WO2022037308A1 - 轨道交通车辆有源降噪方法及司机室 - Google Patents

轨道交通车辆有源降噪方法及司机室 Download PDF

Info

Publication number
WO2022037308A1
WO2022037308A1 PCT/CN2021/105377 CN2021105377W WO2022037308A1 WO 2022037308 A1 WO2022037308 A1 WO 2022037308A1 CN 2021105377 W CN2021105377 W CN 2021105377W WO 2022037308 A1 WO2022037308 A1 WO 2022037308A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
cab
driver
noise
reference signal
Prior art date
Application number
PCT/CN2021/105377
Other languages
English (en)
French (fr)
Inventor
蒋忠城
王先锋
刘晓波
李登科
张俊
郭冰彬
何辉永
李旺
Original Assignee
中车株洲电力机车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车株洲电力机车有限公司 filed Critical 中车株洲电力机车有限公司
Priority to EP21857403.6A priority Critical patent/EP4202918A4/en
Publication of WO2022037308A1 publication Critical patent/WO2022037308A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C17/00Arrangement or disposition of parts; Details or accessories not otherwise provided for; Use of control gear and control systems
    • B61C17/04Arrangement or disposition of driving cabins, footplates or engine rooms; Ventilation thereof
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17813Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms
    • G10K11/17815Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms between the reference signals and the error signals, i.e. primary path
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17823Reference signals, e.g. ambient acoustic environment
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17825Error signals
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17857Geometric disposition, e.g. placement of microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/108Communication systems, e.g. where useful sound is kept and noise is cancelled
    • G10K2210/1082Microphones, e.g. systems using "virtual" microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/128Vehicles
    • G10K2210/1283Trains, trams or the like
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3025Determination of spectrum characteristics, e.g. FFT
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/321Physical
    • G10K2210/3221Headrests, seats or the like, for personal ANC systems
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/321Physical
    • G10K2210/3226Sensor details, e.g. for producing a reference or error signal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Definitions

  • the invention relates to the field of rail transit, in particular to an active noise reduction method for rail transit vehicles and a driver's cab.
  • driver's cab As people's requirements for ride comfort of rail vehicles are getting higher and higher, drivers and passengers have higher requirements for interior noise. Because the driver needs to perform driving operations for a long time, when the driver's cab is noisy, the driver is prone to driving fatigue or even hearing loss. At present, the noise reduction method of driver's cab mostly adopts passive sound insulation and sealing noise reduction, but this method is powerless for low frequency noise.
  • active noise control technology provides a feasible method for low-frequency noise reduction in the driver's cab, but due to the complex and changeable line environment, it is difficult to obtain an accurate reference signal, resulting in poor control of active noise reduction.
  • the installation of the error sensor and the secondary sound source makes the structure of the seat complicated, which is not convenient for engineering application.
  • the technical problem to be solved by the present invention is to provide an active noise reduction method for a rail transit vehicle and a driver's cab to obtain an accurate reference signal and improve the control effect of the active noise reduction, aiming at the deficiencies of the prior art.
  • an active noise reduction method for rail transit vehicles comprising the following steps:
  • the noise reference signal includes structural noise reference signal and air noise reference signal;
  • the train speed select the weighting coefficient of the noise reference signal at the corresponding speed level, perform weighted fusion calculation on the spectral amplitude curve of each noise reference signal, and obtain the spectral amplitude curve of the comprehensive reference signal;
  • the noise error signal of the virtual error microphone is calculated to obtain the frequency domain signal of the noise virtual error signal, and the spectrum amplitude curve of each noise virtual error signal is obtained by using the frequency domain signal;
  • the invention obtains the reference signal of the driver's cab structure noise and the reference signal of the air noise, the reference signal covers the noise signals of each frequency band, and improves the comprehensiveness and accuracy of the source of the reference signal; the frequency spectrum amplitude curve of each noise reference signal is weighted and fused. Calculation, an accurate spectrum amplitude curve of the comprehensive reference signal can be obtained, and the adjustment amount can be obtained by using the secondary sound source control signal, so the method of the present invention can accurately calculate the noise reduction amount (that is, the adjustment of the amplitude of each secondary sound source signal). volume and phase adjustment), which greatly improves the noise reduction control effect.
  • the structure noise reference signal is an accelerometer signal; the air noise reference signal is a microphone signal; Accelerometer acquisition; the microphone signal is acquired by a reference microphone installed on the air noise transmission channel (ie, the air noise transmission path) of the cab.
  • the information fusion of various reference sensors improves the comprehensiveness and accuracy of reference signal sources.
  • step 1) the acquisition process of the spectrum amplitude curve of each noise reference signal includes: performing fast Fourier transform on each noise reference signal to obtain a frequency domain signal, taking one-third octave band and A weighting to obtain Spectrum amplitude curve.
  • This calculation process greatly improves the calculation speed, and at the same time, the one-third octave band can ensure the calculation accuracy, and the A-weighting ensures the correlation between the reference signal and the human ear's sensitivity to acoustic signals.
  • step 2) the air noise monitoring signal near the driver's ear position is acquired by a microphone installed near the driver's ear position, and the driver's ear position is installed in the middle of the driver's front window position for tracking the driver's head position.
  • Track sensor acquisition The position tracking sensor may be a camera, an infrared camera, or the like.
  • the secondary sound source control signal is adaptively adjusted by using the sound signal of the virtual error microphone; the sound signal of the virtual error microphone is acquired by a plurality of microphones installed on the ceiling or side wall of the cab, Or obtained from the physical error microphone installed on the driver's cab seat.
  • the physical error microphone is directly installed on the driver's cab seat, which saves multiple microphones and does not need to establish the transfer function between the microphone and the virtual microphone in advance.
  • the position tracking sensor has a relatively simple structure and is convenient for engineering applications.
  • the specific implementation process of adaptively adjusting the secondary sound source control signal includes: using the sound signal of the virtual error microphone and the secondary sound source control signal as the input of the active noise reduction method, and iterating Adjust the calculation step size and calculation order.
  • the active noise reduction method converges, the self-adaptive adjustment ends, and the adjustment amount of the amplitude and phase adjustment of each speaker signal is output.
  • the adjustment process is simple, easy to implement, and the adjustment result is accurate.
  • the loudspeaker is installed in the area where the sound pressure of the driver's cab is above 68dB(A), which can stimulate the modal response of the driver's cab cavity and effectively reduce the noise amplitude of the target area (the location of the driver's ear area) at typical frequencies.
  • the present invention also provides a rail transit vehicle cab, an accelerometer is installed on each structure noise transmission channel of the cab, and a microphone is installed on each air noise transmission channel; A plurality of secondary sound sources are installed; the accelerometers, the microphones, and the secondary sound sources are all electrically connected to an active noise adaptive controller; the active noise adaptive controller is configured to perform the method described above. step.
  • Various reference sensors are installed in the driver's cab of the present invention, which can accurately acquire noise signals of various frequency bands.
  • the plurality of secondary sound sources are respectively installed on the ceiling and side walls of the driver's cab; or the plurality of secondary sound sources are installed on the seats in the driver's cab.
  • a plurality of remote error microphones are installed on the ceiling or side walls of the cab; or a physical error microphone is installed on the cab seat.
  • a position tracking sensor for tracking the position of the driver's head is installed in the middle of the front window of the driver's cab.
  • the present invention has the following beneficial effects:
  • the multi-reference sensor information fusion of the present invention improves the comprehensiveness and accuracy of the reference signal source, the accuracy of the reference signal effectively improves the noise reduction amount of the target noise reduction area, and has better noise reduction experience and engineering practicability.
  • the virtual error microphone technology reduces the complexity of the driver's seat, improves the adjustment operability and the convenience of the driver.
  • FIG. 1 is a schematic diagram of an active noise reduction device for a rail vehicle driver’s cab using multi-reference sensor information fusion and mobile virtual error microphone technology according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an active noise reduction device for a rail vehicle driver's cab using multi-reference sensor information fusion and virtual error microphone technology according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an active noise reduction device for a rail vehicle driver's cab using multi-reference sensor information fusion and far-field speaker area control technology according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of an active noise reduction device for a rail vehicle cab using a multi-reference sensor information fusion technology according to an embodiment of the present invention.
  • structural noise refers to the noise generated by metal vibration, and the frequency is generally below 400 Hz, and this part of the noise signal is acquired by an accelerometer.
  • Air noise refers to the noise caused by air transmission, and the frequency is generally above 400hz. This part of the noise signal is obtained by a microphone.
  • the Reference accelerometers and reference microphones are installed on indoor wall panels and air-conditioning supply air ducts to obtain reference acceleration signals and reference microphone signals, and perform spectrum analysis and weighting information fusion of each reference signal to obtain an accurate comprehensive reference signal .
  • the installation of the reference sensor is as follows: a reference microphone is installed under the floor of the cab shell, a reference accelerometer is installed on the floor and side walls of the inner surface of the cab shell, and a microphone is installed between the floor of the cab shell and the installed floor of the cab , A reference accelerometer is installed on the inner surface of the floor, side walls and top cover of the driver's cab, and a reference microphone is installed at the air outlet of the air-conditioning air duct.
  • each reference signal refers to extracting the spectral amplitude characteristic data of each reference signal, that is, performing fast Fourier (FFT) transformation on the time-domain acceleration reference signal and the time-domain microphone reference signal within the segment or sampling period respectively.
  • FFT fast Fourier
  • the spectrum amplitude curve is a curve composed of one-third octave as the abscissa and the corresponding acceleration level amplitude curve or sound pressure level amplitude curve as the ordinate.
  • Weighted information fusion refers to obtaining in advance the coherence coefficients of each reference signal in the driver's cab and the driver's ear position microphone signal under different train operating speed grades of rail transit vehicles, that is, performing FFT on a single reference signal and the driver's cab ear position microphone signal respectively.
  • Transform obtain two frequency domain signals, perform coherence/correlation function analysis on these two frequency domain signals (such as in MATLAB), obtain coherence/correlation coefficients, and normalize them (correlation coefficients of each reference signal) Sum, and then use each correlation coefficient as the numerator to divide by this sum) to obtain the weighting coefficient of each reference signal.
  • the train speed signal in the cab train control system is extracted, the weighting coefficient of each reference signal under the corresponding speed grade is selected, and the spectral amplitude curve of each reference signal is weighted to obtain a comprehensive reference signal (for the calculation process of the spectrum amplitude curve, refer to the invention patent application with publication number CN109405961A).
  • the correlation coefficient is a statistical indicator of the closeness of the relationship between the response variables, and the value range of the correlation coefficient is between 1 and -1.
  • 1 means that the two variables are perfectly linearly correlated
  • -1 means that the two variables are completely negatively correlated
  • 0 means that the two variables are not correlated. The closer the data is to 0, the weaker the correlation.
  • the number of remote error microphones is determined according to the acoustic signal prediction accuracy and economy of the mobile virtual error microphone (the number of microphones used when the predicted precision reading meets the minimum control requirements, such as using 5 remote microphones to predict the precision reading of the acoustic signal of a location.
  • the accuracy is higher than that of 3 remote microphones, but the economic cost of 5 is higher; when the predicted intensive reading with 3 remote microphones meets the minimum intensive reading requirements, considering the low cost of 3 remote microphones, it is sufficient to use 3 remote microphones.
  • the driver's head position is tracked by the head position tracking sensor installed in the middle of the driver's front window (that is, the sensor used to obtain the driver's head position, such as https://baike.so.com/doc/6436712-6650392 .html) to obtain.
  • the position tracking sensor may also be a camera, an infrared camera, or the like.
  • the active noise adaptive controller adopts a multi-channel active feedforward system to generate a secondary sound source control signal according to the reference signal, and then according to the signal of the moving virtual error microphone (see: “Acta Physica Sinica” Vol. 68 No. 5 Complex Acoustics A review of research on spatial active noise reduction near the human ear in the environment) adaptively adjusts and controls the secondary sound source control signal (according to the real-time changes of the external reference signal and the feedback signal (ie the error signal), adaptively changing the active noise reduction Algorithm (see: "Science Technology and Engineering” Vol. 18 No.
  • the secondary sound source also outputs signals, until the convergence is stable, that is, when the error signal monitored by the error sensor is less than the limit value, the output value of the secondary sound source is no longer adjusted and maintained.
  • the current output value until the external environment changes and causes the error microphone to monitor the error signal exceeding the limit, start the adaptive adjustment algorithm again for a new round of adjustment), so as to optimize the convergence speed of the algorithm and obtain the optimal and stable
  • the secondary speaker outputs the signal to weaken the original sound field signal near the driver's ear and achieve the purpose of reducing the original sound field), and obtain the output amplitude adjustment amount and phase adjustment amount of each speaker signal.
  • Multi-channel means that the number of secondary sound sources is more than one.
  • Secondary sound sources are speakers or horns.
  • the number and arrangement of secondary sound sources are obtained through sound field simulation optimization calculation in advance, and the typical frequencies and their sound field distribution are obtained according to the sound field modal simulation calculation.
  • the area where the loudspeaker is arranged can effectively reduce the noise amplitude of this area at this frequency, and it is verified by experiments. In the experiment, place the loudspeaker in the simulation position and radiate the noise of this frequency to verify the noise reduction effect, and compare and study other positions, when the noise of this frequency is radiated, whether the noise reduction amount is less than the noise reduction amount of the position found by the simulation optimization. , which verifies that the noise reduction effect is the best at the simulated location.
  • the input and output of the active noise controller adopts an FPGA system
  • the computing core adopts a DSP processor
  • Embodiment 2 of the present invention is shown in FIG. 2 , the virtual error microphone adopts a non-movable type, which omits the head position tracking sensor.
  • Embodiment 3 of the present invention is shown in FIG. 3 , the remote error microphone is installed on the driver's cab seat, and one error microphone can be used to reduce the number of remote error microphones and improve the calculation accuracy of the virtual error microphone signal. No head position tracking sensor is required.
  • Embodiment 4 of the present invention is shown in FIG. 4 , a secondary sound source and an error microphone are installed on the driver's seat (the number of the secondary sound source and the error microphone are both 2), which improves the calculation accuracy of the virtual error microphone signal , reducing the transmission distance of the secondary sound source and improving the frequency range and control accuracy of the secondary sound source.
  • the secondary sound source is installed on the seat, which increases the complexity of the seat and the size of the seat headrest, and the seat needs to be customized.
  • the acquisition method of the reference signal is the same as that of the first embodiment.
  • an accelerometer is installed on each structural noise transmission channel of a rail transit vehicle driver's cab, and a microphone is installed on each air noise transmission channel; a plurality of secondary sound sources are installed in the driver's cab; The accelerometer, the microphone and the secondary sound source are all electrically connected to the active noise adaptive controller.
  • a reference microphone is installed under the floor of the cab shell, a reference accelerometer is installed on the floor and side walls of the inner surface of the cab shell, and a reference accelerometer is installed between the floor of the cab shell and the interior (cab wall) floor of the cab
  • a reference accelerometer is installed on the inner surface of the floor, side walls and top cover of the driver's cab, and a reference microphone is installed at the air outlet of the air-conditioning air duct.
  • multiple secondary sound sources are installed on the ceiling and side walls of the cab, and multiple remote microphones are installed on the ceiling or side walls of the cab; as shown in Figure 4, multiple secondary sound sources It can also be installed on the driver's cab seat, which is equipped with a physical error microphone.
  • a position tracking sensor such as a camera, is installed in the middle of the front window of the driver's cab to track the position of the driver's head.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)

Abstract

一种轨道交通车辆有源降噪方法及司机室,司机室的结构噪声传输通道上均安装有加速度计,空气噪声传输通道上均安装有传声器;该司机室内安装有多个次级声源;加速度计、传声器、次级声源均与有源噪声自适应控制器电连接。该方法和司机室多参考传感器信息融合,能够提高参考信号来源的全面性和准确性,有效提高目标降噪区域的降噪量,具有较好的降噪体验和工程实用性。

Description

轨道交通车辆有源降噪方法及司机室 技术领域
本发明涉及轨道交通领域,特别是一种轨道交通车辆有源降噪方法及司机室。
背景技术
随着人们对轨道车辆乘坐舒适性的要求越来越高,司乘人员对车内噪声的要求也越高。由于司机长期需要进行驾驶操作,当司机室噪声较大时,司机容易出现驾驶疲劳甚至听力受损。目前司机室的降噪方法多采用被动隔声和密封降噪,然而这种方法对于低频噪声却无能为力。有源噪声控制技术的出现为司机室的低频降噪提供了可行方法,但由于线路环境复杂多变,难以获取准确的参考信号,从而导致有源降噪控制效果不佳。另外,误差传感器和次级声源的安装使座椅结构复杂,不便于工程化应用。
发明内容
本发明所要解决的技术问题是,针对现有技术不足,提供一种轨道交通车辆有源降噪方法及司机室,获取准确的参考信号,改善有源降噪控制效果。
为解决上述技术问题,本发明所采用的技术方案是:一种轨道交通车辆有源降噪方法,包括以下步骤:
1)获取司机室各噪声传输通道的噪声参考信号,计算所述噪声参考信号的频域信号,利用所述频域信号获取各噪声参考信号的频谱幅值曲线;所述噪声参考信号包括结构噪声参考信号和空气噪声参考信号;
2)在不同列车运行速度等级下,根据所述噪声参考信号及司机耳朵位置附近的空气噪声监测信号的相关性,获取所述噪声参考信号的加权系数;
3)根据列车速度,选择对应速度等级下的噪声参考信号的加权系数,对每个噪声参考信号的频谱幅值曲线进行加权融合计算,得到综合参考信号的频谱幅值曲线;获取司机室每个虚拟误差传声器的噪声误差信号,计算得到所述噪声虚拟误差信号的频域信号,利用所述频域信号获取各噪声虚拟误差信号的频谱幅值曲线;
4)根据综合参考信号的频谱幅值曲线和虚拟误差信号的频谱幅值曲线产生次级声源控制信号,对所述次级声源控制信号进行自适应调节,获得司机室内各扬声器信号幅值的调节量和相位的调节量,根据各扬声器信号幅值的调节量和相位的调节量调节各扬声器信号的幅值和相位。
本发明获取司机室结构噪声参考信号和空气噪声参考信号,参考信号覆盖各频段的 噪声信号,提高了参考信号来源的全面性和准确性;对每个噪声参考信号的频谱幅值曲线进行加权融合计算,可以得到准确的综合参考信号的频谱幅值曲线,并利用次级声源控制信号获取调节量,因此本发明的方法可以准确计算降噪量(即各次级声源信号幅值的调节量和相位的调节量),极大地改善了降噪控制效果。
步骤1)中,所述结构噪声参考信号为加速度计信号;所述空气噪声参考信号为传声器信号;所述加速度计信号由安装于司机室结构噪声传输通道(即结构噪声传递路径)上的参考加速度计获取;所述传声器信号由安装于司机室空气噪声传输通道(即空气噪声传递路径)上的参考传声器获取。多种参考传感器信息融合,提高了参考信号来源的全面性和准确性。
步骤1)中,各噪声参考信号的频谱幅值曲线的获取过程包括:对各噪声参考信号进行快速傅里叶变换,获得频域信号,取三分之一倍频程和A计权,获得频谱幅值曲线。该计算过程极大地提高了计算速度,同时三分之一倍频程可以保证计算精度,A计权保证了参考信号与人耳对声信号敏感的相关性。
步骤2)中,所述司机耳朵位置附近的空气噪声监测信号由安装于司机耳朵位置附近的传声器获取,所述司机耳朵位置由安装在司机前窗位置中部的用于跟踪司机头部位置的位置跟踪传感器获取。位置跟踪传感器可以是摄像头、红外摄像机等。
步骤4)中,利用虚拟误差传声器的声信号对所述次级声源控制信号进行自适应调节;所述虚拟误差传声器的声信号由安装于司机室天花板或侧墙上的多个传声器获取,或者由安装于司机室座椅上的物理误差传声器获取,物理误差传声器直接安装在司机室座椅上,省却了多个传声器,且不需要事先建立传声器与虚拟传声器之间的传递函数,不需要位置跟踪传感器,结构相对简单,便于工程化应用。
步骤4)中,对所述次级声源控制信号进行自适应调节的具体实现过程包括:将所述虚拟误差传声器的声信号和次级声源控制信号作为有源降噪方法的输入,迭代调整计算步长和计算阶数,当有源降噪方法收敛时,则自适应调节结束,输出各扬声器信号幅值的调节量和相位的调节量。该调节过程简单,容易实现,且调节结果精确。
扬声器安装于司机室内声压为68dB(A)以上的区域内,能激励司机室空腔模态响应,有效降低目标区域(司机耳朵区域位置)在典型频率时的噪声幅值。
作为一个发明构思,本发明还提供了一种轨道交通车辆司机室,该司机室的每个结构噪声传输通道上均安装有加速度计,每个空气噪声传输通道上均安装有传声器;该司机室内安装有多个次级声源;所述加速度计、传声器、次级声源均与有源噪声自适应控 制器电连接;所述有源噪声自适应控制器被配置为用于执行上述方法的步骤。本发明的司机室内安装有各种参考传感器,可以准确获取各个频段的噪声信号。
所述多个次级声源分别安装于司机室内天花板上和侧墙上;或者所述多个次级声源安装于司机室内座椅上。所述司机室天花板或侧墙上安装有多个远程误差传声器;或者所述司机室座椅上安装有物理误差传声器。所述司机室前窗位置中部安装有用于跟踪司机头部位置的位置跟踪传感器。
与现有技术相比,本发明所具有的有益效果为:
1、本发明多参考传感器信息融合提高了参考信号来源的全面性和准确性,参考信号的准确性有效提高了目标降噪区域的降噪量,具有较好的降噪体验和工程实用性。
2、虚拟误差传声器技术降低了司机座椅的复杂性,提高了调节可操作性以及司机使用的便利性。
附图说明
图1为本发明一实施例的采用多参考传感器信息融合和移动虚拟误差传声器技术的轨道车辆司机室有源降噪装置示意图;
图2为本发明一实施例的采用多参考传感器信息融合和虚拟误差传声器技术的轨道车辆司机室有源降噪装置示意图;
图3为本发明一实施例的采用多参考传感器信息融合和远场扬声器区域控制技术的轨道车辆司机室有源降噪装置示意图;
图4为本发明一实施例的采用多参考传感器信息融合技术的轨道车辆司机室有源降噪装置示意图。
具体实施方式
本发明中,结构噪声是指由金属振动产生的噪声,频率一般在400hz以下,该部分噪声信号采用加速度计获取。空气噪声是指由空气传声导致的噪声,频率一般在400hz以上,该部分噪声信号采用传声器获取。
如图1所示,本发明实施例1中,鉴于轨道车辆司机室噪声来源的复杂性和全方位性,在司机室外部、司机室外壳壁板、司机室外壳壁板与内装之间、司机室内装壁板以及空调送风风道口安装有参考传加速度计和参考传声器,用于获取参考加速度信号和参考传声器信号,并将各参考信号进行频谱分析和加权信息融合,获得准确的综合参考信号。
参考传感器的安装装置如下:在司机室外壳地板下安装有参考传声器,在司机室外 壳内表面的地板和侧墙位置安装有参考加速度计,在司机室外壳地板和司机室内装地板间安装有传声器,在司机室内装地板、侧墙和顶盖的内表面安装有参考加速度计,在空调风道出风口安装有参考传声器。
各参考信号的频谱分析是指提取各参考信号的频谱幅值特征数据,即对分段或采样周期内的时域加速度参考信号和时域传声器参考信号分别进行快速傅里叶(FFT)变换,获得频域信号,并取三分之一倍频程和A计权(A计权声级是模拟人耳对40方纯音的响度,当信号通过时,其低频、中段频(1000Hz以下)有较大的衰减),获得频谱幅值曲线;频谱幅值曲线就是以三分之一倍频程为横坐标,对应的加速度级幅值曲线或声压级幅值曲线为纵坐标构成的曲线。
加权信息融合,是指事先获得轨道交通车辆在不同列车运行速度等级下,司机室各参考信号与司机耳朵位置传声器信号的相干性系数,即分别对单个参考信号和司机室耳朵位置传声器信号进行FFT变换,获得两个频域信号,对这两个频域信号进行相干/相关性函数分析(如在MATLAB中),获得相干/相关系数,并归一化处理后(对各参考信号的相关系数求和,再用各相关系数作分子除以这个和值)获得各参考信号的加权系数。
在有源噪声控制过程中,提取司机室列车控制系统中的列车速度信号,选择对应速度等级下的各参考信号的加权系数,对各参考信号的频谱幅值曲线进行加权计算,获得综合参考信号的频谱幅值曲线(频谱幅值曲线计算过程参考公开号为CN109405961A的发明专利申请)。
相关系数(Correlation coefficient)是反应变量之间关系密切程度的统计指标,相关系数的取值区间在1到-1之间。1表示两个变量完全线性相关,-1表示两个变量完全负相关,0表示两个变量不相关。数据越趋近于0表示相关关系越弱。
鉴于座椅上安装次级声源喇叭和误差传声器,增加座椅的复杂程度和不便于司机座椅的调节操作,并为了适应司机头部的运动和司机高矮的变化,采用可移动虚拟误差传声器来获取司机耳朵附近(距离司机耳朵0.1m,离地板高度为1.2m的位置)的误差信号。
将远程误差传声器安装在司机室天花板和侧墙上,事先在司机室环境下获取远程传声器与司机座椅人工头在不同位置区域的左右耳传声器的传递函数关系,从而由多个远程传声器的声信号推算出移动虚拟误差传声器的声信号(见:《物理学报》第68卷第5期复杂声学环境中人耳附近空间有源降噪研究综述)。
远程误差传声器的个数根据移动虚拟误差传声器的声信号预测精度和经济性进行确定(当预测精读满足控制最低要求时所用的传声器的数量,如用5个远程传声器预测一个位置的声信号的精读比3个远程传声器的精度高,然而5个的经济成本更高;当用3个远程传声器的预测精读满足最低精读要求时,考虑3个的成本低,使用3个远程传声器即可。
在实际应用中,司机头部位置由安装在司机前窗位置中部的人头位置跟踪传感器(即用于获取司机头部位置的传感器,例如https://baike.so.com/doc/6436712-6650392.html)获取。
位置跟踪传感器也可以是摄像头、红外摄像机等。
有源噪声自适应控制器采用多通道有源前馈系统,根据参考信号产生次级声源控制信号,再根据移动虚拟误差传声器的信号(见:《物理学报》第68卷第5期复杂声学环境中人耳附近空间有源降噪研究综述)对次级声源控制信号进行自适应调节控制(根据外部参考信号的实时变化,以及反馈信号(即误差信号),自适应的改变主动降噪算法(见:《科学技术与工程》第18卷第35期基于多通道系统的封闭空间低频噪声主动控制;或者,《多通道自适应Filter-X LMS算法框图》,王春云等)参数,包括计算步长和阶数等(自适应调节的同时,次级声源也输出信号,直到收敛稳定后,即误差传感器监测的误差信号小于限定值时,不再调节次级声源的输出值而保持当前输出值,直到外界环境发生变化引起误差传声器监测到超出限值的误差信号时,再次启动自适应调节算法进行新一轮的调节),从而优化算法的收敛速度,并获得最优且稳定的次级扬声器输出信号,来削弱司机耳朵附近的原声场信号,达到降低原声场的目的),获得各扬声器信号的输出幅值调节量和相位调节量,通过循环迭代(在外界瞬时稳态条件下的连续几个采用周期的输入输出的迭代计算,使目标区域的虚拟误差传声器的值逐渐变小,当小于目标限值时即说明控制已经收敛),使移动虚拟误差传声器的监测值快速收敛到目标限值(理论上,目标限值为0,但实际中由于干扰和器件的限制,不可能使噪声相消为0,于是设置一个较小的值作为算法控制效果的收敛值,如0.005等)。
多通道是指次级声源的个数为多个。次级声源为扬声器或喇叭。次级声源的个数和布置位置事先通过声场仿真优化计算获取,根据声场模态仿真计算获取典型频率及其声场分布,针对典型频率的声场分布情况,找声压较高(声压范围68dB(A)以上)的区域布置扬声器,可有效降低该区域在该频率时的噪声幅值,并用试验进行验证。实验中,在仿真位置放置扬声器,并辐射出该频率噪声,验证降噪效果,并试验对比研究其他位置 上,辐射该频率噪声时,降噪量是否小于仿真优化找到的该位置的降噪量,从而验证了仿真位置处的降噪效果最佳。
在轨道车辆司机室有源降噪装置中,有源噪声控制器的输入输出采用FPGA系统,计算核心采用DSP处理器。
本发明实施例2如图2所示,虚拟误差传声器采用非移动式,省却了人头位置跟踪传感器。
本发明实施例3如图3所示,远程误差传声器安装在司机室座椅上,可以使用1个误差传声器,减少远程误差传声器的个数,提高虚拟误差传声器信号的计算精度。不需要人头位置跟踪传感器。
本发明实施例4如图4所示,在司机座椅上安装次级声源和误差传声器(次级声源和误差传声器的个数均为2个),提高了虚拟误差传声器信号的计算精度,缩小了次级声源的传递距离,提高了次级声源的频率范围和控制精度。但次级声源安装在座椅上,增加了座椅的复杂程度和座椅头靠的尺寸,座椅需要定制。参考信号的获取方法与实施例1相同。
实践证明,参考信号的准确性有效提高了目标降噪区域的降噪量,具有较好的降噪体验和工程实用性。
本发明实施例5中,轨道交通车辆司机室的每个结构噪声传输通道上均安装有加速度计,每个空气噪声传输通道上均安装有传声器;该司机室内安装有多个次级声源;所述加速度计、传声器、次级声源均与有源噪声自适应控制器电连接。
具体地,在司机室外壳地板下安装有参考传声器,在司机室外壳内表面的地板和侧墙位置安装有参考加速度计,在司机室外壳地板和司机室内装(司机室内壁)地板间安装有传声器,在司机室内装地板、侧墙和顶盖的内表面安装有参考加速度计,在空调风道出风口安装有参考传声器。
如图1、2、3,多个次级声源分别安装于司机室内天花板上和侧墙上,司机室天花板或侧墙上安装有多个远程传声器;如图4,多个次级声源也可以安装于司机室内座椅上,司机室座椅上安装有物理误差传声器。
司机室前窗位置中部安装有用于跟踪司机头部位置的位置跟踪传感器,例如摄像头等。

Claims (10)

  1. 一种轨道交通车辆有源降噪方法,其特征在于,包括以下步骤:
    1)获取司机室各噪声传输通道的噪声参考信号,计算所述噪声参考信号的频域信号,利用所述频域信号获取各噪声参考信号的频谱幅值曲线;所述噪声参考信号包括结构噪声参考信号和空气噪声参考信号;
    2)在不同列车运行速度等级下,根据所述噪声参考信号及司机耳朵位置附近的空气噪声监测信号的相关性,获取所述噪声参考信号的加权系数;
    3)根据列车速度,选择对应速度等级下的噪声参考信号的加权系数,对每个噪声参考信号的频谱幅值曲线进行加权融合计算,得到综合参考信号的频谱幅值曲线;获取司机室每个虚拟误差传声器的噪声虚拟误差信号,计算得到所述噪声虚拟误差信号的频域信号,利用所述频域信号获取各噪声虚拟误差信号的频谱幅值曲线;
    4)根据综合参考信号的频谱幅值曲线和虚拟误差信号的频谱幅值曲线产生次级声源控制信号,对所述次级声源控制信号进行自适应调节,获得司机室内各扬声器信号幅值的调节量和相位的调节量,根据各扬声器信号幅值的调节量和相位的调节量调节各扬声器信号的幅值和相位。
  2. 根据权利要求1所述的轨道交通车辆有源降噪方法,其特征在于,步骤1)中,所述结构噪声参考信号为加速度计信号;所述空气噪声参考信号为传声器信号;所述加速度计信号由安装于司机室结构噪声传输通道上的参考加速度计获取;所述传声器信号由安装于司机室空气噪声传输通道上的参考传声器获取。
  3. 根据权利要求1所述的轨道交通车辆有源降噪方法,其特征在于,步骤1)中,各噪声参考信号的频谱幅值曲线的获取过程包括:对各噪声参考信号进行快速傅里叶变换,获得频域信号,取三分之一倍频程和A计权,获得频谱幅值曲线。
  4. 根据权利要求1所述的轨道交通车辆有源降噪方法,其特征在于,步骤2)中,所述司机耳朵位置附近的空气噪声监测信号由安装于司机耳朵位置附近的传声器获取,所述司机耳朵位置由安装在司机前窗位置中部的位置跟踪传感器获取。
  5. 根据权利要求1所述的轨道交通车辆有源降噪方法,其特征在于,步骤4)中,利用虚拟误差传声器的声信号对所述次级声源控制信号进行自适应调节;所述虚拟误差传声器的声信号由安装于司机室天花板或侧墙上的多个远程误差传 声器获取,或者由安装于司机室座椅上的误差传声器获取。
  6. 根据权利要求4所述的轨道交通车辆有源降噪方法,其特征在于,对所述次级声源控制信号进行自适应调节的具体实现过程包括:将所述虚拟误差传声器的声信号和次级声源控制信号作为有源降噪方法的输入,并调整计算步长和计算阶数,当虚拟误差信号小于设定限值时,自适应调节结束,各扬声器信号幅值的调节量和相位的调节量的输出不再变化;当外界环境变化引起虚拟误差信号超过设定限值时再次启动有源降噪方法,改变各扬声器的输出信号。
  7. 根据权利要求1~6之一所述的轨道交通车辆有源降噪方法,其特征在于,所述扬声器安装于司机室内声压为68dB(A)以上的区域内。
  8. 一种轨道交通车辆司机室,其特征在于,该司机室的每个结构噪声传输通道上均安装有参考加速度计,每个空气噪声传输通道上均安装有参考传声器;该司机室内安装有多个次级声源;所述司机室天花板或侧墙上安装有多个远程误差传声器;所述参考加速度计、参考传声器、次级声源、远程误差传声器均与有源噪声自适应控制器电连接;所述有源噪声自适应控制器被配置为用于执行权利要求1~7之一所述方法的步骤。
  9. 根据权利要求8所述的轨道交通车辆司机室,其特征在于,所述多个次级声源分别安装于司机室内天花板上和侧墙上;或者所述多个次级声源安装于司机室内座椅上;优选地,所述司机室座椅上安装有至少一个远程误差传声器。
  10. 根据权利要求8或9所述的轨道交通车辆司机室,其特征在于,所述司机室前窗位置中部安装有用于跟踪司机头部位置的位置跟踪传感器;优选地,所述司机室声压为68dB(A)以上的区域内安装有多个扬声器。
PCT/CN2021/105377 2020-08-21 2021-07-09 轨道交通车辆有源降噪方法及司机室 WO2022037308A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21857403.6A EP4202918A4 (en) 2020-08-21 2021-07-09 ACTIVE NOISE CANCELLATION METHOD FOR A RAIL TRANSPORT VEHICLE AND CABIN

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010851986.9 2020-08-21
CN202010851986.9A CN112017626B (zh) 2020-08-21 2020-08-21 轨道交通车辆有源降噪方法及司机室

Publications (1)

Publication Number Publication Date
WO2022037308A1 true WO2022037308A1 (zh) 2022-02-24

Family

ID=73505470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105377 WO2022037308A1 (zh) 2020-08-21 2021-07-09 轨道交通车辆有源降噪方法及司机室

Country Status (3)

Country Link
EP (1) EP4202918A4 (zh)
CN (1) CN112017626B (zh)
WO (1) WO2022037308A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112017626B (zh) * 2020-08-21 2024-02-06 中车株洲电力机车有限公司 轨道交通车辆有源降噪方法及司机室
CN112652289A (zh) * 2020-12-11 2021-04-13 西安艾科特声学科技有限公司 一种消防车驾驶室局部空间有源噪声控制系统及方法
WO2022141562A1 (zh) * 2020-12-31 2022-07-07 华为技术有限公司 一种汽车空调噪声控制系统、方法及相关车载设备
CN117520788B (zh) * 2024-01-05 2024-03-22 成都亚度克升科技有限公司 基于人工智能和大数据分析的音箱参数确定方法和系统

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103175699A (zh) * 2011-12-23 2013-06-26 南车青岛四方机车车辆股份有限公司 轨道车辆噪声传播途径测试方法
US20160042731A1 (en) * 2014-08-11 2016-02-11 Hyundai Motor Company System and method for controlling vehicle noise
CN107195294A (zh) * 2017-04-07 2017-09-22 吉利汽车研究院(宁波)有限公司 一种用于车辆的主动降噪方法及装置
CN107218846A (zh) * 2017-06-30 2017-09-29 邢优胜 一种坦克驾驶室内噪声主动控制方法及系统
CN107230473A (zh) * 2017-06-30 2017-10-03 邢优胜 一种潜艇舱室内噪声主动控制方法及系统
CN107274878A (zh) * 2017-06-28 2017-10-20 邢优胜 一种有轨列车司机室内的噪声主动控制系统
CN107424596A (zh) * 2017-06-28 2017-12-01 邢优胜 一种汽车舱内噪声主动控制方法和系统
CN108597489A (zh) * 2018-04-21 2018-09-28 中车青岛四方机车车辆股份有限公司 一种高速列车车内噪声主动控制系统
CN108806664A (zh) * 2018-05-03 2018-11-13 清华大学苏州汽车研究院(相城) 一种汽车车内噪声控制方法
CN109405961A (zh) 2018-10-19 2019-03-01 中车株洲电力机车有限公司 一种轨道车辆地板结构声的计算方法、装置及系统
US10741162B1 (en) * 2019-07-02 2020-08-11 Harman International Industries, Incorporated Stored secondary path accuracy verification for vehicle-based active noise control systems
CN112017626A (zh) * 2020-08-21 2020-12-01 中车株洲电力机车有限公司 轨道交通车辆有源降噪方法及司机室

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2921232B2 (ja) * 1991-12-27 1999-07-19 日産自動車株式会社 能動型不快波制御装置
JP2882170B2 (ja) * 1992-03-19 1999-04-12 日産自動車株式会社 能動型騒音制御装置
FR2692709B1 (fr) * 1992-06-18 1994-09-16 Renault Dispositif de contrôle actif du bruit dans l'habitacle d'un véhicule automobile.
US5917919A (en) * 1995-12-04 1999-06-29 Rosenthal; Felix Method and apparatus for multi-channel active control of noise or vibration or of multi-channel separation of a signal from a noisy environment
JP5439118B2 (ja) * 2008-11-14 2014-03-12 パナソニック株式会社 騒音制御装置
US8600069B2 (en) * 2010-03-26 2013-12-03 Ford Global Technologies, Llc Multi-channel active noise control system with channel equalization
CN106328117A (zh) * 2015-06-30 2017-01-11 芋头科技(杭州)有限公司 一种有源噪声控制系统
CN108944749B (zh) * 2017-05-19 2022-03-18 比亚迪股份有限公司 车辆降噪装置及方法
CN107791970B (zh) * 2017-10-17 2019-06-04 长春工业大学 基于启发式动态规划的汽车主动降噪方法
JP2019082628A (ja) * 2017-10-31 2019-05-30 パナソニックIpマネジメント株式会社 能動騒音低減装置、車両、及び、異常判定方法
US10339912B1 (en) * 2018-03-08 2019-07-02 Harman International Industries, Incorporated Active noise cancellation system utilizing a diagonalization filter matrix
CN108956172A (zh) * 2018-05-23 2018-12-07 常州路航轨道交通科技有限公司 高速列车驾驶舱局域主动降噪试验系统及方法
CN209351388U (zh) * 2018-12-27 2019-09-06 西南交通大学 一种基于等离子体流动控制的高速列车降噪系统

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103175699A (zh) * 2011-12-23 2013-06-26 南车青岛四方机车车辆股份有限公司 轨道车辆噪声传播途径测试方法
US20160042731A1 (en) * 2014-08-11 2016-02-11 Hyundai Motor Company System and method for controlling vehicle noise
CN107195294A (zh) * 2017-04-07 2017-09-22 吉利汽车研究院(宁波)有限公司 一种用于车辆的主动降噪方法及装置
CN107274878A (zh) * 2017-06-28 2017-10-20 邢优胜 一种有轨列车司机室内的噪声主动控制系统
CN107424596A (zh) * 2017-06-28 2017-12-01 邢优胜 一种汽车舱内噪声主动控制方法和系统
CN107218846A (zh) * 2017-06-30 2017-09-29 邢优胜 一种坦克驾驶室内噪声主动控制方法及系统
CN107230473A (zh) * 2017-06-30 2017-10-03 邢优胜 一种潜艇舱室内噪声主动控制方法及系统
CN108597489A (zh) * 2018-04-21 2018-09-28 中车青岛四方机车车辆股份有限公司 一种高速列车车内噪声主动控制系统
CN108806664A (zh) * 2018-05-03 2018-11-13 清华大学苏州汽车研究院(相城) 一种汽车车内噪声控制方法
CN109405961A (zh) 2018-10-19 2019-03-01 中车株洲电力机车有限公司 一种轨道车辆地板结构声的计算方法、装置及系统
US10741162B1 (en) * 2019-07-02 2020-08-11 Harman International Industries, Incorporated Stored secondary path accuracy verification for vehicle-based active noise control systems
CN112017626A (zh) * 2020-08-21 2020-12-01 中车株洲电力机车有限公司 轨道交通车辆有源降噪方法及司机室

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"A review of research on active noise control near human ear in complex sound field", ACTA PHYSICA SINICA, vol. 68, no. 5
"Low Frequency Noise Reduction in Closed Spaces Based on Multi-channel Active Noise Control System", SCIENCE TECHNOLOGY AND ENGINEERING, vol. 18, no. 35
See also references of EP4202918A4
WANG CHUNYUN, MULTI-CHANNEL ADAPTIVE FILTER-X LMS ALGORITHM BLOCK DIAGRAM

Also Published As

Publication number Publication date
EP4202918A1 (en) 2023-06-28
CN112017626B (zh) 2024-02-06
EP4202918A4 (en) 2024-02-14
CN112017626A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
WO2022037308A1 (zh) 轨道交通车辆有源降噪方法及司机室
Lam et al. Ten questions concerning active noise control in the built environment
CN107195294B (zh) 一种用于车辆的主动降噪方法及装置
Cheer et al. Active noise control of a diesel generator in a luxury yacht
US8340318B2 (en) Methods and systems for measuring performance of a noise cancellation system
US8068616B2 (en) Methods and systems for controlling noise cancellation
Wang et al. An improved LMS algorithm for active sound-quality control of vehicle interior noise based on auditory masking effect
CN101231846A (zh) 利用声波干涉方式的主动噪声控制系统及噪声控制方法
EP3646317B1 (en) Active noise control microphone array
US20140226831A1 (en) Active noise control system and method
US20140233748A1 (en) Forward Speaker Noise Cancellation In a Vehicle
Guo et al. Active interior noise control for rail vehicle using a variable step-size median-LMS algorithm
CN109346052B (zh) 一种利用主动降噪优化车内声品质的装置及方法
EP2695159B1 (en) Active buffeting control in an automobile
KR20200077397A (ko) 도로 소음 상쇄 시스템에서의 센서 소음층의 가청도 감소
Landaluze et al. Application of active noise control to an elevator cabin
Wang et al. An experimental study on the upper limit frequency of global active noise control in car cabins
Chen et al. A low-complexity multi-channel active noise control system using local secondary path estimation and clustered control strategy for vehicle interior engine noise
JP2009159385A (ja) 音場制御装置及び音場制御方法
JP5040163B2 (ja) 騒音低減装置及び方法
US20220059069A1 (en) High-frequency broadband airborne noise active noise cancellation
CN117311406A (zh) 一种基于反馈fxlms算法的振动主动控制方法、测试方法、装置、车辆、设备及介质
EP4148725A1 (en) Adaptive active noise cancellation based on head movement
CN110276117B (zh) 一种非规则封闭空间噪声模型及其构建方法和应用
Belicchi et al. ANC: A low-cost implementation perspective

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021857403

Country of ref document: EP

Effective date: 20230321