WO2022033524A1 - 一种淀粉基稳态化植物油复合物及其制备方法 - Google Patents

一种淀粉基稳态化植物油复合物及其制备方法 Download PDF

Info

Publication number
WO2022033524A1
WO2022033524A1 PCT/CN2021/112090 CN2021112090W WO2022033524A1 WO 2022033524 A1 WO2022033524 A1 WO 2022033524A1 CN 2021112090 W CN2021112090 W CN 2021112090W WO 2022033524 A1 WO2022033524 A1 WO 2022033524A1
Authority
WO
WIPO (PCT)
Prior art keywords
starch
solution
vegetable oil
water
preparation
Prior art date
Application number
PCT/CN2021/112090
Other languages
English (en)
French (fr)
Inventor
高群玉
薛晓舟
齐亮
罗志刚
Original Assignee
华南理工大学
广州现代产业技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学, 广州现代产业技术研究院 filed Critical 华南理工大学
Priority to ZA2022/00290A priority Critical patent/ZA202200290B/en
Publication of WO2022033524A1 publication Critical patent/WO2022033524A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • A23D9/06Preservation of finished products
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • A23D9/007Other edible oils or fats, e.g. shortenings, cooking oils characterised by ingredients other than fatty acid triglycerides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • A23D9/02Other edible oils or fats, e.g. shortenings, cooking oils characterised by the production or working-up
    • A23D9/04Working-up
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/30Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/30Encapsulation of particles, e.g. foodstuff additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/07Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from polymer solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/046Elimination of a polymeric phase
    • C08J2201/0464Elimination of a polymeric phase using water or inorganic fluids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2303/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2303/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2403/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2403/04Starch derivatives
    • C08J2403/06Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2489/00Characterised by the use of proteins; Derivatives thereof

Definitions

  • the invention belongs to the technical field of starch inclusion compound preparation, and particularly relates to a preparation method and application of a vegetable oil-starch compound based on a water-in-water Pickering emulsion.
  • Vegetable oils such as camellia oil, olive oil, jojoba oil, shea butter, and schisandra oil are rich in unsaturated fatty acids such as oleic acid and linoleic acid.
  • the intake of unsaturated fatty acids in the diet can effectively reduce cardiovascular and cerebrovascular diseases. , atherosclerosis and other disease risks, in addition, vegetable oils contain VE, phospholipids, squalene (higher in olive oil and rice bran oil), phytosterols (higher in corn oil), polyphenols and other natural Active substances with high nutritional value.
  • porous starch has the characteristics of high compressive strength and high oil absorption, and it is safe and non-toxic, it can be used in the food industry. Therefore, porous starch can be used to adsorb vegetable oil, which can slow release and improve the bioavailability of vegetable oil. degree effect.
  • traditional porous starches are often prepared by enzymatic hydrolysis with saccharification enzymes and alpha-amylases.
  • the price of expensive enzymes increases the production cost of porous starch; on the other hand, because the degradation rate of amylase on granules is much slower than that on gelatinized starch, the enzymatic hydrolysis efficiency is low and the utilization rate of enzymes is low. Therefore, finding a non-enzymatic hydrolysis process to produce porous starch more quickly and cheaply will be crucial.
  • the primary purpose of the present invention is to utilize the water-in-water Pickering emulsion structure and the thermodynamic incompatibility of waxy starch and gelatin to design a porous starch and coat it with vegetable oil, so as to realize the slow release of vegetable oil and improve the bioavailability of vegetable oil technical issues.
  • Another object of the present invention is to provide a starch-based stabilized vegetable oil complex prepared by the method.
  • a method for preparing a starch-based stabilized vegetable oil complex comprising the following steps:
  • step (3) (4) cooling the Pickering emulsion described in step (3) to swell the A and B solutions to form a hydrogel, then dialysis in water to remove gelatin, and then ethanol precipitation and drying to obtain porous starch;
  • step (4) Mixing vegetable oil with the porous starch prepared in step (4), stirring rapidly, and then vacuum drying to obtain a starch-based stable vegetable oil complex.
  • the molecular weight of the waxy starch in step (1) is 8000 ⁇ 1000 kda, and the mass fraction is 15-30%; the heating temperature in step (1) is 80-100°C.
  • the molecular weight of the gelatin in step (2) is 50-60 kda, and the mass fraction is 10-20%; the heating temperature in step (2) is 60-70°C.
  • the step (3) stabilizer is a kind of octenyl succinate modified quinoa starch, lauryl succinate modified quinoa starch and cetyl succinate modified quinoa starch or more; the amount of stabilizer added accounts for 3-5% of the total solution mass.
  • the volume ratio of solution A and solution B described in step (3) is 3-5:1, and the stirring temperature is 55-65° C.; the shearing speed is 10000-20000 rpm, and the time is 1-3 min.
  • the membrane cut-off molecular weight of the dialysis in step (4) is 60-100kd, and the dialysis time is 2-4 days; the ethanol precipitation process is that the speed at which the hydrogel is dropped into ethanol is 1-3 drops/s, The volume ratio of ethanol to hydrogel is 3-5:1.
  • the mass ratio of vegetable oil mixed with porous starch in step (5) is 0.1-0.5:1; the stirring speed in step (5) is 200-300 rpm, and the stirring time is 30-60 min.
  • the cooling temperature in step (4) is 4-6° C.; the ethanol drying process is 30-40° C. for 12-24 hours.
  • the type of the waxy starch described in step (1) is one or more of waxy corn starch, waxy tapioca starch, and waxy potato starch; in step (5), the vegetable oil is camellia oil, olive oil, Jojoba oil, one or more of shea butter and Schisandra oil; the vacuum drying conditions are 25-35°C, 12-24h.
  • a starch-based stabilized vegetable oil complex is prepared by the method described in any one of the above.
  • the present invention is established on the following basis: (1) The thermodynamic incompatibility of waxy starch and gelatin in an aqueous solution makes it possible to form a water-in-water emulsion. (2) Using succinic anhydride as an esterifying agent, through the esterification reaction between it and starch hydroxyl groups, the long hydrophobic chains are grafted to the surface of starch granules, thereby increasing the hydrophobicity of small quinoa starch and making it more emulsifiable. ability to stabilize water-in-water Pickering emulsions. (3) Precipitation of gelatin molecules in the emulsion phase through selective dialysis of small-molecule polymers.
  • the inner phase is hollowed out to form a porous starch microcapsule structure with the outer phase waxy starch as the main component.
  • the good porous structure and hydrophobized quinoa starch granules enhanced the physical adsorption and hydrophobic binding of porous starch microcapsules to vegetable oil, which provided the possibility for the formation of stable vegetable oil-starch complexes.
  • Porous starch microcapsules were prepared by a non-enzymatic hydrolysis process through the water-in-water Pickering emulsion technology, with mild conditions and easy operation.
  • Figure 1 is a graph showing the measurement results of the cumulative release rate of starch-based stabilized vegetable oil complexes prepared by Example 1-4 and an enzymatic method, a- starch-based stabilized vegetable oil complexes prepared by traditional enzymatic methods, b-Example 2, c - Example 1, d - Example 3, e - Example 4.
  • succinate-modified quinoa starch granules Mix quinoa starch with distilled water at a mass fraction of 1:10 to form starch milk. Subsequently, the pH of the starch milk was adjusted with NaOH to keep it at 8-9. A solution of succinate in ethanol (5% wt) was gradually added dropwise with stirring to make the reaction homogeneous. The reaction was carried out at a temperature of 25-35°C until the pH of the solution stabilized. Then the product is washed, dried and ground with a volume ratio of 1:1 ethanol/water mixture to obtain the product.
  • step (3) Add the waxy starch solution A described in step (1) to the gelatin solution B described in step (2) in a volume ratio of 1:5, cool down to 65° C., and after stirring evenly, add a mass fraction of 5%
  • the octenyl succinate modified quinoa starch granule stabilizer was sheared and homogenized for 3 min at 20,000 rpm to obtain a water-in-water Pickering emulsion;
  • step (3) The Pickering emulsion described in step (3) was placed in a polytetrafluoroethylene container, and cooled at 6°C to swell the A and B solutions in the emulsion to form a hydrogel, and then dialyzed with 100 kd in deionized water.
  • the membrane was dialyzed for 4 days to remove gelatin molecules, then the hydrogel was dropped into ethanol with a volume of 5 times the hydrogel volume at a rate of 3 drops/s for precipitation, and dried at 40 °C for 24 h to obtain porous starch.
  • camellia oil was mixed with the porous starch prepared in step (4) in a mass ratio of 0.5:1, and stirred rapidly at 300 rpm for 60 min, and then vacuum-dried at 35° C. for 24 h to obtain the final sample.
  • solution B (2) adding gelatin with a molecular weight of 50kda to deionized water to form a suspension with a mass fraction of 10%, and after sufficient shaking, heating to 60° C. to dissolve to obtain solution B;
  • step (3) adding the waxy starch solution A described in step (1) to the gelatin solution B described in step (2) in a volume ratio of 1:3, cooling to 55° C., and after stirring evenly, adding a mass fraction of 3%
  • the lauryl succinate-modified quinoa starch granule stabilizer was sheared and homogenized for 1 min at 10,000 rpm to obtain a water-in-water Pickering emulsion;
  • step (3) The Pickering emulsion described in step (3) was placed in a polytetrafluoroethylene container, and cooled at 4° C. to swell the A and B solutions in the emulsion to form a hydrogel, and then dialyzed with 60 kd in deionized water.
  • the membrane was dialyzed for 2 days to remove gelatin molecules, then the hydrogel was dropped into ethanol with a volume of 3 times the hydrogel volume at a rate of 1 drop/s for precipitation, and dried at 30 °C for 12 h to obtain porous starch.
  • step (4) Mix olive oil with the porous starch prepared in step (4) at a mass ratio of 0.1:1, and rapidly stir at 200 rpm for 30 min, and then vacuum dry at 25° C. for 12 h to obtain the final sample.
  • step (3) adding the waxy starch solution A described in step (1) to the gelatin solution B described in step (2) in a volume ratio of 1:4, cooling to 60° C., after stirring evenly, adding a mass fraction of 4%
  • the hexadecyl succinate modified quinoa starch granule stabilizer was sheared and homogenized for 2 min at 15000 rpm to obtain a water-in-water Pickering emulsion;
  • step (3) The Pickering emulsion described in step (3) was placed in a polytetrafluoroethylene container, and cooled at 5°C to swell the A and B solutions in the emulsion to form a hydrogel, and then dialyzed against 80 kd in deionized water.
  • the membrane was dialyzed for 3 days to remove gelatin molecules, and then the hydrogel was dropped into ethanol with a volume of 4 times the hydrogel volume at a rate of 2 drops/s for precipitation, and dried at 35 °C for 18 h to obtain porous starch.
  • step (3) adding the waxy starch solution A described in step (1) to the gelatin solution B described in step (2) in a volume ratio of 1:5, cooling to 55° C., and stirring evenly, adding a mass fraction of 5%
  • the lauryl succinate-modified quinoa starch granule stabilizer was sheared and homogenized for 1 min at 10,000 rpm to obtain a water-in-water Pickering emulsion;
  • step (3) The Pickering emulsion described in step (3) was placed in a polytetrafluoroethylene container, and cooled at 4° C. to swell the A and B solutions in the emulsion to form a hydrogel, and then dialyzed with 80 kd in deionized water.
  • the membrane was dialyzed for 3 days to remove gelatin molecules, then the hydrogel was dropped into ethanol with a volume of 3 times the hydrogel volume at a rate of 1 drop/s for precipitation, and dried at 30 °C for 12 h to obtain porous starch.
  • step (4) Mix the schisandra oil with the porous starch prepared in step (4) at a mass ratio of 0.1:1, and rapidly stir at 250 rpm for 40 min, and then vacuum dry at 25° C. for 24 h to obtain the final sample.
  • Enzymatic preparation of starch-based stabilized vegetable oil complexes Accurately weigh 20g of raw cornstarch and add it to a 250mL conical flask, add 0.2mol/L of pH 5.6 Na 2 HPO 4 -0.1mol/L citric acid buffer 40mL, add two drops of toluene (to prevent starch from sticking) wall), add appropriately diluted saccharification enzyme and high temperature resistant ⁇ -starch solution, shake at 150 rpm for 24 hours at a constant temperature of 60 °C, take it out, add deionized water to 250 mL, settle at room temperature, discard the supernatant, and precipitate in Dry under normal pressure at 60°C and pulverize. According to the mass ratio of 0.1:1, the schisandra oil and the porous starch were mixed, and were rapidly stirred at 250 rpm for 40 min, and then vacuum-dried at 25 °C for 24 h to obtain the final sample.
  • the samples were first treated with simulated gastric juice containing 100 mg/L pepsin with pH of 1, 2, 3, and 4 at 37 °C for 0.5 h, then the samples were taken out, and the water was absorbed with a paper towel, and the medium was wiped off. Trypsin buffer (pH 7.4) was then treated for 14 h to simulate the intestinal environment. At predetermined time intervals, 5 mL samples were collected from the simulated intestinal fluid and replaced with an equal amount of simulated intestinal fluid. The collected samples were centrifuged at 3000 rpm for 20 min, and the vegetable oil concentration was determined by gas chromatography. Calculate the cumulative release rate (Q) using the following formula
  • C i is the concentration of the ith determination
  • Vi is 5 ml
  • C n is the final concentration
  • V is the volume of simulated intestinal fluid
  • W is the total mass of fatty acids contained in the porous starch complex.
  • the oxidative stability of vegetable oils was assessed by iodometric determination of peroxide value.
  • the composite sample was ground into pieces, poured into anhydrous ethanol solution, and ultrasonically extracted for 1 h to obtain the coated vegetable oil.
  • V 1 volume of standard titration solution of sodium thiosulfate consumed during sample experiment, mL
  • V 2 volume of standard titration solution of sodium thiosulfate consumed in blank test, mL
  • the simulated intestinal fluid was obtained by adding 1 g of pancreatic lipase to 5 ml of fasting/feeding buffers and centrifuging. Note that simulated intestinal fluid should be kept on ice.
  • Lipolysis experiment of the sample take 0.25 g of the sample, add 1 ml of simulated intestinal fluid and 9 ml of fasting/feeding buffer, and start the lipolysis experiment. After 30 minutes of constant temperature in a shaker at 37 ⁇ 1°C, use 0.25mol/L sodium hydroxide solution to adjust the pH of the lipolyzed sample to 7.50 ⁇ 0.02. The samples after lipolysis were centrifuged at 10,000 rpm for 20 min, and then filtered through a 0.22 ⁇ m aqueous filter, and the filtrate was assayed for vegetable oil content by gas chromatography.
  • the bioavailability of the sample vegetable oil in the fed and fasted states is determined by in vitro simulation experiments, and it is found that the starch-based stabilized vegetable oil complex prepared by the present invention is in the fasting state or in the fed state.
  • the bioavailability of the vegetable oil is The yields were better than those of starch-based stabilized vegetable oil complexes prepared by enzymatic hydrolysis.

Abstract

本发明公开了一种淀粉基稳态化植物油复合物及其制备方法,包括以下步骤:(1)将分子量6000-10000kda的蜡质淀粉加入水中,加热搅拌使其完全糊化,得到溶液A;(2)将明胶加入水中,加热溶解,得到溶液B;(3)在溶液B加入溶液A,降温,搅拌均匀后,加入稳定剂,进行剪切均质,得到水包水Pickering乳液;(4)将Pickering乳液冷却使A、B溶液溶胀形成水凝胶,随后在水中透析以除去明胶,随后通过乙醇沉淀干燥得到多孔淀粉;(5)将植物油与多孔淀粉进行混合,并快速搅拌,随后通过真空干燥得到淀粉基稳态化植物油复合物。本发明实现了植物油的缓慢释放、提高了生物利用度,有效抑制了氧化反应的发生。

Description

一种淀粉基稳态化植物油复合物及其制备方法 技术领域
本发明属于淀粉包合物制备的技术领域,具体涉及基于水包水Pickering乳液的植物油-淀粉复合物的制备方法和应用。
背景技术
植物油如山茶油,橄榄油,荷荷巴油,乳木果油、五味子油等富含油酸、亚油酸等不饱和脂肪酸,膳食中不饱和脂肪酸的摄入,可有效地降低心脑血管、动脉粥样硬化等疾病风险,此外,植物油脂含有VE、磷脂、角鲨烯(橄榄油和米糠油中含量较高)、植物甾醇(玉米油中含量较高)、多酚等多种天然活性物质,具有较高的营养价值。然而,植物油易氧化酸败生成氢过氧化物,并进一步裂解为低分子的醛、酮类物质,使得植物油脂风味受损、附加值降低;此外,氧化过程的自由基链式反应产生大量脂质自由基,易对人体细胞结构和功能造成破坏,因而可考虑采用有效的稳态化技术实现其保存与活性成分的稳定输送,从而增强生物利用度。
由于多孔淀粉有较高的抗压缩强度,以及有较高的吸油量的特点,同时又安全无毒,可以在食品工业中使用,因而可用多孔淀粉吸附植物油,起到缓释和提升植物油生物利用度的作用。然而,传统多孔淀粉往往由糖化酶和α‐淀粉酶酶解制备。一方面,昂贵的酶价格提升了多孔淀粉的生产成本;另一方面,由于淀粉酶对颗粒降解速度远慢于对糊化淀粉降解速度,因此,酶解效率偏低,酶的利用率低下。因此,寻找一种非酶解工艺,更加快速、廉价生产多孔淀粉将至关重要。
发明内容
本发明的首要目的是利用水包水Pickering乳液结构和蜡质淀粉与明胶热力学不相容性,设计一种多孔淀粉并将其包覆植物油,以实现植物油的缓慢释放、提升植物油的生物利用度的技术问题。
本发明的另一目的在于提供所述的方法制备的一种淀粉基稳态化植物油复合物。
本发明的目的通过下述技术方案实现:
一种淀粉基稳态化植物油复合物的制备方法,包括以下步骤:
(1)将分子量6000-10000kda的蜡质淀粉加入水中,充分震荡后进行加热搅拌使其完全糊化,得到溶液A;
(2)将明胶加入水中,充分震荡后进行加热溶解,得到溶液B;
(3)在步骤(2)所述的明胶溶液B加入步骤(1)所述的蜡质淀粉溶液A,降温,搅拌均匀后,加入稳定剂,进行剪切均质,得到水包水Pickering乳液;所述稳定剂为琥珀酸酯改性藜麦淀粉颗粒;
(4)将步骤(3)所述Pickering乳液冷却使A、B溶液溶胀形成水凝胶,随后在水中透析以除去明胶,随后通过乙醇沉淀干燥得到多孔淀粉;
(5)将植物油与步骤(4)制备的多孔淀粉进行混合,并快速搅拌,随后通过真空干燥得到淀粉基稳态化植物油复合物。
优选地,步骤(1)所述的蜡质淀粉的分子量为8000±1000kda,质量分数为15-30%;步骤(1)所述加热的温度为80-100℃。
优选地,步骤(2)所述的明胶分子量在50-60kda,质量分数为10-20%;步骤(2)所述加热的温度为60-70℃。
优选地,步骤(3)稳定剂为辛烯基琥珀酸酯改性藜麦淀粉、十二烷基琥珀酸酯改性藜麦淀粉以及十六烷基琥珀酸酯改性藜麦淀粉的一种或多种;稳定剂添加量占总溶液质量的3-5%。
优选地,步骤(3)所述的A溶液与B溶液的体积比为3-5:1,搅拌温度为55-65℃;所述剪切的速度为10000-20000rpm,时间为1-3min。
优选地,步骤(4)所述透析的膜截流分子量为60-100kd,透析时间为2-4天;所述乙醇沉淀的工艺为水凝胶滴入乙醇的速度为1-3滴/s,乙醇与水凝胶的体积比为3-5:1。
优选地,步骤(5)中植物油与多孔淀粉混合的质量比为0.1-0.5:1;步骤(5)中所述搅拌速度200-300rpm,搅拌时间为30-60min。
优选地,步骤(4)所述的冷却温度为4-6℃;所述的乙醇干燥工艺为30-40℃,12-24h。
优选地,步骤(1)所述的蜡质淀粉的种类为蜡质玉米淀粉、蜡质木薯淀粉、 蜡质马铃薯淀粉的一种或多种;步骤(5)中植物油为山茶油,橄榄油,荷荷巴油,乳木果油、五味子油的一种或多种;所述真空干燥的条件为25-35℃,12-24h。
一种淀粉基稳态化植物油复合物,通过上述任一项所述的方法制备得到。
本发明建立于以下基础上:(1)蜡质淀粉与明胶在水溶液中的热力学不相容性为水包水乳液的形成奠定可能。(2)以琥珀酸酐作为酯化剂,通过其与淀粉羟基之间发生酯化反应,将疏水长链接枝到淀粉颗粒表面,从而使得小颗粒藜麦淀粉疏水性增加,使其具备更好乳化能力,为稳定水包水Pickering乳液提供可能。(3)通过小分子聚合物的选择性透析,使得乳液内相明胶分子析出。通过脱水操作使内相镂空,形成以外相蜡质淀粉为主要成分的多孔淀粉微囊结构。(4)在对植物油的吸附过程中,良好的多孔结构和疏水化的藜麦淀粉颗粒增强了多孔淀粉微囊对植物油的物理吸附以及疏水结合,为形成稳定的植物油-淀粉复合物提供可能。
本发明相对于现有技术有如下优点及效果:
1)通过水包水Pickering乳液技术实现了非酶解工艺制备多孔淀粉微囊,条件温和,操作简便。
2)相比于传统酶解法制备的多孔淀粉,本专利技术更好地实现了植物油的缓慢释放、提高了生物利用度,有效地抑制氧化反应的发生。
附图说明
图1为实施例1-4与酶法制备的淀粉基稳态化植物油复合物累积释放率测定结果图,a-传统酶法制备淀粉基稳态化植物油复合物,b-实施例2,c-实施例1,d-实施例3,e-实施例4。
具体实施方式
下面结合实施例与附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。本发明所用酶均购自sigma公司。
琥珀酸酯改性藜麦淀粉颗粒的具体步骤:将藜麦淀粉与蒸馏水按质量分数1:10混合形成淀粉乳。随后,用NaOH调节淀粉乳的pH,使其保持在8~9。在搅拌下逐渐滴加琥珀酸酯的乙醇溶液(5%wt)使反应均匀。反应在25~35℃的温度下进行,直至溶液的pH稳定。然后产物经过体积比为1:1乙醇/水混合液洗涤、干燥、研磨得到产品。
实施例1
(1)将分子量为10000kda的蜡质玉米淀粉加入到去离子水中,配成质量分数为30%的淀粉悬浊液,充分震荡后进行100℃下加热搅拌使其完全糊化,得到溶液A;
(2)将分子量为60kda的明胶加入到去离子水中,配成质量分数为20%的悬浊液,充分震荡后,加热至70℃溶解,得到溶液B;
(3)在步骤(2)所述的明胶溶液B按体积比为1:5加入步骤(1)所述的蜡质淀粉溶液A,降温至65℃,搅拌均匀后,加入质量分数为5%的辛烯基琥珀酸酯改性藜麦淀粉颗粒稳定剂,在20000rpm下剪切均质3min,得到水包水Pickering乳液;
(4)将步骤(3)所述Pickering乳液置于聚四氟乙烯容器中,并在6℃下冷却使乳液中的A、B溶液溶胀形成水凝胶,随后在去离子水中用100kd的透析膜透析4天以除去明胶分子,随后将水凝胶以3滴/s的速度滴入5倍水凝胶体积的乙醇进行沉淀,并在40℃下干燥24h得到多孔淀粉。
(5)按质量比0.5:1,将山茶油与步骤(4)制备的多孔淀粉进行混合,并在300rpm下快速搅拌60min,随后在35℃下通过真空干燥24h得到最后样品。
实施例2
(1)将分子量为6000kda的蜡质木薯淀粉加入到去离子水中,配成质量分数为15%的淀粉悬浊液,充分震荡后进行80℃下加热搅拌使其完全糊化,得到溶液A;
(2)将分子量为50kda的明胶加入到去离子水中,配成质量分数为10%的悬浊液,充分震荡后,加热至60℃溶解,得到溶液B;
(3)在步骤(2)所述的明胶溶液B按体积比为1:3加入步骤(1)所述的蜡质淀粉溶液A,降温至55℃,搅拌均匀后,加入质量分数为3%的十二烷基琥珀酸酯改性藜麦淀粉颗粒稳定剂,在10000rpm下剪切均质1min,得到水包水Pickering乳液;
(4)将步骤(3)所述Pickering乳液置于聚四氟乙烯容器中,并在4℃下冷却使乳液中的A、B溶液溶胀形成水凝胶,随后在去离子水中用60kd的透析膜透析2天以除去明胶分子,随后将水凝胶以1滴/s的速度滴入3倍水凝胶体积的乙 醇进行沉淀,并在30℃下干燥12h得到多孔淀粉。
(5)按质量比0.1:1,将橄榄油与步骤(4)制备的多孔淀粉进行混合,并在200rpm下快速搅拌30min,随后在25℃下通过真空干燥12h得到最后样品。
实施例3
(1)将分子量为8000kda的蜡质马铃薯淀粉加入到去离子水中,配成质量分数为20%的淀粉悬浊液,充分震荡后进行90℃下加热搅拌使其完全糊化,得到溶液A;
(2)将分子量为55kda的明胶加入到去离子水中,配成质量分数为15%的悬浊液,充分震荡后,加热至65℃溶解,得到溶液B;
(3)在步骤(2)所述的明胶溶液B按体积比为1:4加入步骤(1)所述的蜡质淀粉溶液A,降温至60℃,搅拌均匀后,加入质量分数为4%的十六烷基琥珀酸酯改性藜麦淀粉颗粒稳定剂,在15000rpm下剪切均质2min,得到水包水Pickering乳液;
(4)将步骤(3)所述Pickering乳液置于聚四氟乙烯容器中,并在5℃下冷却使乳液中的A、B溶液溶胀形成水凝胶,随后在去离子水中用80kd的透析膜透析3天以除去明胶分子,随后将水凝胶以2滴/s的速度滴入4倍水凝胶体积的乙醇进行沉淀,并在35℃下干燥18h得到多孔淀粉。
(5)按质量比0.3:1,将荷荷巴油与步骤(4)制备的多孔淀粉进行混合,并在250rpm下快速搅拌40min,随后在30℃下通过真空干燥18h得到最后样品。
实施例4
(1)将分子量为8000kda的蜡质玉米淀粉加入到去离子水中,配成质量分数为15%的淀粉悬浊液,充分震荡后进行80℃下加热搅拌使其完全糊化,得到溶液A;
(2)将分子量为50kda的明胶加入到去离子水中,配成质量分数为10%的悬浊液,充分震荡后,加热至70℃溶解,得到溶液B;
(3)在步骤(2)所述的明胶溶液B按体积比为1:5加入步骤(1)所述的蜡质淀粉溶液A,降温至55℃,搅拌均匀后,加入质量分数为5%的十二烷基琥珀酸酯改性藜麦淀粉颗粒稳定剂,在10000rpm下剪切均质1min,得到水包水Pickering乳液;
(4)将步骤(3)所述Pickering乳液置于聚四氟乙烯容器中,并在4℃下冷却使乳液中的A、B溶液溶胀形成水凝胶,随后在去离子水中用80kd的透析膜透析3天以除去明胶分子,随后将水凝胶以1滴/s的速度滴入3倍水凝胶体积的乙醇进行沉淀,并在30℃下干燥12h得到多孔淀粉。
(5)按质量比0.1:1,将五味子油与步骤(4)制备的多孔淀粉进行混合,并在250rpm下快速搅拌40min,随后在25℃下通过真空干燥24h得到最后样品。
酶法制备淀粉基稳态化植物油复合物。准确称量20g生玉米淀粉加入到250mL的锥形瓶中,加入pH值为5.6的0.2mol/L的Na 2HPO 4-0.1mol/L柠檬酸缓冲液40mL,加入两滴甲苯(防止淀粉粘壁),加入适当稀释的糖化酶、耐高温α-淀粉液,在60℃恒温下150rpm振荡反应24h后,取出,加入去离子水至250mL,在室温下沉降,弃去上清液,沉淀在60℃下常压干燥,粉碎。按质量比0.1:1,将五味子油与多孔淀粉进行混合,并在250rpm下快速搅拌40min,随后在25℃下通过真空干燥24h得到最后样品。
累计释放率测定方法:
先分别用pH为1,2,3,4的含有100mg/L胃蛋白酶的模拟胃液在37℃处理样品0.5h,然后将样品取出,用纸巾吸干水分,擦去介质,用含有100mg/L胰蛋白酶的缓冲液(pH7.4)再处理14h模拟肠道环境。在预定的时间间隔,从模拟肠液中收集5mL的样品,并用等量的模拟肠液代替。收集的样品在3000rpm离心20min,,用气相色谱法测定植物油浓度。使用以下公式计算累积释放率(Q)
Figure PCTCN2021112090-appb-000001
C i是第i次测定的浓度,V i是5ml,C n是最终的浓度,V是模拟肠液的体积,W是多孔淀粉复合物中含有的脂肪酸总质量。
从图1中可以看出,模拟胃液中Q值非常低,说明模拟胃液中所载植物油受到了多孔淀粉的保护,抑制了其释放。Q值在初始8小时内快速升高,随后由于接近平衡状态,Q值缓慢升高,说明各样品在模拟小肠环境中释放持续。值得注意的是,通过本发明制备的样品的累积释放率较高,尤其是实施例3和4都在70%以上,而传统酶法制备淀粉基稳态化植物油复合物的释放率不到50%,表明本专利对于植物油的缓释应用上更具优势。
氧化性能测定:
通过碘量法测定过氧化值评定植物油的氧化稳定性。将复合物样品研磨碎,倒入无水乙醇溶液中,超声提取1h得到被包覆的植物油。准确称取植物油样品于碘量瓶中,加30mL氯仿-冰乙酸混合液,使样品完全溶解,加入1mL饱和碘化钾溶液,盖紧,轻轻振摇0.5min,置暗处3min。取出加入100mL锥形瓶,摇匀,立即用0.002mol/L硫代硫酸钠标准溶液滴定至淡黄色,加1mL淀粉指示剂,继续滴定至蓝色小时。同时做空白(不加样品,其余同)。计算公式为:
Figure PCTCN2021112090-appb-000002
式中:
V 1:样品实验时消耗硫代硫酸钠标准滴定溶液体积,mL
V 2:空白试验时消耗硫代硫酸钠标准滴定溶液体积,mL
c:Na 2S 2O 3标准溶液的浓度,mol/L
0.1269:1.00mmol碘的质量,g
m:试样质量,g
表1 氧化性能测定实验结果
Figure PCTCN2021112090-appb-000003
从表1结果中看出:(1)随时保存时间的增加,所有样品中植物油的过氧化值都有所增加,说明植物油都发生了不同程度的氧化(2)实施例1~4中的植物油的过氧化值增幅明显小于传统酶解法制备多孔淀粉中植物油脂的过氧化值增幅,说明实施例的方法制备的多孔淀粉能够较好的保护所包埋的植物油,有效地抑制氧化反应的发生。
生物利用率测定
通过体外模拟实验同时研究进食和空腹状态下样品植物油的生物利用率。由于样品中的主要成分是油脂,因此只需配置肠道模拟缓冲液即可。进食状态下小 肠液中的胆汁盐和磷脂含量比空腹状态下稍高,具体配比见表2。
表2 模拟小肠液配比表
Figure PCTCN2021112090-appb-000004
向5ml空腹/进食两种缓冲液中加入1g胰脂肪酶后离心即可得到模拟肠液。注意模拟肠液需放置在冰上保存。样品的脂解实验:取样品0.25g,加入1ml的模拟肠液和9ml空腹/进食缓冲液,脂解实验开始。在37±1℃的振荡器中恒温三十分钟后,使用0.25mol/L的氢氧化钠溶液调节脂解后样品的pH值至7.50±0.02。脂解之后的样品在10000rpm下离心20min,然后用0.22μm的水相滤膜过滤,滤液用气相色谱法测定植物油含量。
Figure PCTCN2021112090-appb-000005
表3 生物利用率测定结果
Figure PCTCN2021112090-appb-000006
通过体外模拟实验对进食和空腹状态下样品植物油的生物利用率进行测定发现,通过本发明制备的淀粉基稳态化植物油复合物不管是在空腹状态下还是在进食状态下,其植物油的生物利用率都优于酶解法制备的淀粉基稳态化植物油复合物。

Claims (10)

  1. 一种淀粉基稳态化植物油复合物的制备方法,其特征在于,包括以下步骤:
    (1)将分子量6000-10000kda的蜡质淀粉加入水中,加热搅拌使其完全糊化,得到溶液A;
    (2)将明胶加入水中,加热溶解,得到溶液B;
    (3)在步骤(2)所述的溶液B加入溶液A,降温,搅拌均匀后,加入稳定剂,进行剪切均质,得到水包水Pickering乳液;所述稳定剂为琥珀酸酯改性藜麦淀粉颗粒;
    (4)将步骤(3)所述Pickering乳液冷却使A、B溶液溶胀形成水凝胶,随后在水中透析以除去明胶,随后通过乙醇沉淀干燥得到多孔淀粉;
    (5)将植物油与步骤(4)制备的多孔淀粉进行混合,并快速搅拌,随后通过真空干燥得到淀粉基稳态化植物油复合物。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤(1)所述的蜡质淀粉的分子量为8000±1000kda,质量分数为15-30%;步骤(1)所述加热的温度为80-100℃。
  3. 根据权利要求2所述的制备方法,其特征在于,步骤(2)所述的明胶分子量在50-60kda,质量分数为10-20%;步骤(2)所述加热的温度为60-70℃。
  4. 根据权利要求3所述的制备方法,其特征在于,步骤(3)稳定剂为辛烯基琥珀酸酯改性藜麦淀粉、十二烷基琥珀酸酯改性藜麦淀粉以及十六烷基琥珀酸酯改性藜麦淀粉的一种或多种;稳定剂添加量占总溶液质量的3-5%。
  5. 根据权利要求1或2或3或4所述的制备方法,其特征在于,步骤(3)所述的A溶液与B溶液的体积比为3-5:1,搅拌温度为55-65℃;所述剪切的速度为10000-20000rpm,时间为1-3min。
  6. 根据权利要求5所述的制备方法,其特征在于,步骤(4)所述透析的膜截流分子量为60-100kd,透析时间为2-4天;所述乙醇沉淀的工艺为水凝胶滴入乙醇的速度为1-3滴/s,乙醇与水凝胶的体积比为3-5:1。
  7. 根据权利要求6所述的制备方法,其特征在于,步骤(5)中植物油与多孔淀粉混合的质量比为0.1-0.5:1;步骤(5)中所述搅拌速度200-300rpm,搅拌时间为30-60min。
  8. 根据权利要求1或2或3或4所述的制备方法,其特征在于,步骤(4)所述的冷却温度为4-6℃;所述的乙醇干燥工艺为30-40℃,12-24h。
  9. 根据权利要求1或2或3或4所述的制备方法,其特征在于,步骤(1)所述的蜡质淀粉的种类为蜡质玉米淀粉、蜡质木薯淀粉、蜡质马铃薯淀粉的一种或多种;步骤(5)中植物油为山茶油,橄榄油,荷荷巴油,乳木果油、五味子油的一种或多种;所述真空干燥的条件为25-35℃,12-24h。
  10. 权利要求1-9任一项所述方法制备得到的淀粉基稳态化植物油复合物。
PCT/CN2021/112090 2020-08-12 2021-08-11 一种淀粉基稳态化植物油复合物及其制备方法 WO2022033524A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2022/00290A ZA202200290B (en) 2020-08-12 2022-01-05 Starch-based and steady-state vegetable oil complex and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010805013.1A CN111990477B (zh) 2020-08-12 2020-08-12 一种淀粉基稳态化植物油复合物及其制备方法
CN202010805013.1 2020-08-12

Publications (1)

Publication Number Publication Date
WO2022033524A1 true WO2022033524A1 (zh) 2022-02-17

Family

ID=73463170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112090 WO2022033524A1 (zh) 2020-08-12 2021-08-11 一种淀粉基稳态化植物油复合物及其制备方法

Country Status (3)

Country Link
CN (1) CN111990477B (zh)
WO (1) WO2022033524A1 (zh)
ZA (1) ZA202200290B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111990477B (zh) * 2020-08-12 2022-05-03 华南理工大学 一种淀粉基稳态化植物油复合物及其制备方法
CN115530367B (zh) * 2021-06-29 2023-09-26 华南理工大学 一种含β-胡萝卜素的氧化高直链淀粉乳液及其制备方法与应用
CN114158622B (zh) * 2021-11-18 2023-07-18 华南理工大学 一种高稳定亚麻籽粉末油脂及其制备方法
CN114574285A (zh) * 2022-01-18 2022-06-03 上海交通大学 一种精油的高内向乳液及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102311563A (zh) * 2011-09-23 2012-01-11 哈尔滨工业大学 一种淀粉油脂复合物的制备方法
CN102492557A (zh) * 2011-11-24 2012-06-13 西华大学 多孔淀粉包埋橄榄油粉剂的制备方法
CN102533908A (zh) * 2012-01-04 2012-07-04 江南大学 一种淀粉经预处理制备高吸油率多孔淀粉的方法
CN108201636A (zh) * 2017-12-25 2018-06-26 四川大学 一种孔径可控的天然高分子基3d多孔复合支架的制备方法
CN108936576A (zh) * 2018-07-10 2018-12-07 华南理工大学 一种稳态化食用粉末植物油脂的制备方法
CN108969405A (zh) * 2018-07-10 2018-12-11 华南理工大学 一种稳态化化妆品用粉末植物油脂的制备方法
CN111990477A (zh) * 2020-08-12 2020-11-27 华南理工大学 一种淀粉基稳态化植物油复合物及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6723683B2 (en) * 2001-08-07 2004-04-20 National Starch And Chemical Investment Holding Corporation Compositions for controlled release
CN1226336C (zh) * 2003-04-14 2005-11-09 浙江大学 蜡球致孔剂与热致相分离结合制备聚合物多孔支架的方法
TWI293317B (en) * 2003-12-31 2008-02-11 Ind Tech Res Inst Method for preparing polymer microspheres by aqueous phase-aqueous phase emulsion process
CN102675516B (zh) * 2012-05-16 2014-09-10 华南理工大学 一种互通多孔磁性聚合物微球及其制备方法
CN104336776B (zh) * 2013-08-05 2017-12-19 贵州中烟工业有限责任公司 一种缓释型留香基材、颗粒及其制备和应用
CN103467781A (zh) * 2013-08-28 2013-12-25 天津爱勒易医药材料有限公司 一种制备多孔多糖微球的方法
CN103756002B (zh) * 2013-12-23 2015-12-09 广西大学 一种多孔磁性淀粉微球及其制备方法
CN106902716B (zh) * 2017-02-27 2020-02-14 广西科学院 一种小粒径淀粉微球的制备方法
CN107459664A (zh) * 2017-08-15 2017-12-12 华南理工大学 一种基于双水相体系制备淀粉微球的方法
CN109908396B (zh) * 2019-01-08 2021-11-02 中国人民解放军军事科学院军事医学研究院 一种钙离子交换多孔淀粉止血材料及其制备方法和应用
CN110559956B (zh) * 2019-09-06 2022-06-21 广东省生物工程研究所(广州甘蔗糖业研究所) 一种中空多孔纤维素微球及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102311563A (zh) * 2011-09-23 2012-01-11 哈尔滨工业大学 一种淀粉油脂复合物的制备方法
CN102492557A (zh) * 2011-11-24 2012-06-13 西华大学 多孔淀粉包埋橄榄油粉剂的制备方法
CN102533908A (zh) * 2012-01-04 2012-07-04 江南大学 一种淀粉经预处理制备高吸油率多孔淀粉的方法
CN108201636A (zh) * 2017-12-25 2018-06-26 四川大学 一种孔径可控的天然高分子基3d多孔复合支架的制备方法
CN108936576A (zh) * 2018-07-10 2018-12-07 华南理工大学 一种稳态化食用粉末植物油脂的制备方法
CN108969405A (zh) * 2018-07-10 2018-12-11 华南理工大学 一种稳态化化妆品用粉末植物油脂的制备方法
CN111990477A (zh) * 2020-08-12 2020-11-27 华南理工大学 一种淀粉基稳态化植物油复合物及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GE SHENGJU, LIU XIONG MAN LI JING LIU JIE YANG, RANRAN CHANG, CAIFENG LIANG, QINGJIE SUN: "Characterizations of Pickering emulsions stabilized by starch nanoparticles: Influence of starch variety and particle size", FOOD CHEMISTRY, vol. 234, 26 April 2017 (2017-04-26), pages 339 - 347, XP055900064, DOI: 10.1016/j.foodchem.2017.04.150 *
LIU CANCAN, XIAOPENG SUN, HONGBO SONG: "Application of Starch to Prepare Pickering Emulsions", THE FOOD INDUSTRY, vol. 39, no. 8, 20 August 2018 (2018-08-20), pages 272 - 276, XP055900066 *
TAN HUAN, SUN GUANQING, LIN WEI, MU CHANGDAO, NGAI TO: "Gelatin Particle-Stabilized High Internal Phase Emulsions as Nutraceutical Containers", APPLIED MATERIALS & INTERFACES, AMERICAN CHEMICAL SOCIETY, US, vol. 6, no. 16, 27 August 2014 (2014-08-27), US , pages 13977 - 13984, XP055900058, ISSN: 1944-8244, DOI: 10.1021/am503341j *
XIAO ZHIGANG, CHAO SHI, LIU YANG, XIN-SHENG QIN, QING-YU YANG, ZHI-GANG LUO: "Preparation of Hydrophobic Modified Quinoa Starch Granules and Study on Emulsifying Properties of Pickering Emulsion", MODERN FOOD SCIENCE AND TECHNOLOGY, HUANAN LIGONG DAXUE,SOUTH CHINA UNVERSITY OF TECHNOLOGY, CN, vol. 34, no. 12, 16 November 2018 (2018-11-16), CN , pages 19 - 25, XP055900061, ISSN: 1673-9078, DOI: 10.13982/j.mfst.1673-9078.2018.12.004 *

Also Published As

Publication number Publication date
CN111990477A (zh) 2020-11-27
CN111990477B (zh) 2022-05-03
ZA202200290B (en) 2022-08-31

Similar Documents

Publication Publication Date Title
WO2022033524A1 (zh) 一种淀粉基稳态化植物油复合物及其制备方法
Wang et al. Rapeseed protein nanogels as novel pickering stabilizers for oil-in-water emulsions
Lu et al. Effect of high-intensity ultrasound irradiation on the stability and structural features of coconut-grain milk composite systems utilizing maize kernels and starch with different amylose contents
Espinal-Ruiz et al. Interaction of a dietary fiber (pectin) with gastrointestinal components (bile salts, calcium, and lipase): A calorimetry, electrophoresis, and turbidity study
JP5001834B2 (ja) デンプンの処理法
EP2403352B1 (fr) Poudre granulée contenant des protéines végétales et des fibres, leur procédé d'obtention et leurs utilisations
He et al. Effect of polysaccharides on the functional properties of egg white protein: A review
CN110169578A (zh) 一种含奇亚籽胶的功能油脂微胶囊及其制备方法
CN106473100A (zh) 一种慢消化淀粉及其制备方法
Chen et al. Development of anti-photo and anti-thermal high internal phase emulsions stabilized by biomass lignin as a nutraceutical delivery system
CN110063500A (zh) 一种低gi值功能油脂微胶囊及其制备方法
CN104961836A (zh) 一种辛烯基琥珀酸酐淀粉乳化剂的制备方法及其应用
Liu et al. Cross-linked corn bran arabinoxylan improves the pasting, rheological, gelling properties of corn starch and reduces its in vitro digestibility
JP2022522484A (ja) パラミロンの組成物、調製、および使用
WO2018196356A1 (zh) 一种基于3d打印技术调节青稞淀粉消化性能的方法
Li et al. Green preparation of holocellulose nanocrystals from burdock and their inhibitory effects against α-amylase and α-glucosidase
Ding et al. Characterization of nanoscale retrograded starch prepared by a sonochemical method
Zhang et al. Effect of ultrasound and alkali-heat treatment on the thermal gel properties and catechin encapsulation capacity of ovalbumin
Gao et al. OSA improved the stability and applicability of emulsions prepared with enzymatically hydrolyzed pomelo peel insoluble fiber
CN110839873B (zh) 壳聚糖与短直链淀粉制备多不饱和脂肪酸微胶囊的方法
CN113995137A (zh) 一种由燕麦蛋白虫胶稳定的亚麻籽油皮克林乳液的制备方法
CN114891127A (zh) 一种高乳化性能辛烯基琥珀酸酐淀粉基乳化剂的制备方法
Kraithong et al. Encapsulated starch characteristics and its shell matrix mechanisms controlling starch digestion
CN113367323A (zh) 一种食品级多功能木质素/二氧化硅纳米颗粒乳化剂的绿色制备方法
JPS5976538A (ja) 液状物質粉末化用基材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.07.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21855575

Country of ref document: EP

Kind code of ref document: A1