CN107836716A - 一种藻油微胶囊及其制备方法和应用 - Google Patents
一种藻油微胶囊及其制备方法和应用 Download PDFInfo
- Publication number
- CN107836716A CN107836716A CN201711258183.7A CN201711258183A CN107836716A CN 107836716 A CN107836716 A CN 107836716A CN 201711258183 A CN201711258183 A CN 201711258183A CN 107836716 A CN107836716 A CN 107836716A
- Authority
- CN
- China
- Prior art keywords
- wall material
- microcapsules
- parts
- algae oil
- oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/115—Fatty acids or derivatives thereof; Fats or oils
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L29/00—Foods or foodstuffs containing additives; Preparation or treatment thereof
- A23L29/30—Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L29/00—Foods or foodstuffs containing additives; Preparation or treatment thereof
- A23L29/30—Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
- A23L29/35—Degradation products of starch, e.g. hydrolysates, dextrins; Enzymatically modified starches
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/125—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives containing carbohydrate syrups; containing sugars; containing sugar alcohols; containing starch hydrolysates
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23P—SHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
- A23P10/00—Shaping or working of foodstuffs characterised by the products
- A23P10/30—Encapsulation of particles, e.g. foodstuff additives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/02—Algae
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/5015—Organic compounds, e.g. fats, sugars
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/5021—Organic macromolecular compounds
- A61K9/5036—Polysaccharides, e.g. gums, alginate; Cyclodextrin
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Nutrition Science (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Molecular Biology (AREA)
- Pharmacology & Pharmacy (AREA)
- Mycology (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Alternative & Traditional Medicine (AREA)
- Botany (AREA)
- Medical Informatics (AREA)
- Microbiology (AREA)
- Medicinal Preparation (AREA)
- General Preparation And Processing Of Foods (AREA)
Abstract
本发明涉及食品工程技术领域,公开了一种藻油微胶囊及其制备方法和应用。本发明所述藻油微胶囊包括藻油、壁材、乳化剂和抗氧化剂;其中,所述壁材分为壁材A和壁材B,壁材A为麦芽糊精和/或玉米糖浆,壁材B为辛烯基琥珀酸酯化淀粉HI‑CAP100。本发明选择麦芽糊精、玉米糖浆以及辛烯基琥珀酸酯化淀粉HI‑CAP100作为壁材,以富含EPA和DNA的藻油为芯材制备微胶囊,不仅通过微胶囊技术减少EPA和DNA受外界环境因素的影响,维持产品的稳定,而且较为显著的提高微胶囊的含油率以及包埋率,进一步促进了富含EPA和DNA藻油的开发和利用。
Description
技术领域
本发明涉及食品工程技术领域,具体涉及一种藻油微胶囊及其制备方法和应用。
背景技术
海藻油是指从海洋藻类中提取的脂质,其最大的特点是富含亚麻酸、花生四烯酸、二十碳五烯酸(Eieosapentaenoicaeid,EPA)、二十二碳六烯酸(Doeosahexaenoicaeid,DHA)等对人体具有重要生理作用的脂肪酸。
EPA和DHA对光、热、氧等因素不稳定,极易氧化,氧化海藻油不但使生理活性功能丧失,还会对人体健康造成损害,从而影响了藻油的品质,其应用范围受到限制。
微胶囊技术是指将分散的固体、液体,甚至气体物质包裹起来,形成具有半透性或者密封囊膜的微小粒子技术。这些微小粒子被称为微胶囊,其大小一般为5-200μm不等,形状多样,取决于原料和制备方法。微胶囊化技术可以有效的减少活性物质对外界环境因素(如光、氧、水)的反应;减少芯材向环境的扩散和蒸发;控制芯材的释放;掩盖芯材的异味;改变芯材的物理性质(包括颜色,形状、密度、分散性等)、化学性质等,使产品质量稳定,延长其保藏期。
国内外对于藻油的微胶囊化研究相对较少,而主要研究蛋白对藻油进行分子包埋。除此之外,也有用环糊精和麦芽糊精作为壁材对藻油进行微胶囊包埋的研究报道,然而以现阶段微胶囊的方法,藻油微胶囊的含油率和包埋率不能同时保证较高水平,而且较易氧化,使得后续操作费用和生产成本较高。因此,急需一种同时提高藻油微胶囊含油率和包埋率的解决方案。
发明内容
有鉴于此,本发明的目的在于提供一种藻油微胶囊,使得所述藻油微胶囊同时具有较高的包埋率和含油率;
本发明的另外一个目的在于提供上述藻油微胶囊的制备方法以及所述藻油微胶囊在药品和/或食品中的相关应用。
为实现上述发明目的,本发明提供如下技术方案:
一种藻油微胶囊,包括藻油、壁材、乳化剂和抗氧化剂;其中,所述壁材分为壁材A和壁材B,壁材A为麦芽糊精和/或玉米糖浆,壁材B为辛烯基琥珀酸酯化淀粉HI-CAP100。
针对目前藻油微胶囊技术的含油率以及包封率不能同时保持较高的问题,本发明通过选择适宜的壁材,同时提高了藻油微胶囊的含油率和包埋率。
作为优选,以重量份计,所述藻油微胶囊包括藻油9~22.5份、壁材21~22.5份、乳化剂0~2.2份、抗氧化剂0.0012~0.0968份。在本发明具体实施方式中,所述藻油微胶囊可具体选择如下:
(1)藻油22.5份、壁材21.5份、乳化剂0.068份、抗氧化剂0.0171份;
(2)藻油22.5份、壁材22.43份、乳化剂0.068份、抗氧化剂0.0171份;
(3)藻油22.5份、壁材22.4份、乳化剂0.068份、抗氧化剂0.0171份;
作为优选,以重量份计,所述壁材A为3~8份,所述壁材B为14~19份。在本发明具体实施方式中,以重量份计,所述壁材可具体选择为(1)壁材A7.5份,壁材B14份;(2)壁材A3.73份,壁材B18.7份;(3)壁材A4.5份,壁材B17.9份;
在本发明的具体实施方式中,所述麦芽糊精的DE值为10~20,可具体选择为10、15或20;所述玉米糖浆的DE值为42。
作为优选,所述乳化剂为单甘脂、蔗糖酯或酪蛋白酸钠中的一种或两种以上;在本发明具体实施方式中,以重量份计,可具体选择为0.068份单甘脂作为乳化剂;以重量份计,当乳化剂为任意两种或三种时,各乳化剂重量份均相同;
作为优选,所述抗氧化剂为维生素E、维C棕榈酸酯或迷迭香提取物中的一种或两种以上。在本发明具体实施方式中,所述抗氧化剂为维生素E和维C棕榈酸酯;更具体地,以重量份计,所述抗氧化剂可具体选择为维生素E为0.0135份以及维C棕榈酸酯为0.0036份。
与其他不同壁材制成的对照微胶囊产品相比,本发明所述藻油微胶囊的含油率高达48~50%,同时包埋率在95%以上;而对照产品中,含油率较低的不高于45%,包埋率较低的不高于90%,并且无法同时做到两者高水平。基于这些优异的技术效果,本发明提出了所述藻油微胶囊在制备食品和/或药品中的应用。
同时,本发明还提供了所述藻油微胶囊的制备方法,包括:
将壁材溶于水,制得壁材水相;
将藻油、乳化剂和抗氧化剂混合,制得芯材油相;
将所述壁材水相和所述芯材油相混合,搅拌并高速剪切乳化,制得乳液;
将所述乳液均质、喷雾干燥,获得所述藻油微胶囊。
作为优选,所述壁材水相以及芯材油相的制备温度均为50~65℃。在本发明具体实施方式中,所述壁材水相以及芯材油相的制备温度均为60℃。
作为优选,所述搅拌时间为5~15min,在本发明具体实施方式中可具体搅拌10min;所述高速剪切乳化的转速为6000~20000r/min,时间为5-15min;在本发明具体实施方式中,所述高速剪切乳化的转速为12000r/min,时间为10min.
作为优选,所述均质的压力为20~40Mpa,均质的次数为1~4次。在本发明具体实施方式中,所述均质的压力为35Mpa,均质的次数为3次。
作为优选,所述喷雾干燥的进风温度为160~200℃,出风温度为60~100℃,雾化压力为0.2~0.5Mpa或雾化转速为20000~30000r/min。更优选地,喷雾干燥的进风温度为185~195℃,出风温度为85~95℃,雾化压力为0.4MPa或雾化转速为25000~30000r/min。在本发明具体实施方式中,喷雾干燥的进风温度为190℃,出风温度为90℃,雾化转速为28000r/min。
由以上技术方案可知,本发明选择麦芽糊精、玉米糖浆以及辛烯基琥珀酸酯化淀粉HI-CAP100作为壁材,以富含EPA和DNA的藻油为芯材制备微胶囊,不仅通过微胶囊技术减少EPA和DNA受外界环境因素的影响,维持产品的稳定,而且较为显著的提高微胶囊的含油率以及包埋率,进一步促进了富含EPA和DNA藻油的开发和利用。
具体实施方式
本发明公开了一种藻油微胶囊及其制备方法和应用,本领域技术人员可以借鉴本文内容,适当改进工艺参数实现。特别需要指出的是,所有类似的替换和改动对本领域技术人员来说是显而易见的,它们都被视为包括在本发明。本发明所述微胶囊及其制备方法和应用已经通过实施例进行了描述,相关人员明显能在不脱离本发明内容、精神和范围内对本文所述藻油微胶囊及其制备方法和应用进行改动或适当变更与组合,来实现和应用本发明技术。
如未特别说明,本发明具体实施例中各处理组所采用的藻油(富含EPA和DHA,购自美国,货号为5015295294)以及壁材原料均采用相同来源和品质的原材料,制备工艺和试验条件除应有的区别外,其余保持一致。
此外,本发明所述重量份均可以等比例转换为各种重量单位,如g、kg、斤、公斤等。
以下就本发明所提供的一种藻油微胶囊及其制备方法和应用做进一步说明。
实施例1:制备本发明所述藻油微胶囊
1、原料组分
藻油22.5份、麦芽糊精(DE20)7.5份、辛烯基琥珀酸酯化淀粉HI-CAP100为14份、单甘脂0.068份、维生素E0.0135份和维C棕榈酸酯0.0036份。
2、制备方法
称取HI-CAP100、麦芽糊精(DE20)混合均匀,加入60℃的去离子水500g,在60℃以300r/min搅拌至完全溶解均匀,制备成水相液;
再称取藻油置于另一容器中,在60℃下以300r/min搅拌,然后称取单甘脂、VE和VC棕榈酸酯加入其中,继续保温搅拌至完全溶解,制备成油相液;
将油相缓慢加入水相液中,并保持在60℃下搅拌10min后,于12000r/min高速剪切乳化2次,每次10min,获得乳液,将乳液用均质机在35MPa压力下均质3遍,形成粒径均匀的乳状液;将得到的乳状液通过加料泵进入压力喷雾干燥器,形成微胶囊颗粒。喷雾干燥条件为:进风温度190℃,出风温度90℃,雾化转速28000r/min。
所得微胶囊的包埋率为99.02%,含油率49.51%。
实施例2:制备本发明所述藻油微胶囊
1、原料组分
藻油22.5份、麦芽糊精(DE10)3.73份、辛烯基琥珀酸酯化淀粉HI-CAP100为18.7份、单甘脂0.068份、维生素E0.0135份和维C棕榈酸酯0.0036份。
2、制备方法
称取HI-CAP100、麦芽糊精(DE10)混合均匀,加入60℃的去离子水500g,在60℃以300r/min搅拌至完全溶解均匀,制备成水相液;
再称取藻油置于另一容器中,在60℃下以300r/min搅拌,然后称取单甘脂、VE和VC棕榈酸酯加入其中,继续保温搅拌至完全溶解,制备成油相液;
将油相缓慢加入水相液中,并保持在60℃下搅拌10min后,于12000r/min高速剪切乳化2次,每次10min,获得乳液,将乳液用均质机在35MPa压力下均质3遍,形成粒径均匀的乳状液;将得到的乳状液通过加料泵进入压力喷雾干燥器,形成微胶囊颗粒。喷雾干燥条件为:进风温度190℃,出风温度90℃,雾化转速28000r/min。
所得微胶囊的包埋率为96.48%,含油率48.74%。
实施例3:制备本发明所述藻油微胶囊
1、原料组分
藻油22.5份、麦芽糊精(DE15)4.5份、辛烯基琥珀酸酯化淀粉HI-CAP100为17.9份、单甘脂0.068份、维生素E0.0135份和维C棕榈酸酯0.0036份。
2、制备方法
称取HI-CAP100、麦芽糊精(DE15)混合均匀,加入60℃的去离子水500g,在60℃以300r/min搅拌至完全溶解均匀,制备成水相液;
再称取藻油置于另一容器中,在60℃下以300r/min搅拌,然后称取单甘脂、VE和VC棕榈酸酯加入其中,继续保温搅拌至完全溶解,制备成油相液;
将油相缓慢加入水相液中,并保持在60℃下搅拌10min后,于12000r/min高速剪切乳化2次,每次10min,获得乳液,将乳液用均质机在35MPa压力下均质3遍,形成粒径均匀的乳状液;将得到的乳状液通过加料泵进入压力喷雾干燥器,形成微胶囊颗粒。喷雾干燥条件为:进风温度190℃,出风温度90℃,雾化转速28000r/min。
所得微胶囊的包埋率为97.06%,含油率48.53%。
实施例4:不同壁材的微胶囊含油率和包埋率
试验组1:实施例1微胶囊;
试验组2:实施例2微胶囊;
试验组3:实施例3微胶囊;
对照组1:按照实施例1方法制备的微胶囊,区别在于壁材为14份明胶、7.5份麦芽糊精(DE20);
对照组2:按照实施例1方法制备的微胶囊,区别在于壁材为14份乳清分离蛋白、7.5份麦芽糊精(DE20);
对照组3:按照实施例1方法制备的微胶囊,区别在于壁材为14份大豆蛋白、7.5份麦芽糊精(DE20);
对照组4:按照实施例1方法制备的微胶囊,区别在于壁材为14份HI-CAP100、4.5份麦芽糊精(DE20)和3.0份葡萄糖粉;
对照组5:按照实施例1方法制备的微胶囊,区别在于壁材为7.5份小麦糖浆(DE42)、14份HI-CAP100;
对照组6:按照实施例1方法制备的微胶囊,区别在于壁材为7.5份淀粉糖浆(DE42)、14份HI-CAP100;
对照组7:按照实施例1方法制备的微胶囊,区别在于壁材为14份HI-CAP100、7.5份β-环糊精(DE20);
对照组8:按照实施例1方法制备的微胶囊,区别在于壁材为14份HI-CAP100、7.5份玉米糊精(DE20);
对照组9:按照实施例1方法制备的微胶囊,区别在于壁材为14份辛烯基琥珀酸酯化淀粉TE-135、4.5份麦芽糊精(DE20)和3.0份葡萄糖粉;
对照组10:按照实施例1方法制备的微胶囊,区别在于壁材为14份辛烯基琥珀酸酯化淀粉N-LOK、4.5份麦芽糊精(DE20)和3.0份葡萄糖粉;
表1不同壁材种类的藻油微胶囊的含油率和包埋率
由表1可以看出,不同壁材种类的组合有不同的包埋结果以及含油率,随意搭配无法同时保证较高的包埋率和含油率,而本发明所述微胶囊均同时具备较高的含油率和包埋率。
实施例5:相同壁材在不同比例下的微胶囊含油率和包埋率
试验组1:实施例1微胶囊;
试验组2:实施例2微胶囊;
试验组3:实施例3微胶囊;
对照组1:同实施例1,区别在于具体份数HI-CAP100为11.2份,麦芽糊精DE20为11.2份;
对照组2:同实施例1,区别在于具体份数HI-CAP100为7.5份,麦芽糊精DE20为14.9份;
对照组3:同实施例1,区别在于HI-CAP100:麦芽糊精DE20=1:5,具体份数HI-CAP100为25份,麦芽糊精DE20为1份;
表2相同壁材不同比例下的藻油微胶囊的含油率和包埋率
由表2数据可以看出,超出本发明壁材比例范围的处理组,其含油率和包埋率均较差,而本发明所述微胶囊均同时具备较高的含油率和包埋率。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (10)
1.一种藻油微胶囊,其特征在于,包括藻油、壁材、乳化剂和抗氧化剂;其中,所述壁材分为壁材A和壁材B,壁材A为麦芽糊精和/或玉米糖浆,壁材B为辛烯基琥珀酸酯化淀粉HI-CAP100。
2.根据权利要求1所述微胶囊,其特征在于,以重量份计,包括藻油9~22.5份、壁材21~22.5份、乳化剂0~2.2份、抗氧化剂0.0012~0.0968份,水为余量。
3.根据权利要求1所述微胶囊,其特征在于,以重量份计,所述壁材A为3~8份,所述壁材B为14~19份。
4.根据权利要求1所述微胶囊,其特征在于,所述乳化剂为单甘脂、蔗糖酯或酪蛋白酸钠中的一种或两种以上。
5.根据权利要求1所述微胶囊,其特征在于,所述抗氧化剂为维生素E、维C棕榈酸酯或迷迭香提取物中的一种或两种以上。
6.权利要求1-5任意一项所述藻油微胶囊在制备食品和/或药品中的应用。
7.权利要求1所述藻油微胶囊的制备方法,其特征在于,包括:
将壁材溶于水,制得壁材水相;
将藻油、乳化剂和抗氧化剂混合,制得芯材油相;
将所述壁材水相和所述芯材油相混合,搅拌并高速剪切乳化,制得乳液;
将所述乳液均质、喷雾干燥,获得所述藻油微胶囊。
8.根据权利要求7所述制备方法,其特征在于,所述壁材水相以及芯材油相的制备温度均为50~65℃。
9.根据权利要求7所述制备方法,其特征在于,所述均质的压力为20~40Mpa,均质的次数为1~4次。
10.根据权利要求7所述制备方法,其特征在于,所述喷雾干燥的进风温度为160~200℃,出风温度为60~100℃,雾化压力为0.2~0.5Mpa或雾化转速为20000~30000r/min。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711258183.7A CN107836716B (zh) | 2017-12-04 | 2017-12-04 | 一种藻油微胶囊及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711258183.7A CN107836716B (zh) | 2017-12-04 | 2017-12-04 | 一种藻油微胶囊及其制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107836716A true CN107836716A (zh) | 2018-03-27 |
CN107836716B CN107836716B (zh) | 2021-06-29 |
Family
ID=61663427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711258183.7A Active CN107836716B (zh) | 2017-12-04 | 2017-12-04 | 一种藻油微胶囊及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107836716B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110839873A (zh) * | 2019-09-30 | 2020-02-28 | 青岛农业大学 | 壳聚糖与短直链淀粉制备多不饱和脂肪酸微胶囊的方法 |
CN111919909A (zh) * | 2020-08-16 | 2020-11-13 | 烟台大学 | 一种藻油微胶囊粉及其制备方法 |
CN112754016A (zh) * | 2021-02-07 | 2021-05-07 | 枣庄学院 | 一种高稳定性藻油dha微胶囊及其制备方法 |
CN112869050A (zh) * | 2021-03-20 | 2021-06-01 | 郑州雪麦龙食品香料有限公司 | 一种花椒精油微胶囊的制备方法及其在煎炸食品中的应用 |
CN114041601A (zh) * | 2021-12-06 | 2022-02-15 | 润科生物工程(福建)有限公司 | 一种制备dha微胶囊粉的工艺 |
CN114452909A (zh) * | 2022-02-10 | 2022-05-10 | 晨光生物科技集团股份有限公司 | 一种高稳定性辣椒红粉末及其制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103082033A (zh) * | 2013-02-06 | 2013-05-08 | 浙江中同科技有限公司 | 一种以辛烯基琥珀酸淀粉钠为壁材的速溶粉末油脂及其制备方法 |
CN106509893A (zh) * | 2016-11-04 | 2017-03-22 | 无限极(中国)有限公司 | 一种精油微胶囊及其制备方法 |
-
2017
- 2017-12-04 CN CN201711258183.7A patent/CN107836716B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103082033A (zh) * | 2013-02-06 | 2013-05-08 | 浙江中同科技有限公司 | 一种以辛烯基琥珀酸淀粉钠为壁材的速溶粉末油脂及其制备方法 |
CN106509893A (zh) * | 2016-11-04 | 2017-03-22 | 无限极(中国)有限公司 | 一种精油微胶囊及其制备方法 |
Non-Patent Citations (2)
Title |
---|
李艳等: "利用辛烯基琥珀酸酯化淀粉进行核桃油微胶囊化的研究 ", 《食品工业科技》 * |
王贝贝等: "变性淀粉对大蒜精油微胶囊化工艺条件的优化 ", 《贵州农业科学》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110839873A (zh) * | 2019-09-30 | 2020-02-28 | 青岛农业大学 | 壳聚糖与短直链淀粉制备多不饱和脂肪酸微胶囊的方法 |
CN110839873B (zh) * | 2019-09-30 | 2023-07-04 | 青岛农业大学 | 壳聚糖与短直链淀粉制备多不饱和脂肪酸微胶囊的方法 |
CN111919909A (zh) * | 2020-08-16 | 2020-11-13 | 烟台大学 | 一种藻油微胶囊粉及其制备方法 |
CN112754016A (zh) * | 2021-02-07 | 2021-05-07 | 枣庄学院 | 一种高稳定性藻油dha微胶囊及其制备方法 |
CN112754016B (zh) * | 2021-02-07 | 2022-12-02 | 枣庄学院 | 一种高稳定性藻油dha微胶囊及其制备方法 |
CN112869050A (zh) * | 2021-03-20 | 2021-06-01 | 郑州雪麦龙食品香料有限公司 | 一种花椒精油微胶囊的制备方法及其在煎炸食品中的应用 |
CN112869050B (zh) * | 2021-03-20 | 2023-10-10 | 郑州雪麦龙食品香料有限公司 | 一种花椒精油微胶囊的制备方法及其在煎炸食品中的应用 |
CN114041601A (zh) * | 2021-12-06 | 2022-02-15 | 润科生物工程(福建)有限公司 | 一种制备dha微胶囊粉的工艺 |
CN114452909A (zh) * | 2022-02-10 | 2022-05-10 | 晨光生物科技集团股份有限公司 | 一种高稳定性辣椒红粉末及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107836716B (zh) | 2021-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107836716A (zh) | 一种藻油微胶囊及其制备方法和应用 | |
Gao et al. | Review of recent advances in the preparation, properties, and applications of high internal phase emulsions | |
Liu et al. | Food-grade nanoemulsions: preparation, stability and application in encapsulation of bioactive compounds | |
Öztürk | Nanoemulsions for food fortification with lipophilic vitamins: Production challenges, stability, and bioavailability | |
de Souza Simões et al. | Micro-and nano bio-based delivery systems for food applications: In vitro behavior | |
Lavanya et al. | Influence of spray-drying conditions on microencapsulation of fish oil and chia oil | |
Bosnea et al. | Complex coacervation as a novel microencapsulation technique to improve viability of probiotics under different stresses | |
do Amaral et al. | Microencapsulation and Its Uses in Food Science and Technology: A | |
Ifeduba et al. | Microencapsulation of stearidonic acid soybean oil in complex coacervates modified for enhanced stability | |
Li et al. | Preparation of Bifidobacterium breve encapsulated in low methoxyl pectin beads and its effects on yogurt quality | |
Chen et al. | Hybrid bionanoparticle-stabilized pickering emulsions for quercetin delivery: effect of interfacial composition on release, lipolysis, and bioaccessibility | |
Haji et al. | Application of Pickering emulsions in probiotic encapsulation-A review | |
Camelo-Silva et al. | Innovation and trends in probiotic microencapsulation by emulsification techniques | |
Pandey et al. | Multilayer co-encapsulation of probiotics and γ-amino butyric acid (GABA) using ultrasound for functional food applications | |
CN107484985A (zh) | 一种自乳化鱼油微胶囊及其生产工艺 | |
Loyeau et al. | Encapsulation of potential probiotic and canola oil through emulsification and ionotropic gelation, using protein/polysaccharides Maillard conjugates as emulsifiers | |
Amiri et al. | Effect of the molecular structure and mechanical properties of plant-based hydrogels in food systems to deliver probiotics: an updated review | |
Gahruie et al. | Co‐encapsulation of vitamin D3 and saffron petals’ bioactive compounds in nanoemulsions: Effects of emulsifier and homogenizer types | |
Luo et al. | Recent progress in food‐grade double emulsions: Fabrication, stability, applications, and future trends | |
Soliman et al. | Characterization of carotenoids double-encapsulated and incorporate in functional stirred yogurt | |
Cittadini et al. | Encapsulation techniques to increase lipid stability | |
Okonkwo et al. | Application of biogels for bioactives delivery: Recent developments and future research insights | |
Li et al. | Study of the encapsulation efficiency and controlled release property of whey protein isolate--polysaccharide complexes in W1/O/W2 double emulsions | |
Ghiasi et al. | An Updated Comprehensive Overview of Different Food Applications of W1/O/W2 and O1/W/O2 Double Emulsions | |
Chen et al. | Recent progress in fish oil-based emulsions by various food-grade stabilizers: Fabrication strategy, interfacial stability mechanism and potential application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |