CN110839873B - 壳聚糖与短直链淀粉制备多不饱和脂肪酸微胶囊的方法 - Google Patents

壳聚糖与短直链淀粉制备多不饱和脂肪酸微胶囊的方法 Download PDF

Info

Publication number
CN110839873B
CN110839873B CN201910944957.4A CN201910944957A CN110839873B CN 110839873 B CN110839873 B CN 110839873B CN 201910944957 A CN201910944957 A CN 201910944957A CN 110839873 B CN110839873 B CN 110839873B
Authority
CN
China
Prior art keywords
solution
chitosan
preparing
osa
short amylose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910944957.4A
Other languages
English (en)
Other versions
CN110839873A (zh
Inventor
慕鸿雁
杜延兵
孙庆杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Agricultural University
Original Assignee
Qingdao Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Agricultural University filed Critical Qingdao Agricultural University
Priority to CN201910944957.4A priority Critical patent/CN110839873B/zh
Publication of CN110839873A publication Critical patent/CN110839873A/zh
Application granted granted Critical
Publication of CN110839873B publication Critical patent/CN110839873B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/03Organic compounds
    • A23L29/035Organic compounds containing oxygen as heteroatom
    • A23L29/04Fatty acids or derivatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/10Foods or foodstuffs containing additives; Preparation or treatment thereof containing emulsifiers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/30Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/30Physical treatment, e.g. electrical or magnetic means, wave energy or irradiation
    • A23L5/32Physical treatment, e.g. electrical or magnetic means, wave energy or irradiation using phonon wave energy, e.g. sound or ultrasonic waves
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/30Encapsulation of particles, e.g. foodstuff additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Molecular Biology (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明涉及一种壳聚糖与短直链淀粉制备多不饱和脂肪酸微胶囊的方法,其属于微胶囊制作领域。包括如下制作步骤:制备短直链淀粉,制备OSA‑短直链淀粉,配制OSA‑短直链淀粉溶液,配制壳聚糖溶液,配制乳液。本发明的有益效果是:将OSA‑短直链淀粉和壳聚糖作为壁材,所得的藻油微胶囊呈乳黄色,无腥味及异味,颗粒分别较均匀,具有较好的氧化稳定性。可以充分提高多不饱和脂肪酸及其脂的氧化稳定性,避免了交联剂在微胶囊中的应用,有效提高微胶囊的包埋效率。

Description

壳聚糖与短直链淀粉制备多不饱和脂肪酸微胶囊的方法
技术领域
本发明涉及一种壳聚糖与短直链淀粉制备多不饱和脂肪酸微胶囊的方法,其属于微胶囊制作领域。
背景技术
针对藻油因富含多不饱和脂肪酸氧化稳定性差,单独存在时极其容易氧化劣变、影响食用品质及功能发挥的问题,本发明旨在通过利用OSA-淀粉与壳聚糖在溶液中分别带有不同类型的电荷从而可以通过静电相互作用结合成囊的性质,利用复凝聚法来制备微胶囊。
多不饱和脂肪酸(Polyunsaturated fatty acid,PUFA)是指双键数量为2 或2个以上的长链脂肪酸的统称,广泛存在于海洋鱼油、藻油和一些植物油中。这些多不饱和脂肪酸能够降低心脑血管风险、神经退化性疾病发病率等,从而在维持人类健康方面发挥重要的作用。藻油是位于海洋生物链基端的藻类的提取物,其富含ω-3长碳链不饱和脂肪酸,是一种以功能性脂质为特征的新型食品资源,近年来在婴儿食品、保健食品中应用广泛。但由于藻油的高度不饱和性,因而极其容易氧化引起食品酸败、产生异味等,使得藻油在食品中的应用受到挑战。因而亟需采取适当的稳态化技术手段,提高这些富含PUFA油脂的氧化稳定性。食品工业常采用两种手段来减少富含PUFA的油脂在加工、运输和储藏过程中的氧化进程,一种是在油中加入合成/天然的抗氧化剂来防止氧化,另一种是采用微胶囊来阻隔油脂与光、氧气、热和水分等的直接接触。很多情况下,两者结合可以起到协同效果。
微胶囊是一种将芯材(如富PUFA的油)包埋于壁材中的新型的食品高新技术。通过选择合适的大分子物质作为壁材,可以将生物活性物质包埋起来,不仅提高活性物质的稳定性,还可以掩盖不良风味,并实现合理的缓控释作用,其中复凝聚法来制备微胶囊因具有包埋效率高、装载率高、条件温和、控释性强、芯材的保护性强等优点,而得以广泛应用。复凝聚法制备所得微胶囊具有较好的表面活性,可以快速吸附到油滴表面,形成均一的界面膜,该方法的原理主要是基于生物大分子在一定条件下能够形成带电物质,发挥聚电解质的作用。电荷不同的大分子之间通过静电相互作用而结合形成双层膜结构,从而将芯材有效地包埋。而将PUFA与某些具有抗氧化活性的物质共同进行包埋是未来的一个重要的研究趋势。
现有的微胶囊壁材多采用明胶和阿拉伯胶,明胶虽价廉易得,但无法满足某些有宗教信仰的或者素食主义者的需求。阿拉伯胶水溶性佳可形成低黏度溶液,但其组成中的蛋白难以耐受高温,性能难以达到均一。近年来植物基蛋白或者多糖作为壁材用于包埋活性物质得到了诸多关注,在各类活性组分的包埋上也得到了广泛应用。但是当以蛋白或多糖为壁材通过复凝聚反应制备微胶囊需要交联剂的作用,某些交联剂来自于化学合成,对微胶囊在食品中的安全应用存在影响,此外交联剂的介入虽然可以提高包埋率但可能影响微胶囊在体内外的释放和消化。专利号CN 104522318 A公布了一种提高富集omega3肉蛋奶的微胶囊脂肪粉及其制备方法,产品整个制备过程中均在较高温度下进行,对于热敏性的活性物质的保存不是一种优选方案;专利号CN105533691A公布了一种人体所必需的多不饱和脂肪酸(PUFA)的鱼油/藻油微胶囊化产品及其生产工艺,微胶囊粒径大小均一,但制备过程中采用了较多的乳化剂。
发明内容
本发明针对上述现有技术中存在的不足,提供一种壳聚糖与OSA淀粉为壁材的藻油微胶囊的制备方法。
本发明解决上述技术问题的技术方案如下:
一种壳聚糖与OSA淀粉制备藻油微胶囊的方法,包括如下制作步骤:
步骤1、制备短直链淀粉:称取100g糯米粉分散于0.2%(w/v)的NaOH 溶液中,室温反应12h后,离心去除上清,取沉淀水,洗至中性,于45℃真空干燥得到糯米淀粉,称取糯米淀粉10g,分散于100mL的0.1M的磷酸缓冲液中,沸水浴充分糊化后冷却,加入2000U/ml的普鲁兰酶溶液0.1ml,于58℃水解24h, 3500xg离心取上清液,沸水浴灭酶,去除沉淀,加入3倍体积的乙醇溶液,得到短直链淀粉;
步骤2、制备OSA-短直链淀粉:配制浓度为5%的短直链淀粉水分散液,于 120℃油浴30min,加入质量分数为25%的辛烯基琥珀酸酐(OSA),以0.1M NaOH 溶液调节其pH使之稳定在pH8.5,于50℃反应10h,加入0.1M HCl终止反应;
步骤3、配制OSA-短直链淀粉溶液:将OSA-短直链淀粉加入去离子水置于带塞三角瓶,60℃恒温磁力搅拌1h,取出来室温静置过夜以使其充分水化,得到浓度为4%-12%(w/v)的OSA-短直链淀粉溶液;
步骤4、配制壳聚糖溶液:首先配制浓度为1%的冰醋酸溶液,将壳聚糖粉末溶于冰醋酸溶液中,磁力搅拌2h后过夜使之充分溶解形成均匀透明的溶液,得到浓度为0.5-1.5%(w/v)的壳聚糖溶液;
步骤5、配制乳液:将OSA-短直链淀粉溶液与藻油混合后于60℃充分搅拌 5min,于8000rpm高速分散2min,室温下逐滴加入壳聚糖溶液,于1000rpm高速分散2min,在240W-420W的超声功率下维持4℃低温超声5-20min,将混合溶液在30℃调节至pH范围为2-9,继续震荡搅拌30min,10000×g,20℃离心 30min,取沉淀以去离子水洗涤至流出来的水呈中性,离心脱除水分后冻干,得到藻油微胶囊。
优选地,所述室温为20℃-25℃。
优选地,OSA-短直链淀粉溶液与藻油混合时藻油质量占OSA-短直链淀粉溶液质量的5%-25%。
优选地,OSA短直链-淀粉溶液与逐滴加入的壳聚糖溶液的质量比为 3:2-1:3。
优选地,所述磷酸缓冲液的pH为4.6。
本发明的有益效果是:将OSA-短直链淀粉和壳聚糖作为壁材,将质量比为 5-25%的藻油作为芯材与浓度为4-12%的OSA-短直链淀粉溶液混合,通过高速分散后逐滴加入0.5-1.5%的壳聚糖溶液,同样高速分散、超声乳化后得到均匀一致的乳状液,将乳状液离心后冻干得到藻油微胶囊,所得的藻油微胶囊呈乳黄色,无腥味及异味,颗粒分别较均匀,具有较好的氧化稳定性。可以充分提高多不饱和脂肪酸及其脂的氧化稳定性,避免了交联剂在微胶囊中的应用,从而有利于在体内的释放;采用的壳聚糖和淀粉均为天然大分子化合物,具有优良的生物可利用性和可降解性,无毒无污染,适于广泛推广和应用,制备过程在较低温度下进行,尤其适用于热敏性的生物活性组分的包埋。辛烯基琥珀酸淀粉酯(OSA-淀粉)是一种既带有亲水性基团又带有疏水性基团的双亲性物质,在食品工业中被用作乳化剂和稳定剂,能够形成稳定的油包水乳液;此外OSA- 淀粉在溶液中带有负电,可以与带正电荷的物质通过静电相互作用而形成复合物,将芯材物质包裹于其中。OSA-短直链淀粉在高固形物含量时形成黏度较低的溶液,有效提高微胶囊的包埋效率,且OSA-短直链淀粉经辛烯基琥珀酸酐改性后对于叶黄素等疏水性活性物质具有较好的包埋效率。利用OSA-短直链淀粉的乳化兼带电特性,使之在适当条件下与带正电的壳聚糖相结合制备针对多不饱和脂肪酸脂的微胶囊,避免了较多乳化剂的使用,并可以有效防止多不饱和脂肪酸脂的氧化。
附图说明:
图1为藻油微胶囊SEM图。
图2为本发明的工艺流程图。
图3为鱼油和藻油微胶囊在室温下贮藏30d过氧化值的变化情况。
具体实施方式
以下对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
实施例1
称取0.15g裂壶菌藻油(油中添加有200ppm的维生素E)加入到10mL浓度为10%(w/v)的OSA-短直链淀粉溶液中,藻油占OSA-短直链淀粉质量浓度的 15%,室温(20-25℃)、80000r/min高速分散2min,形成均匀的O/W乳状液;量取89mL 0.75%(w/v)的壳聚糖(分子量70-80kDa,脱乙酰度90%))溶液加入到上述乳状液中,加入的所述壳聚糖溶液中壳聚糖的质量与上述乳状液中OSA-短直链淀粉的质量比为2:3(g/g),继续保持室温(20-25℃)、10000r/min 高速分散3min;低温(4℃)于360W超声20min,最终得到均匀一致的O/W乳状液;
以6mol/L的NaOH溶液调节上述O/W乳状液的pH到6.0,25℃、300r/min 搅拌20min,使OSA-短直链淀粉与壳聚糖通过静电相互作用发生复凝聚反应,形成的复凝聚相在藻油液滴周围沉降,得到微胶囊悬浮液;
将上述混悬液于10000×g,25℃离心30min,收集微胶囊沉淀,先于超低温冰箱冷冻至恒温,然后冻干得到藻油微胶囊干膜,碾磨后得到微胶囊干粉。
对本实施例制得的微胶囊的粒径、电位、包埋率、氧化稳定性进行测定,方法如下:
包埋率测定:称取0.5g冻干后的微胶囊分散于3倍体积的正己烷,在360W 超声2-3min,4000r/min离心5min。取上清后,沉淀再以等体积的正己烷再次提取一次,合并两次提取液,真空旋转蒸发仪脱除溶剂称重所得微胶囊表面油脂重量。包埋率%=(油脂添加量-表面油重)/油脂添加量*100%。
粒径、电位测定:称取0.1g藻油微胶囊,以去离子水稀释100倍避免多重散射效应,在NANO ZS90激光粒度仪测定粒径和电位;颗粒和连续相的折射率分别设置为1.45和1.33。每个样品扫描3次,每次扫描间隔120s,测量温度 25℃,样品平行测定3次,取平均值。
氧化稳定性采用室温(25±1℃)贮藏实验来测定藻油微胶囊的氧化稳定性。将微胶囊置于具塞的玻璃样品瓶中,避光保存30d,定期取样测定其过氧化值随时间的变化情况。
实施例2
称取0.10g裂壶菌藻油(油中添加有200ppm的维生素E),加入50mL浓度为10%(w/v)的OSA-短直链淀粉溶液中,油相占OSA-短直链淀粉质量浓度的 20%,室温(20-25℃)、10000r/min高速分散2min,形成均匀的O/W乳状液;量取66.7mL浓度为0.50%的壳聚糖溶液(分子量40kDa,脱乙酰度90%),加入到上述乳状液中,加入的壳聚糖与OSA-短直链淀粉的质量比为1:1,继续保持室温(20-25℃)、8000r/min高速分散2min;低温(4℃)于360W超声15min,最终得到均匀一致的O/W乳状液;
以6mol/L的NaOH溶液调节上述O/W乳状液的pH到6.0,25℃、200r/min 搅拌20min,使OSA-短直链淀粉与壳聚糖通过静电相互作用发生复凝聚反应,形成的复凝聚相在藻油液滴周围沉降,得到微胶囊悬浮液;
将上述混悬液于10000×g,25℃离心30min,收集微胶囊沉淀,先于超低温冰箱冷冻至恒温,然后冻干得到藻油微胶囊干膜,碾磨后得到微胶囊干粉。
包埋率测定:称取0.5g冻干后的微胶囊分散于3倍体积的正己烷,在70%功率超声2-3min,4000r/min离心5min。取上清后,沉淀再以等体积的正己烷再次提取一次,合并两次提取液,真空旋转蒸发仪脱除溶剂称重所得微胶囊表面油脂重量。包埋率%=(油脂添加量-表面油重)/油脂添加量*100%。
粒径、电位测定:称取0.1g微胶囊,以去离子水稀释100倍避免多重散射效应,在NANO ZS90激光粒度仪测定粒径和电位;颗粒和连续相的折射率分别设置为1.45和1.33。每个样品扫描3次,每次扫描间隔120s,测量温度25℃,样品平行测定3次,取平均值。
氧化稳定性采用室温(25±1℃)贮藏实验来测定微胶囊的氧化稳定性。将微胶囊置于具塞的玻璃样品瓶中,避光保存4周,定期取样测定其过氧化值随时间的变化情况。
实施例3
称取0.18g金枪鱼油(油中含有200ppm的维生素E)加入到10mL浓度为 10%(w/v)的OSA-短直链淀粉溶液中,室温(20-25℃)、80000r/min高速分散 2min,形成均匀的O/W乳状液;
量取91mL 0.75%(w/v)的壳聚糖溶液(分子量70-80kDa,脱乙酰度90%) 加入到上述乳状液中,加入的所述壳聚糖溶液中壳聚糖的质量与上述乳状液中 OSA-短直链淀粉的质量比为2:3(g/g),继续保持室温(20-25℃)、8000r/min 高速分散2min;低温(4℃)于360W超声15min,最终得到均匀一致的O/W乳状液;
以6mol/L的NaOH溶液调节上述O/W乳状液的pH到6.0,25℃、250r/min 搅拌20min,使OSA-直链淀粉与壳聚糖通过静电相互作用发生复凝聚反应,形成的复凝聚相在鱼油液滴周围沉降,得到微胶囊悬浮液;
将上述混悬液于1000×g,25℃离心30min,收集微胶囊沉淀,先于超低温冰箱冷冻至恒温,然后冻干得到鱼油微胶囊干膜,碾磨后得到微胶囊干粉。
包埋率测定:称取0.5g冻干后的微胶囊分散于3倍体积的正己烷,在360W 超声2-3min,4000r/min离心5min。取上清后,沉淀再以等体积的正己烷再次提取一次,合并两次提取液,真空旋转蒸发仪脱除溶剂称重所得微胶囊表面油脂重量。包埋率%=(油脂添加量-表面油重)/油脂添加量*100%。
粒径、电位测定:称取0.1g鱼油微胶囊,以去离子水稀释100倍避免多重散射效应,在NANO ZS90激光粒度仪测定粒径和电位;颗粒和连续相的折射率分别设置为1.45和1.33。每个样品扫描3次,每次扫描间隔120s,测量温度 25℃,样品平行测定3次,取平均值。
氧化稳定性采用室温(25±1℃)贮藏实验来测定鱼油微胶囊的氧化稳定性。将微胶囊置于具塞的玻璃样品瓶中,避光保存30d,定期取样测定其过氧化值随时间的变化情况。
以上三个实施例的对比结果见如下附表1:
附表1三种实施例微胶囊的包埋率、粒径及电位
实施例 包埋率% 粒径/nm 电位/mV
实施例1 80.27 355.9 19.28mV
实施例2 82.75 325.3 25.77mV
实施例3 81.43 380.2 20.54mV
三种实施例中包埋率均为80%以上,粒径维持在300-400nm之间,电位为正值。本发明所制备的omega-3PUFA脂微胶囊产品呈乳黄色,无鱼腥味及异味。
OSA-淀粉和壳聚糖复凝聚法制备得到的鱼油和藻油微胶囊在室温下贮藏 30d过氧化值的变化情况见图3,由图3可知,微胶囊的氧化稳定性显著提高,在贮藏期内,未经包埋的鱼油和藻油的初始过氧化值分别为3.45±0.45meq/kg 和2.5±0.22meq/kg,贮藏30d后两者的过氧化值增加到29.3±0.43meq/kg和 27.67±0.55meq/kg;而鱼油和藻油微胶囊由于乳化过程和微胶囊表面油的存在促进氧化,因而贮藏初期过氧化值略高于未经包埋的鱼油和藻油,但在整个贮藏期间内,过氧化值显著低于未经包埋的两种油,贮藏30d后,鱼油和藻油微胶囊的过氧化值为9.23±0.43meq/kg和7.8±0.25meq/kg。由此可见,OSA-淀粉和壳聚糖通过复凝聚包埋鱼油和藻油可以显著提高其氧化稳定性,说明该方法可以应用于功能性不饱和脂的包埋,进而提高其在食品及药品中的应用效果。在试验期内,三种微胶囊的氧化稳定性较对照组均有显著的提高,说明本发明所制备的微胶囊可以较好地保护富含多不饱和脂肪酸的功能性脂质的氧化稳定性。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种壳聚糖与短直链淀粉制备多不饱和脂肪酸微胶囊的方法,其特征在于,包括如下制作步骤:
步骤1、制备短直链淀粉:称取100g糯米粉分散于0.2%(w/v)的NaOH溶液中,室温反应12h后,离心去除上清,取沉淀水,洗至中性,于45℃真空干燥得到糯米淀粉,称取糯米淀粉10g,分散于100mL的0.1M的磷酸缓冲液中,沸水浴充分糊化后冷却,加入2000U/ml的普鲁兰酶溶液0.1ml,于58℃水解24h,3500xg离心取上清液,沸水浴灭酶,去除沉淀,加入3倍体积的乙醇溶液,得到短直链淀粉;
步骤2、制备OSA-短直链淀粉:配制浓度为5%的短直链淀粉水分散液,于120℃油浴30min,加入质量分数为25%的辛烯基琥珀酸酐,以0.1M NaOH溶液调节其pH使之稳定在pH8.5,于50℃反应10h,加入0.1M HCl终止反应;
步骤3、配制OSA-淀粉溶液:将OSA-短直链淀粉加入去离子水置于带塞三角瓶,60℃恒温磁力搅拌1h,取出来室温静置过夜以使其充分水化,得到浓度为4%-12%(w/v)的OSA-淀粉溶液;
步骤4、配制壳聚糖溶液:首先配制浓度为1%的冰醋酸溶液,将壳聚糖粉末溶于冰醋酸溶液中,磁力搅拌2h后过夜使之充分溶解形成均匀透明的溶液,得到浓度为0.5-1.5%(w/v)的壳聚糖溶液;
步骤5、配制乳液:将OSA-淀粉溶液与藻油混合后于60℃充分搅拌5min,于8000rpm高速分散2min,室温下逐滴加入壳聚糖溶液,于1000rpm高速分散2min,在240W-420W的超声功率下维持4℃低温超声5-20min,将混合溶液在30℃调节pH至6.0,继续震荡搅拌30min,10000×g,20℃离心30min,取沉淀以去离子水洗涤至流出来的水呈中性,离心脱除水分后冻干,得到藻油微胶囊;OSA-淀粉溶液与藻油混合时藻油质量占OSA-淀粉溶液质量的5%-25%;OSA-淀粉溶液与逐滴加入的壳聚糖溶液的质量比为3:2-1:3。
2.根据权利要求1所述的壳聚糖与短直链淀粉制备多不饱和脂肪酸微胶囊的方法,其特征在于:所述室温为20℃-25℃。
3.根据权利要求1所述的壳聚糖与短直链淀粉制备多不饱和脂肪酸微胶囊的方法,其特征在于:所述磷酸缓冲液的pH为4.6。
CN201910944957.4A 2019-09-30 2019-09-30 壳聚糖与短直链淀粉制备多不饱和脂肪酸微胶囊的方法 Active CN110839873B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910944957.4A CN110839873B (zh) 2019-09-30 2019-09-30 壳聚糖与短直链淀粉制备多不饱和脂肪酸微胶囊的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910944957.4A CN110839873B (zh) 2019-09-30 2019-09-30 壳聚糖与短直链淀粉制备多不饱和脂肪酸微胶囊的方法

Publications (2)

Publication Number Publication Date
CN110839873A CN110839873A (zh) 2020-02-28
CN110839873B true CN110839873B (zh) 2023-07-04

Family

ID=69596354

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910944957.4A Active CN110839873B (zh) 2019-09-30 2019-09-30 壳聚糖与短直链淀粉制备多不饱和脂肪酸微胶囊的方法

Country Status (1)

Country Link
CN (1) CN110839873B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112536005B (zh) * 2020-11-05 2022-05-03 华南理工大学 一种淀粉包埋香气物质微胶囊及其制备方法
CN112998273A (zh) * 2021-03-10 2021-06-22 华南理工大学 一种包埋维生素e和藻油的微乳液和微胶囊及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6969530B1 (en) * 2005-01-21 2005-11-29 Ocean Nutrition Canada Ltd. Microcapsules and emulsions containing low bloom gelatin and methods of making and using thereof
US7488503B1 (en) * 2003-03-31 2009-02-10 Mccormick & Company, Inc. Encapsulation compositions and processes for preparing the same
CN101703490A (zh) * 2009-11-13 2010-05-12 杭州师范大学 聚多糖/无机纳米粒子杂化微纳米载药胶囊
CN103881816A (zh) * 2014-03-28 2014-06-25 中国热带农业科学院农产品加工研究所 香草兰提取物微胶囊、其制备方法及其应用
CN105533691A (zh) * 2015-12-15 2016-05-04 中国疾病预防控制中心营养与健康所 一种新型微纳米级鱼油/藻油微胶囊及其制备工艺
CN106580879A (zh) * 2016-12-06 2017-04-26 青岛农业大学 双亲性辛烯基琥珀酸短直链淀粉纳米颗粒及其制备方法
CN107836716A (zh) * 2017-12-04 2018-03-27 无限极(中国)有限公司 一种藻油微胶囊及其制备方法和应用
CN109007809A (zh) * 2018-08-16 2018-12-18 齐鲁工业大学 适于食管癌围术期患者肠道的专用食品的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7488503B1 (en) * 2003-03-31 2009-02-10 Mccormick & Company, Inc. Encapsulation compositions and processes for preparing the same
US6969530B1 (en) * 2005-01-21 2005-11-29 Ocean Nutrition Canada Ltd. Microcapsules and emulsions containing low bloom gelatin and methods of making and using thereof
CN101703490A (zh) * 2009-11-13 2010-05-12 杭州师范大学 聚多糖/无机纳米粒子杂化微纳米载药胶囊
CN103881816A (zh) * 2014-03-28 2014-06-25 中国热带农业科学院农产品加工研究所 香草兰提取物微胶囊、其制备方法及其应用
CN105533691A (zh) * 2015-12-15 2016-05-04 中国疾病预防控制中心营养与健康所 一种新型微纳米级鱼油/藻油微胶囊及其制备工艺
CN106580879A (zh) * 2016-12-06 2017-04-26 青岛农业大学 双亲性辛烯基琥珀酸短直链淀粉纳米颗粒及其制备方法
CN107836716A (zh) * 2017-12-04 2018-03-27 无限极(中国)有限公司 一种藻油微胶囊及其制备方法和应用
CN109007809A (zh) * 2018-08-16 2018-12-18 齐鲁工业大学 适于食管癌围术期患者肠道的专用食品的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Microencapsulation of algae oil by complex coacervation of chitosan and modified starch: Characterization and oxidative stability;Hongyan Mu等;International Journal of Biological Macromolecules;第66-73页 *

Also Published As

Publication number Publication date
CN110839873A (zh) 2020-02-28

Similar Documents

Publication Publication Date Title
Geranpour et al. Recent advances in the spray drying encapsulation of essential fatty acids and functional oils
de Almeida Paula et al. Use of gelatin and gum arabic for microencapsulation of probiotic cells from Lactobacillus plantarum by a dual process combining double emulsification followed by complex coacervation
Yao et al. Tailoring zein nanoparticle functionality using biopolymer coatings: Impact on curcumin bioaccessibility and antioxidant capacity under simulated gastrointestinal conditions
Weisany et al. Targeted delivery and controlled released of essential oils using nanoencapsulation: A review
Aghbashlo et al. The correlation of wall material composition with flow characteristics and encapsulation behavior of fish oil emulsion
CN110522061B (zh) 一种微胶囊及其制备方法
Korma et al. Spray-dried novel structured lipids enriched with medium-and long-chain triacylglycerols encapsulated with different wall materials: Characterization and stability
Wang et al. Coacervation technique as an encapsulation and delivery tool for hydrophobic biofunctional compounds
Mu et al. Microencapsulation of algae oil by complex coacervation of chitosan and modified starch: Characterization and oxidative stability
Zhu et al. Ultrasonic microencapsulation of oil-soluble vitamins by hen egg white and green tea for fortification of food
CN110839873B (zh) 壳聚糖与短直链淀粉制备多不饱和脂肪酸微胶囊的方法
JP2007528228A (ja) 脂質システムの生体高分子カプセル化および安定化、ならびにそれを利用する方法
CN107484985B (zh) 一种自乳化鱼油微胶囊及其生产工艺
Patrickab et al. Microencapsulation by complex coacervation of fish oil using gelatin/SDS/NaCMC
Jiang et al. Improving probiotic survival using water-in-oil-in-water (W1/O/W2) emulsions: Role of fish oil in inner phase and sodium alginate in outer phase
Rezvankhah et al. Investigating the effects of maltodextrin, gum arabic, and whey protein concentrate on the microencapsulation efficiency and oxidation stability of hemp seed oil
Liu et al. Natural egg yolk emulsion as wall material to encapsulate DHA by two-stage homogenization: Emulsion stability, rheology analysis and powder properties
Chen et al. Quinoa protein isolate-gum Arabic coacervates cross-linked with sodium tripolyphosphate: Characterization, environmental stability, and Sichuan pepper essential oil microencapsulation
Jia et al. Storage stability and in-vitro release behavior of microcapsules incorporating fish oil by spray drying
Liu et al. Optimization and evaluation of fish oil microcapsules
Ge et al. Storage stability and in vitro digestion of apigenin encapsulated in Pickering emulsions stabilized by whey protein isolate–chitosan complexes
Gao et al. Improving the gastrointestinal activity of probiotics through encapsulation within biphasic gel water-in-oil emulsions
Nguyen Le et al. Hydrolyzed Karaya gum: gelatin complex coacervates for microencapsulation of soybean oil and curcumin
Altuntas et al. Enhanced Oxidative Stability and Bioaccessibility of Sour Cherry Kernel Byproducts Encapsulated by Complex Coacervates with Different Wall Matrixes by Spray-and Freeze-Drying
Lv et al. Enhancing the physicochemical stability and bioaccessibility of curcumin-loaded soybean oil bodies emulsions in the in vitro elderly model

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant