WO2022038409A1 - 글리시리진 및 수용성 약물을 포함하는 나노 입자, 이를 포함하는 약제학적 조성물 및 이들의 제조 방법 - Google Patents

글리시리진 및 수용성 약물을 포함하는 나노 입자, 이를 포함하는 약제학적 조성물 및 이들의 제조 방법 Download PDF

Info

Publication number
WO2022038409A1
WO2022038409A1 PCT/IB2020/062009 IB2020062009W WO2022038409A1 WO 2022038409 A1 WO2022038409 A1 WO 2022038409A1 IB 2020062009 W IB2020062009 W IB 2020062009W WO 2022038409 A1 WO2022038409 A1 WO 2022038409A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
pharmaceutical composition
nanoparticles
glycyrrhizin
soluble
Prior art date
Application number
PCT/IB2020/062009
Other languages
English (en)
French (fr)
Inventor
도은경
김정환
이근우
고광희
심규식
Original Assignee
주식회사 모든바이오
도은경
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 모든바이오, 도은경 filed Critical 주식회사 모든바이오
Publication of WO2022038409A1 publication Critical patent/WO2022038409A1/ko

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/235Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids having an aromatic ring attached to a carboxyl group
    • A61K31/24Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids having an aromatic ring attached to a carboxyl group having an amino or nitro group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to nanoparticles comprising glycyrrhizin and a water-soluble drug, a pharmaceutical composition comprising the same, and a method for preparing the same.
  • Glycyrrhizin contains two D-glucuronic acid molecules It is a triterpenoid-based saponin in which 4 bonded carbohydrate moieties and glycyrrhi tenic acid form a glycoside bond.
  • Glycyrrhizin is known as a substance obtainable from the root of licorice, the chemical formula is C42H62O16 and the molecular weight is 822.94g/mol, and is represented by the following formula (1).
  • glycyrrhizin inhibits the occurrence of tumors, improves arteriosclerosis by reducing cholesterol, and has hepatoprotective effects.
  • the present invention is to improve the stability of a water-soluble drug by supporting a water-soluble drug therein, and to provide nanoparticles containing glycyrrhizin, which can increase the half-life of the supported water-soluble drug, and a pharmaceutical composition comprising the same for work purpose
  • Another object of the present invention is to provide nanoparticles containing glycyrrhizin, which can achieve sustained release by securing acid resistance upon oral administration, and a pharmaceutical composition comprising the same.
  • the present invention does not require the use of highly toxic solvents or reagents and expensive synthetic equipment.
  • An object of the present invention is to prepare nanoparticles comprising glycyrrhizin and a water-soluble drug in an environmentally friendly method, and a pharmaceutical composition comprising the same.
  • the present invention provides glycyrrhizin nanoparticles carrying a water-soluble drug and a pharmaceutical composition comprising the same.
  • the nanoparticles may include nanoparticles of a micelle structure including a shell and a water-soluble drug.
  • the shell may include glycyrrhizin.
  • the water-soluble drug may be supported on the inside of the nanoparticles defined by the shell.
  • the water-soluble drug may be electrostatically bound to the glycyrrhizin.
  • the cationic functional group of the glycyrrhizin and the anionic functional group of the water-soluble drug may be electrostatically combined to form an electrostatic complex.
  • a water-soluble drug refers to a drug having a property of being well soluble in an aqueous medium due to strong interaction with water and strong affinity for water. That is, in the present specification, the water-soluble drug is a drug having affinity for water; drugs having a stronger affinity for water than lipids or lipoids; polar drugs having an affinity for the fluid; and a drug having a functional group capable of binding to water.
  • the type of the water-soluble drug is not particularly limited.
  • the drug includes chemically synthesized drugs, natural drugs, protein drugs such as antibody drugs, and nucleic acid molecules.
  • Drugs that can be used in the present invention include, for example, anti-inflammatory agents, analgesics, anti-arthritis, antispasmodics, anti-depressants, anti-psychotics, nerve stabilizers, anti-anxiety agents, narcotic antagonists, anti-Parkinson's disease drugs, cholinergic agonists, anti-cancer agents, Antiangiogenic, immunosuppressive, antiviral, antibiotic, appetite suppressant, analgesic, anticholinergic, antihistamine, antimigraine, hormone, coronary, cerebrovascular or peripheral vasodilator, contraceptive, antithrombotic, diuretic, anti It includes, but is not limited to, an antihypertensive agent, a cardiovascular disease treatment agent, and the like.
  • the water-soluble drug is napamostat, albuterol, bendamustine, captopril, carboplatin, ciprofloxacin, gemcitabine, ibandronate, lamivudine, metformin, niacin, oxycodone, ranitidine, sumatriptan, busulfan, Chlorambucil, Cyclophosphamide, Melphalan, Cisplatin, Ifosfamide, Cytarabine, 5-Fluorouracil, It may include at least one selected from the group consisting of methotrexate, actinomycin-D, bleomycin, theophylline, metoprolol, tramadol and allopurinol, or a pharmaceutically acceptable salt thereof.
  • the water-soluble drug may be napamostat or a pharmaceutically acceptable salt thereof.
  • the pharmaceutically acceptable salt include a salt with an inorganic acid such as hydrochloric acid, hydrobromic acid, phosphoric acid or sulfuric acid; Salts with organic carboxylic acids such as acetic acid, trifluoroacetic acid, citric acid, maleic acid, oxalic acid, succinic acid, benzoic acid, tartaric acid, fumaric acid, mandelic acid, ascorbic acid or malic acid, or sulfonic acids such as methanesulfonic acid or para-toluenesulfonic acid ; or salts with various acids known to form other pharmaceutically acceptable salts, and the like.
  • the pharmaceutically acceptable salt may be mesylate.
  • the pharmaceutical composition may be any one or more prophylactic or therapeutic compositions selected from the group consisting of coronavirus infection-19, pancreatitis, pancreatic cancer, and blood coagulation.
  • the blood coagulation is specifically It may be disseminated intravascular coagulation (disseminated intravascular coagulation) or perfusion coagulopathy.
  • Perfusion coagulopathy refers to a blood clotting-related disease that occurs during the extracorporeal circulation of a patient's blood (eg, dialysis).
  • the pharmaceutical composition may be a composition for preventing or treating coronavirus infection-19.
  • the pharmaceutical composition according to an embodiment has improved acid resistance and increased stability by supporting a water-soluble drug in glycyrrhizine nanoparticles to achieve sustained release of the water-soluble drug, and to increase the half-life of the water-soluble drug to obtain excellent effects can be achieved
  • the pharmaceutical composition according to an embodiment is a disease (eg, coronavirus infection) by simultaneously administering glycyrrhizin and a water-soluble drug (eg, nafamostat) having an antiviral effect, an anticancer effect and an anti-inflammatory effect.
  • a disease eg, coronavirus infection
  • a water-soluble drug eg, nafamostat
  • pancreatitis, pancreatic cancer and blood coagulation can show a synergetic preventive or therapeutic effect.
  • the route of administration of the pharmaceutical composition is not particularly limited, and may be administered orally or parenterally.
  • the pharmaceutical composition may be administered orally, for example.
  • the pharmaceutical composition may be administered parenterally, for example, intradermally. It may be administered by injection, such as injection, subcutaneous injection, intramuscular injection, or intravenous injection.
  • the pharmaceutical composition may be a sustained release formulation.
  • the drug release rate of the pharmaceutical composition may be about 80% or less, about 70% or less, about 65% or less, or about 60% or less for 10 hours after administration.
  • the pharmaceutical composition may further include additives commonly used in the art, such as a pharmaceutically acceptable carrier, in addition to the glycyrrhizin nanoparticles carrying the water-soluble drug.
  • the present invention also provides a method for preparing the glycyrrhizin nanoparticles carrying the above-described water-soluble drug, comprising the following steps (a) to (d), and a pharmaceutical composition comprising the same.
  • the manufacturing method of an embodiment nanoparticles of a micelle (micelle les) structure comprising a shell containing glycyrrhizin comprising the steps of; And it provides a method for preparing a pharmaceutical composition comprising a water-soluble drug supported in the micelles.
  • the step (a) mixing the mixture of the glycyrrhizin and the first water-soluble solvent with a fat-soluble solvent; (b) an aqueous layer from the mixture produced in step (a) separating; (c) mixing the mixture of the water-soluble drug and the second water-soluble solvent with the water-soluble layer separated in step (b) to form the micellar structure; and (d) purifying the nanoparticles from the mixture produced in step (c).
  • the step (a) may include adding a mixture of the glycyrrhizin and the first water-soluble solvent to the fat-soluble solvent.
  • glycyrrhizin may be mixed in an amount of about Img or more and 100mg or less per 1ml of the first aqueous solvent. For example, about 20 mg of glycyrrhizin per 1 ml of the first aqueous solvent may be mixed.
  • the water-soluble drug may be mixed in an amount of about Img or more and 25 mg or less per 10 ml of the second water-soluble solvent. For example, about 4 mg of the water-soluble drug may be mixed per 10 ml of the second water-soluble solvent.
  • the step (c) may further include applying a predetermined (predetermined) physical impact to the mixture formed in the step (c).
  • the step of applying the predetermined physical impact is not particularly limited, but may include stirring or ultrasonic treatment.
  • the step (d) may include the step of removing free glycyrrhizin and free water-soluble drug by dialysis (dialysing) the mixture at pH5.5 to pH6.5.
  • the pH may be, for example, about 6.0.
  • deionized water may be used as the dialysis solution.
  • the manufacturing method may further include drying the purified nanoparticles after step (d).
  • the drying process may be a freeze drying process.
  • the water-soluble drug is nafamostat or a pharmaceutically acceptable salt thereof.
  • the pharmaceutically acceptable salt may be a mesylic acid salt.
  • the first water-soluble solvent and the second water-soluble solvent may be the same as or different from each other.
  • the first water-soluble solvent and the second water-soluble solvent are not particularly limited, but each independently water, an alcohol having 1 to 4 carbon atoms, glycerol, butylene glycol, dipropylene glycol, propylene glycol, methylpropanediol, such as monomethyl ether of ethylene glycol, monoethyl ether of ethylene glycol, THF, dioxane, acetone, acetonitrile, dimethyl ether of ethylene glycol and phosphate-buffered saline (PBS). It may include one or more selected from aqueous solutions of salts.
  • the alcohol having 1 to 4 carbon atoms may be methanol, ethanol, n-propanol, isopropanol, n-butanol, iso-butanol, sec-butanol or tert-butanol.
  • the water-soluble solvent in step (a) may be water
  • the water-soluble solvent in step (b) may be ethanol.
  • the fat-soluble solvent is not particularly limited, but may be vegetable oil.
  • fat-soluble solvents include avocado oil, almond oil, sweet almond oil, bitter almond oil, olive oil, sesame oil, rice bran oil, safflower oil, Soybean Oil, Corn Oil, Cannula Oil, Apricot Kernel Oil, Peach Kernel Oil, Palm Kernel Oil, Palm Oil, Castor Oil, Sunflower Seed Oil, Grape Seed Oil, Cottonseed Oil, coconut Oil, Camellia Oil, Peach Seed Oil, Apricot Seed oil It may be at least one edible oil selected from soybean oil, olive oil, grape seed oil, canola oil and corn oil.
  • the fat-soluble solvent may be corn oil.
  • glycyrrhizin nanoparticles loaded with a water-soluble drug having high safety and improved stability without biotoxicity and a pharmaceutical composition comprising the same can be manufactured.
  • the present invention also includes the step of administering to a subject in need thereof a glycyrrhizin nanoparticle carrying napamostat as a water-soluble drug or a pharmaceutical composition comprising the same to a subject in need thereof-19, pancreatitis, pancreatic cancer and blood coagulation It can provide a method for preventing or treating any one or more diseases selected from the group consisting of.
  • the present invention provides a step of administering to a subject in need thereof, glycyrrhizine nanoparticles carrying napamostat or a pharmaceutical composition comprising the same. It is possible to provide a method for preventing or treating COVID-19, including The present invention also provides for any one or more diseases selected from the group consisting of glycyrrhizin nanoparticles carrying napamostat as a water-soluble drug or a pharmaceutical composition containing the same, coronavirus infection-19, pancreatitis, pancreatic cancer, and blood coagulation. prophylactic or therapeutic use.
  • the present invention provides glycyrrhizin nanoparticles carrying napamostat as a water-soluble drug or a pharmaceutical composition comprising the same, coronavirus infection-19, pancreatitis, pancreatic cancer, and any one or more diseases selected from the group consisting of blood coagulation It can provide prophylactic or therapeutic use for
  • the present invention also contains nafamostat as a water-soluble drug for preparing a pharmaceutical preparation for the prevention or treatment of any one or more diseases selected from the group consisting of coronavirus infection-19, pancreatitis, pancreatic cancer and blood coagulation. It can provide the use of glycyrrhizine nanoparticles.
  • the present invention also provides a method for preparing a pharmaceutical formulation for the prevention or treatment of coronavirus infection-19, which contains nafamostat as a water-soluble drug.
  • a pharmaceutical formulation for the prevention or treatment of coronavirus infection-19 which contains nafamostat as a water-soluble drug.
  • Uses of glycyrrhizine nanoparticles may be provided.
  • the description of their manufacturing method may be equally applied to the other one as long as they do not contradict each other.
  • glycyrrhizin nanoparticles carrying the water-soluble drug described herein and a pharmaceutical composition comprising the same The description of the method for their preparation is equally applicable to the above-described treatment methods and uses as long as there is no contradiction.
  • Nanoparticles and a pharmaceutical composition comprising the same according to an embodiment can improve the stability of the water-soluble drug by loading the water-soluble drug inside the nanoparticles containing glycyrrhizin. Therefore, the half-life of the supported water-soluble drug can be increased, and even when administered in a small amount, excellent effects can be continuously exhibited.
  • the pharmaceutical composition of an embodiment can achieve sustained release by ensuring acid resistance during oral administration.
  • Nanoparticles and a method for manufacturing a pharmaceutical composition comprising the same according to an embodiment can prepare nanoparticles and a pharmaceutical composition including the same in an environmentally friendly way without the use of a highly toxic solvent or reagent and expensive synthetic equipment. .
  • FIG. la is an image of nanoparticles observed with an optical microscope according to an embodiment.
  • lb shows an image observed by a transmission electron microscope of nanoparticles according to an embodiment.
  • 2 shows absorption spectra of nanoparticles according to Example 1 and Comparative Example 1 measured using a UV-VIS spectrophotometer.
  • 3A, 3B , 4A and 4B are graphs illustrating particle size distributions of nanoparticles according to Example 1 and Comparative Example 1 measured using a particle analyzer.
  • 5A and 5B are graphs illustrating zeta potential distributions of nanoparticles according to Example 1 and Comparative Example 1 measured using a particle analyzer.
  • 6 is a graph showing the cell viability of the A549 cell line when the nanoparticles of one embodiment are administered.
  • 7 and 8 are graphs showing the serine protease inhibitory effect according to the concentration of the nanoparticles of one embodiment.
  • 9 is a graph confirming the sustained release effect of nanoparticles according to the embodiment.
  • the solution was placed in a dialysis bag (Molecular weight cut-of f (MWCO) 1,000) and dialyzed using deionized water at pH 6.0 as a dialysis solution.
  • MWCO Molecular weight cut-of f
  • the pH of the deionized water is It was kept at about 6.0.
  • the nanoparticles were purified by removing unreacted free glycyrrhizin and nafamostat by stirring at 150 rpm at room temperature (25°C) for about 24 hours.
  • the absorbance, shape, size and colloid of particles were analyzed using an optical microscope, UV-VIS spectroscopy, TEM, Transmission Electron Microscope, and Particle size analyzer. Stability (zeta potential, Zeta potential) was confirmed.
  • Nanoparticles prepared according to Preparation Example were diluted 60-fold in DW to a concentration of 1 mg/ml and dispersed, then put 1 ml in a dedicated cuvette, and the wavelength band was set from 100 nm to 999 nm and measured. Referring to FIG.
  • the napamostat peak (third peak) and glycyrrhizine nanoparticle peak (first peak) are clearly confirmed. .
  • the glycyrrhizine nanoparticle peak (first peak) and the pigment-specific peak (second peak) were confirmed in the napamostat-free glycyrrhizine nanoparticle group (MDB-601a-dye), and free napamostat and free glycyrrhizine group ( MDB-601-NM), which is clearly distinguished from the peak for free glycyrrhizin. Therefore, it is confirmed that, according to the manufacturing method of an embodiment, glycyrrhizin is nanoparticles in a micellar structure, and napamostat is supported inside the nanoparticles defined by the nanoparticles.
  • Example 1 FIGS. 3a and 3b
  • Example 1 FIGS. 3a and 3b
  • Comparative Example 1 FIGS. 4A and 4B
  • the size of nanoparticles was not measured because the micellar structure was not formed.
  • FIGS. 5A and 5B and Table 2 in Example 1 (FIG. 5A), nanoparticles of a micelle structure were well formed, and the zeta level measurement result showed a stable value of -87.7 mV, whereas In Comparative Example 1 (FIG. 5b), the micellar structure was not formed, which was an unstable value compared to Example 1.
  • the human lung cell line (A549) is a medium containing 10% Fetal bovine serum (Roswell Park Memorial Institute 1640 medium), and the medium is exchanged every 2 days, 37° C, incubated at 5% C02.
  • a human lung cell line (A549) was inoculated into a 96-well plate at a concentration of 1x104 cells/well, and Example 1 was administered at each concentration (250, 150, 50, 10, IpM).
  • Cell viability analysis was performed using the EZ-Cytox (Dogen, Korea) kit using the cells cultured without substance administration as a negative control after culturing for 24 hours. As a result, as shown in FIG.
  • Example 1 serum 0.001 ug/ml , 0.01 ug/ml , 0.1 ug/ml
  • serum and nafamostat lug/ml were mixed in a 1:1 ratio. After that, after incubation at 37T for 1 hour, per l of Wel in 96 well plate Succinylated Casein Solut ion was put in each 100
  • TNBSA was added at a rate of 50 mountains per Wel. at 37T
  • glycyrrhizin nanoparticles of an embodiment support napamostat in the micellar structure, so that napamostat is stably maintained even in serum and the half-life is extended to 1 hour or more.
  • Example 1 In order to confirm the effect of the present invention in blocking covid-19 virus infection by inhibiting TMPRSS-2 (serine protease), which helps the Covidl9 virus enter the cell, the composition of Example 1 at a concentration of 20uM in trypsin, a serine protease 1: mixed in a ratio of 1. Also, trypsin was mixed with napamostat ImM in a 1:1 ratio. After incubation at 37T for 1 hour, Succinylated Casein Solution was added at a rate of 100
  • TMPRSS-2 serine protease
  • glycyrrhizin nanoparticles according to an embodiment are free It is confirmed that even if only about 2% concentration of nafamostat is administered, it has the same level of serine protease inhibitory effect as free nafamostat. This seems to be because, as described above, the serum stability of nafamostat in the nanoparticles of one embodiment is improved, and the half-life is extended to 1 hour or more. From this, it is confirmed that the glycyrrhizin nanoparticles of an embodiment carrying napamostat can effectively block viral infections such as coronavirus-19 by selectively inhibiting serine proteolytic enzymes.
  • the nanoparticles according to Example 1 showed a characteristic that the loaded drug was released rather quickly during the first 1 day, but the loaded drug was continuously released for 10 days thereafter. More specifically, it is confirmed that the release rate of nafamostat according to an embodiment is about 80% or less, about 70% or less, about 65% or less, or about 60% or less for 10 days after administration.
  • the composition of one embodiment is not affected by pH and is sustained-release, so that the acid resistance effect and sustained-release effect are also confirmed during oral administration of the composition of one embodiment.
  • the glycyrrhizin nanoparticles carrying the water-soluble drug and the pharmaceutical composition comprising the same according to an embodiment may improve the stability of the water-soluble drug. Therefore, the half-life of the supported water-soluble drug is increased, so that excellent effects can be continuously exhibited even when a small amount is administered.
  • the water-soluble drug is supported on the nanoparticles and exhibits acid resistance, the water-soluble drug supported on the nanoparticles is gradually released even after administration.
  • nanoparticles according to an embodiment and the pharmaceutical composition comprising the same can be administered to a subject both the water-soluble drug and the glycyrrhizin contained in the nanoparticles, so that an excellent antiviral effect is achieved according to the combination of the water-soluble drug and glycyrrhizin can do.
  • nanoparticles or a pharmaceutical composition comprising the same according to an embodiment exhibit an excellent antiviral effect (eg, antiviral effect against coronavirus-19) by administering both nafamostat and glycyrrhizin to a subject can be achieved
  • the glycyrrhizin nanoparticles carrying a water-soluble drug and a method for manufacturing a pharmaceutical composition including the same according to an embodiment may provide a simple manufacturing process and an eco-friendly manufacturing process.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Virology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Emergency Medicine (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

본 발명은 쉘을 포함하는 미셀(micelle) 구조의 나노 입자 및 수용성 약물을 포함하는 약제학적 조성물 및 이의 제조 방법을 제공한다. 상기 쉘은 글리시리진을 포함하며, 상기 수용성 약물은 상기 쉘에 의해 정의되는 상기 나노 입자의 내부에 담지 된다. 일 실시예의 약학적 조성물은 안정성이 향상된 수용성 약물을 제공하므로, 지속적으로 약효가 발현될 수 있다.

Description

【명세서】
【발명의 명칭】 글리시리진 및 수용성 약물을 포함하는 나노 입자, 이를 포함하는 약제학적 조성물 및 이들의 제조 방법
【기술분야】 본 발명은 글리시리진 및 수용성 약물을 포함하는 나노 입자, 이를 포함하는 약제학적 조성물 및 이들이 제조 방법에 대한 것이다.
【발명 기술】 글리시리진은 두 개의 D-글루크로닉산 (D- glucuronic acid) 분자가
Figure imgf000002_0001
4 결합한 당질부와 글리시리티닉산 (glycyrrhi tenic acid)이 글리코사이드 (glycoside) 결합을 이루고 있는 트리테르페노이드 (tr i terpenoid)계 사포닌 (saponin)이다. 글리시리진은 감초의 뿌리에서 얻을 수 있는 물질로 알려져 있으며 , 화학식은 C42H62O16이고 분자량은 822.94g/mol이며 , 하기 화학식 1로 표시된다.
[화학식 1]
Figure imgf000003_0001
글리시리진은 종양의 발생을 억제하고, 콜레스테롤을 감소시켜 동맥경화를 개선하며, 간 보호 효과 등이 있는 것으로 알려져 있다.
【발명의 상세한 설명】
【기술적 과제】 본 발명은 내부에 수용성 약물을 담지함으로써 수용성 약물의 안정성을 향상시키며 담지된 수용성 약물의 반감기를 증가시킬 수 있는 , 글리시리진을 포함하는 나노 입자 및 이를 포함하는 약제학적 조성물을 제공하는 것을 일 목적으로 한다. 또한, 본 발명은 경구 투여시 내산성이 확보되어 서방출을 달성할 수 있는, 글리시리진을 포함하는 나노 입자 및 이를 포함하는 약제학적 조성물을 제공하는 것을 일 목적으로 한다. 또한, 본 발명은 독성이 강한 용매나 시약 및 고가의 합성 장비 사용 없이 환경 친화적인 방법으로 글리시리진을 포함하고 수용성 약물을 담지하는 나노 입자 및 이를 포함하는 약제학적 조성물을 제조하는 것을 일 목적으로 한다 .
【기술적 해결방법】 본 발명은 수용성 약물을 담지하는 글리시리진 나노 입자 및 이를 포함하는 약제학적 조성물을 제공한다. 상기 나노 입자는 쉘을 포함하는 미셀 (micelle) 구조의 나노 입자 및 수용성 약물을 포함할 수 있다. 상기 쉘은 글리시리진을 포함할 수 있다. 상기 수용성 약물은 상기 쉘에 의해 정의되는 상기 나노 입자의 내부에 담지 될 수 있다. 상기 수용성 약물은 상기 글리시리진과 정전기적으로 결합된 것일 수 있다. 예를 들어, 상기 글리시리진의 양이온성 작용기와 상기 수용성 약물의 음이온성 작용기가 정전기적으로 결합하여 정전기적 복합체를 형성할 수 있다. 본 명세서에서 수용성 약물은 물과 강한 상호작용을 하고 물에 대한 친화력이 강하여 수성 매질에 잘 용해되는 성질을 갖는약물을 의미한다. 즉, 본 명세서에서 수용성 약물은 물에 대한 친화도 (affinity)를 가진 약물; 지질 (lipid) 또는 리포이드 (lipoid) 보다 물에 대하여 강한 친화력을 가지는 약물; 극성 (polar) 유체에 대하여 친화력을 가지는 약물; 및 물에 대하여 결합 가능한 작용기 (functional group)을 가지는 약물을 모두포함하는 의미로사용된다. 본 명세서에서, 수용성 약물의 종류는 특별히 한정되지 않는다. 예를 들면, 상기 약물은 화학 합성 약물, 천연물 약물, 항체 의약품과 같은 단백질 약물 및 핵산 분자 등을 포함한다. 본 발명에 이용될 수 있는 약물은 예를 들어, 항염증제, 진통제, 항관절염제, 진경제 , 항우울증제 , 항정신병약물, 신경안정제 , 항불안제 , 마약길항제 , 항파킨스질환 약물, 콜린성 아고니스트, 항암제 , 항혈관신생억제제 , 면역억제제 , 항바이러스제, 항생제, 식욕억제제, 진통제, 항콜린제, 항히스타민제, 항편두통제, 호르몬제, 관상혈관, 뇌혈관 또는 말초혈관 확장제, 피임약, 항혈전제, 이뇨제, 항고혈압제, 심혈관질환치료제 등을 포함하나, 이에 한정되는 것은 아니다. 예를 들어, 상기 수용성 약물은 나파모스타트, 알부테롤, 벤드아무스틴, 캅토프릴 , 카르보플라틴 , 시프로플록사신 , 젬시타빈 , 이반드로네이트, 라미부딘 , 메트포르민, 니아신, 옥시코돈, 라니티딘, 수마트립탄, 부설판, 클로람부실, 시클로포스파미드 , 멜파란 , 시스플라틴 , 이포스파미드 , 시타라빈 , 5 -플루오로우라실 , 메토트렉세이트 , 악티노마이신 -D, 블레오마이신 , 테오필린 , 메토프로롤 , 트라마돌 및 알로푸리놀로 이루어진 군에서 선택된 1종 이상 또는 이들의 약제학적으로 허용가능한 염을 포함할 수 있다. 예를 들어 , 상기 수용성 약물은 나파모스타트 또는 이의 약제학적으로 허용 가능한 염일 수 있다. 일 실시 예에서 , 상기 약제학적으로 허용 가능한 염의 비제한적인 예로는 , 염산, 브롬산, 인산 또는 황산과 같은 무기산과의 염 ; 아세트산, 트리플루오로아세트산, 구연산, 말레인산, 수산, 호박산, 벤조산, 주석산, 푸마르산, 만델산, 아스코르브산 또는 말산과 같은 유기 카르복실산이나, 메탄설폰산 또는 파라-톨루엔설폰산과 같은 설폰산과의 염 ; 혹은 기타 약제학적으로 허용 가능한 염을 형성할 수 있는 것으로 알려진 다양한 산과의 염 등을 포함할 수 있다. 예를 들어 , 상기 약제학적으로 허용 가능한 염은 메실산염일 수 있다. 상기 약제학적 조성물은 코로나바이러스감염증- 19 , 췌장염 , 췌장암 및 혈액응고증으로 이루어진 군에서 선택되는 어느 하나 이상의 예방 또는 치료용 조성물일 수 있다. 상기 혈액 응고증은 구체적으로 파종혈관내응고증(범발성혈관내응고증) 또는 관류혈액응고증일 수 있다 . 관류혈액응고증은 환자의 혈액 체외 순환(예를 들어, 투석) 시 발생하는 혈액응고관련 질환을 의미한다. 예를 들어, 상기 약제학적 조성물은 코로나바이러스감염증- 19의 예방또는 치료용 조성물 일 수 있다. 후술할 바와 같이, 일 실시예에 따른 약제학적 조성물은 수용성 약물을 글리시리진 나노입자 내에 담지함으로써 내산성이 향상되고 안정성이 증가하여 수용성 약물의 서방출을 달성하고, 수용성 약물의 반감기를 증가시켜 우수한 효과를 달성할 수 있다. 또한, 일 실시예에 따른 약제학적 조성물은 항바이러스 효과, 항암 효과 및 항염 증 효과 등이 있는 글리시리진 및 수용성 약물(예를 들어, 나파모스타트)를 동시에 투여함으로써 질환(예를 들어, 코로나바이러스감염증- 19, 췌장염, 췌장암 및 혈액응고증 등)에 대한 상승적인(synergetic) 예방 또는 치료 효과를 나타낼 수 있다. 상기 약제학적 조성물의 투여 경로는 특별히 한정되는 것은 아니며, 경구 또는 비경구 투여되는 것일 수 있다. 상기 약제학적 조성물은 예를 들어 경구 투여되는 것일 수 있다. 상기 약제학적 조성물은 비경구 투여, 예를 들어 피내 주사, 피하 주사, 근육 주사 또는 정맥 주사 등 주사 투여되는 것일 수 있다. 상기 약제학적 조성물은 서방출 제제일 수 있다 . 상기 약제학적 조성물의 약물 방출률은 투여 후 10시간 동안 약 80% 이하, 약 70% 이하, 약 65% 이하 또는 약 60% 이하일 수 있다. 상기 약제학적 조성물은 상기 수용성 약물을 담지하는 글리시리진 나노 입자 외에 약제학적으로 허용 가능한 담체 등 당 기술분야에서 통상적으로 사용되는 첨가제들을 더 포함할 수 있다. 본 발명은 또한 하기의 단계 (a) 내지 단계 (d)를 포함하는 , 전술한 수용성 약물을 담지하는 글리시리진 나노 입자 및 이를 포함하는 약제학적 조성물의 제조 방법을 제공한다. 일 실시 예의 제조 방법은 , 하기의 단계를 포함하는 글리시리진이 포함된 쉘을 포함하는 미셀 (micel les) 구조의 나노 입자; 및 상기 미셀에 담지된 수용성 약물을 포함하는 약제학적 조성물의 제조 방법을 제공한다. 상기 단계는 (a) 상기 글리시리진과 제 1 수용성 용매의 혼합물을 지용성 용매와 혼합하는 단계 ; (b) 상기 단계 (a)에서 생성된 혼합물에서 수용성 층을 분리하는 단계; (c) 상기 수용성 약물과 제 2 수용성 용매의 혼합물을, 단계 (b)에서 분리한 수용성층과 혼합하여 상기 미셀 구조를 형성하는 단계; 및 (d) 상기 단계 (c)에서 생성된 혼합물에서 상기 나노 입자를 정제하는 단계를 포함할 수 있다. 상기 단계 (a)는, 상기 글리시리진과 상기 제 1 수용성 용매의 혼합물을 상기 지용성 용매에 첨가하는 단계를 포함할 수 있다. 상기 글리시리진과 상기 제 1 수용성 용매의 상기 지용성 용매에 첨가할 경우 층전환이 일어나면서 더 효율적인 나노 입자 형성이 가능할 수 있다. 상기 단계 (a)에서 제 1 수용성 용매 1ml당 글리시리진을 약 Img 이상 lOOmg 이하로 혼합할 수 있다. 예를 들어, 제 1 수용성 용매 1ml당 글리시리진을 약 20mg 혼합 할 수 있다. 상기 단계 (b)에서 제 2 수용성 용매 10 ml당 수용성 약물을 약 Img 이상 25mg 이하로 혼합할 수 있다. 예를 들어, 제 2 수용성 용매 10ml당 수용성 약물을 약 4mg혼합할 수 있다. 상기 단계 (c)는, 상기 단계 (c)에서 형성된 혼합물에 소정의 (predetermined) 물리적 충격을 가하는 단계를 더 포함할 수 있다. 상기 소정의 물리적 충격을 가하는 단계는 특별히 제한되는 것은 아니나, 교반하는 단계 또는 초음파 처리하는 단계를 포함할 수 있다. 예를 들어 , 상기 소정의 물리적 충격을 가하는 단계는 1회 이상 초음파 처리하는 단계일 수 있다. 즉 , 일 실시 예의 제조 방법은 상기 분리된 수용성 층에 초음파와 같은 물리적인 충격을 가함으로써 글리시리진의 카르복실기 (- COOH)와 나파모스타트의 아민기 (- NH2)가 정전기적 복합체 (글리시리진 :나파모스타트 =2:1 비율)를 잘 형성할 수 있도록 할 수 있다. 또한, 수용성 층 내에 나노 입자를 균일하게 형성시키면서도, 잘 분산되도록 할 수 있다. 상기 단계 (d)는 상기 혼합물을 pH5.5 내지 pH6.5에서 투석 (di alysi s)하여 유리 글리시리진 및 유리 수용성 약물을 제거하는 단계를 포함할 수 있다. 상기 pH는 예를 들어 약 6.0일 수 있,다. 상기 투석 단계에서 투석 액으로는 탈이온수를 사용할 수 있다. 상기 제조 방법은 상기 (d) 단계 이후에 , 상기 정제된 나노 입자를 건조하는 단계를 더 포함할 수 있다. 상기 건조 공정은 동결 건조 공정일 수 있다. 상기 수용성 약물은 나파모스타트 또는 이의 약제학적으로 허용 가능한 염 일수 있다. 상기 약제학적으로 허용 가능한 염은 메실산 염일 수 있다. 상기 제 1 수용성 용매 및 상기 제 2 수용성 용매는 서로 동일하거나 상이할 수 있다. 상기 제 1 수용성 용매 및 상기 제 2 수용성 용매는 특별히 한정되는 것은 아니나, 각각 독립적으로 물, 탄소수 1 이상 4 이하의 알코올, 글리세롤, 부틸렌글라이콜 , 다이프로필렌글라이콜 , 플로필렌글라이콜 , 메칠프로판다이올 에틸렌 글라이콜의 모노메틸 에테르, 에틸렌 글라이콜의 모노에틸 에테르, THF, 다이옥산, 아세톤, 아세토나이트릴, 에틸렌 글라이콜의 다이메틸 에테르 및 PBS(Phosphate- buffered saline)와 같은 염의 수용액 중 선택되는 1종 이상을 포함할 수 있다. 상기 탄소수 1 이상 4 이하의 알코올은 메탄올, 에탄올, n- 프로판올, 이소프로판올, n-부탄올, iso-부탄올, sec-부탄올 또는 tert-부탄올 일 수 있다. 예를 들어 , 상기 단계 (a)에서 수용성 용매는 물일 수 있고, 상기 단계 (b)에서 수용성 용매는 에탄올일 수 있다. 상기 지용성 용매는 특별히 한정되는 것은 아니나, 식물성 오일일 수 있다. 예를 들어, 지용성 용매는 아보카도오일, 알몬드 오일, 스위트알몬드오일, 비터알몬드오일 , 올리브오일 , 세사미 (참깨 )오일 , 라이스브랜오일 , 홍화오일 , 대두유, 콘오일 , 카눌라오일 , 애프리코트커넬오일 , 피치커넬오일 , 팜커넬오일 , 팜오일 , 피마자오일 , 해바라기씨오일 , 포도씨오일 , 목화씨오일 , 코코넛오일 , 동백오일 , 복숭아씨오일 , 살구씨오일 대두유, 올리브유, 포도씨유, 캐놀라유 및 콘오일 중 선택되는 1종 이상의 식용 오일일 수 있다. 예를 들어 , 상기 지용성 용매는 콘오일일 수 있다. 일 실시 예의 제조 방법에 따르면 , 인체에 독성이 없는 식용 용매를 지용성 용매로 사용함으로써 , 높은 안전성을 갖고 생체 독성이 없으면서도 안정성이 향상된 수용성 약물이 담지된 글리시리진 나노 입자 및 이를 포함하는 약제학적 조성물을 제조할 수 있다 . 본 발명은 또한, 수용성 약물로써 나파모스타트를 담지하는 글리시리진 나노 입자 또는 이를 포함하는 약제학적 조성물을 이를 필요로하는 대상체에 투여하는 단계를 포함하는 코로나바이러스감염증- 19, 췌장염 , 췌장암 및 혈액응고증으로 이루어진 군에서 선택되는 어느 하나 이상의 질환에 대한 예방 또는 치료 방법을 제공할 수 있다. 예를 들어 , 본 발명은 나파모스타트를 담지하는 글리시리진 나노 입자 또는 이를 포함하는 약제학적 조성물을 이를 필요로하는 대상체에 투여하는 단계를 포함하는 코로나바이러스감염증- 19에 대한 예방 또는 치료 방법을 제공할 수 있다. 본 발명은 또한, 수용성 약물로써 나파모스타트를 담지하는 글리시리진 나노 입자 또는 이를 포함하는 약제학적 조성물의 코로나바이러스감염증- 19 , 췌장염 , 췌장암 및 혈액응고증으로 이루어진 군에서 선택되는 어느 하나 이상의 질환에 대한 예방 또는 치료 용도를 제공할 수 있다. 예를 들어 , 본 발명은 수용성 약물로써 나파모스타트를 담지하는 글리시리진 나노 입자 또는 이를 포함하는 약제학적 조성물의 코로나바이러스감염증- 19 , 췌장염 , 췌장암 및 혈액응고증으로 이루어진 군에서 선택되는 어느 하나 이상의 질환에 대한 예방 또는 치료 용도를 제공할 수 있다. 본 발명은 또한, 코로나바이러스감염증- 19 , 췌장염 , 췌장암 및 혈액응고증으로 이루어진 군에서 선택되는 어느 하나 이상의 질환의 예방 또는 치료를 위한 약제학적 제제를 제조하기 위한, 수용성 약물로써 나파모스타트를 담지하는 글리시리진 나노 입자의 용도를 제공할 수 있다. 본 발명은 또한, 코로나바이러스감염증- 19의 예방 또는 치료를 위한 약제학적 제제를 제조하기 위한, 수용성 약물로써 나파모스타트를 담지하는 글리시리진 나노 입자의 용도를 제공할 수 있다. 본원 명세서에 기재된 수용성 약물을 담지하는 글리시리진 나노 입자 및 이를 포함하는 약제학적 조성물 ; 이들의 제조 방법에 대한 설명은 , 서로 모순되지 않는 한 어느 하나에 기재된 설명이 다른 하나에도 동일하게 적용될 수 있다. 또한, 본원 명세서에 기재된 수용성 약물을 담지하는 글리시리진 나노 입자 및 이를 포함하는 약제학적 조성물 ; 이들의 제조 방법에 대한 설명은 모순되지 않는 한 전술한 치료 방법 및 용도에도 동일하게 적용될 수 있다.
【발명의 효과】 일 실시 예에 따른 나노 입자 및 이를 포함하는 약제학적 조성물은 글리시리진을 포함하는 나노 입자 내부에 수용성 약물을 담지함으로써 수용성 약물의 안정성을 향상시킬 수 있다. 따라서 , 담지된 수용성 약물의 반감기가 증가할 수 있으며 적은 양을 투여하더라도 지속적으로 우수한 효과를 나타낼 수 있다. 또한, 일 실시 예의 약제학적 조성물은 경구 투여시 내산성이 확보되어 서방출이 달성될 수 있다 일 실시 예에 따른 나노 입자 및 이를 포함하는 약제학적 조성물의 제조 방법은 독성이 강한 용매나 시약 및 고가의 합성 장비 사용 없이도 환경 친화적인 방법으로 나노 입자 및 이를 포함하는 약제학적 조성물을 제조할 수 있다 .
【도면의 간단한 설명】 도 la는 일 실시 예에 따른 나노 입자를 광학 현미경으로 관찰한 이미지를 도시한 것이다. 도 lb는 일 실시 예에 따른 나노 입자를 투과 전자 현미경으로 관찰한 이미지를 도시한 것이다. 도 2는 UV-VIS 분광 광도계를 이용하여 측정한 실시 예 1 및 비교예 1에 따른 나노 입자의 흡광 스펙트럼을 도시한 것이다. 도 3a, 도 3b , 도 4a 및 도 4b는 입자분석기를 이용하여 측정한 실시 예 1 및 비교예 1에 따른 나노 입자의 입도 분포를 도시한 그래프이다. 도 5a 및 도 5b는 입자분석기를 이용하여 측정한 실시 예 1 및 비교예 1에 따른 나노 입자의 제타 전위 분포를 도시한 그래프이다. 도 6은 일 실시 예의 나노 입자를 투여한 경우 A549 세포주의 세포 생존률을 도시한 그래프이다. 도 7 및 도 8은 일 실시 예의 나노 입자의 농도에 따른 세린단백질분해효소 억제 효과를 도시한 그래프이다. 도 9는 실시 예에 따른 나노 입자의 서방출 효과를 확인한 그래프이다.
【발명의 실시를 위한 형태】 이하, 본 발명의 이해를 돕기 위하여 바람직한 실시 예를 제시한다. 그러나 하기 실시 예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 , 실시 예에 의해 본 발명의 내용이 한정되는 것은 아니다.
1. 수용성 약물이 담지된 나노 입자의 제조예 순도 98% 이상의 글리시리진 20 mg을 에탄올 1 ml에 혼합 및 용해시켰다. 이후 콘 오일 (corn oi 1 ) 1 ml와 혼합 한뒤 5분 간 교반 (150 rpm) 하였다. 글리시리진 나노 입자가 포함된 층전환된 상층액 (수층)을 피펫을 이용하여 조심스럽게 분리하였다. 이후 나파모스타트의 메실산 염 (엔지켐생명과학) 4 mg을 물 10 ml (pH 6) 에 녹인 후 , 글리시리진이 용해된 용액에 나파모스타트 혼합액을 첨가하고 글리시 리진의 카르복실기 (- COOH)와 나파모스타트의 아민기 (- NH2)가 정전기적 복합체 (글리시리진 :나파모스타트 =2:1 비율)를 이룰 수 있도록 초음파를 1분간 가하였다. 이후 , 입자가 균일하게 형성되고 수층에 잘 분산될 수 있도록 초음파를 약 5초 동안 세 번 가하였다. 이후 , 용액을 Dialysis bag (MWCO(Molecular weight cut-of f ) 1 , 000)에 넣고 pH 6.0의 탈이온수 (deionized water )를 투석 액으로 사용하여 투석하였다. 이 때 , 글리시리진의 카르복실기와 나파모스타트의 아민기의 정전기적 복합체가 해리되어 콜로이드 (col loid) 내 입자의 불안정화 및 분해 (disassembly)에 의한 침전을 발생 시키는 것을 방지하기 위해 , 탈이온수의 pH는 약 6.0으로 유지하였다. 이후 , 약 24시간 동안 150rpm으로 상온 (25°C )에서 교반하여 반응하지 않은 유리 (free) 글리시리진 및 나파모스타트를 제거하여 나노 입자를 정제하였다. 투석이 끝난 뒤 동결 건조 안정제인 만니톨 5 mg 내지 10 mg과 수크로스 (sucrose) 6mg 내지 140 mg을 넣고 -4 °C에서 동결 한 뒤 동결 건조기 (FD8508 , 일신바이오베이스 , 대한민국)를 이용하여 건조 하였고 나파모스타트가 함유 된 글리시리진 나노 입자를 제조 하였다. 일 실시 예의 제조 방법에 따라 나노 입자를 제조하는 경우 뒤에서 자세히 설명할 것과 같이 나파모스타트를 담지하는 글리시리진 나노 입자를 효과적으로 얻을 수 있음을 확인하였다. 또한, 일 실시 예의 제조 방법에 따라 나노 입자를 제조하는 경우 , 독성이 강한 용매나 시약 또는 고가의 합성 장비 없이 환경 친화적인 방법으로 나노 입자 및 이를 포함하는 약제학적 조성물을 제조할 수 있음을 확인하였다.
2. 제조된 나노 입자의 입자화 및 수용성 약물의 담지 결과 확인
Dialysis를 완료한 후 , 광학현미경 , UV-VIS 분광 광도계 (UV- VIS spectroscopy) , 투과전자현미경 (TEM, Transmission Electron Microscope) 및 입자분석기 (Part icle size analyzer )로 입자의 흡광도, 형상, 크기 및 콜로이드 안정성 (제타전위 , Zeta Potent ial )을 확인하였다.
(la) 광학현미경을 이용한 입자화 및 수용성 약물의 담지 결과 확인 광학현미경 (OLYMPUS CKX53 , OLYMPUS , Japan)을 이용하여 위의 제조예에 따라 제조된 콜로이드를 600배의 배율로 관찰하였다. 관찰 결과 , 글리시리진이 미셀 구조의 나노 입자로 입자화 되었으며 나파모스타트가 담지 된 것을 확인하였다. 구체적으로, 도 la을 참조하면 일 실시 예에 따른 제조방법에 의해 제조된 나파모스타트가 담지된 나노 입자들이 확인된다.
(lb) 투과전자현미경을 이용한 입자화 및 수용성 약물의 담지 결과 확인 투과전자현미경 (Talos L120C , FEI , Czech)을 이용하여 위의 제조예에 따라 제조된 콜로이드를 15000배의 배율로 관찰하였다. 관찰 결과 , 글리시리진이 미셀 구조의 나노 입자로 입자화 되었으며 나파모스타트가 담지 된 것을 확인하였다. 구체적으로, 도 lb을 참조하면 일 실시 예에 따른 제조방법에 의해 제조된 나파모스타트가 담지된 나노 입자들이 확인된다.
(2) UV-VIS 분광 광도계를 이용한 흡광 스펙트럼의 분석
UV-VIS 분광 광도계 (NB1- A- 190104 , Mi crodigi tal co . , Korea)를 이용하여 위의 제조예에 따라 제조된 나노 입자의 흡광 스펙트럼을 DW로 back ground 를 잡고 제조예에 따라 제조된 나노 입자는 1 mg/ml의 농도로 DW에 60배 희석하여 분산 한 뒤 전용 큐벳에 1 ml 넣고 파장대는 100 nm 에서 999nm로 설정하여 측정하였다. 도 2를 참조하면 , 일 실시 예에 따른 나파모스타트를 담지하는 글리시리진 나노 입자 그룹(MBD- 601a- NM)에서 나파모스타트 peak(세번째 peak)와 글리시리진 나노입자 피크(첫번째 피크)가 확연히 확인된다. 이는 나파모스타트를 담지하지 않는 글리시리진 나노 입자 그룹(MDB- 601a- 색소)에서 글리시리진 나노입자 피크(첫번째 피크) 및 색소에 대한 피크(두번째 피크)가 확인되고 , 유리 나파모스타트 및 유리 글리시리진 그룹(MDB- 601- NM)에서 유리글리시리진에 대한 피크만 확인되는 것과 명확히 구분된다. 따라서 , 일 실시 예의 제조 방법에 따를 때 글리시리진이 미셀 구조로 나노 입자화 되며 , 나파모스타트가 상기 나노 입자에 의해 정의되는 나노 입자의 내부에 담지 됨이 확인된다.
(3) 입도 분포 및 제타 전위의 측정 입자분석기(SZ- 100V2 , HORIBA instruments inc , Japan)를 이용하여 위의 제조예에 따라 제조된 콜로이드(실시 예 1), 및 유리 글리시리진 , 에탄올 및 수용성 색소를 포함하는 용액(비교예 2)의 입도 분포 및 입자의 제타 전위를 측정하여 도
3a 내지 도 5b 및 하기 표 1 및 표 2에 나타내었다.
【표 11
Figure imgf000021_0001
【표 이
Figure imgf000021_0002
도 3a 내지 4b 및 표 1을 참조하면 , 실시예 1(도 3a, 3b)에서 미셀 구조의 나노입자가 잘 형성되어, DLS 측정 결과 284.45±11.81 끼의 크기를 보이는 것이 확인된다. 이는, 비교예 1(도 4a, 4b)에서는 미셀 구조가 형성되지 않아 나노입자 크기가 측정 되지 않는 것과 구분된다. 도 5a 및 도 5b 및 표 2를 참조하면 , 실시예 1(도 5a)에서 미셀 구조의 나노 입자가 잘 형성되며 제타 준위 측정 결과 -87.7 mV의 안정적인 값을 보인 반면, 비교예 1(도 5b)에서는 미셀 구조가 형성되지 않아 실시예 1에 비해 불안정한 값인
-53.2 mV의 제타준위 값을 보이는 것을 볼수 있다.
3. 제조된 나노 입자의 효과 확인
(1) 제조된 나노 입자의 세포독성 확인 사람 폐 세포주 (A549)는 우태아혈청 (Fetal bovine serum)을 10% 첨가한 배지 ( Roswell Park Memorial Institute 1640 medium)로 2일마다 배지 교환하며, 37°C, 5% C02에서 배양하였다. 사람 폐 세포주 (A549) 를 96-well 플레이트에 1x104 cell/well 농도로 접종한 뒤 , 실시예 1을 각각 농도 별 (250, 150, 50, 10, IpM)로 투여하였다. 24시간 배양 후 물질투여 없이 배양한 세포를 음성대조군으로 하여 세포 생존도분석을 EZ- Cytox(Dogen, Korea) kit를사용해 진행하였다. 그 결과, 도 6에 나타낸 바와 같이, 10uM 이하의 농도에서 세포 독성이 전혀 없는 것 으로 확인되었으며 50uM〜 250uM 농도에서도 거의 독성이 없는 것 으로 확인된다. 도 6에 도시된 것과 같이 , ARPE-19 세포주에 lmg/ml의 농도의 나파모스타트가 담지된 글리시리진 나노 입자를 1/10 , 1/100 및 1/1000으로 희석하여 투여한 경우의 세포 생존률은 이를 투여하지 않은 세포의 생존률과 실질적으로 동등한 수치를 보였다. 즉 , 일 실시 예에 따른 나노 입자의 세포 독성이 매우 낮은 것으로 확인된다.
(2) 제조된 나노 입자의 세린 단백질 가수분해효소 (Ser- protease) 선택적 억제 효과의 확인
1) 세린 단백질 가수분해효소 선택적 억제 효과 확인
Covidl9 바이러스의 세포 내 진입을 돕는 TMPRSS- 2(세린프로테아제 )를 억제하여 covid-19 바이러스 감염을 차단하는 본원 발명의 효과를 확인하기 위해 serum에 0.001 ug/ml , 0.01 ug/ml , 0.1 ug/ml 및 lug/ml 농도의 실시 예 1의 조성물을 serum과 1:1의 비율로 섞었다. 또한, 비교예로 serum과 나파모스타트 lug/ml을 1:1 비율로 섞었다. 이후 , 37T에서 1시간 incubat ion 시켜준 뒤 96wel l plate에 Wel l당 100|』1씩 Succinylated Casein Solut ion 넣어주었다. Wel l당 100|』1씩 Assay buf fer 넣어 준 뒤 Wel l당 50pl씩 Standard sample과 Test sample을 넣어주었다.
37T에서 20분간 incubat ion 시켜 준 뒤 Wel l당 50山씩 TNBSA 넣어주었다. 37T에서
20분 incubat ion 시켜 준 뒤 450nm 흡광도로 96we 1 1 pl ate를 Plate Reader (EPOCH 2 , BioTek instruments inc , USA)로 즉정하였다. 도 7을 참조하면 , 유리 나파모스타트를 투여하는 경우 1 ug/ml의 농도에서 세린 단백질 가수분해효소 억제 효과를 나타내지 않는 것으로 확인된다. 이는 , 유리 나파모스타트가 혈청 내에서 약 8분 이내의 반감기를 가질 정도로 매우 불안정하기 때문인 것으로 확인된다. 그러나, 일 실시 예에 따른 글리시리진 나노 입자를 투여하는 경우 , 나노 입자를 0.1ug/ml의 농도로 투여하는 경우에도 단백질 가수분해효소 억제 효과가 매우 우수한 것으로 확인된다. 이는 일 실시 예의 글리시리진 나노 입자는 미셀 구조 내에 나파모스타트를 담지하기 때문에 혈청 내에서도 나파모스타트가 안정하게 유지되며 반감기가 1시간 이상으로 연장되기 때문인 것으로 보인다. 2) 세린 단백질 가수분해효소선택적 억제 효과확인
Covidl9 바이러스의 세포 내 진입을 돕는 TMPRSS- 2(세린프로테아제)를 억제하여 covid-19 바이러스 감염을 차단하는 본원 발명의 효과를 확인하기 위해 세린프로테아제인 trypsin에 20uM 농도의 실시예 1의 조성물을 1:1의 비율로 섞었다. 또한, trypsin에 나파모스타트 ImM을 1:1 비율로 섞었다. 이후, 37T에서 1시간 incubation 시켜준 뒤 96we 11 plate에 Well당 100|』1씩 Succinylated Casein Solution 넣어주었다. Well당 lOOpl씩 Assay buffer 넣어 준 뒤 Well당 50pl씩 Standard sample과 Test sample을 넣어주었다. 37°C에서 20분 incubation 시켜 준 뒤 Well당 50pl씩 TNBSA 넣어주었다. 37T에서 20분 incubation 시켜 준 뒤 450nm 흡광도로 96we 11 plate를 Plate Reader (EPOCH 2, BioTek instruments inc, USA)로 측정하였다. 도 8을 참조하면 , 일 실시예에 따른 글리시리진 나노 입자는 유리 나파모스타트의 약 2% 농도만 투여하더라도 유리 나파모스타트와 동등한 수준의 세린 단백질 가수분해효소 억제 효과를 보이는 것으로 확인된다. 이는 앞서 설명한 것과 같이 일 실시 예의 나노 입자 내의 나파모스타트의 혈청내 안정성이 향상되어 반감기가 1시간 이상으로 연장되기 때문인 것으로 보인다. 이로부터 , 나파모스타트를 담지하는 일 실시 예의 글리시리진 나노 입자는 세린 단백질 가수분해효소를 선택적으로 억제하여 코로나바이러스 -19와 같은 바이러스 감염을 효과적으로 차단할 수 있음이 확인된다.
3) 약물 방출 거동 시험을 통한 서방출 효과 확인 실시 예 1에서 제조 된 나노입자로부터 나파모스타트의 약물 방출 거동을 분석하였다. 구체적으로, 실시 예의 나노입자 10 mg을 1 ml의 PBS 버퍼(pH 2 , 7.4 , 그리고 8.4)에 넣고 37°C에서 80 rpm으로 교반하면서 정해진 시간 간격(1 , 3 , 6 시간 및 1 , 3 , 5 , 7 , 10일 간격)으로 새로운 버퍼를 교환해주며 약물(나파모스타트) 방출 거동을 측정하였다. 방출된 나파모스타트의 양은 Plate Reader(EPOCH 2 ,
BioTek instruments inc , USA)를 이용하였고 , 나파모스타트는 260 nm 에서 흡광도를 측정하여 분석하였으며, 그 결과를 도 9에 나타내었다. 도 9에서 확인되는 것과 같이 , 실시예 1에 따른 나노입자는 초반 1일 동안에는 탑재하고 있던 약물이 다소 빠르게 방출되기는 하였으나, 그 이후로 10일 동안 탑재된 약물이 지속적으로 방출되는 특성을 보였다. 보다 구체적으로, 일 실시예에 따른 나파모스타트의 방출률은 투여 후 10일 동안 약 80% 이하, 약 70% 이하, 약 65% 이하 또는 약 60% 이하인 것으로 확인된다. 이를 통해 일 실시예의 조성물은 pH에 영향을 받지 않고 서방출 (sustained- release) 되는 것이 확인되는 바, 일 실시예의 조성물의 경구 투여 시 내산성 효과 및 서방출 효과 또한 확인 된다. 일 실시예에 따른 수용성 약물을 담지하는 글리시리진 나노 입자 및 이를 포함하는 약제학적 조성물은 수용성 약물의 안정성을 향상시킬 수 있다. 따라서, 담지된 수용성 약물이 반감기가 증가하여 적은 양을 투여 하더라도 지속적으로 우수한 효과가 발휘될 수 있다. 또한, 수용성 약물이 나노 입자에 담지 되어 내산성을 보이므로 투여 후에도 나노 입자에 담지된 수용성 약물이 서서히 방출되어 또한 , 일 실시 예에 따른 나노 입자 및 이를 포함하는 약제학적 조성물은 수용성 약물과 나노 입자에 포함된 글리시리진을 모두 대상체에 투여할 수 있으므로 수용성 약물과 글리시리진의 병용에 따른 우수한 항바이러스 효과를 달성할 수 있다. 예를 들어 , 일 실시 예에 따른 나노 입자 또는 이를 포함하는 약제학적 조성물은 나파모스타트 및 글리시리진을 모두 대상체에 투여함으로써 우수한 항바이러스 효과(예를 들어 , 코로나바이러스 -19에 대한 항 바이러스 효과)를 달성할 수 있다. 또한, 일 실시 예에 따른 수용성 약물을 담지하는 글리시리진 나노 입자 및 이를 포함하는 약제학적 조성물의 제조 방법은 , 제조 공정이 간단하며 , 친환경적인 제조 공정을 제공할 수 있다. 이상, 본 발명을 상세히 기술 하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 , 이러한 구체적 기술은 단지 바람직한 실시 예일뿐이며 , 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 , 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims

【청구의 범위】
【청구항 11 쉘을 포함하는 미셀 (micelle) 구조의 나노 입자 및 수용성 약물을 포함하고, 상기 쉘은 글리시리진을 포함하며 , 상기 수용성 약물은 상기 쉘에 의해 정의되는 상기 나노 입자의 내부에 담지 되는 것인 약제학적 조성물.
【청구항 이 제 1 항에 있어서 , 상기 수용성 약물은 상기 글리시리진과 정전기적으로 결합된 것인 약제학적 조성물.
【청구항 3] 제 1 항에 있어서 , 상기 수용성 약물은 나파모스타트 또는 이의 약제학적으로 허용 가능한 염인 것인 약제학적 조성물.
29 【청구항 4] 제 3 항에 있어서 , 상기 약제학적으로 허용 가능한 염은 메실산염인 것인 약제학적 조성물.
【청구항 5] 제 3 항에 있어서, 상기 약제학적 조성물은 코로나바이러스감염증- 19, 췌장염, 췌장암 및 혈액응고증으로 이루어진 군에서 선택되는 어느 하나 이상의 예방 또는 치료용 조성물인 것인 약제학적 조성물.
【청구항 6] 제 3 항에 있어서, 상기 약제학적 조성물은 코로나바이러스감염증- 19의 예방 또는 치료용 조성물인 것인 약제학적 조성물.
【청구항 7] 제 1 항에 있어서, 상기 약제학적 조성물은 경구 투여되는 것인 약제학적
30 조성물.
【청구항 8] 제 1 항에 있어서, 상기 약제학적 조성물은 서방출 (sustained release) 제제인 것인 약제학적 조성물.
【청구항 이 제 8 항에 있어서, 상기 약제학적 조성물의 약물 방출률은 투여 후 10 시간 동안 65% 이하인 것인 약제학적 조성물.
【청구항 10】 하기의 단계를 포함하는, 글리시리진이 포함된 쉘을 포함하는 미셀 (micelles) 구조의 나노 입자; 및 상기 미셀에 담지된 수용성 약물을 포함하는 약제학적 조성물의 제조 방법:
(a) 상기 글리시리진과 제 1 수용성 용매의 혼합물을 지용성 용매와 혼합하는 단계; (b) 상기 단계 (a)에서 생성된 혼합물에서 수용성 층을 분리하는 단계 ;
(c) 상기 수용성 약물과 제 2 수용성 용매의 혼합물을 , 상기 단계 (b)에서 분리한 수용성층과 혼합하여 상기 미셀 구조를 형성하는 단계 ; 및
(d) 상기 단계 (c)에서 생성된 혼합물에서 상기 나노 입자를 정제하는 단계 .
【청구항 11】 제 10 항에 있어서 , 상기 단계 (a)는 , 상기 글리시 리진과 상기 제 1 수용성 용매의 혼합물을 상기 지용성 용매에 첨가하는 단계를 포함하는 것인 제조 방법 .
【청구항 1이 제 10 항에 있어서 , 상기 단계 (c)는 상기 단계 (c)에서 형성된 혼합물에 소정의 물리적 충격을 가하는 단계를 더 포함하는 것인 제조 방법 . 【청구항 13】 제 12 항에 있어서 , 상기 소정의 물리적 중격을 가하는 단계는 초음파 처 리하는 단계를 포함하는 것인 제조 방법 .
【청구항 14】 제 10 항에 있어서 , 상기 단계 (d)는 상기 혼합물을 pH5.5 내지 pH6.5의 투석 액으로 투석 (di alysi s)하여 유리 글리시 리진 및 유리 수용성 약물을 제거하는 단계를 포함하는 것인 제조 방법 .
【청구항 15】 제 10 항에 있어서 , 상기 수용성 약물은 나파모스타트 또는 이의 약제학적으로 허용 가능한 염인 것인 제조 방법 .
33 【청구항 16】 제 10 항에 있어서 , 상기 약제학적으로 허용 가능한 염은 메실산 염인 것인 제조 방법 .
【청구항 17】 제 10 항에 있어서 , 상기 제 1 수용성 용매 및 상기 제 2 수용성 용매는 각각 독립적으로 물 및 탄소수 1 이상 4 이하의 알코올 중 선택되는 1종 이상인 것인 제조 방법 .
【청구항 18】 제 10 항에 있어서 , 상기 지용성 용매는 콘오일인 것인 제조 방법 .
【청구항 1이
34 제 10 항에 있어서 , 상기 제조 방법은 상기 (d) 단계 이후에 , 상기 정제된 나노 입자를 동결 건조하는 단계를 더 포함하는 것인 제조 방법 .
35
PCT/IB2020/062009 2020-08-19 2020-12-16 글리시리진 및 수용성 약물을 포함하는 나노 입자, 이를 포함하는 약제학적 조성물 및 이들의 제조 방법 WO2022038409A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200104185 2020-08-19
KR10-2020-0104185 2020-08-19
KR10-2020-0107752 2020-08-26
KR20200107752 2020-08-26

Publications (1)

Publication Number Publication Date
WO2022038409A1 true WO2022038409A1 (ko) 2022-02-24

Family

ID=80323450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/062009 WO2022038409A1 (ko) 2020-08-19 2020-12-16 글리시리진 및 수용성 약물을 포함하는 나노 입자, 이를 포함하는 약제학적 조성물 및 이들의 제조 방법

Country Status (2)

Country Link
KR (1) KR20220022829A (ko)
WO (1) WO2022038409A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114948872A (zh) * 2022-06-20 2022-08-30 中南大学 一种甘草酸胶束水凝胶递送系统及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050044424A (ko) * 2001-11-13 2005-05-12 야마노우치 파마 테크놀로지스, 인코퍼레이티드 용해성 약물 지속 방출 시스템
KR20170119642A (ko) * 2016-04-19 2017-10-27 동국대학교 산학협력단 코엔자임 q10 가용화 조성물 및 이의 제조방법
KR20180054569A (ko) * 2015-07-16 2018-05-24 마리노메드 바이오테크 아게 수불용성 또는 난수용성 약물의 수성 용해도를 개선시키기 위한 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050044424A (ko) * 2001-11-13 2005-05-12 야마노우치 파마 테크놀로지스, 인코퍼레이티드 용해성 약물 지속 방출 시스템
KR20180054569A (ko) * 2015-07-16 2018-05-24 마리노메드 바이오테크 아게 수불용성 또는 난수용성 약물의 수성 용해도를 개선시키기 위한 방법
KR20170119642A (ko) * 2016-04-19 2017-10-27 동국대학교 산학협력단 코엔자임 q10 가용화 조성물 및 이의 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HOFFMANN, M.: "Nafamostat mesylate blocks activation of SARS-CoV-2: new treatment option for COVID-19", ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, June 2020 (2020-06-01), XP055732029 *
WANG, Y.: "Formulation and evaluation of novel glycyrrhizic acid micelles for transdermal delivery of podophyllotoxin", DRUG DELIVERY, vol. 23, no. 5, 2016, pages 1623 - 1635, XP055908711 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114948872A (zh) * 2022-06-20 2022-08-30 中南大学 一种甘草酸胶束水凝胶递送系统及其制备方法和应用

Also Published As

Publication number Publication date
KR20220022829A (ko) 2022-02-28

Similar Documents

Publication Publication Date Title
Wang et al. Cancer nanomedicines stabilized by π-π stacking between heterodimeric prodrugs enable exceptionally high drug loading capacity and safer delivery of drug combinations
RU2264807C2 (ru) Липосомальная композиция с паклитакселом для лечения рака и способ ее получения
ES2199338T3 (es) Composiciones farmaceuticas en emulsion, que contienen (3'-desoxi-3'-oxo-mebmt)1-(val)2-ciclosporin.
JP5737705B2 (ja) 高分子化環状ニトロキシドラジカル化合物およびその使用
US8466127B2 (en) Pegylated and fatty acid grafted chitosan oligosaccharide, synthesis method and application for drug delivery system
US20080287417A1 (en) Pharmaceutical compositions comprising a poorly water-soluble active ingredient, a surfactant and a water-soluble polymer
Zhu et al. Tumor microenvironment-activated therapeutic peptide-conjugated prodrug nanoparticles for enhanced tumor penetration and local T cell activation in the tumor microenvironment
WO2004035032A2 (en) Pharmaceutical formulations of camptothecine derivatives
Fang et al. Reprogramming axial ligands facilitates the self-assembly of a platinum (iv) prodrug: overcoming drug resistance and safer in vivo delivery of cisplatin
WO2018233095A1 (zh) 具有淋巴靶向功能的生物自组装纳米晶注射剂及制备方法
CN112933046B (zh) 一种阿霉素前药主动载药脂质体及其制备方法和应用
WO2017097196A1 (zh) 脂质体的制备方法
KR101395858B1 (ko) 다당류 리포솜, 이의 제조 방법 및 용도
WO2022038409A1 (ko) 글리시리진 및 수용성 약물을 포함하는 나노 입자, 이를 포함하는 약제학적 조성물 및 이들의 제조 방법
US8629186B2 (en) Polymer micelles containing anthracyclines for the treatment of cancer
US20090220599A1 (en) Antifungal formulation and manufacturing method thereof
EP3453390B1 (en) Polymerized drug-containing pharmaceutical composition
JP2005514438A (ja) 薬剤の可溶化、安定化、及び運搬のためのオリゴマー及びポリマーの使用
CN104546722A (zh) 米铂脂质体和制法
KR20210128940A (ko) 자가나노유화 약물전달시스템을 이용한 니클로사마이드 함유 경구 투여용 조성물 및 이의 제조방법
US12016865B2 (en) Methods and pharmaceutical compositions for treating candida auris in blood
ES2623758T3 (es) Composición farmacéutica en la que se mejora la solubilidad de un derivado tricíclico parcialmente soluble
WO2017097197A1 (zh) 美西替康的药物组合物
WO2007014150A2 (en) Method of administering liposomes containing oligonucleotides
CN107073129B (zh) 亲水性药物的靶向递送

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20950207

Country of ref document: EP

Kind code of ref document: A1