WO2022037715A1 - 蒸发器布置于内胆底部的冰箱 - Google Patents

蒸发器布置于内胆底部的冰箱 Download PDF

Info

Publication number
WO2022037715A1
WO2022037715A1 PCT/CN2021/123575 CN2021123575W WO2022037715A1 WO 2022037715 A1 WO2022037715 A1 WO 2022037715A1 CN 2021123575 W CN2021123575 W CN 2021123575W WO 2022037715 A1 WO2022037715 A1 WO 2022037715A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
top cover
centrifugal fan
refrigerator
air
Prior art date
Application number
PCT/CN2021/123575
Other languages
English (en)
French (fr)
Inventor
王少一
陈建全
曹东强
刘建如
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2022037715A1 publication Critical patent/WO2022037715A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • F25D17/045Air flow control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/067Evaporator fan units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/10Arrangements for mounting in particular locations, e.g. for built-in type, for corner type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/12Insulation with respect to heat using an insulating packing material
    • F25D2201/128Insulation with respect to heat using an insulating packing material of foil type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the invention relates to the field of household appliances, in particular to a refrigerator with an evaporator arranged at the bottom of an inner tank.
  • the evaporator bottom-mounted refrigerator in the prior art has no heat insulation treatment on the lower side of the upper cover of the evaporator.
  • the evaporator of the refrigerator has serious cold leakage, and the heat loss near the evaporator is very fast.
  • the surface of the appliance is prone to frost or even ice.
  • An object of the present invention is to provide a refrigerator with the evaporator arranged at the bottom of the inner pot which can solve the above problems.
  • a further object of the present invention is to reduce heat loss in the evaporator and reduce frosting and even freezing.
  • Another further object of the present invention is to make the temperature distribution inside the storage space uniform.
  • Another further object of the present invention is to prevent the heat diffusion from affecting the temperature of the storage space when the evaporator is defrosted.
  • the present invention provides a refrigerator in which the evaporator is arranged at the bottom of the inner tank, including: a box body with a bottom inner tank and a partition cover plate, which is laterally arranged in the bottom inner tank, and is used to separate the inner space of the bottom inner tank.
  • the cooling room is located below the storage space; an evaporator is installed in the cooling room, and the partition cover plate includes an evaporator top cover part arranged above the evaporator, and the evaporator top cover part There is an interval with the top of the evaporator; the evaporator heat preservation member is filled between the top cover of the evaporator and the top of the evaporator to avoid heat exchange between the evaporator and the storage space through the partition cover plate.
  • the evaporator heat insulating member is formed by successively stacking multiple heat insulating layers of different materials.
  • the thermal insulation layer includes: a thermal insulation foam layer, which is arranged against the lower surface of the partition cover plate; a resin film layer, which is arranged against the lower surface of the thermal insulation foam layer; The top of the evaporator is opposite.
  • the evaporator is in the shape of a flat cuboid as a whole and is inclined upward from front to back; the upper surface of the partition cover plate is substantially horizontally arranged, so that the thickness of the thermal insulation foam layer gradually decreases from front to back.
  • the distance between the top of the front end of the evaporator and the top cover of the evaporator is set to be less than or equal to 36mm, and the distance between the top of the rear end of the evaporator and the top cover of the evaporator is set to be less than or equal to 15mm.
  • the refrigerator also includes a centrifugal fan, which is arranged at the rear of the evaporator and is inclined upward from front to back along the depth direction of the refrigerator, for promoting the formation of a refrigerating air flow from the cooling chamber to the storage space, and the air inlet of the centrifugal fan. Facing the front and top, the air outlet of the centrifugal fan is located at the rear end of the centrifugal fan; the partition cover also includes a fan top cover part arranged above the centrifugal fan, and there is an air intake space between the fan top cover part and the air inlet of the centrifugal fan .
  • the refrigerator also includes: an air duct back plate, which is arranged in front of the rear wall of the bottom inner pot, and defines an air supply air duct with the rear wall of the bottom inner pot, and at least one air duct is opened on it for communicating with the air supply.
  • the air duct and the air supply port of the storage space, and the lower end of the air duct back plate is connected with the air outlet of the centrifugal fan.
  • the fan top cover part includes: a first fan top cover section, which extends obliquely upward from the rear end of the evaporator top cover part to the rear part of the air inlet of the centrifugal fan, and is arranged in parallel with the centrifugal fan and set at an interval from the centrifugal fan. a distance to form an air intake space; the second fan top cover section extends obliquely upward from the rear end of the first fan top cover section to the lower end of the air duct backplane.
  • the bottom wall of the bottom liner is used to support the evaporator and the centrifugal fan, and includes: a first inclined part, which is inclined downward from front to back from the front end of the bottom wall of the bottom liner;
  • the rear side of the inclined part is arranged to be inclined upward from the horizontal middle part to both sides, so that a water outlet is opened in the horizontal middle part, and the water outlet is used to discharge the water in the cooling chamber;
  • the second inclined part is from the front to the rear from the rear end of the lower recessed part.
  • the bottom surface of the evaporator is supported on the second inclined part, and the front end of the evaporator is in conflict with the first inclined part, so that the evaporator is inclined upward from front to back, and also makes the water appearing on it converge to the bottom.
  • the concave part, and the position of the water outlet along the front and rear direction of the tank is located in the front part of the evaporator.
  • the third inclined part is inclined upward from front to rear from the rear end of the second inclined part, the inclination angle of the third inclined part is larger than that of the second inclined part, and the centrifugal fan is arranged on the third inclined part.
  • the refrigerator also includes: an air return hood, disposed at the front of the cooling chamber, on which is opened at least one front air return port that communicates with the cooling chamber and the storage space, and the front air return port is used to provide the cooling chamber with air required for heat exchange
  • the top of the return air hood has a top plate connected to the front end of the top cover of the evaporator, and the top plate of the return air cover and the top cover of the evaporator are respectively provided with a snap connection structure that cooperates with each other to snap together.
  • an evaporator heat insulating member is arranged between the evaporator top cover and the top of the evaporator, so as to avoid the heat exchange between the evaporator and the storage space through the partition cover plate, reduce the heat loss of the evaporator, and reduce frost formation. even frozen.
  • the evaporator heat insulating member of the present invention is formed by successively stacking multiple heat insulating layers of different materials. By setting the temperature uniform layer, the temperature at the top of the evaporator is balanced, so as to prevent the top of the evaporator from affecting the temperature at the bottom of the storage space, so that the temperature of the storage space is evenly distributed.
  • FIG. 1 is a schematic front view of a box in a refrigerator according to an embodiment of the present invention
  • Figure 2 is a schematic cross-sectional view taken along section line A-A in Figure 1;
  • Fig. 3 is a schematic partial enlarged schematic view of the refrigerator shown in Fig. 2, wherein the specific structure in the bottom box is shown;
  • Fig. 4 is the partial enlarged schematic diagram of B region shown in Fig. 3;
  • FIG. 5 is a schematic longitudinal section of a lower part of a box in a refrigerator according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a fan bottom case, fan blades, fan upper cover and air duct back plate in a refrigerator according to an embodiment of the present invention.
  • FIG. 1 is a schematic front view of an air-cooled refrigerator according to an embodiment of the present invention.
  • FIG. 2 is a schematic side sectional view of the air-cooled refrigerator shown in FIG. 1 .
  • a refrigerator may generally include a box body 10 including an outer shell, an inner container, and other accessories.
  • the outer shell is the outer structure of the refrigerator and protects the entire refrigerator.
  • an insulating layer is added between the outer shell and the inner tank of the box body 10 , and the insulating layer is generally formed by a foaming process.
  • the inner liner can be divided into one or more, and the inner liner can be divided into refrigerating inner liner, temperature-changing inner liner, and freezing inner liner according to the function.
  • the specific number of inner liner and function can be configured according to the use requirements of the refrigerator.
  • the inner container at least includes a bottom inner container 110, and the bottom inner container 110 can generally be a frozen inner container.
  • the refrigerator in this embodiment further includes a partition cover 120 .
  • the partition cover 120 is laterally disposed in the bottom inner pot 110 for dividing the inner space of the bottom inner pot 110 into a cooling chamber 100 and a storage space 200 , and the cooling chamber 100 is located below the storage space 200 .
  • the refrigerator in this embodiment further includes an evaporator 20 .
  • the evaporator 20 is installed within the cooling chamber 100 and may generally be located in the front area of the cooling chamber 100 .
  • the partition cover plate 120 includes an evaporator top cover portion 121 disposed above the evaporator 20 , and the evaporator top cover portion 121 is spaced from the top of the evaporator 20 .
  • the evaporator insulation member 150 is filled between the evaporator top cover 121 and the top of the evaporator 20 to prevent the evaporator 20 from exchanging heat with the storage space 200 through the partition cover 120 .
  • the arrangement of the evaporator heat preservation member 150 can reduce the heat loss of the evaporator 20 and reduce frost or even ice formation on the surface of the evaporator 20 .
  • the cold energy on the surface of the evaporator 20 of the refrigerator tends to diffuse toward the storage space 200 , resulting in that the temperature of the bottom region of the storage space 200 is significantly lower than the temperature of other parts of the storage space 200 .
  • the temperature distribution is uneven, and the use of the evaporator heat insulating member 150 in this embodiment avoids the occurrence of the above problems.
  • the evaporator heat preservation member 150 can also prevent the temperature of the storage space 200 from rising due to heat diffusion, that is, avoid energy loss and affect the storage quality.
  • the evaporator heat insulating member 150 is formed by successively stacking multiple heat insulating layers of different materials.
  • the heat insulating layer includes a heat insulating foam layer 151 , a resin film layer 152 and a metal temperature equalizing layer 153 .
  • the thermal insulation foam layer 151 is disposed against the lower surface of the partition cover plate 120 .
  • the thermal insulation foam layer 151 is light in weight and has a certain structural strength, and is disposed on the lower surface of the partition cover 120 to prevent the storage space 200 from impacting the box 10 by placing large items in the storage space 200 .
  • the resin film layer 152 is disposed against the lower surface of the thermal insulation foam layer 151 .
  • the resin film layer 152 may be provided as a polyethylene film (PE film).
  • the specific gravity of the polyethylene film is light, the coverage is easy, and the shrinkage of the polyethylene film can closely adhere to the upper or lower insulation layer, so that the insulation layer is tightly connected, and the integrity is strong and difficult to separate.
  • the polyethylene film is non-toxic and harmless, waterproof and antibacterial, durable and suitable for the use environment of refrigerators.
  • the metal temperature uniform layer 153 is disposed on the outer side of the resin film layer 152 and is opposite to the top of the evaporator 20 .
  • the metal temperature uniform layer 153 may be provided as an aluminum foil.
  • the aluminum foil has good ductility, which can minimize the thickness of the metal temperature uniform layer 153 to prevent taking up too much interior space of the refrigerator, and has excellent thermal conductivity, which can uniform the temperature of the top of the evaporator 20 and avoid the temperature of the storage space 200 above the evaporator 20. The problem of uneven distribution occurs.
  • the evaporator 20 is arranged at the front of the cooling chamber 100 , may be in the shape of a flat rectangular parallelepiped as a whole, and is disposed obliquely upward from front to back.
  • the thickness dimension of the evaporator 20 perpendicular to the support surface is significantly smaller than the length dimension of the evaporator 20 .
  • the evaporator 20 may be a finned evaporator 20, and the arrangement direction of the fins is parallel to the depth direction of the front and rear, which is convenient for the airflow to pass through from the front to the back.
  • the distance between the top of the front end of the evaporator 20 and the top cover 121 of the evaporator is set to be less than or equal to 36 mm, preferably 36 mm.
  • the distance between the top of the rear end of the evaporator 20 and the top cover portion 121 of the evaporator is set to be less than or equal to 15mm, preferably 15mm.
  • the volume of the object space 200 is reduced, and the space utilization rate of the refrigerator is reduced.
  • the above-mentioned spacing between the evaporator 20 and the evaporator top cover 121 not only reserves enough space for air flow, but also maximizes the volume of the bottom storage space. Optimized and verified the effect of trial products.
  • the evaporator 20 can also be set to other shapes as needed under the condition that the space requirements are met, and the flat rectangular parallelepiped-shaped evaporator 20 is a compact and simple implementation manner.
  • the upper surface of the partition cover plate 120 is arranged substantially horizontally, so that the thickness of the thermal insulation foam layer 151 is gradually reduced from front to back.
  • the upper surface of the partition plate is set to be basically horizontal, which maximizes the volume of the storage space 200, is conducive to forming a complete storage space, and makes the space utilization rate higher. Since the air flows from the front to the back, the temperature difference is gradually reduced, so the thinning of the thickness of the rear does not affect the heat preservation of the evaporator 20 .
  • the thickness of the above-mentioned thermal insulation foam layer 151 is structurally optimized according to space requirements and refrigeration performance requirements, and has been verified by the effect of trial products.
  • the centrifugal fan 30 is disposed at the rear of the evaporator 20 obliquely from front to rear along the depth direction of the refrigerator, and is used to promote the formation of a cooling air flow from the cooling chamber 100 to the storage space 200, and the air inlet 301 of the centrifugal fan 30 faces the front.
  • the air outlet 302 of the centrifugal fan 30 is located at the rear end of the centrifugal fan 30 .
  • the centrifugal fan 30 is inclined and arranged, which saves the depth distance between the evaporator 20 and the centrifugal fan 30 to the greatest extent, that is, it ensures that the distance between the evaporator 20 and the centrifugal fan 30 is sufficient, reduces the occurrence of frosting of the evaporator 20, and also ensures that the In order to make the internal structure of the refrigerator compact and increase the space utilization rate, the inclined arrangement of the centrifugal fan 30 is a structural improvement based on the refrigeration performance requirements and space requirements.
  • the centrifugal fan 30 includes a fan upper cover 303 , fan blades 304 and a fan bottom casing 305 .
  • the partition cover 120 further includes a fan top cover disposed above the centrifugal fan 30 , and there is an air intake space 400 between the fan top cover and the air inlet 301 of the centrifugal fan 30 .
  • the air inlet 301 of the centrifugal fan 30 has sufficient air inlet space 400 , which can make the air intake of the centrifugal fan 30 more sufficient and smooth, and improve the utilization efficiency of the centrifugal fan 30 .
  • the distance between the centrifugal fan 30 and the evaporator 20 should be as small as possible to meet daily storage requirements.
  • the front end of the centrifugal fan 30 and the evaporator 20 have an interval with a set distance, and the distance between the front end of the centrifugal fan 30 and the evaporator 20 is set to 20 to 25 mm, for example, it can be set to 21 mm, 22 mm, 24 mm, preferably 22 mm .
  • the setting of the above distance can make the air intake of the centrifugal fan 30 smoother, and also reduce the problem that the evaporator 20 is easy to frost on the surface of the evaporator 20 when the distance between the evaporator 20 and the centrifugal fan 30 is closer. Optimized and verified the effect of trial products.
  • the refrigerator of this embodiment further includes an air duct backplane 140 .
  • the air duct back plate 140 is disposed in front of the rear wall 114 of the bottom inner pot 110, and defines an air supply air duct 500 with the rear wall 114 of the bottom inner pot 110, and at least one air duct for communicating with the air supply air duct is opened on it. 500 and the air supply port 510 of the storage space 200 , and the lower end of the air duct back plate 140 is connected to the air outlet 302 of the centrifugal fan 30 .
  • the air supply air duct 500 extends upward and is configured to deliver the cooling airflow to the storage space 200 .
  • the rear wall 114 of the storage space 200 is provided with an air supply port 510 that communicates with the air supply air duct 500 to discharge the cooling air into the storage space 200 .
  • the upper cover 303 of the fan and the air duct back plate 140 are integrally injection-molded as a single-layer plate.
  • a water retaining rib 141 is also provided on the back plate of the fan, and the water retaining rib 141 can be arranged on the side of the air duct back plate 140 facing the storage space 200 .
  • the water retaining ribs 141 can prevent the condensed water from flowing into the fan cavity and cause failure.
  • the lateral extension may refer to horizontal extension, and it may also be understood that the water retaining ribs 141 have a certain inclination angle. Both of the above two methods can delay the falling speed of the condensation water on the water retaining ribs 141 .
  • the fan top cover plate of this embodiment further includes a first fan top cover section 1221 and a second fan top cover section 1222 .
  • the first fan top cover section 1221 extends obliquely upward from the rear end of the evaporator top cover portion 121 to the rear of the air inlet 301 of the centrifugal fan 30, and is arranged in parallel with the centrifugal fan 30 and at a set distance from the centrifugal fan 30 to form Inlet space 400.
  • the second fan top cover section 1222 extends obliquely upward from the rear end of the first fan top cover section 1221 to the lower end of the air duct back panel 140 .
  • the range of the distance between the first fan top cover section 1221 and the centrifugal fan 30 is set to be 22 to 27 mm.
  • the inclination angle of the first fan top cover section 1221 can be different from the inclination angle of the centrifugal fan 30.
  • the distance between the first fan top cover section 1221 and the centrifugal fan 30 is not more than 27 mm at the maximum and not less than 22 mm at the minimum.
  • the distance between the part distance and the centrifugal fan 30 has a direct impact on the actual efficiency of the centrifugal fan 30.
  • the optimal distance range is 22mm-27mm.
  • the airflow in the direction of the evaporator 20 is affected by the negative pressure suction of the centrifugal fan 30 and has an upward trend, which can guide the airflow into the air inlet 301 and reduce frosting around the centrifugal fan 30 and at the front end.
  • the upper part of the air inlet 301 forms a certain space, which ensures the air inlet area of the fan and increases the air volume of the refrigeration system.
  • the setting of the above distance is a structural optimization made according to space requirements and cooling performance requirements, and has been verified by the effect of trial products.
  • the bottom of the bottom inner container 110 is used to support the evaporator 20 and the centrifugal fan 30 , and includes a first inclined portion 111 , a second inclined portion 112 , a third inclined portion 113 and a lower concave portion 116 .
  • the first inclined portion 111 is inclined downward from the front to the rear from the front end of the bottom wall of the bottom inner container 110 .
  • the lower concave portion 116 is disposed on the rear side of the first inclined portion 111 , and is configured to be inclined upward from the horizontal middle portion to both sides, so that the drain port 115 is opened in the horizontal middle portion.
  • the water outlet 115 is used to drain the water in the cooling chamber 100 .
  • the location of the drain port 115 is generally in the area in the middle of the transverse direction, and is not strictly required to be in the area in the center of the transverse direction. In some embodiments, the drain 115 may be located at a position that is appropriately offset to one side in the lateral middle.
  • the second inclined portion 112 is inclined upward from the rear end of the lower concave portion 116 from front to rear.
  • the bottom surface of the evaporator 20 is supported on the second inclined portion 112 , and the front end of the evaporator 20 is in contact with the first inclined portion 111 , so that the evaporator 20 is inclined upward from front to back.
  • the evaporator 20 is disposed on the second inclined portion 112 , so that the water appearing on the evaporator 20 gathers in the concave portion 116 , and the water outlet 115 is located at the front of the evaporator 20 along the front-rear direction of the casing 10 .
  • the inclination angle of the evaporator 20 and the second inclined part 112 relative to the horizontal plane is consistent, and the inclination angle ⁇ is set in the range of 7.0° to 8.0°, such as 7.2°, 7.5°, 7.8°, preferably 7.5°.
  • the airflow After the airflow enters the cooling chamber 100 , it can enter the evaporator 20 through the front side of the evaporator 20 for heat exchange, and part of the airflow can also enter the evaporator 20 through the upper part of the evaporator 20 and the space between the water outlet 115 and the evaporator 20 .
  • the heat exchanger 20 performs heat exchange to make the heat exchange more uniform, and is then sent to the air supply duct 500 by the centrifugal fan 30 to cool the upper storage space 200 .
  • the height of the position of the evaporator 20 against the first inclined portion 111 and the water outlet 115 may be set to be less than or equal to 22 mm, for example, may be set to 22 mm.
  • the height of the drainage port 115 is minimized.
  • the above-mentioned height of the drain port 115 relative to the bottom surface of the box 10 and the height of the evaporator 20 in contact with the first inclined portion 111 from the drain port 115 are structurally optimized according to the requirements of drainage performance and space, and The effect of the trial product has been verified.
  • the third inclined portion 113 is inclined upward from front to back from the rear end of the second inclined portion 112 .
  • the inclined angle of the third inclined portion 113 is greater than the inclined angle of the second inclined portion 112 , and the centrifugal fan 30 is disposed on the third inclined portion 113 .
  • the inclination angle of the third inclined portion 113 can be set to be consistent with the inclination angle ⁇ of the centrifugal fan 30, and can be set to 36.0° to 37.0°, for example, can be set to 36.5°, 36.7°, 36.9°, preferably 36.7°.
  • the inclination angle of the lower concave portion 116 is greater than or equal to 3°, and further may be greater than or equal to 6°, for example, 7°.
  • the inclination angle of the second inclined portion 112 and the inclination angle of the third inclined portion 113 are also the inclination angle of the evaporator 20 and the inclination angle of the centrifugal fan 30, respectively.
  • the inclination angle of the lower concave portion 116 can ensure that the water is collected to the water outlet 115 .
  • the inclination angle of both sides of the lower concave portion 116 may be greater than or equal to 3 degrees (preferably 7 degrees), so that the water on both sides converges toward the water outlet 115 .
  • the structure of the lower recess 116 can also reduce the distance between the evaporator 20 and the bottom wall of the bottom inner pot 110 as much as possible, so that the heat of the heating wire of the evaporator 20 can be transferred to the lower recess 116, so that the defrosting water can effectively flow into the drain port 115. place.
  • the above-mentioned structure of the recessed portion 116 utilizes the heat of the heating wire of the evaporator 20 for defrosting, which prevents ice cubes from blocking the water outlet 115 and does not require additional heating wires at the water outlet 115 .
  • the structure of the lower recess 116 a part of the inclined evaporator 20 can be suspended in the air, which is convenient for defrosting and drainage. Due to the inclined arrangement of the evaporator 20, the distance between the evaporator 20 and the drain port 115 can also be reduced, which not only improves the space utilization rate of the refrigerator, but also ensures that the heating wire on the evaporator 20 can heat the area at the drain port 115. , thereby reducing the risk of frost formation at the drain 115 .
  • the inclination angle of the second inclined portion 112 can also facilitate the collection of water to the drainage port 115, thereby improving the smoothness of drainage.
  • the proportion of the abutting portion of the evaporator 20 and the second inclined portion 112 to the bottom surface of the evaporator 20 is greater than or equal to 0.6, for example, 2/3, 3/4, etc. can be set, so that the water outlet 115 can be located at the front of the evaporator 20. below. That is to say, the drain port 115 is located at the front of the evaporator 20 along the front-rear direction of the casing 10 .
  • the air does not flow into the evaporator 20 but flows through the space between the bottom surface of the evaporator 20 and the water outlet 115, thereby improving the performance of the refrigerator.
  • the path length of the air flowing through the evaporator 20 is increased, and the heat exchange efficiency of the evaporator 20 is further improved.
  • the structure of the cooling chamber 100 and the inclined arrangement of the evaporator 20 and other components not only ensure the smooth and sufficient heat exchange of the airflow, but also reduce frost to a certain extent, and improve the defrosting and drainage efficiency.
  • a compressor cabin 300 is arranged behind the bottom inner bladder 110 , and the compressor cabin 300 is located below the cooling chamber 100 .
  • the structure optimization of the bottom inner tank 110 reserves enough space for the setting of the press room 300 .
  • the compressor room 300 is used for arranging a condenser (not shown in the figure) and a compressor (not shown in the figure) of the air-cooled refrigerator.
  • the top cover of the press cabin 300 is parallel to the third inclined portion 113 , which improves the fluidity of the foam layer between the top cover of the press cabin 300 and the third inclined portion 113 .
  • the top cover of the press cabin 300 is spaced apart from the bottom wall of the bottom inner tank 110 .
  • the distance between the front part of the top cover of the compressor cabin 300 and the third inclined part 113 in parallel can be set to be less than or equal to 45mm, for example, it can be set to 45mm.
  • a return air hood 130 is provided at the front of the cooling chamber 100 .
  • the air return hood 130 is provided with at least one front air return port 131 connecting the cooling chamber 100 and the storage space 200 , and the front air return port 131 is used to provide the cooling chamber 100 with air required for heat exchange.
  • the top of the air return hood 130 has a top plate 132 that is in contact with the front end of the evaporator top cover 121 .
  • the air return hood 130 is formed with a front air return port 131 on the front side of the cooling chamber 100 that communicates with the storage space 200 , so that the return air of the storage space 200 enters the cooling chamber 100 through the front air return port 131 to exchange with the evaporator 20 .
  • the front side of the air return hood 130 can be formed with two front air return openings 131 distributed up and down, which not only looks beautiful, but also effectively prevents children's fingers or foreign objects from entering the cooling space; and the two return air areas distributed up and down can allow return air to enter After cooling the space, it flows more evenly through the evaporator 20, which can reduce the problem of easy frost formation on the front surface of the evaporator 20 to a certain extent, which can not only improve the heat exchange efficiency, but also prolong the defrosting cycle, saving energy and high efficiency.
  • the top plate 132 of the air return cover 130 and the top cover 121 of the evaporator are respectively provided with a snap connection structure (not shown in the figure) that cooperates with each other, so as to be snapped together, so that the top cover 121 of the evaporator and the return cover 130 connection is more stable.
  • An evaporator heat insulating member 150 is disposed between the evaporator top cover 121 and the top of the evaporator 20 of the refrigerator in this embodiment, so as to prevent the evaporator 20 from exchanging heat with the storage space 200 through the partition cover plate 120 and reducing the number of evaporators. 20% heat loss, reducing frosting and even freezing.
  • the evaporator heat insulating member 150 is formed by successively stacking multiple heat insulating layers of different materials.
  • the temperature at the top of the evaporator 20 is balanced by setting the temperature equalization layer, so as to prevent the top of the evaporator 20 from affecting the temperature at the bottom of the storage space 200 , so that the temperature of the storage space 200 is uniformly distributed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

一种蒸发器布置于内胆底部的冰箱,包括:箱体,具有底部内胆,分隔盖板,横向设置于底部内胆内,用于将底部内胆的内部空间分隔为冷却室和储物空间,冷却室位于储物空间的下方;蒸发器,安装于冷却室内,分隔盖板包括设置于蒸发器上方的蒸发器顶盖部,并且蒸发器顶盖部与蒸发器的顶部具有间隔;蒸发器保温件,填充于蒸发器顶盖部与蒸发器的顶部之间,以避免蒸发器通过分隔盖板与储物空间发生热交换。本发明的的方案,蒸发器顶盖部与蒸发器的顶部之间设置有蒸发器保温件,以避免蒸发器通过分隔盖板与储物空间发生热交换,减少蒸发器的热量损失,减少结霜甚至结冰。

Description

蒸发器布置于内胆底部的冰箱 技术领域
本发明涉及家电领域,特别是涉及一种蒸发器布置于内胆底部的冰箱。
背景技术
现有技术中的蒸发器底置冰箱,由于其在蒸发器的上盖下侧未进行隔热处理,在正常工作时,冰箱蒸发器的漏冷很严重,蒸发器附近热量损失很快,蒸发器表面容易结霜甚至结冰。
发明内容
本发明的一个目的是要提供一种能够解决上述问题的一种蒸发器布置于内胆底部的冰箱。
本发明一个进一步的目的是要减小蒸发器的热量损失,减少结霜甚至结冰。
本发明另一个进一步的目的是要使得储物空间内部温度分布均匀。
本发明另一个进一步的目的是要避免蒸发器化霜时热量扩散影响储物空间温度。
特别地,本发明提供了一种蒸发器布置于内胆底部的冰箱,包括:箱体,具有底部内胆,分隔盖板,横向设置于底部内胆内,用于将底部内胆的内部空间分隔为冷却室和储物空间,冷却室位于储物空间的下方;蒸发器,安装于所述冷却室内,分隔盖板包括设置于蒸发器上方的蒸发器顶盖部,并且蒸发器顶盖部与蒸发器的顶部具有间隔;蒸发器保温件,填充于蒸发器顶盖部与蒸发器的顶部之间,以避免蒸发器通过分隔盖板与储物空间发生热交换。
进一步地,蒸发器保温件由多层不同材质的保温层依次叠加形成。
进一步地,保温层包括:保温泡沫层,贴靠分隔盖板的下表面设置;树脂薄膜层,贴靠保温泡沫层的下表面设置;金属均温层,设置于树脂薄膜层的外侧,并与蒸发器的顶部相对。
进一步地,蒸发器整体呈扁平长方体状,并且从前至后向上倾斜地设置;分隔盖板的上表面基本水平设置,从而使得保温泡沫层的厚度从前至后逐渐减薄。
进一步地,蒸发器前端的顶部距离蒸发器顶盖部的间距设置为小于或等 于36mm,蒸发器后端的顶部距离蒸发器顶盖部的间距设置为小于或等于15mm。
进一步地,该冰箱还包括离心风机,沿冰箱的进深方向从前至后向上倾斜地设置于蒸发器的后方,用于促使形成从冷却室排向储物空间的制冷气流,并且离心风机的进风口朝向前上方,离心风机的排风口位于离心风机的后端;分隔盖板还包括设置于离心风机上方的风机顶盖部,并且风机顶盖部与离心风机的进风口之间具有进风空间。
进一步地,该冰箱还包括:风道背板,设置于底部内胆的后壁的前方,并与底部内胆的后壁限定出送风风道,其上开设有至少一个用于连通送风风道以及储物空间的送风口,并且风道背板的下端与离心风机的排风口相接。
进一步地,风机顶盖部包括:第一风机顶盖区段,从蒸发器顶盖部的后端倾斜向上延伸至离心风机的进风口后部,与离心风机平行设置且与离心风机间隔设定距离,以形成进风空间;第二风机顶盖区段,从第一风机顶盖区段的后端倾斜向上延伸至风道背板的下端。
进一步地,底部内胆的底壁用于支撑蒸发器以及离心风机,并且包括:第一倾斜部,从底部内胆的底壁的前端从前至后向下倾斜设置;下凹部,设置于第一倾斜部的后侧,并配置成从横向中部向两侧向上倾斜,从而在横向中部开设排水口,排水口用于排出冷却室内的水;第二倾斜部,从下凹部的后端从前至后向上倾斜设置,蒸发器的底面支撑于第二倾斜部上,并且蒸发器的前端与第一倾斜部抵触,从而使得蒸发器从前至后向上倾斜地设置,还使得其上出现的水汇聚于下凹部,并且排水口沿箱体前后方向的位置位于蒸发器的前部。第三倾斜部,从第二倾斜部的后端从前至后向上倾斜设置,第三倾斜部的倾斜角度大于第二倾斜部的倾斜角度,离心风机设置在第三倾斜部上。
进一步地,该冰箱还包括:回风罩,设置于冷却室的前部,其上开设有连通冷却室和储物空间的至少一个前回风口,利用前回风口向冷却室提供换热所需的空气,并且回风罩的顶部具有与蒸发器顶盖部前端相接的顶板,回风罩的顶板与蒸发器顶盖部上分别设置有相互配合的卡扣连接结构,以互相卡接。
本发明的冰箱的蒸发器顶盖部与蒸发器的顶部之间设置有蒸发器保温件,以避免蒸发器通过分隔盖板与储物空间发生热交换,减少蒸发器的热量 损失,减少结霜甚至结冰。
进一步地,本发明的蒸发器保温件由多层不同材质的保温层依次叠加形成。通过设置均温层使得蒸发器顶部的温度均衡,避免蒸发器顶部影响储物空间底部温度,从而使得储物空间温度均匀分布。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冰箱中箱体的示意性主视图;
图2是沿图1中的剖切线A-A截取的示意性剖视图;
图3是图2所示冰箱的示意性局部放大示意图,其中示出了底部箱体内的具体结构;
图4是图3所示的B区域的局部放大示意图;
图5是根据本发明一个实施例的冰箱中箱体下部的纵剖面示意图;
图6是根据本发明一个实施例的冰箱中风机底壳、风机叶片、风机上盖和风道背板的结构示意图。
具体实施方式
图1是根据本发明一个实施例的风冷冰箱的示意性前视图。图2是图1所示的风冷冰箱的示意性侧剖图。冰箱一般性地可包括箱体10,箱体10包括外壳、内胆以及其他附件。外壳是冰箱的外层结构,保护着整个冰箱。为了隔绝与外界的热传导,在箱体10的外壳和内胆之间加有隔热层,隔热层一般通过发泡工艺构成。内胆可以分为一个或多个,内胆根据功能可以被划分为冷藏内胆、变温内胆、冷冻内胆等,具体的内胆个数以及功能可以根据冰箱的使用需求进行配置。本实施例中内胆至少包括底部内胆110,底部内胆110一般可为冷冻内胆。
如图3-图6所示。本实施例中的冰箱还包括有分隔盖板120。分隔盖板120横向设置于底部内胆110内,用于将底部内胆110的内部空间分隔为冷却室100和储物空间200,冷却室100位于储物空间200的下方。
本实施例中的冰箱还包括有蒸发器20。蒸发器20安装于冷却室100内,一般可位于冷却室100的前部区域。分隔盖板120包括设置于蒸发器20上方的蒸发器顶盖部121,并且蒸发器顶盖部121与蒸发器20的顶部具有间隔。
蒸发器保温件150,填充于蒸发器顶盖部121与蒸发器20的顶部之间,以避免蒸发器20通过分隔盖板120与储物空间200发生热交换。蒸发器保温件150的设置可以减少蒸发器20的热量损失,减少蒸发器20表面结霜甚至结冰。现有技术中的冰箱蒸发器20表面的冷量易向储物空间200方向扩散,导致储物空间200的底部区域温度明显低于储物空间200其他部分的温度,使得储物空间200内整体温度分布不均,本实施例中使用蒸发器保温件150避免了上述问题的发生。当对蒸发器20化霜时,蒸发器保温件150也可避免热量扩散导致储物空间200温度上升,即避免造成能量损失,影响储物质量。
蒸发器保温件150由多层不同材质的保温层依次叠加形成。其中保温层包括保温泡沫层151、树脂薄膜层152以及金属均温层153。
保温泡沫层151,贴靠分隔盖板120的下表面设置。保温泡沫层151质量较轻,具有一定的结构强度,设置于分隔盖板120下表面可避免储物空间200内放入较大物品而对箱体10产生冲击。
树脂薄膜层152贴靠保温泡沫层151的下表面设置。树脂薄膜层152可以设置为聚乙烯薄膜(PE膜)。聚乙烯薄膜的比重轻,覆盖容易,且聚乙烯薄膜收缩能紧贴上层或下层的保温层,使得保温层连接紧密,整体性强不易分离。且聚乙烯薄膜无毒无害,防水防菌持久耐用,适合冰箱的使用环境。
金属均温层153,设置于树脂薄膜层152的外侧,并与蒸发器20的顶部相对。金属均温层153可以设置为铝箔。铝箔的延展性好,可以最大限度的降低金属均温层153的厚度防止占用过多冰箱内部空间,且导热性能优越,能够均匀蒸发器20顶部的温度,避免蒸发器20上方储物空间200温度分布不均匀的问题发生。
蒸发器20布置于冷却室100的前部,可以整体呈扁平长方体状,并且从前至后向上倾斜地设置。蒸发器20垂直于支撑面的厚度尺寸明显小于蒸发器20的长度尺寸。蒸发器20可以为翅片蒸发器20,翅片的布置方向平行于前后的进深方向,便于气流从前至后穿过。蒸发器20前端的顶部距离蒸发器顶盖部121的间距设置为小于或等于36mm,优选设置为36mm。蒸发 器20后端的顶部距离蒸发器顶盖部121的间距设置为小于或等于15mm,优选设置为15mm。蒸发器20与蒸发器顶盖部121距离越远,可使得气流与蒸发器20换热更加充分,为气流通过预留空间,但距离远使得底部内胆110位置抬高,减小了底部储物空间200的容积,降低冰箱的空间使用率。所以,上述蒸发器20与蒸发器顶盖部121的间距设置即预留了足够的气流通过空间,又最大限度的增加底部储物空间的容积,是根据制冷性能要求与空间要求进行的结构性优化,并且得到试制产品的效果验证。在本实施例中,蒸发器20也可以在满足空间要求的情况下,根据需要设置为其他形状,扁平长方体状的蒸发器20是其中结构较为紧凑简单的实现方式。
在本发明的一些实施例中,分隔盖板120的上表面基本水平设置,从而使得保温泡沫层151的厚度从前至后逐渐减薄。分隔板的上表面设置为基本水平,最大限度的增加了储物空间200的容积,有利于形成完整的储物空间,使空间利用率更高。由于气流从前至后流过,温差逐渐降低,因此后部厚度减薄并不影响蒸发器20保温。上述保温泡沫层151的厚度是根据空间要求与制冷性能要求而进行的结构性优化,并且得到试制产品的效果验证。
离心风机30沿冰箱的进深方向从前至后向上倾斜地设置于蒸发器20的后方,用于促使形成从冷却室100排向储物空间200的制冷气流,并且离心风机30的进风口301朝向前上方,离心风机30的排风口302位于离心风机30的后端。离心风机30倾斜设置,最大限度的节省了蒸发器20与离心风机30之间的进深距离,即保证了蒸发器20与离心风机30的距离足够,减少蒸发器20结霜现象的发生,也保证了冰箱内部结构紧凑,增大空间利用率,将离心风机30倾斜设置是根据制冷性能要求和空间要求进行的结构性改进。
离心风机30包括风机上盖303、风机叶片304和风机底壳305。分隔盖板120还包括设置于离心风机30上方的风机顶盖部,并且风机顶盖部与离心风机30的进风口301之间具有进风空间400。离心风机30的进风口301处具有充分的进风空间400,可使得离心风机30进风更加充分顺畅,提高离心风机30的利用效率。为了使储物空间200的容积更大,离心风机30与蒸发器20的距离应尽量小,以满足日常储物需求。但离心风机30与蒸发器20距离过近则会导致蒸发器20表面容易结霜。离心风机30的前端与蒸发器20之间具有设定间距的间隔,离心风机30的前端至蒸发器20的间距范围设置为20至25mm,例如可以设置为21mm、22mm、24mm,优选设置为22mm。 上述距离的设置可使得离心风机30进风更加顺畅,也减少了蒸发器20与离心风机30距离较近蒸发器20表面容易结霜的问题,是制冷性能要求和空间要求而做出的结构性优化,并且得到试制产品的效果验证。
本实施例的冰箱还包括风道背板140。风道背板140,设置于底部内胆110的后壁114的前方,并与底部内胆110的后壁114限定出送风风道500,其上开设有至少一个用于连通送风风道500以及储物空间200的送风口510,并且风道背板140的下端与离心风机30的排风口302相接。送风风道500并向上延伸,配置成将制冷气流输送至储物空间200。在储物空间200的后壁114开有与送风风道500连通的送风口510,将制冷气流排入储物空间200。风机上盖303与风道背板140为一体注塑成型的单层板。
本实施例中,风机背板上还设置有挡水筋141,挡水筋141可以设置在风道背板140朝向储物空间200的一面上,当气流在风道背板140处由于温差导致风道背板140表面出现冷凝水时,挡水筋141可以避免冷凝水流入风机腔导致故障。在本实施例中,横向延伸可以指水平延伸,也可以理解为挡水筋141具有一定的倾斜角度,上述两种方式均可以延缓挡水筋141上的冷凝水下落速度。
本实施例的风机顶盖板还包括第一风机顶盖区段1221与第二风机顶盖区段1222。第一风机顶盖区段1221从蒸发器顶盖部121的后端倾斜向上延伸至离心风机30的进风口301后部,与离心风机30平行设置且与离心风机30间隔设定距离,以形成进风空间400。
第二风机顶盖区段1222从第一风机顶盖区段1221的后端倾斜向上延伸至风道背板140的下端。第一风机顶盖区段1221距离离心风机30的间距范围设置为22至27mm。第一风机顶盖区段1221的倾斜角度可与离心风机30的倾斜角度不同,第一风机顶盖区段1221与离心风机30的距离最大处不超过27mm,最小处不小于22mm,风机顶盖部距与离心风机30的距离对离心风机30的实际效率有直接影响,通过仿真分析不同距离对风量的影响,最终确认了最佳距离范围为22mm-27mm。拉开距离后,蒸发器20方向气流受离心风机30负压吸力的影响,有向上趋势,该趋势可引导气流进入进风口301,减少离心风机30周围以及前端的结霜。进风口301上部形成一定空间,保证了风机的进风面积,提高制冷系统的风量。上述距离的设置是根据空间要求和制冷性能要求而做出的结构优化,并且得到试制产品的效果验证。
底部内胆110的底部用于支撑蒸发器20以及离心风机30,并且包括第一倾斜部111、第二倾斜部112、第三倾斜部113以及下凹部116。
第一倾斜部111,从底部内胆110的底壁的前端从前至后向下倾斜设置。下凹部116设置于第一倾斜部111的后侧,并配置成从横向中部向两侧向上倾斜,从而在横向中部开设排水口115。排水口115用于排出冷却室100内的水。排水口115的位置为大体位于横向中部的区域,并非严格要求位于横向中心的区域。在一些实施例中,排水口115可以位于横向中部适当偏向一侧的位置。
第二倾斜部112,从下凹部116的后端从前至后向上倾斜设置。蒸发器20的底面支撑与第二倾斜部112上,并且蒸发器20的前端与第一倾斜部111抵触,从而使得蒸发器20从前至后向上倾斜地设置。蒸发器20设置于第二倾斜部112上,从而使得蒸发器20上出现的水汇聚于下凹部116,并且排水口115沿箱体10前后方向的位置位于蒸发器20的前部。蒸发器20与第二倾斜部112相对于水平面的倾斜角度保持一致,该倾斜角度α范围设置为7.0°至8.0°,例如可以设置为7.2°、7.5°、7.8°,优选设置为7.5°。当气流进入冷却室100后,可通过蒸发器20的前侧面进入蒸发器20与进行换热,部分气流还可通过蒸发器20的上部与排水口115与蒸发器20的间隔空间两部分进入蒸发器20进行换热,使得换热更加均匀,而后被离心风机30送至送风风道500,进行对上部储物空间200的制冷。蒸发器20抵触第一倾斜部111的位置相距排水口115的高度可以设置为小于或等于22mm,例如可以设置为22mm。在保证排水角度的前提下,将排水口115的高度降到了最低。上述排水口115相对于箱体10底面的高度以及蒸发器20与第一倾斜部111抵触的位置相距排水口115的高度的设置,是根据排水性能要求和空间要求而进行的结构性优化,并且得到试制产品的效果验证。
第三倾斜部113,从第二倾斜部112的后端从前至后向上倾斜设置,第三倾斜部113的倾斜角度大于第二倾斜部112的倾斜角度,离心风机30设置第三倾斜部113上。第三倾斜部113的倾斜角度可设置与离心风机30的倾斜角度β一致,可设置为36.0°至37.0°,例如可以设置为36.5°、36.7°、36.9°,优选为36.7°。
下凹部116的倾斜角度大于或等于3°,进一步地可以大于等于6°,例如7°。第二倾斜部112的倾斜角度、第三倾斜部113的倾斜角度也分别 为蒸发器20的倾斜角度以及离心风机30的倾斜角度。下凹部116的倾斜角度可以保证水向排水口115汇集。
下凹部116两侧的倾斜角度可以大于等于3度(优选7°),使得两侧的水向排水口115汇聚。下凹部116的构造还可以使蒸发器20尽量减少与底部内胆110的底壁的间距,从而可以利用蒸发器20的加热丝热量传递到下凹部116,使化霜水有效流进排水口115处。上述下凹部116的构造利用蒸发器20的加热丝热量进行除霜,避免了冰块封堵排水口115,也无需在排水口115处额外增加加热丝。
利用下凹部116的结构,可以使得倾斜的蒸发器20的部分区域悬空,便于化霜和排水。由于蒸发器20倾斜设置,也可以降低蒸发器20与排水口115之间的距离,不仅提高了冰箱的空间利用率,而且保障蒸发器20上的加热丝能够对排水口115处的区域进行加热,从而降低了排水口115处的结霜风险。
第二倾斜部112的倾斜角度也可以便于水向排水口115汇集,提高了排水的顺畅性。蒸发器20与第二倾斜部112的贴合部分占蒸发器20底面的比例大于或等于0.6,例如可以设置2/3、3/4等,从而可以使得排水口115位于蒸发器20前部的下方。也就是说排水口115沿箱体10前后方向的位置位于蒸发器20的前部,例如排水口115可以位于蒸发器20整体进深尺寸三分之一(或四分之一)位置的下方。
本实施例的冰箱通过保障蒸发器20底面与第二倾斜部112的贴合长度,进而避免了空气不流进蒸发器20而从蒸发器20底面与排水口115之间的空间流过,提高了空气流经蒸发器20的路径长度,进一步地提高了蒸发器20的换热效率。
上述冷却室100的构造以及蒸发器20等部件的倾斜设置,既保证了气流的顺畅充分换热,还在一定程度上减少了霜冻,而且提高了化霜和排水效率。
本实施例针对底部内胆110的结构进行了大量优化,在满足冰箱制冷性能的条件下,最大限度的扩大了储物空间200的容积,提高了冰箱的空间利用率。
底部内胆110的后下方布置有压机舱300,压机舱300位于冷却室100的下方。底部内胆110的结构优化为压机舱300的设置预留了足够的空间。 压机舱300用于布置风冷冰箱的冷凝器(图中未示出)以及压缩机(图中未示出)。压机舱300顶盖与第三倾斜部113平行,改善了压机舱300顶盖与第三倾斜部113之间发泡层的流动性。并且压机舱300顶盖与底部内胆110的底壁间隔设置。压机舱300顶盖的前部与第三倾斜部113平行的间距可以设置为小于或等于45mm,例如可以设置为45mm。
冷却室100的前部设置有回风罩130。回风罩130上开设有连通冷却室100和储物空间200的至少一个前回风口131,利用前回风口131向冷却室100提供换热所需的空气。回风罩130的顶部具有与蒸发器顶盖部121前端相接的顶板132。回风罩130在冷却室100的前侧形成有与储物空间200连通的前回风口131,以使得储物空间200的回风气流通过前回风口131进入冷却室100,以与蒸发器20进行换热,完成冷却室100和储物空间200之间形成气流循环。回风罩130的前侧可形成上下分布的两个前回风口131,不但视觉美观,还可有效防止儿童手指或异物进入冷却空间中;并且,上下分布的两个回风区域可使回风进入冷却空间后更均匀流过蒸发器20,可在一定程度上减少蒸发器20前端面易结霜的问题,不但可提高换热效率,还可延长化霜周期,节能高效。回风罩130的顶板132与蒸发器顶盖部121上分别设置有相互配合的卡扣连接结构(图中未示出),以互相卡接,使得蒸发器顶盖部121与回风罩130的连接地更加稳固。
本实施例的冰箱的蒸发器顶盖部121与蒸发器20的顶部之间设置有蒸发器保温件150,以避免蒸发器20通过分隔盖板120与储物空间200发生热交换,减少蒸发器20的热量损失,减少结霜甚至结冰。
进一步地,蒸发器保温件150由多层不同材质的保温层依次叠加形成。通过设置均温层使得蒸发器20顶部的温度均衡,避免蒸发器20顶部影响储物空间200底部温度,从而使得储物空间200温度均匀分布。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种蒸发器布置于内胆底部的冰箱,包括:
    箱体,具有底部内胆,
    分隔盖板,横向设置于所述底部内胆内,用于将所述底部内胆的内部空间分隔为冷却室和储物空间,所述冷却室位于所述储物空间的下方;
    蒸发器,安装于所述冷却室内,所述分隔盖板包括设置于所述蒸发器上方的蒸发器顶盖部,并且所述蒸发器顶盖部与所述蒸发器的顶部具有间隔;
    蒸发器保温件,填充于所述蒸发器顶盖部与所述蒸发器的顶部之间,以避免所述蒸发器通过所述分隔盖板与所述储物空间发生热交换。
  2. 根据权利要求1所述的蒸发器布置于内胆底部的冰箱,其中
    所述蒸发器保温件由多层不同材质的保温层依次叠加形成。
  3. 根据权利要求2所述的蒸发器布置于内胆底部的冰箱,其中所述保温层包括:
    保温泡沫层,贴靠所述分隔盖板的下表面设置;
    树脂薄膜层,贴靠所述保温泡沫层的下表面设置;
    金属均温层,设置于所述树脂薄膜层的外侧,并与所述蒸发器的顶部相对。
  4. 根据权利要求3所述的蒸发器布置于内胆底部的冰箱,其中
    所述蒸发器整体呈扁平长方体状,并且从前至后向上倾斜地设置;
    所述分隔盖板的上表面基本水平设置,从而使得所述保温泡沫层的厚度从前至后逐渐减薄。
  5. 根据权利要求4所述的蒸发器布置于内胆底部的冰箱,其中
    所述蒸发器前端的顶部距离所述蒸发器顶盖部的间距设置为小于或等于36mm,所述蒸发器后端的顶部距离所述蒸发器顶盖部的间距设置为小于或等于15mm。
  6. 根据权利要求4所述的蒸发器布置于内胆底部的冰箱,还包括:
    离心风机,沿所述冰箱的进深方向从前至后向上倾斜地设置于所述蒸发器的后方,用于促使形成从所述冷却室排向所述储物空间的制冷气流,并且所述离心风机的进风口朝向前上方,所述离心风机的排风口位于所述离心风机的后端;
    所述分隔盖板还包括设置于所述离心风机上方的风机顶盖部,并且所述风机顶盖部与所述离心风机的进风口之间具有进风空间。
  7. 根据权利要求6所述的蒸发器布置于内胆底部的冰箱,还包括:
    风道背板,设置于所述底部内胆的后壁的前方,并与所述底部内胆的后壁限定出送风风道,其上开设有至少一个用于连通所述送风风道以及所述储物空间的送风口,并且所述风道背板的下端与所述离心风机的排风口相接。
  8. 根据权利要求7所述的蒸发器布置于内胆底部的冰箱,其中所述风机顶盖部包括:
    第一风机顶盖区段,从所述蒸发器顶盖部的后端倾斜向上延伸至所述离心风机的进风口后部,与所述离心风机平行设置且与所述离心风机间隔设定距离,以形成所述进风空间;
    第二风机顶盖区段,从所述第一风机顶盖区段的后端倾斜向上延伸至所述风道背板的下端。
  9. 根据权利要求7所述的蒸发器布置于内胆底部的冰箱,其中所述底部内胆的底壁用于支撑所述蒸发器以及所述离心风机,并且包括:
    第一倾斜部,从所述底部内胆的底壁的前端从前至后向下倾斜设置;
    下凹部,设置于所述第一倾斜部的后侧,并配置成从横向中部向两侧向上倾斜,从而在横向中部开设排水口,所述排水口用于排出所述冷却室内的水;
    第二倾斜部,从所述下凹部的后端从前至后向上倾斜设置,所述蒸发器的底面支撑于所述第二倾斜部上,并且所述蒸发器的前端与所述第一倾斜部抵触,从而使得所述蒸发器从前至后向上倾斜地设置,还使得其上出现的水汇聚于所述下凹部,并且所述排水口沿所述箱体前后方向的位置位于所述蒸发器的前部;
    第三倾斜部,从所述第二倾斜部的后端从前至后向上倾斜设置,所述第 三倾斜部的倾斜角度大于所述第二倾斜部的倾斜角度,所述离心风机设置在所述第三倾斜部上。
  10. 根据权利要求1所述的蒸发器布置于内胆底部的冰箱,还包括:
    回风罩,设置于所述冷却室的前部,其上开设有连通所述冷却室和所述储物空间的至少一个前回风口,利用所述前回风口向所述冷却室提供换热所需的空气,并且
    所述回风罩的顶部具有与所述蒸发器顶盖部前端相接的顶板,所述回风罩的顶板与所述蒸发器顶盖部上分别设置有相互配合的卡扣连接结构,以互相卡接。
PCT/CN2021/123575 2020-08-18 2021-10-13 蒸发器布置于内胆底部的冰箱 WO2022037715A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010833969.2A CN114076469A (zh) 2020-08-18 2020-08-18 蒸发器布置于内胆底部的冰箱
CN202010833969.2 2020-08-18

Publications (1)

Publication Number Publication Date
WO2022037715A1 true WO2022037715A1 (zh) 2022-02-24

Family

ID=80281443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123575 WO2022037715A1 (zh) 2020-08-18 2021-10-13 蒸发器布置于内胆底部的冰箱

Country Status (2)

Country Link
CN (1) CN114076469A (zh)
WO (1) WO2022037715A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118705795A (zh) * 2023-03-27 2024-09-27 青岛海尔电冰箱有限公司 冰箱

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201170679Y (zh) * 2008-03-03 2008-12-24 青岛澳柯玛股份有限公司 一种冷藏箱
KR20130057529A (ko) * 2011-11-24 2013-06-03 주식회사 지엠에스 혈장 급속 냉동기
CN206583190U (zh) * 2014-04-18 2017-10-24 松下知识产权经营株式会社 冷藏库
CN110375491A (zh) * 2018-04-13 2019-10-25 青岛海尔电冰箱有限公司 送风风机位于蒸发器下游的冰箱
CN210197825U (zh) * 2019-02-26 2020-03-27 青岛海尔电冰箱有限公司 风冷冰箱
CN111351287A (zh) * 2018-12-24 2020-06-30 青岛海尔特种电冰柜有限公司 卧式冷柜
CN213040841U (zh) * 2020-08-18 2021-04-23 青岛海尔电冰箱有限公司 一种增大底部储物空间容积的冰箱

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3155366U (ja) * 2009-09-03 2009-11-12 アキレス株式会社 断熱材
JP2015145690A (ja) * 2014-01-31 2015-08-13 旭有機材工業株式会社 断熱パネル
CN204693936U (zh) * 2015-03-20 2015-10-07 合肥晶弘电器有限公司 一种冰箱门体及冰箱
CN118565128A (zh) * 2018-04-13 2024-08-30 海尔智家股份有限公司 冷却室位于冷冻内胆内侧下部的冰箱
CN110375473A (zh) * 2018-04-13 2019-10-25 青岛海尔股份有限公司 冷却室位于冷冻内胆内侧下部的冰箱

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201170679Y (zh) * 2008-03-03 2008-12-24 青岛澳柯玛股份有限公司 一种冷藏箱
KR20130057529A (ko) * 2011-11-24 2013-06-03 주식회사 지엠에스 혈장 급속 냉동기
CN206583190U (zh) * 2014-04-18 2017-10-24 松下知识产权经营株式会社 冷藏库
CN110375491A (zh) * 2018-04-13 2019-10-25 青岛海尔电冰箱有限公司 送风风机位于蒸发器下游的冰箱
CN209893729U (zh) * 2018-04-13 2020-01-03 青岛海尔电冰箱有限公司 法式冰箱
CN111351287A (zh) * 2018-12-24 2020-06-30 青岛海尔特种电冰柜有限公司 卧式冷柜
CN210197825U (zh) * 2019-02-26 2020-03-27 青岛海尔电冰箱有限公司 风冷冰箱
CN213040841U (zh) * 2020-08-18 2021-04-23 青岛海尔电冰箱有限公司 一种增大底部储物空间容积的冰箱

Also Published As

Publication number Publication date
CN114076469A (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
CN110375493A (zh) 冷冻室在冷却室前侧回风的冰箱
CN213040840U (zh) 蒸发器底置式冰箱
CN210036003U (zh) 蒸发器与接水盘相匹配的冰箱
CN205860628U (zh) 一种冷冻风道以及风冷冰箱
CN113532005A (zh) 一种冰箱风道结构及具有其的冰箱
WO2022037411A1 (zh) 蒸发器设置于箱体底部的冰箱
WO2022037715A1 (zh) 蒸发器布置于内胆底部的冰箱
CN112984918A (zh) 一种具有利于化霜、排水结构的制冷模块的冰箱
CN114076452A (zh) 一种改进冷却室前端回风结构的冰箱
CN205482061U (zh) 冷藏库
WO2020173338A1 (zh) 回风口形成于箱体两侧壁的冰箱
WO2022037714A1 (zh) 减小回气管热量损失的冰箱
JP3234788U (ja) 冷蔵庫の風路構造
CN108332478A (zh) 冰箱
CN113007950A (zh) 一种风冷冰箱制冷模块及其冰箱
WO2022037437A1 (zh) 蒸发器设置于箱体底部的风冷冰箱
WO2022037721A1 (zh) 一种增大底部储物空间容积的冰箱
WO2022037720A1 (zh) 蒸发器底置式冰箱
CN208139661U (zh) 风道组件及冰箱
WO2021047552A1 (zh) 冰箱
CN214665473U (zh) 一种风冷冰箱制冷模块及其冰箱
WO2021190356A1 (zh) 冰箱
WO2021082751A1 (zh) 蒸发器倾斜设置的冰箱
CN114076467A (zh) 制冷风机安装于箱体下部的风冷冰箱
WO2020173355A1 (zh) 送风机位于蒸发器横向侧方下游的冰箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21857802

Country of ref document: EP

Kind code of ref document: A1