す図である。 一般式(1)で表されるアリールアミン化合物の例示として、化合物(1-16)~(1-27)の構造式を示す図である。 一般式(1)で表されるアリールアミン化合物の例示として、化合物(1-28)~(1-39)の構造式を示す図である。 一般式(1)で表されるアリールアミン化合物の例示として、化合物(1-40)~(1-51)の構造式を示す図である。 一般式(1)で表されるアリールアミン化合物の例示として、化合物(1-52)~(1-63)の構造式を示す図である。 一般式(1)で表されるアリールアミン化合物の例示として、化合物(1-64)~(1-76)の構造式を示す図である。 一般式(2)で表される化合物の例示として、化合物(2-1)~(2-11)の構造式を示す図である。 一般式(2)で表される化合物の例示として、化合物(2-12)~(2-26)の構造式を示す図である。 一般式(3)で表される化合物の例示として、化合物(3-1)~(3-12)の構造式を示す図である。 本発明の実施例と比較例の有機EL素子構成を示す図である。
 本発明の有機EL素子に好適に用いられる、前記一般式(1)で表されるアリールアミン化合物の中で、好ましい化合物の具体例を図1~図6に示すが、これらの化合物に限定されるものではない。
 本発明の有機EL素子に好適に用いられる、前記一般式(2)で表される化合物の中で、好ましい化合物の具体例を図7~図8に示すが、本発明は、これらの化合物に限定されるものではない。
 本発明の有機EL素子に好適に用いられる、前記一般式(3)で表される化合物の中で、好ましい化合物の具体例を図9に示すが、本発明は、これらの化合物に限定されるものではない。
 一般式(1)で表されるアリールアミン化合物の精製はカラムクロマトグラフによる精製、シリカゲル、活性炭、活性白土等による吸着精製、溶媒による再結晶や晶析法、昇華精製法などによって行った。化合物の同定は、NMR分析によって行なった。物性値として、ガラス転移点(Tg)と仕事関数の測定を行った。ガラス転移点(Tg)は薄膜状態の安定性の指標となり、仕事関数は正孔輸送性や正孔阻止性の指標となるものである。その他、本発明の有機EL素子に用いられる化合物は、カラムクロマトグラフによる精製、シリカゲル、活性炭、活性白土等による吸着精製、溶媒による再結晶や晶析法などによって精製を行った後、最後に昇華精製法によって精製したものを用いた。
 ガラス転移点(Tg)は、粉体を用いて高感度示差走査熱量計(ブルカー・エイエックスエス製、DSC3100SA)によって測定した。
 仕事関数は、ITO基板の上に100nmの薄膜を作製して、イオン化ポテンシャル測定装置(住友重機械工業株式会社製、PYS-202)によって求めた。
 本発明の有機EL素子の構造としては、基板上に順次に、陽極、正孔輸送層、発光層、電子輸送層および陰極からなるもの、また、陽極と正孔輸送層の間に正孔注入層を有するもの、発光層と電子輸送層の間に正孔阻止層を有するもの、電子輸送層と陰極の間に電子注入層を有するものがあげられる。これらの多層構造においては有機層を何層か省略あるいは兼ねることが可能であり、例えば正孔注入層と正孔輸送層を兼ねた構成とすること、電子注入層と電子輸送層を兼ねた構成とすること、などもできる。また、同一の機能を有する有機層を2層以上積層した構成とすることが可能であり、正孔輸送層を2層積層した構成、発光層を2層積層した構成、電子輸送層を2層積層した構成、などもできる。本発明の有機EL素子の構造として、正孔輸送層が第一正孔輸送層と第二正孔輸送層の2層構造であることが好ましく、この場合の第二正孔輸送層は発光層に隣接していることが好ましく、この場合、電子阻止層として機能することができる。
 本発明の有機EL素子の陽極としては、ITOや金のような仕事関数の大きな電極材料が用いられる。本発明の有機EL素子の正孔注入層として、スターバースト型のトリフェニルアミン誘導体、種々のトリフェニルアミン4量体などの材料;銅フタロシアニンに代表されるポルフィリン化合物;ヘキサシアノアザトリフェニレンのようなアクセプター性の複素環化合物や塗布型の高分子材料、などを用いることができる。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 本発明の有機EL素子の正孔輸送層として使用できる正孔輸送性の材料としては、N,N’-ジフェニル-N,N’-ジ(m-トリル)ベンジジン(TPD)、NPD、N,N,N’,N’-テトラビフェニリルベンジジンなどのベンジジン誘導体、1,1-ビス[4-(ジ-4-トリルアミノ)フェニル]シクロヘキサン(TAPC)、特に分子中にトリフェニルアミン構造を2個、単結合またはヘテロ原子を含まない2価基で連結した構造を有するアリールアミン化合物、例えば、N、N、N’、N’-テトラビフェニリルベンジジンなどや、前記一般式(1)で表されるトリフェニルアミン誘導体などの、分子中にトリフェニルアミン構造を1個のみ有するアリールアミン化合物を用いるのが好ましい。また、分子中にトリフェニルアミン構造を3個以上、単結合またはヘテロ原子を含まない2価基で連結した構造を有するアリールアミン化合物、例えば、種々のトリフェニルアミン3量体および4量体など、種々のトリフェニルアミン誘導体などの有機アミン化合物を用いることができる。これらは、単独で成膜しても良いが、他の材料とともに混合して成膜した単層として使用しても良く、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としても良い。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 また、正孔注入層あるいは正孔輸送層において、該層に通常使用される材料に対し、さらにトリスブロモフェニルアミンヘキサクロルアンチモン、ラジアレン誘導体(例えば、特許文献6参照)などをPドーピングしたものや、TPDなどのベンジジン誘導体の構造をその部分構造に有する高分子化合物などを用いることができる。
 本発明の有機EL素子の、発光層側に位置する第二正孔輸送層としては、前記一般式(1)で表されるアリールアミン化合物が用いられる。前記一般式(1)で表されるアリールアミン化合物と混合もしくは同時に使用できる、正孔輸送性の材料としては、4,4’,4’’-トリ(N-カルバゾリル)トリフェニルアミン(TCTA)、9,9-ビス[4-(カルバゾール-9-イル)フェニル]フルオレン、1,3-ビス(カルバゾール-9-イル)ベンゼン(mCP)、2,2-ビス(4-カルバゾール-9-イルフェニル)アダマンタン(Ad-Cz)などのカルバゾール誘導体、9-[4-(カルバゾール-9-イル)フェニル]-9-[4-(トリフェニルシリル)フェニル]-9H-フルオレンに代表されるトリフェニルシリル基とトリアリールアミン構造を有する化合物などの電子阻止作用を有する化合物をあげることができる。
 これらは、単独で成膜しても良いが、他の材料とともに混合して成膜した単層として使用しても良く、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としても良い。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 本発明の有機EL素子の発光層として、分子中にピレン骨格を有するピレン誘導体、前記一般式(2)または一般式(3)で表される化合物、などの青色発光性ドーパントが好ましく用いられる。そのほか、Alqをはじめとするキノリノール誘導体の金属錯体の他、各種の金属錯体、アントラセン誘導体、ビススチリルベンゼン誘導体、ピレン誘導体、オキサゾール誘導体、ポリパラフェニレンビニレン誘導体などを用いることができる。また、発光層をホスト材料とドーパント材料とで構成しても良く、その場合、ホスト材料として、分子中にアントラセン骨格を有するアントラセン誘導体が好ましく用いられるが、そのほか、前記発光材料に加え、インドール環を縮合環の部分構造として有する複素環化合物、カルバゾール環を縮合環の部分構造として有する複素環化合物、カルバゾール誘導体、チアゾール誘導体、ベンズイミダゾール誘導体、ポリジアルキルフルオレン誘導体などを用いることができる。またドーパント材料としては、分子中にピレン骨格を有するピレン誘導体、前記一般式(2)または一般式(3)で表される化合物が好ましく用いられるが、そのほか、インドール環を縮合環の部分構造として有する複素環化合物、カルバゾール環を縮合環の部分構造として有する複素環化合物、カルバゾール誘導体、チアゾール誘導体、ベンズイミダゾール誘導体、ポリジアルキルフルオレン誘導体、キナクリドン、クマリン、ルブレン、ペリレン、およびそれらの誘導体、ベンゾピラン誘導体、インデノフェナントレン誘導体、ローダミン誘導体、アミノスチリル誘導体などを用いることができる。これらは、単独で成膜しても良いが、他の材料とともに混合して成膜した単層として使用しても良く、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としても良い。
 また、発光材料として燐光発光体を使用することも可能である。燐光発光体としては、イリジウムや白金などの金属錯体の燐光発光体を使用することができる。FIrpic、FIr6などの青色の燐光発光体が用いられ、このときのホスト材料としては正孔注入・輸送性のホスト材料として4,4’-ジ(N-カルバゾリル)ビフェニル(CBP)やTCTA、mCPなどのカルバゾール誘導体などを用いることができる。電子輸送性のホスト材料として、p-ビス(トリフェニルシリル)ベンゼン(UGH2)や2,2’,2’’-(1,3,5-フェニレン)-トリス(1-フェニル-1H-ベンズイミダゾール)(TPBI)などを用いることができ、高性能の有機EL素子を作製することができる。
 燐光性の発光材料のホスト材料へのドープは濃度消光を避けるため、発光層全体に対して1~30重量パーセントの範囲で、共蒸着によってドープすることが好ましい。
 また、発光材料としてPIC-TRZ、CC2TA、PXZ-TRZ、4CzIPNなどのCDCB誘導体などの遅延蛍光を放射する材料を使用することも可能である。(例えば、非特許文献3参照)
 これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 本発明の有機EL素子の正孔阻止層として、バソクプロイン(BCP)などのフェナントロリン誘導体や、アルミニウム(III)ビス(2-メチル-8-キノリナート)-4-フェニルフェノレート(BAlq)などのキノリノール誘導体の金属錯体の他、各種の希土類錯体、トリアゾール誘導体、トリアジン誘導体、オキサジアゾール誘導体など、正孔阻止作用を有する化合物を用いることができる。これらの材料は電子輸送層の材料を兼ねてもよい。これらは、単独で成膜しても良いが、他の材料とともに混合して成膜した単層として使用しても良く、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としても良い。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 本発明の有機EL素子の電子輸送層として、Alq、BAlqをはじめとするキノリノール誘導体の金属錯体、各種金属錯体、トリアゾール誘導体、トリアジン誘導体、オキサジアゾール誘導体、ピリジン誘導体、ピリミジン誘導体、ベンズイミダゾール誘導体、チアジアゾール誘導体、アントラセン誘導体、カルボジイミド誘導体、キノキサリン誘導体、ピリドインドール誘導体、フェナントロリン誘導体、シロール誘導体などを用いることができる。これらは、単独で成膜しても良いが、他の材料とともに混合して成膜した単層として使用しても良く、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としても良い。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 本発明の有機EL素子の電子注入層として、フッ化リチウム、フッ化セシウムなどのアルカリ金属塩、フッ化マグネシウムなどのアルカリ土類金属塩、リチウムキノリノールなどのキノリノール誘導体の金属錯体、酸化アルミニウムなどの金属酸化物、あるいはイッテルビウム(Yb)、サマリウム(Sm)、カルシウム(Ca)、ストロンチウム(Sr)、セシウム(Cs)などの金属などを用いることができるが、電子輸送層と陰極の好ましい選択においては、これを省略することができる。
 さらに、電子注入層あるいは電子輸送層において、該層に通常使用される材料に対し、さらにセシウムなどの金属をNドーピングしたものを用いることができる。
 本発明の有機EL素子の陰極として、アルミニウムのような仕事関数の低い電極材料や、マグネシウム銀合金、マグネシウムインジウム合金、アルミニウムマグネシウム合金のような、より仕事関数の低い合金が電極材料として用いられる。
 本発明の有機EL素子のキャッピング層として、分子中にトリフェニルアミン構造を2~6個、単結合またはヘテロ原子を含まない2価基で連結した構造を有するアリールアミン化合物、ベンゾアゾール環構造を有するアミン化合物、分子中に芳香族複素環基を有するアミン化合物などを用いるのが好ましい。これらは、単独で成膜してもよいが、異なる材料どうしで混合して成膜した単層として使用してもよく、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としてもよい。これらの材料は蒸着法の他に、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 以下、本発明の実施の形態について、実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 <([1,1’:4’,1’’]ターフェニル-4-イル)-(4-ナフタレン-1-イル-フェニル)-[1,1’:2’,1’’]ターフェニル-4’-イル-アミン(1-13)の合成>
 窒素置換した反応容器に[1,1’:2’,1’’]ターフェニル-4’-イル-アミン33.8g、1-(4-ブロモフェニル)ナフタレン30.0g、tert-ブトシキナトリウム12.2g、トルエン300mLを加えて、30分間超音波を照射しながら窒素ガスを通気した。トリス(ジベンジリデンアセトン)ジパラジウム(0)1.9g、2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル2.6gを加えて加熱し、14時間還流撹拌した。80℃まで冷却して、熱濾過により無機物を除いた後、濾液を濃縮した。残渣をトルエン、ヘプタンを用いた再結晶を行うことによって、(4-ナフタレン-1-イル-フェニル)-[1,1’;2’,1’’]ターフェニル-4’-イル-アミンの褐色固体37.0g(収率78.1%)を得た。
 得られた(4-ナフタレン-1-イル-フェニル)-[1,1’;2’,1’’]ターフェニル-4’-イル-アミン8.0gを窒素置換した反応容器に加え、続いて、4-ブロモ-[1,1’:4’,1’’]ターフェニル5.0g、tert-ブトシキナトリウム2.3g、トルエン50mLを加えて、30分間超音波を照射しながら窒素ガスを通気した。酢酸パラジウム0.07g、トリ(tert-ブチルホスフィン)の50%トルエン溶液0.30gを加えて加熱し、4時間還流撹拌した。80℃まで冷却して、熱濾過により無機物を除いた後、濾液を濃縮した。残渣をトルエン、アセトンを用いた再結晶を行うことによって、([1,1’:4’,1’’]ターフェニル-4-イル)-(4-ナフタレン-1-イル-フェニル)-[1,1’:2’,1’’]ターフェニル-4’-イル-アミン(1-13)の白色固体13.8g(収率78.8%)を得た。
Figure JPOXMLDOC01-appb-C000011
 
                         (1-13)
 得られた白色固体についてNMRを使用して構造を同定した。
H-NMR(CDCl)で以下の37個の水素のシグナルを検出した。
δ(ppm)=8.03-8.06(1H)、7.82-7.90(2H)、7.58-7.69(8H)、7.42-7.53(8H)、7.13-7.27(18H)。
 <([1,1’:4’,1’’]ターフェニル-4-イル)-(4-ナフタレン-2-イル-フェニル)-[1,1’:2’,1’’]ターフェニル-4’-イル-アミン(1-17)の合成>
 実施例1において、1-(4-ブロモフェニル)ナフタレンを2-(4-ブロモフェニル)ナフタレンに代えて、同様の操作を行い([1,1’:4’,1’’]ターフェニル-4-イル)-(4-ナフタレン-2-イル-フェニル)-[1,1’:2’,1’’]ターフェニル-4’-イル-アミン(1-17)の淡黄色固体5.6g(収率57%)を得た。
Figure JPOXMLDOC01-appb-C000012
 
                         (1-17)
 得られた淡黄色固体についてNMRを使用して構造を同定した。
H-NMR(CDCl)で以下の37個の水素のシグナルを検出した。
δ(ppm)=7.82-8.05(3H)、7.52-7.70(8H)、7.39-7.51(8H)、7.10-7.29(18H)。
 <(ビフェニル-4-イル)-(4-ナフタレン-2-イル-フェニル)-[1,1’:2’,1’’:4’’,1’’’:4’’’:1’’’’]-キンクフェニル-5’-イル-アミン(1-30)の合成>
 反応容器に(6-ブロモ-ビフェニル-3-イル)-(4-ナフタレン-2-イル-フェニル)-ビフェニル-4-イル-アミン8.0g、2-([1,1’:4,1’’]ターフェニル-4-イル)-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン5.7g、炭酸水素ナトリウム1.7g、テトラヒドロフラン100mL、水30mLを加えて、30分間超音波を照射しながら窒素ガスを通気した。ジフェニルホスフィノフェロセンパラジウムジクロリド0.2gを加えて12時間還流撹拌した。冷却した後、反応液にメタノール200mLを加え、1時間撹拌した後、析出した固体を濾過によって採取した。得られた固体にトルエン100mLを加えた後、80℃に加熱し、シリカゲル、活性白土を用いた吸着精製を行った。固体を濾過により除き、濾液を濃縮した後、残渣をトルエン、アセトンを用いた再結晶を行うことによって、(ビフェニル-4-イル)-(4-ナフタレン-2-イル-フェニル)-[1,1’:2’,1’’:4’’,1’’’:4’’’:1’’’’]-キンクフェニル-5’-イル-アミン(1-30)の白色固体8.4g(収率84%)を得た。
Figure JPOXMLDOC01-appb-C000013
 
                         (1-30)
 得られた白色固体についてNMRを使用して構造を同定した。
H-NMR(CDCl)で以下の41個の水素のシグナルを検出した。
δ(ppm)=8.03(1H)、7.83-7.90(3H)、7.73-7.76(1H)、7.29-7.67(28H)、7.15-7.24(8H)。
 <(4-ナフタレン-1-イル-フェニル)-(5’-フェニル-[1,1’:3’,1’’]-ターフェニル-4-イル)-[1,1’:2’,1’’]ターフェニル-4’-イル-アミン(1-32)の合成>
 実施例1において、4-ブロモ-[1,1’:4’,1’’]ターフェニルを4-クロロ-5’-フェニル-[1,1’:3’,1’’]ターフェニルに代えて、同様の操作を行い(4-ナフタレン-1-イル-フェニル)-(5’-フェニル-[1,1’:3’,1’’]ターフェニル-4-イル)-[1,1’:2’,1’’]ターフェニル-4’-イル-アミン(1-32)の白色固体3.7g(収率37%)を得た。
Figure JPOXMLDOC01-appb-C000014
 
                         (1-32)
 得られた白色固体についてNMRを使用して構造を同定した。
H-NMR(CDCl)で以下の41個の水素のシグナルを検出した。
δ(ppm)=8.04-8.06(1H)、7.64-7.91(11H)、7.32-7.53(18H)、7.12-7.29(11H)。
 <([1,1’:4,’,1’’]ターフェニル-4-イル)-{4-(3-フェニルナフタレン-1-イル)フェニル}-[1,1’;2’,1’’]ターフェニル-4’-イル-アミン(1-41)の合成>
 実施例1において、1-(4-ブロモフェニル)ナフタレンを1-(4-クロロフェニル)-3-フェニルナフタレンに代えて、同様の操作を行い、([1,1’:4,’,1’’]ターフェニル-4-イル)-{4-(3-フェニルナフタレン-1-イル)フェニル}-[1,1’;2’,1’’]ターフェニル-4’-イル-アミン(1-41)の白色固体5.0g(収率47%)を得た。
Figure JPOXMLDOC01-appb-C000015
 
                         (1-41)
 得られた白色固体についてNMRを使用して構造を同定した。
H-NMR(CDCl)で以下の41個の水素のシグナルを検出した。
δ(ppm)=8.04-8.05(2H)、7.94-7.96(1H)、7.76-7.78(3H)、7.59-7.67(8H)、7.43-7.52(8H)、7.12-7.22(19H)。
 <(4’-ナフタレン-1-イル-ビフェニル-4-イル)-(4-ナフタレン-1-イル-フェニル)-[1,1’:2’,1’’]ターフェニル-4’-イル-アミン(1-44)の合成>
 実施例1において、4-ブロモ-[1,1’:4’,1’’]ターフェニルを1-(4’-ブロモ-ビフェニル-4-イル)ナフタレンに代えて、同様の操作を行い(4’-ナフタレン-1-イル-ビフェニル-4-イル)-(4-ナフタレン-1-イル-フェニル)-[1,1’:2’,1’’]ターフェニル-4’-イル-アミン(1-44)の白色固体4.5g(収率48%)を得た。
Figure JPOXMLDOC01-appb-C000016
 
                         (1-44)
 得られた白色固体についてNMRを使用して構造を同定した。
H-NMR(CDCl)で以下の39個の水素のシグナルを検出した。
δ(ppm)=8.05-8.07(1H)、7.98-8.00(1H)、7.83-7.91(4H)、7.71-7.73(2H)、7.63-7.65(2H)、7.33-7.57(19H)、7.12-7.21(10H)。
 <(4-ナフタレン-1-イル-フェニル)-{4-(4-フェニルナフタレン-1-イル)フェニル}-[1,1’:2’,1’’]ターフェニル-4’-イル-アミン(1-58)の合成>
 実施例1において、4-ブロモ-[1,1’:4’,1’’]ターフェニルを1-(4-クロロフェニル)-4-フェニルナフタレンに代えて、同様の操作を行い(4-ナフタレン-1-イル-フェニル)-{4-(4-フェニルナフタレン-1-イル)フェニル}-[1,1’:2’,1’’]ターフェニル-4’-イル-アミン(1-58)の白色固体4.2g(収率57%)を得た。
Figure JPOXMLDOC01-appb-C000017
 
                         (1-58)
 得られた白色固体についてNMRを使用して構造を同定した。
H-NMR(CDCl)で以下の39個の水素のシグナルを検出した。
δ(ppm)=8.12-8.14(1H)、8.05-8.07(1H)、7.96-7.98(1H)、7.89-7.91(1H)、7.83-7.85(1H)、7.32-7.55(24H)、7.14-7.23(10H)。
 <([1,1’:4’,1’’]ターフェニル-4-イル)-(4-ナフタレン-1-イル-フェニル)-[1,1’:2’、1’’:4’’、1’’’]クォーターフェニル-5’-イル-アミン(1-14)の合成>
 反応容器に(4-ナフタレン-1-イル-フェニル)-(6-ブロモ-ビフェニル-3-イル)アミン12.5g、4-ビフェニルボロン酸6.6g、炭酸水素ナトリウム3.5g、テトラヒドロフラン100mL、水50mLを加えた。ジフェニルホスフィノフェロセンパラジウムジクロリド0.5gを加えて12時間還流撹拌した。冷却した後、酢酸エチルを用いて抽出し、有機層を濃縮した。残渣にトルエン150mLを加えて加熱撹拌した後、80℃でシリカゲル8gを加えて1時間撹拌し、固体を熱濾過により除いた。濾液を濃縮し、残渣をジクロロメタン、ヘプタンを用いた再結晶を2回繰り返して行うことによって、(4-ナフタレン-1-イル-フェニル)-[1,1’:2’、1’’:4’’、1’’’]クォーターフェニル-5’-イル-アミンの白色固体14.2g(収率97.9%)を得た。
 得られた(4-ナフタレン-1-イル-フェニル)-[1,1’:2’、1’’:4’’、1’’’]クォーターフェニル-5’-イル-アミン14.2gを窒素置換した反応容器に加え、続いて、4-ブロモ-[1,1’:4’,1’’]ターフェニル9.2g、tert-ブトシキナトリウム3.9g、トルエン140mLを加えた。酢酸パラジウム0.12g、トリ(tert-ブチルホスフィン)の50%トルエン溶液0.50gを加えて加熱し、4時間還流撹拌した。室温まで冷却した後、反応液にメタノール140mLを加えて1時間撹拌し、析出した固体を濾過により採取した。固体にトルエン200mLを加えて80℃まで加熱した後、活性白土10g、シリカゲル10gを加えて1時間撹拌し、熱濾過により固体を除いた。濾液を濃縮し、残渣をトルエン、アセトンを用いた再結晶を行うことによって、([1,1’:4’,1’’]ターフェニル-4-イル)-(4-ナフタレン-1-イル-フェニル)-[1,1’:2’、1’’:4’’、1’’’]クォーターフェニル-5’-イル-アミン(1-14)の白色固体16.9g(収率82.8%)を得た。
Figure JPOXMLDOC01-appb-C000018
 
                         (1-14)
 得られた白色固体についてNMRを使用して構造を同定した。
H-NMR(CDCl)で以下の41個の水素のシグナルを検出した。
δ(ppm)=8.03-8.06(1H)、7.89-7.91(1H)、7.83-7.85(1H)、7.57-7.67(10H)、7.27-7.52(21H)、7.16-7.23(7H)。
 <([1,1’:4’,1’’]ターフェニル-4-イル)-(4-ナフタレン-1-イル-フェニル)-[1,1’:2’,1’’:4’’,1’’’]クォーターフェニル-4’-イル-アミン(1-27)の合成>
 窒素置換した反応容器に(4-ナフタレン-1-イル-フェニル)-[1,1’:4’,1’’]ターフェニル-3-イル-アミン9.2g、4-ブロモ-[1,1’:4’,1’’]ターフェニル5.8g、tert-ブトシキナトリウム2.2g、トルエン90mLを加えた。トリス(ジベンジリデンアセトン)ジパラジウム(0)0.1g、トリ(tert-ブチルホスフィン)の50%トルエン溶液0.2gを加えて加熱し、4時間還流撹拌した。80℃まで冷却し、熱濾過により無機物を除いた後、濾液を濃縮した。残渣にトルエン130mLを加えて加熱撹拌し、80℃でシリカゲル6g、活性白土6gを加えて1時間撹拌した。熱濾過により固体を除き、濾液を濃縮した。残渣をジクロロメタン、アセトンを用いた再結晶を行うことによって、([1,1’:4’,1’’]ターフェニル-4-イル)-(4-ナフタレン-1-イル-フェニル)-[1,1’:4’,1’’]ターフェニル-3-イル-アミンの白色固体11.4g(収率89.8%)を得た。
 得られた([1,1’:4’,1’’]ターフェニル-4-イル)-(4-ナフタレン-1-イル-フェニル)-[1,1’:4’,1’’]ターフェニル-3-イル-アミン11.4gを窒素置換した反応容器に加え、続いて、ジメチルホルムアミド114mLを加え、0℃に冷却した。N-ブロモスクシンイミド3.0gをゆっくり加え、0℃で1時間撹拌した後、室温までゆっくり昇温し、3時間撹拌した。反応液を水360mLに加え、析出した固体を濾過により採取した。固体にトルエン130mLを加え、撹拌加熱した後、80℃でシリカゲル6gを加え、1時間撹拌した。固体を熱濾過により除き、濾液を濃縮した。残渣をジクロロメタン、アセトンで再結晶することによって、([1,1’:4’,1’’]ターフェニル-4-イル)-(4-ナフタレン-1-イル-フェニル)-(6-ブロモ-[1,1’:4’,1’’]ターフェニル-3-イル)アミンの白色固体8.7g(収率69%)を得た。
 得られた([1,1’:4’,1’’]ターフェニル-4-イル)-(4-ナフタレン-1-イル-フェニル)-(6-ブロモ-[1,1’:4’,1’’]ターフェニル-3-イル)アミン8.7gを窒素置換した反応容器に加え、続いて、フェニルボロン酸1.6g、炭酸水素ナトリウム1.5g、テトラヒドロフラン100mL、水35mLを加えた。ジフェニルホスフィノフェロセンパラジウムジクロリド0.2gを加えて、12時間還流撹拌した。冷却した後、酢酸エチルを用いて抽出し、有機層を濃縮した。残渣にトルエン100mLを加え、加熱撹拌した後、80℃でシリカゲル5gを加えて1時間撹拌し、固体を熱濾過により除いた。濾液を濃縮し、残渣をジクロロメタン、アセトンを用いた再結晶を2回繰り返して行うことによって、([1,1’:4’,1’’]ターフェニル-4-イル)-(4-ナフタレン-1-イル-フェニル)-[1,1’:2’,1’’:4’’,1’’’]クォーターフェニル-4’-イル-アミン(1-27)の白色固体6.8g(収率78%)を得た。
Figure JPOXMLDOC01-appb-C000019
 
                         (1-27)
 得られた白色固体についてNMRを使用して構造を同定した。
H-NMR(CDCl)で以下の41個の水素のシグナルを検出した。
δ(ppm)=8.04-8.06(1H)、7.89-7.91(1H)、7.83-7.85(1H)、7.60-7.70(8H)、7.27-7.55(23H)、7.18-7.23(7H)。
 <(ビフェニル-4-イル)-(4’-トリフェニルシリル-ビフェニル-4-イル)-[1,1’:2’,1’’]ターフェニル-4’-イル-アミン(1-62)の合成>
 反応容器に4-ブロモトリフェニルシラン20.0g、4-クロロフェニルボロン酸9.0g、炭酸カリウム10.0g、トルエン160mL、エタノール80mL、水60mLを加えた。テトラキストリフェニルホスフィンパラジウム1.1gを加えて12時間還流撹拌した。冷却した後、分液し、有機層を水、続いて飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾過により除き、濾液を加熱撹拌した後、80℃でシリカゲル10gを加えた。1時間撹拌し、熱濾過によって固体を除き、濾液を濃縮した。残渣をトルエン、ヘプタンを用いた再結晶を行うことによって、4-クロロ-4’-トリフェニルシリル-ビフェニルの黄白色固体12.7g(収率59.0%)を得た。
 得られた4-クロロ-4’-トリフェニルシリル-ビフェニル6.0gを、(ビフェニル-4-イル)-[1,1’:2’,1’’]ターフェニル-4-イル-アミン6.6gと共に窒素置換した反応容器に加え、続いて、tert-ブトシキナトリウム2.6g、トルエン60mLを加えた。ビス[トリ(tert-ブチルホスフィン)]パラジウム0.14gを加えて加熱し、3時間還流撹拌した。80℃まで冷却し、反応液にシリカゲル6gを加えた後、30分撹拌し、熱濾過により固体を除いた。濾液を濃縮し、残渣をカラムクロマトグラフィー(シリカゲル200g;ヘプタン:ジクロロメタン=3:1)で精製することによって、(ビフェニル-4-イル)-(4’-トリフェニルシリル-ビフェニル-4-イル)-[1,1’:2’,1’’]ターフェニル-4’-イル-アミン(1-62)の白色固体3.5g(収率30%)を得た。
Figure JPOXMLDOC01-appb-C000020
 
                         (1-62)
 得られた白色固体についてNMRを使用して構造を同定した。
H-NMR(CDCl)で以下の47個の水素のシグナルを検出した。
δ(ppm)=8.03(1H)、7.83-7.90(3H)、7.72-7.75(1H)、7.55-7.67(14H)、7.26-7.47(17H)、7.07-7.23(11H)。
 <([1,1’:2’,1’’]ターフェニル-4’-イル)-(4-ナフタレン-1-イル-フェニル)-[1,1’:4’,1’’:4’’,1’’’]クォーターフェニル-4-イル-アミン(1-68)の合成>
 窒素置換した反応容器に(4-ナフタレン-1-イル-フェニル)-[1,1’:2’,1’’]ターフェニル-4’-イル-アミン25.0g、1-ブロモ-4-ヨードベンゼン17.4g、tert-ブトシキナトリウム7.7g、トルエン375mLを加えた。酢酸パラジウム0.13g、4,5’-ビス(ジフェニルホスフィノ)-9,9-ジメチルキサンテン0.32gを加えて加熱し、14時間還流撹拌した。80℃まで冷却し、熱濾過により無機物を除き、濾液を濃縮した。残渣をカラムクロマトグラフィー(シリカゲル200g;ヘプタン:ジクロロメタン=3:1)で精製することによって、(4-ブロモフェニル)-(4-ナフタレン-1-イル-フェニル)-[1,1’:2’,1’’]ターフェニル-4’-イル-アミンの黄白色固体28.0g(収率83.1%)を得た。
 得られた(4-ブロモフェニル)-(4-ナフタレン-1-イル-フェニル)-[1,1’:2’,1’’]ターフェニル-4’-イル-アミン8.0gを反応容器に加え、続いて、2-([1,1’:4’,1’’]ターフェニル-4-イル)-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン5.2g、炭酸水素ナトリウム1.7g、テトラヒドロフラン96mL、水32mLを加えた。ジフェニルホスフィノフェロセンパラジウムジクロリド0.22gを加えて4時間還流撹拌した。冷却した後、酢酸エチルを用いて抽出し、有機層を水、続いて飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤を濾過によって除き、濾液を濃縮した。残渣にトルエン100mLを加えた後、80℃でシリカゲル5gを加えた。1時間撹拌した後、熱濾過により固体を除き、濾液を濃縮した。残渣をテトラヒドロフラン、アセトンを用いた再結晶を行うことによって、([1,1’:2’,1’’]ターフェニル-4’-イル)-(4-ナフタレン-1-イル-フェニル)-[1,1’:4’,1’’:4’’,1’’’]クォーターフェニル-4-イル-アミン(1-67)の黄白色固体4.6g(収率46%)を得た。
Figure JPOXMLDOC01-appb-C000021
 
                         (1-68)
 得られた黄白色固体についてNMRを使用して構造を同定した。
H-NMR(CDCl)で以下の41個の水素のシグナルを検出した。
δ(ppm)=8.04-8.06(1H)、7.83-7.91(2H)、7.60-7.73(12H)、7.43-7.52(8H)、7.13-7.38(18H)。
<化合物(2-11)の合成>
 反応容器に1-ブロモベンゼン(D-置換):45.0g、4-tert-ブチルアニリン:58.0g、酢酸パラジウム(II):1.0g、tert-ブトシキナトリウム:30.0g、ビス(ジフェニルホスフィノ)-1,1’-ビナフチル:2.0g、トルエン:450mLを加えて24時間還流撹拌した。放冷した後、濃縮してカラムクロマトグラフによる精製を行うことで、下記化合物(2-11a)の粉体:49.9g(収率78%)を得た。
Figure JPOXMLDOC01-appb-C000022
 
                         (2-11a)
 反応容器に上記化合物(2-11a):20.0g、下記化合物(2-11b):18.4g、酢酸パラジウム(II):0.5g、tert-ブトシキナトリウム:18.9g、トリ(tert-ブチル)ホスフィン:0.8g、トルエン:200mLを加えて24時間還流撹拌した。放冷した後、濃縮してカラムクロマトグラフによる精製を行うことで、下記化合物(2-11c)の粉体:21.5g(収率84%)を得た。
Figure JPOXMLDOC01-appb-C000023
 
                         (2-11b)
Figure JPOXMLDOC01-appb-C000024
 
                         (2-11c)
 反応容器に上記化合物(2-11c):12.0g、tert-ブチルベンゼン120mLを加えて-78℃でn-ブチルリチウム42.5mLを滴下した後、60℃で3時間撹拌ながら窒素ガスを通気した。次に、-78℃でボロントリブロミド11.3gを滴下した後、常温で1時間撹拌し、さらに0℃でN,N-ジイソプロピルエチルアミン5.9gを滴下した後、120℃で2時間撹拌した。放冷した後、酢酸ナトリウム水溶液を入れて撹拌して、酢酸エチルで抽出して、有機層を濃縮した後、カラムクロマトグラフによる精製を行うことで、下記化合物(2-11)の粉体:1.7g(収率11%)を得た。
Figure JPOXMLDOC01-appb-C000025
 
                         (2-11)
 一般式(1)で表されるアリールアミン化合物について、高感度示差走査熱量計(ブルカー・エイエックスエス製、DSC3100SA)によってガラス転移点(Tg)を測定した。測定結果を、下記に示した。
                     ガラス転移点(Tg)
実施例 1の化合物(1-13)      111.1℃
実施例 2の化合物(1-17)      109.7℃
実施例 3の化合物(1-30)      123.7℃
実施例 4の化合物(1-32)      121.0℃
実施例 5の化合物(1-41)      125.2℃
実施例 6の化合物(1-44)      118.7℃
実施例 7の化合物(1-58)      120.7℃
実施例 8の化合物(1-14)      120.4℃
実施例 9の化合物(1-27)      123.3℃
実施例10の化合物(1-62)      124.0℃
実施例11の化合物(1-68)      120.6℃
 一般式(1)で表されるアリールアミン化合物は100℃以上のガラス転移点(Tg)を有しており、薄膜状態が安定であることを示すものである。
 一般式(1)で表されるアリールアミン化合物を用いて、ITO基板の上に膜厚100nmの蒸着膜を作製して、イオン化ポテンシャル測定装置(住友重機械工業株式会社製、PYS-202)によって仕事関数を測定した。測定結果を、下記に示した。
                      仕事関数
実施例 1の化合物(1-13)      5.69eV
実施例 2の化合物(1-17)      5.65eV
実施例 3の化合物(1-30)      5.69eV
実施例 4の化合物(1-32)      5.75eV
実施例 5の化合物(1-41)      5.69eV
実施例 6の化合物(1-44)      5.71eV
実施例 7の化合物(1-58)      5.75eV
実施例 8の化合物(1-14)      5.71eV
実施例 9の化合物(1-27)      5.72eV
実施例10の化合物(1-62)      5.71eV
実施例11の化合物(1-68)      5.69eV
 一般式(1)で表されるアリールアミン化合物はNPD、TPDなどの一般的な正孔輸送材料がもつ仕事関数5.4eVと比較して、好適なエネルギー準位を示しており、良好な正孔輸送能力を有し、優れた電子の阻止能力を有することが分かる。
 有機EL素子は、図10に示すように、ガラス基板1上に透明陽極2として反射ITO電極をあらかじめ形成したものの上に、正孔注入層3、第一正孔輸送層4、第二正孔輸送層5、発光層6、電子輸送層7、電子注入層8、陰極9、キャッピング層10の順に蒸着して作製した。
 具体的には、ガラス基板1上に透明陽極2として、膜厚50nmのITO、膜厚100nmの銀合金の反射膜、膜厚5nmのITOを順に製膜し、イソプロピルアルコール中にて超音波洗浄を20分間行った後、250℃に加熱したホットプレート上にて10分間乾燥を行った。その後、UVオゾン処理を15分間行った後、このITO付きガラス基板を真空蒸着機内に取り付け、0.001Pa以下まで減圧した。続いて、透明陽極2を覆うように正孔注入層3として、下記構造式の電子アクセプター(Acceptor-1)と下記構造式の化合物(HTM-1)を、蒸着速度比がAcceptor-1:化合物(HTM-1)=3:97となる蒸着速度で二元蒸着を行い、膜厚10nmとなるように形成した。この正孔注入層3の上に、第一正孔輸送層4として下記構造式の化合物(HTM-1)を膜厚140nmとなるように形成した。この第一正孔輸送層4の上に、第二正孔輸送層5として実施例1の化合物(1-13)を膜厚5nmになるように形成した。この第二正孔輸送層5の上に、発光層6として実施例12の化合物(2-11)と下記構造式の化合物(EMH-1)を、蒸着速度比が化合物(2-11):化合物(EMH-1)=5:95となる蒸着速度で二元蒸着を行い、膜厚20nmとなるように形成した。この発光層6の上に、電子輸送層7として下記構造式の化合物(ETM-1)と下記構造式の化合物(ETM-2)を、蒸着速度比が化合物(ETM-1):化合物(ETM-2)=50:50となる蒸着速度で二元蒸着を行い、膜厚30nmとなるように形成した。この電子輸送層7の上に、電子注入層8としてフッ化リチウムを膜厚1nmとなるように形成した。この電子注入層8の上に、陰極9としてマグネシウム銀合金を膜厚12nmとなるように形成した。最後に、キャッピング層10として下記構造式の化合物(CPL-1)を膜厚60nmとなるように形成した。作製した有機EL素子について、大気中、常温で直流電圧を印加した発光特性の測定を行った。その結果を表1にまとめて示した。
Figure JPOXMLDOC01-appb-C000026
 
                      (Acceptor-1)
Figure JPOXMLDOC01-appb-C000027
 
                         (HTM-1)
Figure JPOXMLDOC01-appb-C000028
 
                         (1-13)
Figure JPOXMLDOC01-appb-C000029
 
                         (2-11)
Figure JPOXMLDOC01-appb-C000030
 
                         (EMH-1)
Figure JPOXMLDOC01-appb-C000031
 
                         (ETM-1)
Figure JPOXMLDOC01-appb-C000032
 
                         (ETM-2)
Figure JPOXMLDOC01-appb-C000033
 
                         (CPL-1)
 実施例15において、第二正孔輸送層5の材料として実施例1の化合物(1-13)に代えて実施例2の化合物(1-17)を用いた以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行なった。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
Figure JPOXMLDOC01-appb-C000034
 
                         (1-17)
 実施例15において、第二正孔輸送層5の材料として実施例1の化合物(1-13)に代えて実施例3の化合物(1-30)を用いた以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行なった。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
Figure JPOXMLDOC01-appb-C000035
 
                      (1-30)
 実施例15において、第二正孔輸送層5の材料として実施例1の化合物(1-13)に代えて実施例4の化合物(1-32)を用いた以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行なった。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
Figure JPOXMLDOC01-appb-C000036
 
                         (1-32)
 実施例15において、第二正孔輸送層5の材料として実施例1の化合物(1-13)に代えて実施例5の化合物(1-41)を用いた以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行なった。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
Figure JPOXMLDOC01-appb-C000037
 
                         (1-41)
 実施例15において、第二正孔輸送層5の材料として実施例1の化合物(1-13)に代えて実施例6の化合物(1-44)を用いた以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行なった。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
Figure JPOXMLDOC01-appb-C000038
 
                         (1-44)
 実施例15において、第二正孔輸送層5の材料として実施例1の化合物(1-13)に代えて実施例7の化合物(1-58)を用いた以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行なった。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
Figure JPOXMLDOC01-appb-C000039
 
                         (1-58)
 実施例15において、第二正孔輸送層5の材料として実施例1の化合物(1-13)に代えて実施例7の化合物(1-14)を用いた以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行なった。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
Figure JPOXMLDOC01-appb-C000040
 
                         (1-14)
 実施例15において、第二正孔輸送層5の材料として実施例1の化合物(1-13)に代えて実施例7の化合物(1-27)を用いた以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行なった。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
Figure JPOXMLDOC01-appb-C000041
 
                         (1-27)
 実施例15において、第二正孔輸送層5の材料として実施例1の化合物(1-13)に代えて実施例7の化合物(1-62)を用いた以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行なった。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
Figure JPOXMLDOC01-appb-C000042
 
                         (1-62)
 実施例15において、第二正孔輸送層5の材料として実施例1の化合物(1-13)に代えて実施例7の化合物(1-68)を用いた以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行なった。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
Figure JPOXMLDOC01-appb-C000043
 
                         (1-68)
[比較例1]
 比較のために、実施例15において、第二正孔輸送層5の材料として実施例1の化合物(1-13)に代えて下記構造式の化合物(HTM-2)を用いた以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行なった。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
Figure JPOXMLDOC01-appb-C000044
 
                         (HTM-2)
[比較例2]
 比較のために、実施例15において、第二正孔輸送層5の材料として実施例1の化合物(1-13)に代えて下記構造式の化合物(HTM-3)を用いた以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行なった。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
Figure JPOXMLDOC01-appb-C000045
 
                         (HTM-3)
[比較例3]
 比較のために、実施例15において、第二正孔輸送層5の材料として実施例1の化合物(1-13)に代えて下記構造式の化合物(HTM-4)を用いた以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行なった。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
Figure JPOXMLDOC01-appb-C000046
 
                         (HTM-4)
 実施例15~25および比較例1~3で作製した有機EL素子を用いて、素子寿命を測定した。その結果を表1にまとめて示した。素子寿命は、発光開始時の発光輝度(初期輝度)を2000cd/mとして定電流駆動を行った時、発光輝度が1900cd/m(初期輝度を100%とした時の95%に相当:95%減衰)に減衰するまでの時間として測定した。
Figure JPOXMLDOC01-appb-T000047
 表1に示す様に、電流密度10mA/cmの電流を流したときの発光効率は、比較例1~3の有機EL素子の7.94~9.34cd/Aに対し、実施例15~25の有機EL素子では9.68~10.75cd/Aと高効率であった。また、電力効率においても、比較例1~3の有機EL素子の7.30~8.61lm/Wに対し、実施例15~25の有機EL素子では8.94~9.78lm/Wと高効率であった。さらに、素子寿命(95%減衰)においては、比較例1~3の有機EL素子の306~335時間に対し、実施例15~25の有機EL素子では345~627時間と大幅に長寿命化していることが分かる。
 以上の結果から明らかなように、本発明に係る一般式(1)で表される特定の構造を有するアリールアミン化合物は、従来の正孔輸送材料とするアリールアミン化合物と比べて、正孔の移動度が大きく、優れた電子の阻止能力を有しているため、本発明の青色発光層とともに用いている有機EL素子は、従来の有機EL素子と比較して、高発光効率であって、かつ長寿命の有機EL素子を実現できることが分かった。
 本発明の、特定の構造を有するアリールアミン化合物を用いた有機EL素子は、発光効率が向上するとともに、有機EL素子の耐久性を改善させることができ、例えば、家庭電化製品や照明の用途への展開が可能となった。
1  ガラス基板
2  透明陽極
3  正孔注入層
4  第一正孔輸送層
5  第二正孔輸送層
6  発光層
7  電子輸送層
8  電子注入層
9  陰極
10 キャッピング層
 
 

Claims (10)

  1.  少なくとも陽極、第一正孔輸送層、第二正孔輸送層、青色発光層、電子輸送層および陰極をこの順に有する有機エレクトロルミネッセンス素子において、前記第二正孔輸送層が下記一般式(1)で表されるアリールアミン化合物を含有することを特徴とする有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001
     
                             (1)
    (式中、R~Rは相互に同一でも異なってもよく、水素原子、重水素原子、カルボニル基、シアノ基、置換基を有していてもよいシリル基、置換基を有していてもよいホスフィノ基、置換基を有していてもよいホスフィンオキサイド基、置換基を有していてもよい炭素原子数1~6の直鎖状もしくは分岐状のアルキル基、置換もしくは無置換の環形成炭素原子数6~25の芳香族炭化水素基を表す。Lは置換もしくは無置換の環形成炭素原子数6~20の芳香族炭化水素の2価基、または単結合を表す。R~Rは水素原子、重水素原子、置換基を有していてもよい炭素原子数1~6の直鎖状もしくは分岐状のアルキル基、ハロゲン原子、シアノ基を表す。)
  2.  前記一般式(1)において、R、Rは相互に同一でも異なってもよく、水素原子、置換基を有していてもよいシリル基または置換もしくは無置換の環形成炭素原子数6~20の芳香族炭化水素基であり、Rは置換基を有していてもよいシリル基または置換もしくは無置換の環形成炭素原子数6~25の芳香族炭化水素基であり、Rは水素原子、置換基を有してもよいシリル基または置換もしくは無置換の環形成炭素原子数6~25の芳香族炭化水素基であることを特徴とする、請求項1記載の有機エレクトロルミネッセンス素子。
  3.  前記一般式(1)において、R、Rは相互に同一でも異なってもよく、水素原子、無置換のフェニル基、無置換のナフチル基、無置換のビフェニリル基、ナフチル基で置換されたフェニル基、無置換のターフェニリル基のいずれかであり、Rは無置換のフェニル基、無置換のビフェニリル基、ナフチル基で置換されたフェニル基、2個のフェニル基で置換されたフェニル基、フェニル基で置換されたナフチル基のいずれかであり、Rは無置換のフェニル基、無置換のナフチル基、フェニル基で置換されたナフチル基のいずれかであることを特徴とする、請求項1または2記載の有機エレクトロルミネッセンス素子。
  4.  前記一般式(1)において、Rは無置換のフェニル基、無置換のビフェニリル基、ナフチル基で置換されたフェニル基、無置換のターフェニリル基のいずれかであり、Rは水素原子、無置換のフェニル基、無置換のナフチル基、無置換のビフェニリル基、ナフチル基で置換されたフェニル基、無置換のターフェニリル基のいずれかであり、Rは無置換のフェニル基であり、Rは無置換のフェニル基、無置換のナフチル基、フェニル基で置換されたナフチル基のいずれかであることを特徴とする、請求項1~3のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  5.  前記一般式(1)において、R~Rのうち少なくとも1つがトリフェニルシリル基、またはトリフェニルシリル基で置換されたフェニル基のいずれかであることを特徴とする、請求項1または2記載の有機エレクトロルミネッセンス素子。
  6.  前記一般式(1)において、R~Rの全てが水素原子であることを特徴とする、請求項1~5のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  7.  前記一般式(1)において、Lが1,4-フェニレン基であることを特徴とする、請求項1~6のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  8.  前記青色発光層が、青色発光性ドーパントとして、分子中にピレン骨格を有するピレン誘導体を含有することを特徴とする、請求項1~7のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  9.  前記青色発光層が、青色発光性ドーパントとして、下記一般式(2)または一般式(3)で表される化合物を含有することを特徴とする、請求項1~7のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000002
     
                             (2)
    Figure JPOXMLDOC01-appb-C000003
     
                             (3)
    (一般式(2)および一般式(3)中、QないしQは相互に同一でも異なってもよく、置換もしくは無置換の芳香族炭化水素、または置換もしくは無置換の芳香族複素環を表す。XはB、P、P=O、またはP=Sを表す。YないしYは相互に同一でも異なってもよく、N-R、CR10、O、S、SeまたはSiR1112の中から選択されるいずれか1つであり、そのRないしR12は相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換のアリールオキシ基を表す。また、RとR10、R11とR12はそれぞれの基同士で単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子、一置換アミノ基を介して互いに結合して環を形成してもよい。ただし、YないしYがN-R、CR10、またはSiR1112の場合、RないしR12はそれぞれ隣接するQないしQと、単結合、置換もしくは無置換のメチレン基、酸素原子、硫黄原子、一置換アミノ基などの連結基を介して互いに結合して環を形成してもよい。)
  10.  前記青色発光層が、分子中にアントラセン骨格を有するアントラセン誘導体を含有することを特徴とする、請求項1~9のいずれか一項に記載の有機エレクトロルミネッセンス素子。
     
PCT/JP2021/029801 2020-08-17 2021-08-13 有機エレクトロルミネッセンス素子 WO2022039106A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022543924A JPWO2022039106A1 (ja) 2020-08-17 2021-08-13
CN202180050636.5A CN115885022A (zh) 2020-08-17 2021-08-13 有机电致发光元件
US18/021,251 US20230345817A1 (en) 2020-08-17 2021-08-13 Organic electroluminescent device
KR1020237004531A KR20230051663A (ko) 2020-08-17 2021-08-13 유기 일렉트로루미네센스 소자
EP21858253.4A EP4198104A1 (en) 2020-08-17 2021-08-13 Organic electroluminescent element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-137612 2020-08-17
JP2020137612 2020-08-17

Publications (1)

Publication Number Publication Date
WO2022039106A1 true WO2022039106A1 (ja) 2022-02-24

Family

ID=80322792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029801 WO2022039106A1 (ja) 2020-08-17 2021-08-13 有機エレクトロルミネッセンス素子

Country Status (7)

Country Link
US (1) US20230345817A1 (ja)
EP (1) EP4198104A1 (ja)
JP (1) JPWO2022039106A1 (ja)
KR (1) KR20230051663A (ja)
CN (1) CN115885022A (ja)
TW (1) TW202219244A (ja)
WO (1) WO2022039106A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116217409A (zh) * 2022-03-24 2023-06-06 江苏三月科技股份有限公司 一种芳香族胺类化合物及其制备的有机电致发光器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006629A1 (ja) * 2014-07-09 2016-01-14 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
WO2016111254A1 (ja) * 2015-01-06 2016-07-14 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
WO2020111077A1 (ja) * 2018-11-29 2020-06-04 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
JP2020083896A (ja) * 2018-11-30 2020-06-04 エスエフシー カンパニー リミテッド 多環芳香族誘導体化合物及びこれを用いた有機発光素子
US20200203619A1 (en) * 2018-12-21 2020-06-25 Lg Display Co., Ltd. Organic light emitting device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4943840B1 (ja) 1970-12-25 1974-11-25
JP3194657B2 (ja) 1993-11-01 2001-07-30 松下電器産業株式会社 電界発光素子
JP3828595B2 (ja) 1994-02-08 2006-10-04 Tdk株式会社 有機el素子
KR100787425B1 (ko) 2004-11-29 2007-12-26 삼성에스디아이 주식회사 페닐카바졸계 화합물 및 이를 이용한 유기 전계 발광 소자
CN103254113A (zh) 2006-11-24 2013-08-21 出光兴产株式会社 芳香族胺衍生物及使用其的有机电致发光元件
EP2684932B8 (en) 2012-07-09 2016-12-21 Hodogaya Chemical Co., Ltd. Diarylamino matrix material doped with a mesomeric radialene compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006629A1 (ja) * 2014-07-09 2016-01-14 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
WO2016111254A1 (ja) * 2015-01-06 2016-07-14 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
WO2020111077A1 (ja) * 2018-11-29 2020-06-04 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
JP2020083896A (ja) * 2018-11-30 2020-06-04 エスエフシー カンパニー リミテッド 多環芳香族誘導体化合物及びこれを用いた有機発光素子
US20200203619A1 (en) * 2018-12-21 2020-06-25 Lg Display Co., Ltd. Organic light emitting device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
APPL. PHYS. LET., vol. 98, 2011, pages 083302
PROCEEDINGS OF THE 3RD MEETING OF THE JAPAN OLED FORUM, 2006
PROCEEDINGS OF THE 9TH MEETING OF THE JAPAN SOCIETY OF APPLIED PHYSICS, 2001, pages 23 - 31

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116217409A (zh) * 2022-03-24 2023-06-06 江苏三月科技股份有限公司 一种芳香族胺类化合物及其制备的有机电致发光器件
CN116217409B (zh) * 2022-03-24 2023-12-22 江苏三月科技股份有限公司 一种芳香族胺类化合物及其制备的有机电致发光器件

Also Published As

Publication number Publication date
TW202219244A (zh) 2022-05-16
JPWO2022039106A1 (ja) 2022-02-24
KR20230051663A (ko) 2023-04-18
EP4198104A1 (en) 2023-06-21
CN115885022A (zh) 2023-03-31
US20230345817A1 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
KR102356301B1 (ko) 유기 일렉트로 루미네센스 소자
JP7406486B2 (ja) トリアリールアミン構造を有する化合物および有機エレクトロルミネッセンス素子
EP2578572A1 (en) Compounds with acridan ring structures and organic electroluminescence elements
KR102628064B1 (ko) 아릴아민 화합물 및 유기 전계발광 소자
JP6901977B2 (ja) 有機エレクトロルミネッセンス素子
JP6810710B2 (ja) 有機エレクトロルミネッセンス素子
JP7018895B2 (ja) 有機エレクトロルミネッセンス素子
JP6815320B2 (ja) 有機エレクトロルミネッセンス素子
KR20170085119A (ko) 유기 일렉트로루미네선스 소자
JP7149263B2 (ja) 有機エレクトロルミネッセンス素子
JPWO2019059334A1 (ja) 有機エレクトロルミネッセンス素子
JPWO2020162594A1 (ja) 有機エレクトロルミネッセンス素子
JP7394050B2 (ja) ベンゾイミダゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
WO2021256515A1 (ja) 有機エレクトロルミネッセンス素子
WO2021177022A1 (ja) 有機エレクトロルミネッセンス素子
WO2021149773A1 (ja) 有機エレクトロルミネッセンス素子
WO2021172452A1 (ja) アリールアミン化合物およびそれを用いる電子機器
WO2022039106A1 (ja) 有機エレクトロルミネッセンス素子
JP7039412B2 (ja) アザインデノ[1,2、c]フェナンスレン環構造を有する化合物およびその化合物を用いた有機エレクトロルミネッセンス素子
WO2023013575A1 (ja) 有機エレクトロルミネッセンス素子
JPWO2020111077A1 (ja) 有機エレクトロルミネッセンス素子
JPWO2020111081A1 (ja) アザベンゾオキサゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
WO2022080490A1 (ja) アリールアミン化合物、有機エレクトロルミネッセンス素子、および電子機器
JP2020136517A (ja) 有機エレクトロルミネッセンス素子
WO2021079856A1 (ja) 有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21858253

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022543924

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021858253

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021858253

Country of ref document: EP

Effective date: 20230317