WO2022038886A1 - 耐食性部材 - Google Patents

耐食性部材 Download PDF

Info

Publication number
WO2022038886A1
WO2022038886A1 PCT/JP2021/023403 JP2021023403W WO2022038886A1 WO 2022038886 A1 WO2022038886 A1 WO 2022038886A1 JP 2021023403 W JP2021023403 W JP 2021023403W WO 2022038886 A1 WO2022038886 A1 WO 2022038886A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrosion
resistant
film
resistant film
base material
Prior art date
Application number
PCT/JP2021/023403
Other languages
English (en)
French (fr)
Inventor
壮 宮石
雅裕 大久保
真幸 吉村
航 坂根
鉄兵 田中
冴子 中村
卓也 今井
哲朗 桜井
こゆき 召田
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to KR1020227042869A priority Critical patent/KR20230007495A/ko
Priority to JP2022543300A priority patent/JPWO2022038886A1/ja
Priority to EP21858036.3A priority patent/EP4202079A4/en
Priority to CN202180043515.8A priority patent/CN115698383A/zh
Priority to US18/011,372 priority patent/US20230235183A1/en
Publication of WO2022038886A1 publication Critical patent/WO2022038886A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/002Priming paints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment

Definitions

  • the present invention relates to a corrosion resistant member.
  • Patent Document 1 discloses a member such as a shower head having an aluminum surface coated with a corrosion-resistant film made of at least one of aluminum fluoride and magnesium fluoride.
  • Patent Document 2 discloses a film-forming material containing aluminum oxyfluoride, and the film film produced by this film-forming material is directed against plasma using a halogen-based gas such as a fluorine-based gas. It is described as having high corrosion resistance.
  • Patent Document 3 discloses a corrosion-resistant member in which an aluminum portion exposed on the surface of a composite containing aluminum is covered with fluoride. It is described that this fluoride has a main crystal phase composed of aluminum hydroxide fluoride presumed to be Al 2 F 3 (OH) 3 and has high corrosion resistance to halogen-based corrosive gas. Has been done.
  • An object of the present invention is to provide a corrosion-resistant member whose corrosion-resistant film does not easily peel off from a substrate even if it receives a heat history.
  • one aspect of the present invention is as follows [1] to [5].
  • a base material made of aluminum or an aluminum alloy and a corrosion-resistant coating formed on the surface of the base material are provided.
  • the corrosion-resistant coating contains aluminum hydroxide fluoride AlF 3-x (OH) x whose space group belongs to R-3c, and the x in the chemical formula is 0.05 or more and 1.00 or less. ..
  • the corrosion-resistant film does not easily peel off from the base material even if it receives a heat history.
  • the corrosion-resistant member according to the present embodiment includes a base material 10 made of aluminum (Al) or an aluminum alloy, and a corrosion-resistant coating 20 formed on the surface of the base material 10.
  • the corrosion-resistant coating 20 contains aluminum hydroxide fluoride AlF 3-x (OH) x whose space group belongs to R-3c, and x in the chemical formula is 0.05 or more and 1.00 or less.
  • the corrosion-resistant coating 20 may be composed of aluminum hydroxide fluoride AlF 3-x (OH) x , or may be a mixture of aluminum hydroxide fluoride AlF 3-x (OH) x and other materials. It may be configured.
  • the corrosion-resistant member according to the present embodiment includes corrosive gas such as halogen gas (for example, fluorine gas (F 2 ), chlorine gas (Cl 2 )) used as a cleaning gas in the semiconductor manufacturing process, plasma thereof, and semiconductor. It has excellent corrosion resistance to oxygen gas (O 2 ) used as a process gas in the manufacturing process and its plasma, and even if it receives a thermal history in these gases and its plasma, the corrosion resistant film 20 is formed from the base material 10. Is hard to peel off.
  • halogen gas for example, fluorine gas (F 2 ), chlorine gas (Cl 2 )
  • the corrosion-resistant member according to the present embodiment also has an effect that the generation of particles derived from the peeling of the corrosion-resistant coating 20 is suppressed because the corrosion-resistant coating 20 is difficult to peel off from the base material 10 even if it receives a heat history. ing.
  • Such a corrosion-resistant member according to the present embodiment is suitable as a member that requires corrosion resistance and heat resistance, and is, for example, a member constituting a semiconductor manufacturing apparatus (particularly, a film forming apparatus using a chemical vapor deposition method). Suitable. As a specific example, it is suitable as a susceptor, a shower head, or a chamber body of a film forming apparatus for forming a thin film on a wafer. If the corrosion-resistant member according to the present embodiment is used as a member constituting the semiconductor manufacturing apparatus, the generation of particles is suppressed, so that the semiconductor can be manufactured with a high yield.
  • X in the chemical formula can be measured by X-ray photoelectron spectroscopy (XPS).
  • the measuring device include a scanning X-ray photoelectron spectroscopy analyzer Quantera II (registered trademark) manufactured by ULVAC FI Co., Ltd.
  • Quantera II registered trademark
  • Al monochrome 100 ⁇ m, 25 W, 15 kV may be used, and the analysis area may be 100 ⁇ m 2 .
  • the electron / ion neutralization gun may be turned on and the photoelectron extraction angle may be set to 45 °.
  • argon (Ar) ion sputtering In X-ray photoelectron spectroscopy, surface etching and analysis by argon (Ar) ion sputtering are alternately performed to obtain a depth profile of the corrosion-resistant coating 20. Argon ion sputtering at this time is carried out under the condition that the acceleration voltage is 2 kV and silicon dioxide (SiO 2 ) is surface-etched by 9.1 nm / min. The surface etching amount of the corrosion-resistant coating 20 is calculated based on this value.
  • the value obtained by X-ray photoelectron spectroscopy is quantified by the relative sensitivity coefficient method.
  • the space group of aluminum hydroxide fluoride AlF 3-x (OH) x can be measured by analyzing the corrosion resistant coating 20 by the oblique incident method of X-ray diffraction.
  • the measuring device include an X-ray diffractometer X'Pert PRO MPD manufactured by PANalytical.
  • a Cu anode can be used as the target, a collimator CCD can be used as the detector, and a parallel beam can be used as the optical system.
  • the tube voltage is 45 kV
  • the tube current is 40 mA
  • the scan range is 10 to 40 °
  • the scan step The size may be 0.05 °
  • the scan speed may be 0.5 ° / min
  • PDF Powder Diffraction File
  • x in the chemical formula needs to be 0.05 or more and 1.00 or less, it is preferably 0.10 or more and 0.70 or less, and 0.15 or more and 0.50 or less. More preferred. Then, even if the heat history is received, the effect that the corrosion-resistant film 20 is difficult to peel off from the base material 10 becomes higher.
  • the aluminum fluoride hydroxide AlF 3-x (OH) x contained in the corrosion resistant coating 20 has a half width of the peak of the maximum intensity obtained by analysis by the X-ray diffraction method having a half width of 0.60 ° or less. It is preferably 0.50 ° or less, and more preferably 0.50 ° or less. By doing so, the effect that the corrosion-resistant film 20 is difficult to peel off from the base material 10 even if it receives a heat history under various gas atmospheres becomes higher.
  • the half width of aluminum hydroxide fluoride AlF 3-x (OH) x can be measured by analyzing the corrosion-resistant film 20 by the oblique incident method of X-ray diffraction, as in the case of the space group.
  • the measuring device as in the case of the space group, for example, an X-ray diffractometer X'Pert PRO MPD manufactured by PANalytical Co., Ltd. can be mentioned.
  • the above half-value width can be obtained by obtaining the half-value width of the peak of the maximum intensity appearing at 24-26 ° of the peak profile obtained by X-ray diffraction. It should be noted that this peak is attributed to the plane whose Miller index is (012).
  • the thickness of the corrosion-resistant coating 20 is preferably 0.1 ⁇ m or more and 50 ⁇ m or less, and more preferably 0.2 ⁇ m or more and 10 ⁇ m or less. Then, the corrosion resistance of the corrosion-resistant member according to the present embodiment becomes higher.
  • the method for measuring the thickness of the corrosion-resistant coating 20 is not particularly limited, and examples thereof include a transmission electron microscope (TEM), a scanning transmission electron microscope (STEM), and a scanning electron microscope (SEM).
  • the base material 10 is preferably made of an aluminum alloy containing magnesium (Mg), and is made of an aluminum alloy containing 0.5% by mass or more of magnesium. It is more preferable that the material is composed of an aluminum alloy containing 0.7% by mass or more and 10% by mass or less of magnesium.
  • an intermediate layer (not shown in FIG. 1) made of magnesium fluoride (MgF 2 ) is arranged between the base material 10 and the corrosion-resistant coating 20.
  • MgF 2 magnesium fluoride
  • the thickness of the intermediate layer is preferably 0.1 ⁇ m or more and 3.0 ⁇ m or less, and more preferably 0.2 ⁇ m or more and 1.0 ⁇ m or less. Then, even if the heat history is received, the effect that the corrosion-resistant film 20 is difficult to peel off from the base material 10 is further enhanced.
  • the method for measuring the thickness of the intermediate layer is the same as that for the thickness of the corrosion-resistant coating 20.
  • the method for producing the corrosion-resistant member according to the present embodiment is not particularly limited, but as an example, hydroxylation is performed via a coating film of a precursor of aluminum hydroxide fluoride AlF 3-x (OH) x .
  • a method of forming a film of aluminum fluoride AlF 3-x (OH) x can be mentioned. According to this method, it becomes easy to uniformly form the corrosion-resistant film 20.
  • a precursor coating of aluminum hydroxide fluoride AlF 3-x (OH) x is formed on the surface of the base material 10 made of aluminum or an aluminum alloy. Then, by heat-treating the coating film of this precursor in a fluorine-containing gas, the precursor is changed to aluminum hydroxide fluoride AlF 3-x (OH) x , and aluminum fluoride hydroxide AlF 3-x (OH).
  • This is a method of forming a corrosion-resistant coating film 20 composed of x on the surface of the base material 10. Examples of the method for forming the precursor film on the surface of the base material 10 include chemical treatment, anodizing, electrophoretic deposition, and thin-film deposition.
  • AlF 3-x (OH) x aluminum oxide (Al 2 O 3 ), aluminum hydroxide (Al (OH) 3 ), aluminum hydroxide (Al O (OH)), Examples thereof include aluminum hydroxide (AlF (OH) 2 , etc.), aluminum oxyfluoride (AlOF), and aluminum fluoride (AlF 3 ).
  • the coating of the precursor may be composed of one of these compounds, or may be composed of two or more of them. Further, these compounds may be anhydrous, hydrated, crystalline, or amorphous.
  • the thickness of the formed precursor coating film is 0.1 ⁇ m or more and 50 ⁇ m or less
  • the thickness of the corrosion-resistant coating film 20 can be 0.1 ⁇ m or more and 50 ⁇ m or less.
  • the type of fluorine-containing gas used when heat-treating the film of the precursor is not particularly limited as long as it is a gas of a compound containing fluorine, but fluorine gas, hydrogen fluoride (HF) gas, and three-fluorine gas.
  • Nitrogen (NF 3 ) gas Carbon tetrafluoride (CF 4 ) gas, Trifluoromethane gas (CHF 3 ), Hexafluoroethane (C 2 F 6 ) gas, Hexafluorobutadiene gas (C 4 F 6 )
  • a gas consisting of at least one kind is preferable.
  • a mixed gas of a fluorine-containing gas and an inert gas such as nitrogen gas (N 2 ) or argon gas may be used when the film of the precursor is heat-treated.
  • the treatment temperature during the heat treatment is preferably 220 ° C. or higher and 475 ° C. or lower, more preferably 250 ° C. or higher and 460 ° C. or lower, and further preferably 280 ° C. or higher and 450 ° C. or lower.
  • the heat treatment treatment time is preferably 2 hours or more and 240 hours or less, more preferably 3 hours or more and 150 hours or less, and further preferably 5 hours or more and 100 hours or less.
  • x of aluminum hydroxide fluoride AlF 3-x (OH) x whose space group belongs to R-3c is 1.00. It tends to be as follows. Further, if the treatment temperature at the time of heat treatment is 475 ° C. or lower and the treatment time is 240 hours or less, x of aluminum hydroxide fluoride AlF 3-x (OH) x whose space group belongs to R-3c is 0. It tends to be 0.05 or more.
  • the half-value width of the peak (that is, the peak of the (012) plane) tends to be 0.60 ° or less.
  • the thickness of the intermediate layer made of magnesium fluoride tends to be 0.1 ⁇ m or higher.
  • the thickness of the intermediate layer made of magnesium fluoride tends to be 3.0 ⁇ m or less.
  • Example 1 A corrosion-resistant film was formed on the surface of a base material made of an aluminum alloy A5052 (JIS standard) containing 2.55% by mass of magnesium and having dimensions of 20 mm in width, 30 mm in length and 2 mm in thickness. First, the base material was subjected to the following pretreatment.
  • A5052 JIS standard
  • Escreen AL-13 (manufactured by Sasaki Chemicals Co., Ltd.) is dissolved in 1 L of water and the temperature is set to 50 ° C. as a degreasing solution. Was washed with.
  • 500 g of Escreen AL-5000 (manufactured by Sasaki Chemicals Co., Ltd.) heated to 70 ° C. was used as an etching solution, and the degreased substrate was immersed in this etching solution for 1 minute for etching. It was washed with pure water.
  • 200 g of Smut Clean (manufactured by Raiki Co., Ltd.) was dissolved in 400 g of water and the temperature was set to 25 ° C.
  • the etched substrate was immersed in this smut remover for 30 seconds to remove the smut. And washed with pure water. Then, the substrate from which the smut was removed was vacuum-dried to complete the pretreatment.
  • the pretreated base material is immersed in a Teflon (registered trademark) container containing 1.0 g of aluminum fluoride powder (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and 99.0 g of ultrapure water, and Teflon is used.
  • the container was covered, and the Teflon container was placed in a SUS container (autoclave reactor) and covered. By heating at 200 ° C. for 10 hours using this autoclave reactor, the surface of the pretreated substrate was coated with a film of a precursor of aluminum hydroxide fluoride AlF 3-x (OH) x .
  • the substrate whose surface was covered with the precursor film was heated to 400 ° C. in a mixed gas atmosphere of 20% by volume of fluorine gas and 80% by volume of nitrogen gas, and heat-treated for 10 hours.
  • the precursor was changed to aluminum hydroxide fluoride AlF 3-x (OH) x to form a corrosion resistant film.
  • magnesium contained in the base material diffuses to the surface of the base material, so that a film (intermediate layer) composed of magnesium fluoride is formed between the corrosion-resistant film and the base material.
  • a corrosion-resistant member having a corrosion-resistant film on the surface of the base material was obtained.
  • x of aluminum hydroxide fluoride AlF 3-x (OH) x constituting the corrosion-resistant film was 0.84.
  • the space group of aluminum hydroxide fluoride AlF 3-x (OH) x constituting the corrosion-resistant film is R-3c, which is the peak of the maximum intensity.
  • the half width was 0.44 °.
  • a heating test was performed on the obtained corrosion-resistant member of Example 1 to evaluate the state of peeling of the corrosion-resistant film.
  • the condition of the heating test is that the temperature is raised to 350 ° C. in 1 hour in a nitrogen gas atmosphere, the temperature is maintained at 350 ° C. for 300 minutes, and then the process is cooled to room temperature in 1 hour, and this is performed for 10 cycles. Is.
  • the corrosion-resistant film of the corrosion-resistant member was observed with a scanning electron microscope, and the degree of peeling of the corrosion-resistant film was evaluated.
  • the results are shown in Table 1.
  • Table 1 if the area of the peeled portion of the corrosion-resistant film is less than 1% of the total area of the corrosion-resistant film, A, if it is 1% or more and less than 5%, B, 5% or more and 30%. If it is less than, it is indicated by C, and if it is 30% or more, it is indicated by D.
  • Example 1 a corrosion test was performed on the obtained corrosion-resistant member of Example 1 to evaluate the state of peeling of the corrosion-resistant film.
  • one cycle is a process of continuously heat-treating one corrosion-resistant member in the order of chlorine gas atmosphere, fluorine gas atmosphere, and oxygen gas atmosphere, and this is performed for 5 cycles.
  • Each of the above gas atmospheres is a mixed gas atmosphere of 20% by volume of chlorine gas, fluorine gas, or oxygen gas and 80% by volume of nitrogen gas.
  • the heat treatment temperature is 250 ° C. and the time is 300 min.
  • Example 2 Except for the fact that the heat treatment conditions for heating the substrate whose surface is covered with the precursor film in a mixed gas atmosphere of 20% by volume of fluorine gas and 80% by volume of nitrogen gas were set to a temperature of 400 ° C. and a treatment time of 20 hours. , The corrosion resistant member was manufactured in the same manner as in Example 1.
  • Example 3 Except for the fact that the heat treatment conditions for heating the substrate whose surface was covered with the precursor film in a mixed gas atmosphere of 20% by volume of fluorine gas and 80% by volume of nitrogen gas were set to a temperature of 430 ° C. and a treatment time of 20 hours. , The corrosion resistant member was manufactured in the same manner as in Example 1.
  • Example 4 Except for the fact that the heat treatment conditions for heating the substrate whose surface was covered with the precursor film in a mixed gas atmosphere of 20% by volume of fluorine gas and 80% by volume of nitrogen gas were set to a temperature of 400 ° C. and a treatment time of 12 hours. , The corrosion resistant member was manufactured in the same manner as in Example 1.
  • Example 5 Except for the fact that the heat treatment conditions for heating the substrate whose surface is covered with the precursor film in a mixed gas atmosphere of 20% by volume of fluorine gas and 80% by volume of nitrogen gas were set to a temperature of 400 ° C. and a treatment time of 15 hours. , The corrosion resistant member was manufactured in the same manner as in Example 1.
  • Example 6 Example 1 except that a base material made of pure aluminum (JIS standard: A1080) containing no magnesium was used instead of the base material made of the aluminum alloy A5052 containing 2.55% by mass of magnesium.
  • the corrosion resistant member was manufactured in the same manner as above.
  • x of aluminum hydroxide fluoride AlF 3-x (OH) x constituting the corrosion-resistant film was 1.61.
  • the space group of aluminum hydroxide fluoride AlF 3-x (OH) x constituting the corrosion-resistant film is Fd-3m, which is the peak of the maximum intensity. It was difficult to determine the half-price range.
  • the X-ray diffraction pattern at this time is shown in FIG.
  • a heating test was performed on the obtained corrosion-resistant member of Comparative Example 2 to evaluate the state of peeling of the corrosion-resistant film.
  • a corrosion test was conducted to evaluate the state of cracks in the corrosion-resistant film. The results are shown in Table 1.
  • Example 4 A corrosion-resistant member was produced in the same manner as in Example 1 except that the base material whose surface was covered with the precursor film was not heat-treated. As a result of analyzing the corrosion-resistant film by X-ray photoelectron spectroscopy, x of aluminum hydroxide fluoride AlF 3-x (OH) x constituting the corrosion-resistant film was 2.19. Further, as a result of analyzing the corrosion-resistant film by the oblique incident method of X-ray diffraction, the aluminum hydroxide fluoride AlF 3-x (OH) x constituting the corrosion-resistant film was amorphous. A heating test was performed on the obtained corrosion-resistant member of Comparative Example 4, and the state of peeling of the corrosion-resistant film was evaluated. In addition, a corrosion test was conducted to evaluate the state of cracks in the corrosion-resistant film. The results are shown in Table 1.
  • the corrosion-resistant members of Examples 1 to 6 hardly peeled off or cracked the corrosion-resistant film even when subjected to heat history in a nitrogen gas atmosphere and a corrosive gas atmosphere.
  • the corrosion-resistant members of Comparative Examples 1 to 4 were subjected to heat history in a nitrogen gas atmosphere and a corrosive gas atmosphere, so that the corrosion-resistant film was peeled off and cracked.
  • the space group of aluminum hydroxide fluoride AlF 3-x (OH) x constituting the corrosion resistant film belongs to R-3c and x in the chemical formula is 0.05 or more, it is a group at the time of elevating temperature. It is considered that the corrosion-resistant coating has sufficient strength against the stress generated by the thermal expansion or contraction of the material.
  • the space group of aluminum hydroxide fluoride AlF 3-x (OH) x constituting the corrosion resistant film belongs to R-3c and x in the chemical formula is 1.00 or less, the atmosphere is chlorine gas. Even if heat treatment is performed under the atmosphere of fluorine gas or oxygen gas, the composition of aluminum fluoride AlF 3-x (OH) x constituting the corrosion resistant film does not change easily, so the corrosion resistant film due to the temperature rise and fall. It is considered that volume expansion and contraction of aluminum are unlikely to occur. As a result, it is considered that cracks in the corrosion-resistant film are unlikely to occur.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Drying Of Semiconductors (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Glass Compositions (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

熱履歴を受けても耐食性被膜が基材から剥離しにくい耐食性部材を提供する。耐食性部材は、アルミニウム又はアルミニウム合金で構成される基材(10)と、基材(10)の表面に形成された耐食性被膜(20)と、を備える。耐食性被膜(20)は、空間群がR-3cに帰属される水酸化フッ化アルミニウムAlF3-x(OH)xを含有し、前記化学式中のxが0.05以上1.00以下である。

Description

耐食性部材
 本発明は耐食性部材に関する。
 半導体製造プロセスにおいては、塩素ガス、フッ素ガス等の腐食性の強いガスが使用される場合があるため、半導体製造装置を構成する部材(例えばシャワーヘッド)には耐食性が要求される。
 特許文献1には、フッ化アルミニウム及びフッ化マグネシウムの少なくとも一方からなる耐食性被膜で被覆されたアルミニウム表面を有するシャワーヘッド等の部材が開示されている。
 特許文献2には、アルミニウムのオキシフッ化物を含有する成膜用材料が開示されており、この成膜用材料によって製造された被膜は、フッ素系ガス等のハロゲン系ガスを用いたプラズマに対して高い耐食性を有することが記載されている。
 特許文献3には、アルミニウムを含有してなる複合体の表面に露出したアルミニウム部分がフッ化物で覆われた耐食性部材が開示されている。このフッ化物は、Al23(OH)3と推定される水酸化フッ化アルミニウムからなる主結晶相を有しており、ハロゲン系腐食性ガスに対して高い耐腐食性を有することが記載されている。
日本国特許公表公報 2005年第533368号 日本国特許公開公報 2017年第71843号 日本国特許公開公報 2000年第212769号
 しかしながら、特許文献1~3に開示の部材は、熱履歴によって耐食性被膜が基材から剥離しやすいという問題点を有していた。
 本発明は、熱履歴を受けても耐食性被膜が基材から剥離しにくい耐食性部材を提供することを課題とする。
 前記課題を解決するため、本発明の一態様は以下の[1]~[5]の通りである。
[1] アルミニウム又はアルミニウム合金で構成される基材と、前記基材の表面に形成された耐食性被膜と、を備え、
 前記耐食性被膜は、空間群がR-3cに帰属される水酸化フッ化アルミニウムAlF3-x(OH)xを含有し、前記化学式中のxが0.05以上1.00以下である耐食性部材。
[2] 前記化学式中のxが0.10以上0.70以下である[1]に記載の耐食性部材。
[3] 前記化学式中のxが0.15以上0.50以下である[1]に記載の耐食性部材。
[4] 前記水酸化フッ化アルミニウムをX線回折法により分析して得られた最大強度のピークの半値幅が0.50°以下である[1]~[3]のいずれか一項に記載の耐食性部材。
[5] 前記基材が、マグネシウムを含有するアルミニウム合金で構成されており、前記基材と前記耐食性被膜の間にフッ化マグネシウムで構成された中間層が配されている[1]~[4]のいずれか一項に記載の耐食性部材。
 本発明に係る耐食性部材は、熱履歴を受けても耐食性被膜が基材から剥離しにくい。
本発明の一実施形態に係る耐食性部材の構成を説明する断面図である。 実施例2の耐食性部材が有する耐食性被膜を分析したX線回折図である。 比較例2の耐食性部材が有する耐食性被膜を分析したX線回折図である。
 本発明の一実施形態について以下に説明する。なお、本実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、本実施形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。
 本実施形態に係る耐食性部材は、図1に示すように、アルミニウム(Al)又はアルミニウム合金で構成される基材10と、基材10の表面に形成された耐食性被膜20と、を備える。耐食性被膜20は、空間群がR-3cに帰属される水酸化フッ化アルミニウムAlF3-x(OH)xを含有し、前記化学式中のxは0.05以上1.00以下である。なお、耐食性被膜20は、水酸化フッ化アルミニウムAlF3-x(OH)xで構成されていてもよいし、水酸化フッ化アルミニウムAlF3-x(OH)xと他の材料との混合物で構成されていてもよい。
 このような構成の耐食性部材は、熱履歴を受けたとしても、基材10から耐食性被膜20が剥離しにくい。特に、本実施形態に係る耐食性部材は、半導体製造プロセスにおいてクリーニングガスとして用いられるハロゲンガス(例えばフッ素ガス(F2)、塩素ガス(Cl2))等の腐食性ガスやそのプラズマ、及び、半導体製造プロセスにおいてプロセスガスとして用いられる酸素ガス(O2)やそのプラズマに対して優れた耐食性を有し、これらのガスやそのプラズマ中で熱履歴を受けたとしても、基材10から耐食性被膜20が剥離しにくい。
 また、本実施形態に係る耐食性部材は、熱履歴を受けても耐食性被膜20が基材10から剥離しにくいため、耐食性被膜20の剥離に由来するパーティクルの発生が抑制されるという効果も有している。
 このような本実施形態に係る耐食性部材は、耐食性及び耐熱性が必要とされる部材として好適であり、例えば、半導体製造装置(特に、化学蒸着法を用いた成膜装置)を構成する部材として好適である。具体例を挙げると、ウェハ上に薄膜を形成する成膜装置のサセプターやシャワーヘッドやチャンバーボディとして好適である。半導体製造装置を構成する部材として本実施形態に係る耐食性部材を用いれば、パーティクルの発生が抑制されるので、高い歩留まりで半導体を製造することができる。
 前記化学式中のxは、X線光電子分光法(XPS)によって測定することができる。測定装置としては、例えば、アルバック・ファイ株式会社製の走査型X線光電子分光分析装置Quantera II(登録商標)が挙げられる。X線の条件の一例を挙げると、Alモノクロ 100μm、25W、15kVとし、分析面積は100μm2としてもよい。さらに、電子・イオン中和銃をオンにし、光電子取出し角を45°としてもよい。
 X線光電子分光分析においては、アルゴン(Ar)イオンスパッタリングによる表面エッチングと分析とを交互に行い、耐食性被膜20のデプスプロファイルを入手する。この時のアルゴンイオンスパッタリングは、加速電圧を2kVとし、二酸化ケイ素(SiO2)が9.1nm/minだけ表面エッチングされる条件で実施する。なお、耐食性被膜20の表面エッチング量は、この値を基に算出する。
 X線光電子分光分析によって得られた値を、相対感度係数法により定量化する。このとき、表面を基準として、耐食性被膜20の厚さの30%の深さ位置における酸素原子の量がa(atom%)、フッ素原子の量がb(atom%)であった場合は、前記化学式中のxは、x=3a/(a+b)なる計算式により算出される。
 水酸化フッ化アルミニウムAlF3-x(OH)xの空間群は、X線回折の斜入射法で耐食性被膜20を分析することによって、測定することができる。測定装置としては、例えば、PANalytical社製のX線回折装置X‘Pert PRO MPDが挙げられる。
 ターゲットとしてはCuアノードを、検出器としてはコリメーターCCDを、光学系としては平行ビームをそれぞれ使用することができ、管電圧を45kV、管電流を40mA、スキャンレンジを10~40°、スキャンステップサイズを0.05°、スキャン速度を0.5°/min、X線入射角度を1.0°としてもよい。
 X線回折によって得られたピークプロファイルから、PDFデータベース(=粉末X線データベース(International Centre for Diffraction Data;ICDD)のPowder Diffraction File(PDF))を参考にして、空間群の種類を決定する。
 なお、前記化学式中のxは、0.05以上1.00以下である必要があるが、0.10以上0.70以下であることが好ましく、0.15以上0.50以下であることがより好ましい。そうすれば、熱履歴を受けても基材10から耐食性被膜20が剥離しにくいという効果がより高くなる。
 また、耐食性被膜20が含有する水酸化フッ化アルミニウムAlF3-x(OH)xは、X線回折法により分析して得られた最大強度のピークの半値幅が0.60°以下であるものであることが好ましく、0.50°以下であるものであることがより好ましい。そうすれば、各種ガス雰囲気下で熱履歴を受けても基材10から耐食性被膜20が剥離しにくいという効果がより高くなる。
 水酸化フッ化アルミニウムAlF3-x(OH)xの半値幅は、空間群の場合と同様に、X線回折の斜入射法で耐食性被膜20を分析することによって、測定することができる。測定装置としては、空間群の場合と同様に、例えば、PANalytical社製のX線回折装置X‘Pert PRO MPDが挙げられる。
 上記の半値幅は、X線回折によって得られたピークプロファイルの24~26°に出現する最大強度のピークの半値幅を求めることによって得ることができる。なお、このピークは、ミラー指数が(012)の面に帰属される。
 さらに、本実施形態に係る耐食性部材においては、耐食性被膜20の厚さは、0.1μm以上50μm以下であることが好ましく、0.2μm以上10μm以下であることがより好ましい。そうすれば、本実施形態に係る耐食性部材の耐食性がより高くなる。耐食性被膜20の厚さの測定方法は特に限定されるものではないが、例えば、透過型電子顕微鏡(TEM)、走査透過型電子顕微鏡(STEM)、走査型電子顕微鏡(SEM)等が挙げられる。
 さらに、本実施形態に係る耐食性部材においては、基材10は、マグネシウム(Mg)を含有するアルミニウム合金で構成されていることが好ましく、マグネシウムを0.5質量%以上含有するアルミニウム合金で構成されていることがより好ましく、マグネシウムを0.7質量%以上10質量%以下含有するアルミニウム合金で構成されていることがさらに好ましい。
 その場合には、基材10と耐食性被膜20の間にフッ化マグネシウム(MgF2)で構成された中間層(図1では不図示)が配されていることが好ましい。基材10と耐食性被膜20の間に中間層が配されることにより、熱履歴を受けても基材10から耐食性被膜20が剥離しにくいという効果がより高くなる。また、マグネシウムを含有するアルミニウム合金で基材10が構成されていることにより、耐食性部材の強度が高くなる。
 このとき、中間層の厚さは、0.1μm以上3.0μm以下であることが好ましく、0.2μm以上1.0μm以下であることがより好ましい。そうすれば、熱履歴を受けても基材10から耐食性被膜20が剥離しにくいという効果がさらに高くなる。中間層の厚さの測定方法は、耐食性被膜20の厚さの場合と同様である。
 次に、本実施形態に係る耐食性部材の製造方法について説明する。本実施形態に係る耐食性部材を製造する方法は特に限定されるものではないが、一例としては、水酸化フッ化アルミニウムAlF3-x(OH)xの前駆体の被膜を経由して、水酸化フッ化アルミニウムAlF3-x(OH)xの被膜を形成する方法が挙げられる。この方法によれば、耐食性被膜20を均一に生成させることが容易となる。
 前駆体の被膜を経由する製造方法について詳述すると、アルミニウム又はアルミニウム合金で構成される基材10の表面上に、水酸化フッ化アルミニウムAlF3-x(OH)xの前駆体の被膜を形成し、この前駆体の被膜をフッ素含有ガス中で熱処理することにより前駆体を水酸化フッ化アルミニウムAlF3-x(OH)xに変化させて、水酸化フッ化アルミニウムAlF3-x(OH)xで構成される耐食性被膜20を基材10の表面上に形成する方法である。
 基材10の表面上に前駆体の被膜を形成する方法としては、化学処理、陽極酸化、電気泳動堆積法、蒸着法等の方法が挙げられる。
 水酸化フッ化アルミニウムAlF3-x(OH)xの前駆体としては、酸化アルミニウム(Al23)、水酸化アルミニウム(Al(OH)3)、水酸化酸化アルミニウム(AlO(OH))、水酸化フッ化アルミニウム(AlF(OH)2等)、オキシフッ化アルミニウム(AlOF)、及びフッ化アルミニウム(AlF3)が挙げられる。前駆体の被膜は、これらの化合物のうちの1種で構成されていてもよいし、2種以上で構成されていてもよい。また、これらの化合物は、無水和物であってもよいし、水和物であってもよく、結晶質であってもよいし、非晶質であってもよい。
 形成した前駆体の被膜の厚さを0.1μm以上50μm以下とすれば、耐食性被膜20の厚さを0.1μm以上50μm以下とすることができる。
 前駆体の被膜を熱処理する際に使用するフッ素含有ガスの種類は、フッ素を含有する化合物のガスであれば特に限定されるものではないが、フッ素ガス、フッ化水素(HF)ガス、三フッ化窒素(NF3)ガス、四フッ化炭素(CF4)ガス、トリフルオロメタンガス(CHF3)、ヘキサフルオロエタン(C26)ガス、ヘキサフルオロブタジエンガス(C46)のうちの少なくとも1種からなるガスが好ましい。なお、フッ素含有ガスと窒素ガス(N2)、アルゴンガス等の不活性ガスとの混合ガスを、前駆体の被膜を熱処理する際に使用してもよい。
 熱処理時の処理温度は、好ましくは220℃以上475℃以下、より好ましくは250℃以上460℃以下、さらに好ましくは280℃以上450℃以下である。熱処理の処理時間は、好ましくは2時間以上240時間以下、より好ましくは3時間以上150時間以下、さらに好ましくは5時間以上100時間以下である。
 熱処理時の処理温度が220℃以上で且つ処理時間が2時間以上であれば、空間群がR-3cに帰属される水酸化フッ化アルミニウムAlF3-x(OH)xのxが1.00以下となりやすい。
 また、熱処理時の処理温度が475℃以下で且つ処理時間が240時間以下であれば、空間群がR-3cに帰属される水酸化フッ化アルミニウムAlF3-x(OH)xのxが0.05以上となりやすい。
 さらに、熱処理時の処理温度が300℃以上で且つ処理時間が3時間以上であれば、水酸化フッ化アルミニウムAlF3-x(OH)xをX線回折法により分析して得られた最大強度のピーク(すなわち(012)面のピーク)の半値幅が0.60°以下となりやすい。
 さらに、熱処理時の処理温度が300℃以上で且つ処理時間が3時間以上であれば、フッ化マグネシウムで構成された中間層の厚さが0.1μm以上となりやすい。
 さらに、熱処理時の処理温度が475℃以下で且つ処理時間が150時間以下であれば、フッ化マグネシウムで構成された中間層の厚さが3.0μm以下となりやすい。
 以下に実施例及び比較例を示して、本発明をより具体的に説明する。
〔実施例1〕
 マグネシウムを2.55質量%含有するアルミニウム合金A5052(JIS規格)で構成され、寸法が幅20mm、長さ30mm、厚さ2mmである基材の表面に、耐食性被膜を形成した。まず、基材に対して下記のような前処理を施した。
 エスクリーンAL-13(佐々木化学薬品株式会社製)70gを水1Lに溶かし温度を50℃としたものを脱脂液とし、この脱脂液中に基材を10分間浸漬させて脱脂を行い、純水にて洗浄した。次に、エスクリーンAL-5000(佐々木化学薬品株式会社製)500gを70℃に加熱したものをエッチング液とし、このエッチング液中に、上記脱脂した基材を1分間浸漬させてエッチングを行い、純水にて洗浄した。その後、スマットクリーン(ライキ株式会社製)200gを水400gに溶かし温度を25℃としたものをスマット除去液とし、このスマット除去液中に、上記エッチングした基材を30秒間浸漬させてスマット除去を行い、純水にて洗浄した。そして、上記スマット除去した基材を真空乾燥させて、前処理を完了した。
 フッ化アルミニウム粉末(富士フイルム和光純薬株式会社製)1.0gと超純水99.0gとを入れたテフロン(登録商標)容器中に、上記前処理を施した基材を浸漬させ、テフロン容器に蓋をし、さらにこのテフロン容器をSUS製の容器(オートクレーブ反応器)に入れ蓋をした。このオートクレーブ反応器を用いて200℃で10時間加熱することにより、上記前処理を施した基材の表面に水酸化フッ化アルミニウムAlF3-x(OH)xの前駆体の被膜を被覆した。
 表面が前駆体の被膜で覆われた基材を、フッ素ガス20体積%、窒素ガス80体積%の混合ガス雰囲気中で400℃に加熱し、10時間熱処理を行った。この熱処理により、前駆体が水酸化フッ化アルミニウムAlF3-x(OH)xに変化して耐食性被膜が形成された。この熱処理においては、基材中に含有されるマグネシウムが基材の表面に拡散するため、耐食性被膜と基材の間に、フッ化マグネシウムで構成される膜(中間層)が形成された。このような処理により、基材の表面に耐食性被膜を有する耐食性部材を得た。
 X線光電子分光法(XPS)により耐食性被膜を分析した結果、耐食性被膜を構成する水酸化フッ化アルミニウムAlF3-x(OH)xのxは0.84であった。また、X線回折の斜入射法により耐食性被膜を分析した結果、耐食性被膜を構成する水酸化フッ化アルミニウムAlF3-x(OH)xの空間群はR-3cであり、最大強度のピークの半値幅は0.44°であった。
 得られた実施例1の耐食性部材に対して加熱試験を行い、耐食性被膜の剥離の状態を評価した。加熱試験の条件は、窒素ガス雰囲気中において1時間で350℃まで昇温させ、350℃で300min保持した後に、1時間で室温まで冷却するという工程を1サイクルとして、これを10サイクル行うというものである。
 加熱試験が終了したら、耐食性部材の耐食性被膜を走査型電子顕微鏡で観察し、耐食性被膜の剥離の程度を評価した。結果を表1に示す。表1においては、耐食性被膜のうち剥離した部分の面積が耐食性被膜の全体の面積の1%未満であった場合はA、1%以上5%未満であった場合はB、5%以上30%未満であった場合はC、30%以上であった場合はDで示してある。
 また、得られた実施例1の耐食性部材に対して腐食試験を行い、耐食性被膜の剥離の状態を評価した。腐食試験は、一つの耐食性部材に対して、塩素ガス雰囲気下、フッ素ガス雰囲気下、酸素ガス雰囲気下の順で連続して熱処理を行うという工程を1サイクルとして、これを5サイクル行うというものである。上記各ガス雰囲気は、塩素ガス、フッ素ガス、又は酸素ガス20体積%と窒素ガス80体積%との混合ガス雰囲気である。また、熱処理の温度は250℃、時間は300minである。
 腐食試験が終了したら、耐食性部材の耐食性被膜を走査型電子顕微鏡で観察して、クラック発生の程度を評価した。500倍の倍率で20視野確認し、クラックが発生していた視野の数をカウントした。結果を表1に示す。表1においては、クラックが発生した視野数が0であった場合はA、1視野以上5視野未満であった場合はB、5視野以上10視野未満であった場合はC、10視野以上であった場合はDで示してある。
Figure JPOXMLDOC01-appb-T000001
〔実施例2〕
 表面が前駆体の被膜で覆われた基材をフッ素ガス20体積%、窒素ガス80体積%の混合ガス雰囲気中で加熱する熱処理の条件を、温度400℃、処理時間20時間とした点以外は、実施例1と同様にして耐食性部材を製造した。
 X線光電子分光法により耐食性被膜を分析した結果、耐食性被膜を構成する水酸化フッ化アルミニウムAlF3-x(OH)xのxは0.17であった。また、X線回折の斜入射法により耐食性被膜を分析した結果、耐食性被膜を構成する水酸化フッ化アルミニウムAlF3-x(OH)xの空間群はR-3cであり、最大強度のピークの半値幅は0.47°であった。このときのX線回折図を図2に示す。
 得られた実施例2の耐食性部材に対して加熱試験を行い、耐食性被膜の剥離の状態を評価した。また、腐食試験を行い、耐食性被膜のクラックの状態を評価した。結果を表1に示す。
〔実施例3〕
 表面が前駆体の被膜で覆われた基材をフッ素ガス20体積%、窒素ガス80体積%の混合ガス雰囲気中で加熱する熱処理の条件を、温度430℃、処理時間20時間とした点以外は、実施例1と同様にして耐食性部材を製造した。
 X線光電子分光法により耐食性被膜を分析した結果、耐食性被膜を構成する水酸化フッ化アルミニウムAlF3-x(OH)xのxは0.12であった。また、X線回折の斜入射法により耐食性被膜を分析した結果、耐食性被膜を構成する水酸化フッ化アルミニウムAlF3-x(OH)xの空間群はR-3cであり、最大強度のピークの半値幅は0.46°であった。
 得られた実施例3の耐食性部材に対して加熱試験を行い、耐食性被膜の剥離の状態を評価した。また、腐食試験を行い、耐食性被膜のクラックの状態を評価した。結果を表1に示す。
〔実施例4〕
 表面が前駆体の被膜で覆われた基材をフッ素ガス20体積%、窒素ガス80体積%の混合ガス雰囲気中で加熱する熱処理の条件を、温度400℃、処理時間12時間とした点以外は、実施例1と同様にして耐食性部材を製造した。
 X線光電子分光法により耐食性被膜を分析した結果、耐食性被膜を構成する水酸化フッ化アルミニウムAlF3-x(OH)xのxは0.68であった。また、X線回折の斜入射法により耐食性被膜を分析した結果、耐食性被膜を構成する水酸化フッ化アルミニウムAlF3-x(OH)xの空間群はR-3cであり、最大強度のピークの半値幅は0.42°であった。
 得られた実施例4の耐食性部材に対して加熱試験を行い、耐食性被膜の剥離の状態を評価した。また、腐食試験を行い、耐食性被膜のクラックの状態を評価した。結果を表1に示す。
〔実施例5〕
 表面が前駆体の被膜で覆われた基材をフッ素ガス20体積%、窒素ガス80体積%の混合ガス雰囲気中で加熱する熱処理の条件を、温度400℃、処理時間15時間とした点以外は、実施例1と同様にして耐食性部材を製造した。
 X線光電子分光法により耐食性被膜を分析した結果、耐食性被膜を構成する水酸化フッ化アルミニウムAlF3-x(OH)xのxは0.47であった。また、X線回折の斜入射法により耐食性被膜を分析した結果、耐食性被膜を構成する水酸化フッ化アルミニウムAlF3-x(OH)xの空間群はR-3cであり、最大強度のピークの半値幅は0.47°であった。
 得られた実施例5の耐食性部材に対して加熱試験を行い、耐食性被膜の剥離の状態を評価した。また、腐食試験を行い、耐食性被膜のクラックの状態を評価した。結果を表1に示す。
〔実施例6〕
 マグネシウムを2.55質量%含有するアルミニウム合金A5052で構成された基材に代えて、マグネシウムを含有しない純アルミニウム(JIS規格:A1080)で構成された基材を用いた点以外は、実施例1と同様にして耐食性部材を製造した。
 X線光電子分光法により耐食性被膜を分析した結果、耐食性被膜を構成する水酸化フッ化アルミニウムAlF3-x(OH)xのxは0.20であった。また、X線回折の斜入射法により耐食性被膜を分析した結果、耐食性被膜を構成する水酸化フッ化アルミニウムAlF3-x(OH)xの空間群はR-3cであり、最大強度のピークの半値幅は0.47°であった。
 得られた実施例6の耐食性部材に対して加熱試験を行い、耐食性被膜の剥離の状態を評価した。また、腐食試験を行い、耐食性被膜のクラックの状態を評価した。結果を表1に示す。
〔比較例1〕
 表面が前駆体の被膜で覆われた基材をフッ素ガス20体積%、窒素ガス80体積%の混合ガス雰囲気中で加熱する熱処理の条件を、温度400℃、処理時間1時間とした点以外は、実施例1と同様にして耐食性部材を製造した。
 X線光電子分光法により耐食性被膜を分析した結果、耐食性被膜を構成する水酸化フッ化アルミニウムAlF3-x(OH)xのxは1.13であった。また、X線回折の斜入射法により耐食性被膜を分析した結果、耐食性被膜を構成する水酸化フッ化アルミニウムAlF3-x(OH)xの空間群はR-3cであり、最大強度のピークの半値幅は0.72°であった。
 得られた比較例1の耐食性部材に対して加熱試験を行い、耐食性被膜の剥離の状態を評価した。また、腐食試験を行い、耐食性被膜のクラックの状態を評価した。結果を表1に示す。
〔比較例2〕
 表面が前駆体の被膜で覆われた基材をフッ素ガス20体積%、窒素ガス80体積%の混合ガス雰囲気中で加熱する熱処理の条件を、温度200℃、処理時間20時間とした点以外は、実施例1と同様にして耐食性部材を製造した。
 X線光電子分光法により耐食性被膜を分析した結果、耐食性被膜を構成する水酸化フッ化アルミニウムAlF3-x(OH)xのxは1.61であった。また、X線回折の斜入射法により耐食性被膜を分析した結果、耐食性被膜を構成する水酸化フッ化アルミニウムAlF3-x(OH)xの空間群はFd-3mであり、最大強度のピークの半値幅の決定は困難であった。このときのX線回折図を図3に示す。
 得られた比較例2の耐食性部材に対して加熱試験を行い、耐食性被膜の剥離の状態を評価した。また、腐食試験を行い、耐食性被膜のクラックの状態を評価した。結果を表1に示す。
〔比較例3〕
 表面が前駆体の被膜で覆われた基材をフッ素ガス20体積%、窒素ガス80体積%の混合ガス雰囲気中で加熱する熱処理の条件を、温度480℃、処理時間300時間とした点以外は、実施例1と同様にして耐食性部材を製造した。
 X線光電子分光法により耐食性被膜を分析した結果、耐食性被膜を構成する水酸化フッ化アルミニウムAlF3-x(OH)xのxは0.04であった。また、X線回折の斜入射法により耐食性被膜を分析した結果、耐食性被膜を構成する水酸化フッ化アルミニウムAlF3-x(OH)xの空間群はR-3cであり、最大強度のピークの半値幅は0.30°であった。
 得られた比較例3の耐食性部材に対して加熱試験を行い、耐食性被膜の剥離の状態を評価した。また、腐食試験を行い、耐食性被膜のクラックの状態を評価した。結果を表1に示す。
〔比較例4〕
 表面が前駆体の被膜で覆われた基材に熱処理を施さなかった点以外は、実施例1と同様にして耐食性部材を製造した。
 X線光電子分光法により耐食性被膜を分析した結果、耐食性被膜を構成する水酸化フッ化アルミニウムAlF3-x(OH)xのxは2.19であった。また、X線回折の斜入射法により耐食性被膜を分析した結果、耐食性被膜を構成する水酸化フッ化アルミニウムAlF3-x(OH)xは、アモルファスであった。
 得られた比較例4の耐食性部材に対して加熱試験を行い、耐食性被膜の剥離の状態を評価した。また、腐食試験を行い、耐食性被膜のクラックの状態を評価した。結果を表1に示す。
 表1から分かるように、実施例1~6の耐食性部材は、窒素ガス雰囲気及び腐食ガス雰囲気中で熱履歴を受けても耐食性被膜の剥離及びクラックがほとんど生じなかった。一方、比較例1~4の耐食性部材は、窒素ガス雰囲気及び腐食ガス雰囲気中で熱履歴を受けることにより、耐食性被膜の剥離及びクラックが生じた。
 耐食性被膜を構成する水酸化フッ化アルミニウムAlF3-x(OH)xの空間群がR-3cに帰属され、且つ、前記化学式中のxが0.05以上であれば、昇降温時の基材の熱膨張又は熱収縮によって生じる応力に対し、耐食性被膜が十分な強度を有するものと考えられる。
 また、耐食性被膜を構成する水酸化フッ化アルミニウムAlF3-x(OH)xの空間群がR-3cに帰属され、且つ、前記化学式中のxが1.00以下であれば、塩素ガス雰囲気下、フッ素ガス雰囲気下、酸素ガス雰囲気下で熱処理を行ったとしても、耐食性被膜を構成する水酸化フッ化アルミニウムAlF3-x(OH)xの組成が変化しにくいため、昇降温による耐食性被膜の体積膨張、体積収縮が生じにくいと考えられる。その結果、耐食性被膜のクラックが生じにくいものと考えられる。
   10・・・基材
   20・・・耐食性被膜

Claims (5)

  1.  アルミニウム又はアルミニウム合金で構成される基材と、前記基材の表面に形成された耐食性被膜と、を備え、
     前記耐食性被膜は、空間群がR-3cに帰属される水酸化フッ化アルミニウムAlF3-x(OH)xを含有し、前記化学式中のxが0.05以上1.00以下である耐食性部材。
  2.  前記化学式中のxが0.10以上0.70以下である請求項1に記載の耐食性部材。
  3.  前記化学式中のxが0.15以上0.50以下である請求項1に記載の耐食性部材。
  4.  前記水酸化フッ化アルミニウムをX線回折法により分析して得られた最大強度のピークの半値幅が0.50°以下である請求項1~3のいずれか一項に記載の耐食性部材。
  5.  前記基材が、マグネシウムを含有するアルミニウム合金で構成されており、前記基材と前記耐食性被膜の間にフッ化マグネシウムで構成された中間層が配されている請求項1~4のいずれか一項に記載の耐食性部材。
PCT/JP2021/023403 2020-08-20 2021-06-21 耐食性部材 WO2022038886A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227042869A KR20230007495A (ko) 2020-08-20 2021-06-21 내식성 부재
JP2022543300A JPWO2022038886A1 (ja) 2020-08-20 2021-06-21
EP21858036.3A EP4202079A4 (en) 2020-08-20 2021-06-21 CORROSION RESISTANT ELEMENT
CN202180043515.8A CN115698383A (zh) 2020-08-20 2021-06-21 耐蚀性构件
US18/011,372 US20230235183A1 (en) 2020-08-20 2021-06-21 Corrosion-resistant member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020139202 2020-08-20
JP2020-139202 2020-08-20

Publications (1)

Publication Number Publication Date
WO2022038886A1 true WO2022038886A1 (ja) 2022-02-24

Family

ID=80323618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023403 WO2022038886A1 (ja) 2020-08-20 2021-06-21 耐食性部材

Country Status (7)

Country Link
US (1) US20230235183A1 (ja)
EP (1) EP4202079A4 (ja)
JP (1) JPWO2022038886A1 (ja)
KR (1) KR20230007495A (ja)
CN (1) CN115698383A (ja)
TW (1) TWI783565B (ja)
WO (1) WO2022038886A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11193478A (ja) * 1997-10-31 1999-07-21 Suzuki Motor Corp 表面処理方法、摺動部材及びピストン
JP2000212769A (ja) * 1999-01-26 2000-08-02 Ngk Insulators Ltd 耐食性部材及びその製造方法
JP2011231404A (ja) * 2011-04-27 2011-11-17 Toyo Seikan Kaisha Ltd 表面処理金属板及びその表面処理方法、並びに樹脂被覆金属板、缶及び缶蓋

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW400919U (en) 1996-03-12 2000-08-01 Toyoda Automatic Loom Works Variable volume capacity typed compressor
JP2004011026A (ja) * 1997-10-31 2004-01-15 Suzuki Motor Corp アルミニウム又はアルミニウム合金の表面処理方法
WO2002087814A1 (en) * 2001-05-02 2002-11-07 Norsk Hydro Asa A process of making a shaped product
US6632325B2 (en) * 2002-02-07 2003-10-14 Applied Materials, Inc. Article for use in a semiconductor processing chamber and method of fabricating same
KR100533368B1 (ko) 2004-01-06 2005-12-06 이동익 플랜지 결합방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11193478A (ja) * 1997-10-31 1999-07-21 Suzuki Motor Corp 表面処理方法、摺動部材及びピストン
JP2000212769A (ja) * 1999-01-26 2000-08-02 Ngk Insulators Ltd 耐食性部材及びその製造方法
JP2011231404A (ja) * 2011-04-27 2011-11-17 Toyo Seikan Kaisha Ltd 表面処理金属板及びその表面処理方法、並びに樹脂被覆金属板、缶及び缶蓋

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4202079A4 *

Also Published As

Publication number Publication date
TWI783565B (zh) 2022-11-11
KR20230007495A (ko) 2023-01-12
TW202217021A (zh) 2022-05-01
JPWO2022038886A1 (ja) 2022-02-24
EP4202079A4 (en) 2024-01-10
CN115698383A (zh) 2023-02-03
US20230235183A1 (en) 2023-07-27
EP4202079A1 (en) 2023-06-28

Similar Documents

Publication Publication Date Title
JP6706626B2 (ja) フッ化アニールした膜でコーティングした物品
KR101304082B1 (ko) 내식성 다층 부재
US6783863B2 (en) Plasma processing container internal member and production method thereof
JP4166386B2 (ja) 耐蝕性部材およびその製造方法
WO2022038886A1 (ja) 耐食性部材
JP2005097685A (ja) 耐食性部材およびその製造方法
WO2021182107A1 (ja) 耐食性部材
WO2021065327A1 (ja) 耐食性部材
JPH1161410A (ja) 真空チャンバ部材及びその製造方法
CN219218125U (zh) 涂覆有抗裂氟退火膜的制品
TW202231899A (zh) 塗佈抗腐蝕金屬氟化物的製品、其製備方法及使用方法
JP2023533973A (ja) フッ化酸化イットリウムおよび金属酸化物を含有するコーティング、ならびにコーティングを調製および使用する方法
CN113891960B (zh) 耐蚀性构件
KR20090092228A (ko) 반도체 제조 장치용 표면 처리 부재 및 그 제조 방법
JP6754976B2 (ja) 洗浄方法
TWI781585B (zh) 氟化釔膜及製備和使用氟化釔膜之方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21858036

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022543300

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227042869

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021858036

Country of ref document: EP

Effective date: 20230320