CN107230473A - 一种潜艇舱室内噪声主动控制方法及系统 - Google Patents

一种潜艇舱室内噪声主动控制方法及系统 Download PDF

Info

Publication number
CN107230473A
CN107230473A CN201710523858.XA CN201710523858A CN107230473A CN 107230473 A CN107230473 A CN 107230473A CN 201710523858 A CN201710523858 A CN 201710523858A CN 107230473 A CN107230473 A CN 107230473A
Authority
CN
China
Prior art keywords
noise
signal
error
acoustic
noise source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201710523858.XA
Other languages
English (en)
Inventor
邢优胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201710523858.XA priority Critical patent/CN107230473A/zh
Publication of CN107230473A publication Critical patent/CN107230473A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/127Underwater acoustics, e.g. for submarine
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3038Neural networks

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

本发明公开了一种潜艇舱室内噪声主动控制方法及系统,方法包括参考传声器采集多个主噪声源噪声,作为参考信号输入;误差传声器采集噪声控制后的残余噪声,作为误差信号输入;模糊控制器接收参考输入信号、误差输入信号基于模糊神经网络的自适应FX‑RBF网训练算法对参考信号和误差信号进行分析,并输出反相的目标声信号y[n]至扬声器与主噪声源噪声x[n]相叠加。本发明基于模糊神经网络的主动噪声控制,对2000Hz以下的噪声具有明显的降噪效果,其中,对1000Hz以下低频噪声的降噪效果尤为显著。

Description

一种潜艇舱室内噪声主动控制方法及系统
技术领域
本发明涉及船舶舰艇领域噪声控制技术,特别涉及一种潜艇舱室内噪声主动控制方法及系统。
背景技术
舰艇进行水下工作时,由机械设备振动产生的舱室空气噪声会激起辐射噪声,对舱室内的环境造成一定的影响,比如空气噪声太大则会干扰船员间的语言交流,影响到作战命令的传达;空气噪声也会透过舰船外壳向水中辐射,从而使得水噪声有所增大,不但干扰了自己声呐的探测,也由于辐射噪声的增大使得自身更容易被敌方声呐探测到,因此舱室空气噪声有时也会危及舰船的作战安全;此外,长期暴露在舱室的空气噪声中,不但会影响人们的工作注意力、语言交流、睡眠及休息外,还可能对人的听力造成损伤。
舰艇舱室内的噪声源主要包括动力装置噪声、辅机噪声、通风空调系统噪声、螺旋桨噪声、舰艇结构噪声等,多集中在中低频范围内。传统的噪声控制方案多通过结构设计和应用吸声材料进行物理降噪,这种被动噪声控制针对1kHz以上的高频段噪声具有一定的降噪能力,对于中低频噪音则效果较差。在舰艇舱室内增加主动式噪声控制方式,则能够有效控制低频噪声,可以获得很好地宽频降噪效果。
针对上述问题,现急需推出一款潜艇舱室内噪声主动控制方法及系统,实现在较大频带宽度内的噪声控制。
发明内容
鉴于上述现有技术存在的问题,本发明提供一种潜艇舱室内噪声主动控制方法及系统。
本发明解决技术问题采用如下技术方案:一种潜艇舱室内噪声主动控制方法,包括:参考传声器采集多个主噪声源噪声x[n],作为参考信号输入;误差传声器采集噪声控制后的残余噪声e[n],作为误差信号输入;模糊控制器接收参考输入信号x[n]、误差输入信号e[n],基于模糊神经网络的自适应FX-RBF网训练算法对参考信号和误差信号进行分析,并输出反相的目标声信号y[n]至扬声器;以及扬声器发出用于抵消主噪声源噪声的目标声信号y[n],与主噪声源噪声x[n]相叠加。
可选的,所述模糊控制器包括声学模式提取器,利用所述声学模式提取器针对需要控制的所述主噪声源的振幅、能量、相位、频率、方向和统计特性的声学属性,从一系列不相关的参考声学模式中提取至少一种参考声学模式。
可选的,所述模糊控制器基于以上多个不相关参考声学模式进行模糊控制,并输出噪声控制模式。
可选的,所述噪声控制模式包括但不限于噪声源数量、所述主噪声源的位置、所述主噪声源的类型、所述主噪声源的声学属性。
可选的,所述自适应FX-RBF网训练算法包括:基于模糊c-均值聚类对参考噪声信号数据集进行划分;基于近似梯度下降法自适应减少每次迭代的计算步长,并动态调整最小均方差算法的学习速率。
可选的,所述自适应FX-RBF网训练算法还包括:对时滞信号的幅值和相位进行分析,重构反相目标声信号后输出至扬声器。
可选的,所述基于模糊c-均值聚类对参考噪声信号数据集进行划分的步骤包括:使用高斯函数作为算法的基函数,在确定适合实际噪声情况的最佳聚类个数c和最佳权重因子m后,对隐含层的中心向量进行学习,直到中心向量不再变化或小于预设阈值,并计算高斯函数方差;所述基于近似梯度下降法自适应减少每次迭代的计算步长,并动态调整最小均方差算法的学习速率的步骤包括:基于近似梯度下降法,利用公式α(t+1)=α(t)-β·ΔE自适应减少每次迭代的计算步长,并动态调整最小均方差算法的学习速率;然后初始化隐含层到输出层的每个权值,再利用公式对权值进行计算,直到输出误差[y0(n)-y(n)]不再变化或小于预设的某个阈值时,停止学习,否则继续重复以上学习步骤;式中α为学习速率,ΔE为训练前后的误差,β为自适应调整步长,w为隐含层到输出层的权值,y0(n)为目标输出值,y(n)为实际输出值。
可选的,所述参考传声器位于驾驶舱室顶部;所述误差传声器位于驾驶舱座椅靠近人耳处;所述扬声器位于驾驶舱室顶部和座椅顶部;所述模糊控制器位于驾驶员座椅下方。
本发明解决技术问题采用如下技术方案:一种潜艇舱室内噪声主动控制系统,包括:参考传声器,与模糊控制器耦接,用于采集多个主噪声源噪声x[n],作为参考信号输入;误差传声器,与模糊控制器耦接,用于采集噪声控制后的残余噪声e[n],作为误差信号输入;模糊控制器,与所述参考传声器、误差传声器及扬声器耦接,用于接收参考输入信号x[n]、误差输入信号e[n],基于模糊神经网络的自适应FX-RBF网训练算法对参考信号和误差信号进行分析,并输出反相的目标声信号y[n]至扬声器;以及扬声器,与所述模糊控制器耦接,用于发出用于抵消主噪声源噪声的目标声信号y[n],与主噪声源噪声x[n]相叠加。
可选的,所述模糊控制器包括声学模式提取器,利用所述声学模式提取器针对需要控制的所述主噪声源的振幅、能量、相位、频率、方向和统计特性的声学属性,从一系列不相关的参考声学模式中提取至少一种参考声学模式;所述模糊控制器基于以上多个不相关参考声学模式进行模糊控制,并输出噪声控制模式;所述噪声控制模式包括但不限于噪声源数量、所述主噪声源的位置、所述主噪声源的类型、所述主噪声源的声学属性;所述参考传声器位于驾驶舱室顶部;所述误差传声器位于驾驶舱座椅靠近人耳处;所述扬声器位于驾驶舱室顶部和座椅顶部;所述模糊控制器位于驾驶员座椅下方。
本发明具有如下有益效果:
1.采用参考声学模式提取器将提取函数应用于多类型声源的多个参考信号输入中,通过自适应调整算法进行提取函数的优化,可有效确保所提取声学模式的准确度;
2.基于模糊神经网络的主动噪声控制系统,对2000Hz以下的噪声具有明显的降噪效果,其中,对1000Hz以下低频噪声的降噪效果尤为显著;
3.基于自适应FX-RBF网训练算法进行学习率的自动调节,在确保系统稳定性的同时,提高了算法收敛速度和学习精度;
4.基于自适应FX-RBF算法进行反向目标声信号的重构,在解决抗噪声源时滞问题的同时,有效提高了降噪效果。
附图说明
图1为本发明的所述一种潜艇舱室内噪声主动控制方法的实施例示意图;
图2为本发明的所述一种潜艇舱室内示意图;
图3为本发明实施例提供的声学模式提取器的工作原理图;
图4为本发明实施例提供的模糊控制器模型图;
图5所示为本申请潜艇舱室内噪声主动控制系统的具体示意图。
具体实施方式
下面结合实施例及附图对本发明的技术方案作进一步阐述。
如在说明书及权利要求当中使用了某些词汇来指称特定组件。本领域技术人员应可理解,硬件制造商可能会用不同名词来称呼同一个组件。本说明书及权利要求并不以名称的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的准则。如在通篇说明书及权利要求当中所提及的“包含”为一开放式用语,故应解释成“包含但不限定于”。“大致”是指在可接收的误差范围内,本领域技术人员能够在一定误差范围内解决所述技术问题,基本达到所述技术效果。此外,“耦接”一词在此包含任何直接及间接的电性耦接手段。因此,若文中描述一第一装置耦接于一第二装置,则代表所述第一装置可直接电性耦接于所述第二装置,或通过其他装置或耦接手段间接地电性耦接至所述第二装置。说明书后续描述为实施本申请的较佳实施方式,然所述描述乃以说明本申请的一般原则为目的,并非用以限定本申请的范围。本申请的保护范围当视所附权利要求所界定者为准。
实施例1
本实施例提供了一种潜艇舱室内噪声主动控制方法。参见图1所示为本申请中潜艇舱室内噪声主动控制方法的具体实施例,本实施例中步骤包括:
步骤S1-1:参考传声器采集多个主噪声源噪声x[n],作为参考信号输入;
步骤S1-2:误差传声器采集噪声控制后的残余噪声e[n],作为误差信号输入;
步骤S2:模糊控制器接收参考输入信号x[n]=x[n]、误差输入信号e[n],基于模糊神经网络的自适应滤波RBF(Filter-x Radial Basis Function,以下简称FX-RBF)网训练算法对参考信号和误差信号进行分析,并输出反相的目标声信号y[n]至扬声器;以及
步骤S3:扬声器发出用于抵消主噪声源噪声的目标声信号y[n],与主噪声源噪声x[n]相叠加。
其中,参考传声器位于驾驶舱室顶部;误差传声器位于驾驶舱座椅靠近人耳处;扬声器位于驾驶舱室顶部和座椅顶部;模糊控制器位于驾驶员座椅下方,如图2所示。
其中,模糊控制器包括声学模式提取器,如图3所示,图3为本发明实施例提供的声学模式提取器的工作原理图。
利用声学模式提取器针对需要控制的主噪声源的振幅、能量、相位、频率、方向和统计特性的声学属性,从一系列不相关的参考声学模式中提取至少一种参考声学模式。模糊控制器基于以上多个不相关参考声学模式进行模糊控制,并输出噪声控制模式,噪声控制模式包括但不限于噪声源数量、主噪声源的位置、主噪声源的类型、主噪声源的声学属性。
在模糊控制器中设置参考声学模式提取器,利用参考声学模式提取器将提取函数应用于所述的多个参考信号输入x[n],然后对经过提取算法处理后输出参考声学模式s[n];然后利用参考声学模式提取器将估计函数α应用至输出参考模式s[n],经过对比估计α(s[n])后进行提取函数的自适应调整。
图4为本发明实施例提供的模糊控制器模型图。本发明提供的潜艇舱室内噪声主动控制方法主要包括:基于声系统固有的非线性特性,将神经网络引入模糊控制,组成模糊神经网络,根据输入输出样本,通过利用神经网络的学习方法,自动设计和调整模糊系统的自学习和自适应功能,提高了主动噪声控制的准确度及降噪量;其中x(n)为系统参考噪声信号,e(n)为残余噪声信号,y(n)为控制器输出信号。
如图所示,神经网络中处理单元的类型分为三类:输入层、输出层、隐含层;
输入层:接受外部的噪声源信号与数据;本发明中的输入层信号为“加入延迟环节的参考信号输入矢量”;
输出层:实现系统处理结果的输出;在本发明中,是“将最优噪声控制模式输出至扬声器,驱动其发出对应的目标声信号”;
隐含层:对输入矢量进行变换,处于输入与输出层之间,不被系统外部观察的处理单元;在本发明中,是“将低维的参考信号输入矢量变换至高维空间,实现声系统的线性问题在高维空间中的线性可分”。
自适应FX-RBF网训练算法包括:基于模糊c-均值聚类对参考噪声信号数据集进行划分;基于近似梯度下降法自适应减少每次迭代的计算步长,并动态调整最小均方差算法的学习速率。
上述基于模糊c-均值聚类对参考噪声信号数据集进行划分的步骤包括:
使用高斯函数作为算法的基函数,在确定适合实际噪声情况的最佳聚类个数c和最佳权重因子m后,对隐含层的中心向量进行学习,直到中心向量不再变化或小于预设阈值,并计算高斯函数方差。
上述基于近似梯度下降法自适应减少每次迭代的计算步长,并动态调整最小均方差算法的学习速率的步骤包括:
基于近似梯度下降法,利用公式α(t+1)=α(t)-β·ΔE自适应减少每次迭代的计算步长,并动态调整最小均方差算法的学习速率,更高效的加快了算法的收敛速度;
然后初始化隐含层到输出层的每个权值,再利用公式对权值进行计算,直到输出误差[y0(n)-y(n)]不再变化或小于预设的某个阈值时,停止学习,否则继续重复以上学习步骤;通过学习过程中动态的自适应调整学习速度来提高算法的收敛速度,从而提高学习精度。
式中α为学习速率,ΔE为训练前后的误差,β为自适应调整步长,w为隐含层到输出层的权值,y0(n)为目标输出值,y(n)为实际输出值。
其中,所述自适应FX-RBF网训练算法还包括:对时滞信号的幅值和相位进行分析,重构反相目标声信号后输出至扬声器,所述时滞信号指的是参考信号x(t)在传播至待消声点的路径中,由于时间延迟而产生的信号y(t);时滞信号与参考信号的关系:y(t)=x(t)-x(t-t0),其中,x(t)为参考信号,y(t)为时滞信号,t0为迟滞时间。
实施例2
为了使本发明描述更明确和详细,同时便于技术人员理解,本实施例提供一种潜艇舱室内噪声主动控制系统,参见图5所示为本申请潜艇舱室内噪声主动控制系统的具体示意图。
一种潜艇舱室内噪声主动控制系统,包括:
参考传声器,与模糊控制器耦接,用于采集多个主噪声源噪声x[n],作为参考信号输入;
误差传声器,与模糊控制器耦接,用于采集噪声控制后的残余噪声e[n],作为误差信号输入;
模糊控制器,与参考传声器、转速传感器、误差传声器及扬声器耦接,用于接收参考输入信号x[n]=x[n]、误差输入信号e[n],基于模糊神经网络的自适应FX-RBF网训练算法对参考信号和误差信号进行分析,并输出反相的目标声信号y[n]至扬声器;以及
扬声器,与模糊控制器耦接,用于发出用于抵消主噪声源噪声的目标声信号y[n],与主噪声源噪声x[n]相叠加。
其中,上述参考传声器和误差传声器均为麦克风。
模糊控制器包括声学模式提取器,利用声学模式提取器针对需要控制的主噪声源的振幅、能量、相位、频率、方向和统计特性的声学属性,从一系列不相关的参考声学模式中提取至少一种参考声学模式。
模糊控制器基于以上多个不相关参考声学模式进行模糊控制,并输出噪声控制模式。噪声控制模式包括但不限于噪声源数量、主噪声源的位置、主噪声源的类型、主噪声源的声学属性。
其中,参考传声器位于驾驶舱室顶部;误差传声器位于驾驶舱座椅靠近人耳处;扬声器位于驾驶舱室顶部和座椅顶部;模糊控制器位于驾驶员座椅下方。
综上所述,本发明提供的一种潜艇舱室内噪声主动控制方法及系统,与现有技术相比,具有以下有益效果:
1.基于模糊神经网络的主动噪声控制系统,对2000Hz以下的噪声具有明显的降噪效果,其中,对1000Hz以下低频噪声的降噪效果尤为显著;本发明所提供的潜艇舱室内噪声主动控制系统,能够实现潜艇舱室内高中低频噪声的主动控制;
2.采用参考声学模式提取器将提取函数应用于多类型声源的多个参考信号输入中,通过自适应调整算法进行提取函数的优化,可有效确保所提取声学模式的准确度;
3.基于自适应FX-RBF网训练算法进行学习率的自动调节,在确保系统稳定性的同时,提高了算法收敛速度和学习精度;
4.基于自适应FX-RBF算法对时滞噪声进行直接控制,有效解决了抗噪声源时滞问题,并提高了降噪效果。
以上实施例的先后顺序仅为便于描述,不代表实施例的优劣。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种潜艇舱室内噪声主动控制方法,其特征在于,包括:
参考传声器采集多个主噪声源噪声x[n],作为参考信号输入;
误差传声器采集噪声控制后的残余噪声e[n],作为误差信号输入;
模糊控制器接收参考输入信号x[n]、误差输入信号e[n],基于模糊神经网络的自适应FX-RBF网训练算法对参考信号和误差信号进行分析,并输出反相的目标声信号y[n]至扬声器;以及
扬声器发出用于抵消主噪声源噪声的目标声信号y[n],与主噪声源噪声x[n]相叠加。
2.根据权利要求1所述的潜艇舱室内噪声主动控制方法,其特征在于,所述模糊控制器包括声学模式提取器,利用所述声学模式提取器针对需要控制的所述主噪声源的振幅、能量、相位、频率、方向和统计特性的声学属性,从一系列不相关的参考声学模式中提取至少一种参考声学模式。
3.根据权利要求2所述的潜艇舱室内噪声主动控制方法,其特征在于,所述模糊控制器基于以上多个不相关参考声学模式进行模糊控制,并输出噪声控制模式。
4.根据权利要求3所述的潜艇舱室内噪声主动控制方法,其特征在于,所述噪声控制模式包括但不限于噪声源数量、所述主噪声源的位置、所述主噪声源的类型、所述主噪声源的声学属性。
5.根据权利要求1所述的潜艇舱室内噪声主动控制方法,其特征在于,所述自适应FX-RBF网训练算法包括:基于模糊c-均值聚类对参考噪声信号数据集进行划分;基于近似梯度下降法自适应减少每次迭代的计算步长,并动态调整最小均方差算法的学习速率。
6.根据权利要求1所述的潜艇舱室内噪声主动控制方法,其特征在于,所述自适应FX-RBF网训练算法还包括:对时滞信号的幅值和相位进行分析,重构反相目标声信号后输出至扬声器。
7.根据权利要求5所述的潜艇舱室内噪声主动控制方法,其特征在于,所述基于模糊c-均值聚类对参考噪声信号数据集进行划分的步骤包括:
使用高斯函数作为算法的基函数,在确定适合实际噪声情况的最佳聚类个数c和最佳权重因子m后,对隐含层的中心向量进行学习,直到中心向量不再变化或小于预设阈值,并计算高斯函数方差;
所述基于近似梯度下降法自适应减少每次迭代的计算步长,并动态调整最小均方差算法的学习速率的步骤包括:
基于近似梯度下降法,利用公式α(t+1)=α(t)-β·ΔE自适应减少每次迭代的计算步长,并动态调整最小均方差算法的学习速率;
然后初始化隐含层到输出层的每个权值,再利用公式对权值进行计算,直到输出误差[y0(n)-y(n)]不再变化或小于预设的某个阈值时,停止学习,否则继续重复以上学习步骤;
式中α为学习速率,ΔE为训练前后的误差,β为自适应调整步长,w为隐含层到输出层的权值,y0(n)为目标输出值,y(n)为实际输出值。
8.根据权利要求1-7任一项所述的潜艇舱室内噪声主动控制方法,其特征在于,所述参考传声器位于驾驶舱室顶部;所述误差传声器位于驾驶舱座椅靠近人耳处;所述扬声器位于驾驶舱室顶部和座椅顶部;所述模糊控制器位于驾驶员座椅下方。
9.一种潜艇舱室内噪声主动控制系统,其特征在于,包括:
参考传声器,与模糊控制器耦接,用于采集多个主噪声源噪声x[n],作为参考信号输入;
误差传声器,与模糊控制器耦接,用于采集噪声控制后的残余噪声e[n],作为误差信号输入;
模糊控制器,与所述参考传声器、误差传声器及扬声器耦接,用于接收参考输入信号x[n]、误差输入信号e[n],基于模糊神经网络的自适应FX-RBF网训练算法对参考信号和误差信号进行分析,并输出反相的目标声信号y[n]至扬声器;以及
扬声器,与所述模糊控制器耦接,用于发出用于抵消主噪声源噪声的目标声信号y[n],与主噪声源噪声x[n]相叠加。
10.根据权利要求9所述的潜艇舱室内噪声主动控制系统,其特征在于,所述模糊控制器包括声学模式提取器,利用所述声学模式提取器针对需要控制的所述主噪声源的振幅、能量、相位、频率、方向和统计特性的声学属性,从一系列不相关的参考声学模式中提取至少一种参考声学模式;所述模糊控制器基于以上多个不相关参考声学模式进行模糊控制,并输出噪声控制模式;所述噪声控制模式包括但不限于噪声源数量、所述主噪声源的位置、所述主噪声源的类型、所述主噪声源的声学属性;所述参考传声器位于驾驶舱室顶部;所述误差传声器位于驾驶舱座椅靠近人耳处;所述扬声器位于驾驶舱室顶部和座椅顶部;所述模糊控制器位于驾驶员座椅下方。
CN201710523858.XA 2017-06-30 2017-06-30 一种潜艇舱室内噪声主动控制方法及系统 Withdrawn CN107230473A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710523858.XA CN107230473A (zh) 2017-06-30 2017-06-30 一种潜艇舱室内噪声主动控制方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710523858.XA CN107230473A (zh) 2017-06-30 2017-06-30 一种潜艇舱室内噪声主动控制方法及系统

Publications (1)

Publication Number Publication Date
CN107230473A true CN107230473A (zh) 2017-10-03

Family

ID=59936211

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710523858.XA Withdrawn CN107230473A (zh) 2017-06-30 2017-06-30 一种潜艇舱室内噪声主动控制方法及系统

Country Status (1)

Country Link
CN (1) CN107230473A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109625156A (zh) * 2018-10-29 2019-04-16 中船动力研究院有限公司 船舶全频段舱室噪声预报及声学优化设计方法
CN109714689A (zh) * 2018-12-21 2019-05-03 南京理工大学 一种基于差分麦克风线阵的方向性声学指数获取方法
CN110376984A (zh) * 2019-07-15 2019-10-25 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) 自适应振动噪声控制管理系统
CN113488015A (zh) * 2021-06-23 2021-10-08 武汉理工大学 挖掘机驾驶室结构声和空气声混合主动控制系统及控制方法
CN113539229A (zh) * 2021-07-30 2021-10-22 北京安声浩朗科技有限公司 降噪参数确定方法及其装置、主动降噪方法及其装置
CN113539228A (zh) * 2021-07-30 2021-10-22 北京安声浩朗科技有限公司 降噪参数确定方法及其装置、主动降噪方法及其装置
WO2022037308A1 (zh) * 2020-08-21 2022-02-24 中车株洲电力机车有限公司 轨道交通车辆有源降噪方法及司机室
CN114162261A (zh) * 2021-11-16 2022-03-11 舟山中远海运重工有限公司 一种船舶噪声控制方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109625156A (zh) * 2018-10-29 2019-04-16 中船动力研究院有限公司 船舶全频段舱室噪声预报及声学优化设计方法
CN109714689A (zh) * 2018-12-21 2019-05-03 南京理工大学 一种基于差分麦克风线阵的方向性声学指数获取方法
CN110376984A (zh) * 2019-07-15 2019-10-25 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) 自适应振动噪声控制管理系统
WO2022037308A1 (zh) * 2020-08-21 2022-02-24 中车株洲电力机车有限公司 轨道交通车辆有源降噪方法及司机室
CN113488015A (zh) * 2021-06-23 2021-10-08 武汉理工大学 挖掘机驾驶室结构声和空气声混合主动控制系统及控制方法
CN113488015B (zh) * 2021-06-23 2024-03-15 武汉理工大学 挖掘机驾驶室结构声和空气声混合主动控制系统及控制方法
CN113539229A (zh) * 2021-07-30 2021-10-22 北京安声浩朗科技有限公司 降噪参数确定方法及其装置、主动降噪方法及其装置
CN113539228A (zh) * 2021-07-30 2021-10-22 北京安声浩朗科技有限公司 降噪参数确定方法及其装置、主动降噪方法及其装置
CN113539229B (zh) * 2021-07-30 2023-10-31 北京安声浩朗科技有限公司 降噪参数确定方法及其装置、主动降噪方法及其装置
CN113539228B (zh) * 2021-07-30 2023-10-31 北京安声浩朗科技有限公司 降噪参数确定方法及其装置、主动降噪方法及其装置
CN114162261A (zh) * 2021-11-16 2022-03-11 舟山中远海运重工有限公司 一种船舶噪声控制方法

Similar Documents

Publication Publication Date Title
CN107230473A (zh) 一种潜艇舱室内噪声主动控制方法及系统
CN107230472A (zh) 一种直升机驾驶舱内噪声主动控制方法及系统
CN107218846A (zh) 一种坦克驾驶室内噪声主动控制方法及系统
CN107240392A (zh) 一种装甲车舱室内噪声主动控制方法及系统
CN109800700B (zh) 一种基于深度学习的水下声信号目标分类识别方法
CN207925130U (zh) 一种潜艇舱室内噪声主动控制系统
Zhou et al. Wavelet neural networks for nonlinear time series analysis
Cheer et al. Active noise control of a diesel generator in a luxury yacht
CN207149250U (zh) 一种直升机驾驶舱内噪声主动控制系统
US20110222698A1 (en) Noise reduction device
CN107240391A (zh) 一种基于模糊神经网络的主动噪声控制方法、系统及装甲车驾驶员头盔
Buck et al. Performance evaluation of an active headrest considering non-stationary broadband disturbances and head movement
CN109346052A (zh) 一种利用主动降噪优化车内声品质的装置及方法
Huang et al. A wearable bone-conducted speech enhancement system for strong background noises
Patel et al. Modified phase-scheduled-command FxLMS algorithm for active sound profiling
CN110972007A (zh) 一种适用于舰船高噪音场景下的有源耳机降噪方法
Johansson et al. Comparison of multiple-and single-reference mimo active noise control approaches using data measured in a dornier 328 aircraft
Korsun et al. Speech spectral transfer function
CN108428444A (zh) 一种补偿次级声源近场影响的紧凑有源吸声方法
Shimizu et al. Online secondary-path-modeling ANC system with simultaneous perturbation method
Foo et al. Active noise cancellation headset
Winberg et al. A new passive/active hybrid headset for a helicopter application
CN113345457B (zh) 一种基于贝叶斯理论的声学回声消除自适应滤波器及滤波方法
CN111862925B (zh) 一种基于惰性学习的自适应有源噪声控制系统及其方法
Habib et al. Open IEN issues of active noise control applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20171003