WO2022033408A1 - 一种斜坡结晶及固液分离系统 - Google Patents

一种斜坡结晶及固液分离系统 Download PDF

Info

Publication number
WO2022033408A1
WO2022033408A1 PCT/CN2021/111378 CN2021111378W WO2022033408A1 WO 2022033408 A1 WO2022033408 A1 WO 2022033408A1 CN 2021111378 W CN2021111378 W CN 2021111378W WO 2022033408 A1 WO2022033408 A1 WO 2022033408A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
slope
crystallization
brine
liquid separation
Prior art date
Application number
PCT/CN2021/111378
Other languages
English (en)
French (fr)
Inventor
陈旗新
陈羿材
曾永平
Original Assignee
暨南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 暨南大学 filed Critical 暨南大学
Publication of WO2022033408A1 publication Critical patent/WO2022033408A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D36/00Filter circuits or combinations of filters with other separating devices
    • B01D36/04Combinations of filters with settling tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0059General arrangements of crystallisation plant, e.g. flow sheets
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/04Chlorides
    • C01D3/08Preparation by working up natural or industrial salt mixtures or siliceous minerals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D5/00Sulfates or sulfites of sodium, potassium or alkali metals in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D2009/0086Processes or apparatus therefor

Definitions

  • the invention relates to the fields of environmental protection, energy saving and salt chemical industry, in particular to a slope crystallization and solid-liquid separation system.
  • the traditional salt and nitrate industry mostly uses nitrate ponds or salt ponds for freezing separation or evaporation and crystallization.
  • the characteristic is that the brine in the pond has a certain depth, so the energy obtained (or emitted) through the environment is diluted and averaged by a large amount of brine, making The overall temperature change of the brine is small, and the nitrate precipitated by freezing or the salt precipitated by evaporation at the average temperature is too thin to be harvested in the same year, which limits the efficiency of freezing nitrate in winter or drying salt in summer.
  • Peng Saijun and others disclosed in the invention patent with the application number CN201811472718.5 a process for producing salt and nitrate by evaporation of brine in a salt-and-nitride system, and proposed a method of taking brine in a salt-nitrile system as a raw material , A device for evaporating and separating salt, nitrate, and brine by using different evaporation devices and a process method for applying the same.
  • the invention introduces the brine into the evaporation device that can adjust different temperatures, and evaporates and crystallizes the brine to obtain purity. Higher sodium chloride and sodium sulfate products.
  • this invention requires more process steps and corresponding devices, and the operation process needs to consume steam.
  • the present invention provides a slope crystallization and solid-liquid separation system, including a brine buffer tank, a slope crystallization system, and a mother liquor and a crystal for separating the output of the slope crystallization system.
  • the solid-liquid separation system, the brine buffer tank is located below the slope crystallization system and is connected with the brine distribution system arranged at the top of the slope crystallization system through a pipeline, and the solid-liquid separation system is located at the bottom of the slope crystallization system.
  • the brine buffer tank is set under the cover of the inclined plate component of the slope crystallization system, which can prevent the rainwater from diluting the brine when it rains, and the saturated brine in the brine buffer tank is evenly distributed at the top of the slope through the communication pipeline Scattered and dripped along the slope surface to form a falling film.
  • the brine exchanged energy with the air, supersaturated and crystallized continuously.
  • the crystals and mother liquor were collected and converged in the solid-liquid separation system at the bottom of the slope, and the solid-liquid separation system carried out After the solid-liquid separation operation, the crystals are automatically transported to the external output device, and the mother liquor is introduced into the brine buffer tank for cyclic crystallization again.
  • This slope crystallization and solid-liquid separation system realizes the efficient automatic crystallization operation of brine through a simple structure design
  • the natural force is used to increase the rate of brine crystallization, and the industrial demands of large-scale, low-cost, high-efficiency and environmental protection are realized.
  • the brine distribution system includes a brine lift pump, a brine conveying pipe, and a water distribution pipe located at the top of the slope crystallization system, the water distribution pipe is connected to the brine buffer tank through the brine conveying pipe, and the water distribution pipe is connected to the brine buffer tank.
  • the brine buffer tank transports brine to the water distribution pipe at the top of the slope crystallization device through the brine transportation pipeline. The rate of brine flowing down the top of the slope is freely controllable, which improves the operability of the operation.
  • the slope crystallization system includes a support and several inclined plate assemblies mounted on the support.
  • the inclined plate assembly adopts a ventilation structure design, and the inclined plate assembly includes a plurality of inclined plates arranged in steps and a plurality of inclined plates connected to each other. The bottom plate of the inclined plate.
  • multiple horizontal beams and erected inclined plates make inclined plate components with different gradients formed on the surface of the slope crystallization device.
  • the air can be freely circulated before and after the inclined plate, which further enhances the energy exchange between the brine and the air when the inclined plate components flow down, and improves the efficiency of evaporation and crystallization.
  • Each of the inclined plates is provided with numerous horizontal steps along the longitudinal direction to generate turbulent flow when the brine flows, and further enhance the energy exchange between the brine and the air.
  • the solid-liquid separation system includes a collection tank arranged at the bottom of the inclined plate of the slope crystallization system and a solid-liquid separation tank arranged at the bottom of the collection tank.
  • the collection tank provided at the bottom of the slope crystallization system can automatically collect the liquid and crystals falling from the entire slope, and automatically introduce it into the solid-liquid collection tank, realizing the automation of related operations.
  • the collection tank includes a solid-liquid collection tank, a rainwater collection tank, an oblique fine mesh, and a test device for detecting the conductivity of the mother liquor, and between the solid-liquid collection tank and the rainwater collection tank, there is a device for introducing the mother liquid into the to the diversion flap device in the solid-liquid collection tank or the rainwater collection tank, and the diversion flap device is electrically connected to the test device;
  • the collection tank is provided with a rainwater collection tank and a solid
  • the liquid collection tank, the solid-liquid collection tank is provided with the solid-liquid collection tank outlet, and the rainwater collection tank is provided with a rainwater pipeline, which can separately export the crystalline brine and rainwater to solve the problem of dilution and pollution of the mother liquor by rainwater.
  • the deflector flap device includes a flap motor mounted on the collection tank, a flap mechanism provided on the output shaft of the flap motor, and a deflector flap fixedly connected to the flap mechanism,
  • the deflector flap is arranged below the oblique fine mesh and is interposed between the solid-liquid collection tank and the rainwater collection tank; the flap motor is electrically connected to the testing device.
  • the brine entering the solid-liquid collection tank is analyzed through the liquid collection tray and the conductivity sensor therein, and then the flap mechanism in the guide flap device is controlled to perform corresponding actions to reduce the brine concentration
  • the low rainwater is introduced into the rainwater collection tank, and is exported to the external channel through the rainwater pipeline.
  • the solid-liquid mixture with normal brine concentration is introduced into the solid-liquid collection tank, and is introduced into the solid-liquid separation tank through the outlet of the solid-liquid collection tank.
  • the net can ensure that the solid crystals are introduced into the solid-liquid collection tank for collection under different conditions.
  • the slope crystallization and solid-liquid separation system can automatically make corresponding adjustments to different weather or other conditions, realize the automatic operation of the whole mechanism, liberate manpower, and lay the foundation for practical application of industrialization.
  • the testing device comprises a liquid collection tray set between the inclined fine mesh and the flow guide flap, a conductivity sensor set in the liquid collection tray, and an electrical conductivity sensor electrically connected to the conductivity sensor.
  • the controller is electrically connected with the turning motor.
  • the conductivity sensor in the liquid collecting tray detects the conductivity of the liquid filtered by the inclined fine mesh to remove the solid crystals, and controls the flap motor through the controller according to the detection result, so as to realize Timely detection and corresponding operation of weather conditions and system operating conditions.
  • an overflow weir is provided in the solid-liquid separation tank, and the overflow weir separates the solid-liquid separation tank into a solid settling tank and a mother liquor buffer tank, and the mother liquid buffer tank is provided with a first liquid level Sensor, mother liquor pump and mother liquor pumping pipeline.
  • the solid settling tank automatically introduces the mother liquor into the mother liquor buffer tank through the setting of the overflow weir structure, and completes the automatic separation of the mother liquor and the crystal; on the other hand, the mother liquor pump is controlled to start and stop by the first liquid level sensor, The mother liquor pumping pipeline automatically transfers the mother liquor in the mother liquor buffer tank, and through the cyclic crystallization, the maximum development rate of the brine and the utilization and treatment of the mother liquor are ensured, and the automatic operation of the process flow is realized.
  • a solid lifting device is provided in the solid sedimentation tank, one end of the solid lifting device is located at the bottom of the solid sedimentation tank, and the other end of the solid lifting device is connected to an external solid conveying device.
  • the solid lifting and conveying device drives its internal spiral structure to rotate through the driving device to transport the solid material from one end to the other end, and the solid lifting and conveying device lifts and transports the crystals at the bottom of the solid sedimentation tank to the solid sedimentation.
  • Loading trucks outside the pool or transferring to the storage yard through other conveying machinery realizes high-efficiency automation of the process flow.
  • the top of the slope of the slope crystallization system is provided with an air temperature sensor, a humidity sensor and an illuminance sensor for detecting climatic conditions; a second liquid level sensor is provided in the brine buffer tank.
  • a brine buffer pool By setting up a brine buffer pool, it is possible to adjust and control between different brine evaporation pools, extract saturated brine as much as possible, and ensure the crystallization efficiency in the subsequent slope falling film crystallization operation; the temperature sensor at the top of the slope of the slope crystallization system, the humidity The sensor and the illuminance sensor can monitor the weather conditions, so as to control the brine pumping distribution system, properly control the pumping speed of the brine pump, improve the crystallization effect of brine crystallization operation, and cope with different weather conditions;
  • the present invention has the following advantages:
  • the brine can form a uniform falling film on its surface, and the large and small steps extending longitudinally along the inclined plane provide a larger interface for the most efficient energy and material exchange between the brine and the air, so that the brine can quickly reach Ambient or slope surface temperature, the crystallization effect is greatly improved than that in the crystallization pool;
  • the gas and liquid energy exchange forms a directional airflow along the slope surface, which further enhances the gas and liquid energy exchange and evaporation;
  • the crystals and the mother liquor flow into the solid-liquid separation tank through the collection tank, and are immediately concentrated and separated, realizing immediate production and harvesting, eliminating the need for salt fishing in the crystallization tank or excavation of the nitrate tank in the traditional salt drying process. It not only saves the cost of machinery and labor, but also reduces the dust pollution. In addition, because the small crystals are harvested in time before the adhesion, and the crushing and other processes are eliminated, the energy consumption and cost are further reduced;
  • the crystals obtained by this slope crystallization and solid-liquid separation system are formed by rapid crystallization on the slope after clarification with the brine buffer tank, and the product has high purity and high value;
  • the crystal size obtained by this slope crystallization and solid-liquid separation system is fine and uniform, which is conducive to later use or reprocessing;
  • This slope crystallization and solid-liquid separation system creates conditions for the modernization and intelligence of the ancient and traditional industry of salt and nitrate production. It can use energy exchange and crystallization inclined plate components to accurately freeze or crystallize according to weather conditions, not only can improve Make full use of seasonal and day and night temperature differences to extend the total time of natural energy utilization, and can also reduce the pollution of wind and sand to products and the dilution of brine by rain and snow through optimal management of product fluids.
  • Fig. 1 is the structural representation of slope crystallization and solid-liquid separation system of the present invention
  • FIG. 2 is a schematic structural diagram of a sloping plate assembly in a slope crystallization and solid-liquid separation system of the present invention
  • Fig. 3 is the structural representation of the collecting tank in the slope crystallization and solid-liquid separation system of the present invention.
  • Fig. 4 is a partial enlarged view at A in Fig. 3;
  • FIG. 5 is a schematic structural diagram of a solid-liquid separation tank in the slope crystallization and solid-liquid separation system of the present invention.
  • 1 water distribution pipe
  • 2 inclined plate
  • 21 support
  • 22 bottom plate
  • 23 first bayonet structure
  • 24 second bayonet structure
  • 25 upper flanging structure
  • 3 collecting groove
  • 31 solid-liquid collection tank
  • 32 rainwater collection tank
  • 33 deflector flap
  • 34 flipper motor
  • 35 flipper mechanism
  • 36 rain water pipe
  • 37 slanted fine mesh
  • 38 test device
  • a slope crystallization and solid-liquid separation system includes a brine buffer tank, a slope crystallization system, and a solid-liquid separation system for separating mother liquor and crystals output from the slope crystallization system, and a brine buffer tank. It is located below the slope crystallization system and is connected to the brine distribution system set at the top of the slope crystallization system through a pipeline, and the solid-liquid separation system is located at the bottom of the slope crystallization system.
  • the brine buffer pool is set under the cover of the inclined plate component of the slope crystallization system, which can prevent the rainwater from diluting the brine when it rains.
  • the saturated brine in the brine buffer pool is evenly spread on the top of the slope through the connecting pipe, and flows down the slope surface. A falling film is formed, the brine exchanges energy with the air during the descending process, becomes supersaturated and continuously precipitates salt crystals, and the crystals and mother liquor are collected and converged in the solid-liquid separation system at the bottom of the slope. Automatic delivery to external output device.
  • This slope crystallization and solid-liquid separation system greatly enhances the energy exchange efficiency between brine and the environment through a simple structural design, makes full use of natural forces to increase the rate of brine crystallization, and realizes the industrial demands of large-scale, low-cost, high-efficiency and environmentally friendly salt and nitrate.
  • the brine distribution system includes a brine lift pump, a brine transportation pipeline and a water distribution pipe 1 located at the top of the slope crystallization system.
  • the water distribution pipe 1 is connected to the brine buffer pool through the brine transportation pipeline, and the water distribution pipe 1 is provided with directional spray holes or slits , the brine buffer tank transports the brine to the water distribution pipe 1 at the top of the slope crystallization device through the brine transportation pipeline.
  • the brine can flow down the slope surface to form a falling film.
  • the flow rate at the top of the slope is freely controllable, which improves the operability of the operation.
  • the slope crystallization system includes a support 21 and several inclined plate assemblies mounted on the support 21.
  • the inclined plate assembly includes a plurality of inclined plates 2 arranged in steps and a bottom plate 22 connected to the plurality of inclined plates 2.
  • the bottom plate 22 is far from the solid-liquid separation.
  • One end of the system is provided with a first bayonet structure 23, and the first bayonet structure 23 is clamped with the beam of the bracket 21; one end of the bottom plate 22 close to the solid-liquid separation system is provided with a second bayonet structure 24;
  • the inclined plate 2 away from the solid-liquid separation system is provided with an upper flanging structure 25 that matches the second bayonet structure 24.
  • the brine can flow down in sequence in the inclined plate components of different heights, and the gap between the inclined plate components allows the air to circulate freely before and after the inclined plate 2, which further improves the total wind pressure on the inclined plate while dispersing the total wind pressure on the inclined plate.
  • the solid-liquid separation system includes a collection tank 3 arranged at the bottom of the inclined plate 2 of the slope crystallization system and a solid-liquid separation tank 4 arranged at the bottom of the collection tank 3.
  • the collection tank 3 arranged at the bottom of the slope crystallization system can automatically drop the entire slope. The liquid and crystals are collected and gathered, and automatically introduced into the solid-liquid collection tank 4 to realize the automation of related operations.
  • the collection tank 3 includes a solid-liquid collection tank 31, a rainwater collection tank 32, an inclined fine mesh 37 and a test device 38 for detecting the conductivity of the mother liquid.
  • the mother liquor is introduced into the diversion flap device in the solid-liquid collection tank 31 or the rainwater collection tank 32, and the diversion flap device is electrically connected with the test device 38;
  • the solid-liquid collection tank 31 is provided with a solid-liquid collection tank outlet 39, and the rainwater collection tank 32 is provided with a rainwater pipe 36 that communicates with the external drainage system
  • the collection tank 3 is provided with a rainwater collection tank 32 and a solid-liquid collection tank 31,
  • the solid-liquid collection tank 31 is provided with a solid-liquid collection tank outlet 39, and the rainwater collection tank 32 is provided with
  • There is a rainwater pipe 36 which can separately export the crystalline brine and rainwater, so as to solve the problem of the dilution of the brine by the rainwater.
  • the deflector flap device includes a flap motor 34 installed on the collection tank 3, a flap mechanism 35 arranged on the output shaft of the flap motor 34, and a deflector flap 33 fixedly connected with the flap mechanism 35.
  • the flow flap 33 is arranged under the oblique fine mesh 37 and is between the solid-liquid collection tank 31 and the rainwater collection tank 32; the flap motor is electrically connected to the test device 38, and the conductivity test sensor is passed through the liquid collection shallow plate and the rainwater collection tank 32.
  • the brine entering the solid-liquid collection tank 31 is analyzed, and then the flap mechanism 35 in the diversion flap device is controlled to perform corresponding actions, and the rainwater with too low brine concentration is introduced into the rainwater collection tank 32, and is exported to the rainwater pipe 36.
  • the solid-liquid mixture with normal brine concentration is introduced into the solid-liquid collection tank 31, and is introduced into the solid-liquid separation tank 4 through the solid-liquid collection tank outlet 39.
  • the oblique fine mesh 37 can ensure that the solids are collected under different conditions.
  • the crystals are introduced into the solid-liquid collection tank 4 for collection.
  • the slope crystallization and solid-liquid separation system can automatically make corresponding adjustments to different weather or other conditions, realize the automatic operation of the whole mechanism, liberate manpower, and lay the foundation for practical application of industrialization.
  • the testing device 38 includes a liquid collecting tray arranged between the inclined fine mesh 37 and the guide flap 35, a conductivity sensor arranged in the liquid collecting tray, and a controller electrically connected to the conductivity sensor, and controls the The device is electrically connected to the flap motor 34, and the conductivity sensor in the liquid collection tray detects the conductivity of the liquid filtered out of the solid crystals through the inclined fine mesh 37, and controls the flap motor 34 through the controller according to the detection result. , to realize the timely detection and corresponding operation of weather conditions and system operating conditions.
  • the solid-liquid separation tank 4 is provided with an overflow weir 42, and the overflow weir 42 separates the solid-liquid separation tank 4 into a solid sedimentation tank 41 and a mother liquid buffer tank 43, and the mother liquid buffer tank 43 is provided with a first liquid level sensor 45 , the mother liquor pump and the mother liquor pumping pipeline 44 that is connected with the brine buffer tank, the solid settling tank 41 automatically imports the mother liquor in the mother liquor buffer tank 43 by the setting of the overflow weir 42 structure, completes the automatic separation of the mother liquor and the crystal;
  • the mother liquor pump is controlled to start and stop by the first liquid level sensor 45, and the mother liquor in the mother liquor buffer pool 43 is automatically transferred away through the mother liquor pumping pipeline 44, thereby realizing the automatic operation of the technological process.
  • the solid sedimentation tank 41 is provided with a solid lifting device 5, one end of the solid lifting device 5 is located at the bottom of the solid sedimentation tank 41, and the other end of the solid lifting device 5 is connected with an external solid conveying device, and the solid lifting conveying device 5 is driven by
  • the device drives its internal spiral structure to rotate so as to transport the solid materials from one end to the other end, and the crystals at the bottom of the solid sedimentation tank 41 are lifted and transported to the solid sedimentation tank 41 through the solid lifting and conveying device 5.
  • the storage yard realizes the high-efficiency automation of the technological process.
  • the top of the slope of the slope crystallization system is provided with an air temperature sensor, a humidity sensor and an illuminance sensor for detecting climatic conditions; a second liquid level sensor is arranged in the brine buffer pool, by setting the brine buffer pool, it can be carried out between different sources of brine pools. Control and control to ensure the normal operation of the falling film crystallization operation on the slope; the temperature sensor, humidity sensor and illuminance sensor at the top of the slope of the slope crystallization system can monitor the weather conditions, so as to control the brine pumping distribution system and control the pumping speed of the brine pump. Carry out appropriate regulation to improve the crystallization effect of brine crystallization operation and cope with different weather conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

一种斜坡结晶及固液分离系统,包括卤水缓冲池,斜坡结晶系统以及固液分离系统,斜坡结晶系统下方设置有卤水缓冲池,卤水缓冲池与设置在斜坡结晶系统顶部的卤水分配系统相连接。通过将卤水缓冲池中卤水提升并分布到斜坡顶部,让卤水在斜坡上下淌过程中形成降膜并快速蒸发或冷冻结晶,在坡底固液分离系统中沉淀获得高纯度盐硝晶体,并可自动传输至外部装置。

Description

一种斜坡结晶及固液分离系统 技术领域
本发明涉及环保节能和盐化工领域,特别是涉及一种斜坡结晶及固液分离系统。
背景技术
传统的盐硝工业多采用硝池或盐池进行冷冻分离或蒸发、结晶,特点是池中卤水都具有一定的深度,因而通过环境获得(或散发)的能量被大量的卤液所稀释平均,使得卤液整体的温度变化较小,在平均温度下能冷冻析出的硝或蒸发析出的盐太薄而无法当年采收,限制了冬天冻硝或夏天晒盐的效率。由于需要多年的积累才够采收,这些露天卤水池还受到雨水的稀释和风沙的污染,不仅进一步降低了冻硝或晒盐的效率,还致使产品中混合一定量的沙尘等。此外由于产品晶体均匀散布于广阔池底,采收时需要用大型机械推铲集中,进一步增加了产品污染风险和采收成本。
传统的冻硝方法中,冬天卤水与冷空气的热交换只发生在气-液接触表面,总的能量交换有限,而整池卤水的热容量很大,而且硫酸钠冷冻结晶过程又是发热过程,所以一个冬季所能造成的整池卤水降温有限,每年冷冻析出的硫酸钠总量很有限,需要多年冻硝的积累才能达到经济开采量,每年形成的冻硝隔层中含有大量其它季节沉淀的沙土,为冻硝的开采利用增加了成本。此外,由于整池硝液的温度无法降到最低,硝池母液中硫酸钠的含量仍然相当高,不利于母液的后续利用,譬如晒盐作业。利用温度变化对盐硝卤液进行蒸发结晶分离作业是当前行业的成熟方案。经检索,中国中轻国际工程有限公司彭赛军等在申请号为CN201811472718.5的发明专利中公开了:一种盐硝体系卤水蒸发生产盐硝工艺,提出了一种取用盐硝体系卤水为原料,利用不同蒸发装置对盐硝卤液实施蒸发分离作业的装置以及应用其的工艺方法,该发明通过将卤液导入可调节不同温度的蒸发装置,对卤液进行蒸发与结晶作业,可以得到纯度较高的氯化钠和硫酸钠产品。然而该发明需要较多的工艺步骤以及相应的装置,作业流程需要耗费蒸汽,越大的工业产能对应需要越大的装置结构和越大的能源消耗,而所产出的主副产品单位经济价值并不太高,这在工业实际应用中制约 了大规模量化生产的可能,提高了实际工业生产的经济风险。因此成熟的工业市场,在盐硝生产领域提出了对大规模处理量产原料、降低各项相关成本、利用自然力降低工艺流程中的能源消耗以及更加自动化、智能化完成工业量化生产的实际需求。
发明内容
本发明针对上述装置存在开动能耗大、经济效益低的问题,提供一种斜坡结晶及固液分离系统,包括卤水缓冲池、斜坡结晶系统以及用于对斜坡结晶系统输出的母液以及晶体进行分离的固液分离系统,所述卤水缓冲池位于所述斜坡结晶系统下方并与设置在所述斜坡结晶系统顶部的卤水分配系统通过管道连接,所述固液分离系统位于斜坡结晶系统底部。
在本技术方案中,所述卤水缓冲池设于所述斜坡结晶系统的斜板组件覆盖之下,可以避免下雨时雨水稀释卤液,卤水缓冲池中的饱和卤水通过连通管道在斜坡顶部均匀撒布,并沿斜坡表面淌下形成降膜,卤水在下降过程中与空气发生能量交换,过饱和并不断析出结晶,晶体和母液在斜坡底部的固液分离系统中收集汇聚,固液分离系统进行固液分离作业后将晶体自动输送至外部输出装置,并将母液导入卤水缓冲池再次进行循环结晶,此斜坡结晶及固液分离系统通过简单的结构设计,实现了卤水的高效自动结晶作业,充分利用了自然力以提高卤水结晶的速率,实现了规模化低成本高效环保的工业诉求。
优选地,所述卤水分配系统包括卤水提升泵、卤水输送管道以及位于所述斜坡结晶系统顶部的布水管,所述布水管通过卤水输送管道与所述卤水缓冲池相连接,所述布水管上设置有定向喷孔或狭缝。在本技术方案中,卤水缓冲池通过卤水输送管道将卤水输送至斜坡结晶装置顶部的布水管,通过布水管的均匀散布,卤水得以沿斜坡表面淌下,形成降膜,通过布水管的设置,使卤水在斜坡顶部流出淌下的速率自由可控,提高了作业的可操作性。
优选地,所述斜坡结晶系统包括支架以及安装在所述支架上的若干个斜板组件,所述斜板组件采用通风结构设计,所述斜板组件包括若干块阶梯设置的斜板以及连接若干斜板的底板。在本技术方案中,多道水平横梁和架设的斜板使斜坡结晶装置表面形成不同梯度的斜板组件,卤水可在不同高度的斜板组件中依次淌下,在斜板组件之间的间隙使空气在斜板前后自由流通,更一步增强了卤水在斜板组件淌下时与空气的能量交换,提高了蒸发和结晶的效率。所述 每块斜板沿纵向设有众多水平阶梯以使卤水下淌时产生紊流,进一步增强卤水与空气的能量交换。
优选地,所述固液分离系统包括设置在所述斜坡结晶系统斜板底部的收集槽以及设置在收集槽底部的固液分离槽。在本技术方案中,所述斜坡结晶系统底部设置的收集槽可自动将整个斜坡下落的液体和结晶收集汇聚,并自动导入固液收集槽中,实现了相关作业的自动化。
优选地,所述收集槽包括固液收集槽、雨水收集槽、斜置细网以及用于检测母液电导率的测试装置,所述固液收集槽和雨水收集槽之间设置有用于将母液导入至固液收集槽或雨水收集槽中的导流翻板装置,所述导流翻板装置与所述测试装置电连接;在本技术方案中,所述收集槽中设置有雨水收集槽以及固液收集槽,固液收集槽设置有固液收集槽出口,雨水收集槽设置有雨水管道,可将结晶卤液和雨水分别导出,解决雨水对母液的稀释污染问题。
优选地,所述导流翻板装置包括安装在收集槽上的翻板马达、设于所述翻板马达输出轴上的翻板机构以及与所述翻板机构固定相连的导流翻板,所述导流翻板设于所述斜置细网下方并介于所述固液收集槽和所述雨水收集槽之间;所述翻板马达与测试装置电连接。在本技术方案中,通过液体收集浅盘和其中的电导率传感器对进入固液收集槽的卤水进行分析,然后控制导流翻板装置中的翻板机构进行对应的动作,将卤液浓度过低的雨水导入雨水收集槽,通过雨水管道导出到外部渠道,将卤液浓度正常的固液混合物导入到固液收集槽,并通过固液收集槽出口导入固液分离槽中,同时斜置细网可保证不同条件下均将固体结晶导入固液收集槽中进行收集。通过翻板机构的导向功能,斜坡结晶及固液分离系统可对不同的天气或其他状况自动做出对应调整,实现整体机构的自动化作业,解放人力,为工业化的实际应用打下基础。
优选地,所述测试装置包括设于斜置细网和导流翻板之间的液体收集浅盘、设于所述液体收集浅盘中的电导率传感器以及与所述电导率传感器电连接的控制器,所述控制器与所述翻板马达电连接。在本技术方案中,液体收集浅盘中的电导率传感器对穿过斜置细网滤去固体结晶的液体进行电导率检测,根据检测结果通过控制器对所述翻板马达进行控制,实现了对天气状况和系统工况的及时检测和对应操作。
优选地,所述固液分离槽中设置有溢流堰,所述溢流堰将所述固液分离槽分隔为固体沉降池以及母液缓冲池,所述母液缓冲池中设置有第一液位传感器,母液泵以及母液抽送管道。在本技术方案中,固体沉降池通过溢流堰结构的设置将母液自动导入母液缓冲池中,完成了母液和晶体的自动分离;另一方面母液泵通过第一液位传感器控制启停,通过母液抽送管道将母液缓冲池中的母液自动转移走,通过循环结晶,保证了对卤水的最大开发率以及对母液的利用处理,实现了工艺流程的自动化作业。
优选地,所述固体沉降池中设置有固体提升装置,所述固体提升装置的一端位于固体沉降池的底部,所述固体提升装置的另一端与外部固体输送装置相连接。在本技术方案中,所述固体提升输送装置通过驱动装置驱动其内部螺旋结构转动从而将固体物料从一端向另一端输送,通过固体提升输送装置将固体沉降池中底部的晶体提升输送至固体沉降池外装车或通过其他输送机械转运到堆场,实现了工艺流程的高效率自动化作业。
优选地,所述斜坡结晶系统斜坡顶部设置有用于探测气候条件的气温传感器,湿度传感器和光照度传感器;所述卤水缓冲池中设置有第二液位传感器。在本技术方案中,通过设置卤水缓冲池,可在不同的卤水蒸发池之间进行调控,尽量抽取饱和卤水,保证后续斜坡降膜结晶作业中的结晶效率;斜坡结晶系统斜坡顶部的气温传感器,湿度传感器以及光照度传感器可对天气情况进行监控,从而对卤水泵送分布系统进行调控,对卤水泵的泵送速度进行适当调控,提高卤水结晶作业的结晶效果,应对不同的天气状况;
本发明相对于现有技术,具有如下优点:
1、通过能量交换和结晶斜板组件,卤水得以在其表面形成均匀降膜,沿斜面纵向展布的大小阶梯为卤水与空气进行最有效的能量和物质交换提供更大界面,使得卤水迅速达到环境或斜坡表面温度,结晶效果比在结晶池中大为提高;
2、在能量交换和结晶斜板组件上,气、液能量交换形成沿斜坡表面的定向气流,进一步增强了气、液能量交换和蒸发;
3、由于在能量交换和结晶斜板组件上快速有效的气-液能量交换,卤水中原有饱和或接近饱和的成分在以降膜流下过程中即达到过饱和,在斜坡上便快速析出晶体并长大,并且随母液滚下斜坡;
4、晶体和母液在坡底通过收集槽汇流进入固液分离槽,即刻被集中分离,实现即产即收,省却了传统晒盐工艺中结晶池中的捞盐作业或硝池开挖作业,既节约了机械和人工费用,还降低了沙尘污染,此外由于小晶体粘连之前及时采收,又免除破碎等工序,进一步降低能耗和成本;
5、本斜坡结晶及固液分离系统所得晶体都是经过和卤水缓冲池的澄清在斜坡上快速结晶形成,产品纯度很高,价值高;
6、本斜坡结晶及固液分离系统作业所得晶体粒度细小均匀,有利于后期利用或再加工;
7、本斜坡结晶及固液分离系统为盐硝生产这一古老传统工业的现代化和智能化创造了条件,可以利用能量交换和结晶斜板组件根据天气条件精准地进行冷冻或结晶,不仅可以更充分地利用季节和日夜温差延长自然能量利用的总时间,还可以通过对产品流体的优化管理减少风沙对产品的污染和雨雪对卤水的稀释等。
附图说明
图1为本发明斜坡结晶及固液分离系统的结构示意图;
图2为本发明斜坡结晶及固液分离系统中斜板组件的结构示意图;
图3为本发明斜坡结晶及固液分离系统中收集槽的结构示意图;
图4为图3中A处局部放大图;
图5为本发明斜坡结晶及固液分离系统中固液分离槽的结构示意图。
附图中:1—布水管,2—斜板,21—支架,22—底板,23—第一卡口结构,24—第二卡口结构,25—上翻边结构,3—收集槽,31—固液收集槽,32—雨水收集槽,33—导流翻板,34—翻板马达,35—翻板机构,36—雨水管道,37—斜置细网,38—测试装置,39—固液收集槽出口,4—固液分离槽,41—固体沉降池,42—溢流堰,43—母液缓冲池,44—母液抽送管道,45—第一液位传感器,5—固体提升装置,6—平板温度传感器,7—湿度传感器。
具体实施方式
附图仅用于示例性说明,不能理解为对本专利的限制;为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。附图中描述位置关系仅用于示例性说明,不能理解为对本专利的限制。
本发明实施例的附图中相同或相似的标号对应相同或相似的部件;在本发明的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”“长”“短”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
下面通过具体实施例,并结合附图,对本发明的技术方案做进一步的具体描述:
实施例1
如图1至图5所示,一种斜坡结晶及固液分离系统,包括卤水缓冲池、斜坡结晶系统以及用于对斜坡结晶系统输出的母液以及晶体进行分离的固液分离系统,卤水缓冲池位于斜坡结晶系统下方,与设置在斜坡结晶系统顶部的卤水分配系统通过管道连接,固液分离系统中位于斜坡结晶系统底部。
其中,卤水缓冲池设于斜坡结晶系统的斜板组件覆盖之下,可以避免下雨时雨水稀释卤液,卤水缓冲池中的饱和卤水通过连通管道在斜坡顶部均匀撒布,并沿斜坡表面淌下形成降膜,卤水在下降过程中与空气发生能量交换,过饱和并不断析出盐结晶,晶体和母液在斜坡底部的固液分离系统中收集汇聚,固液分离系统进行固液分离作业后将晶体自动输送至外部输出装置。此斜坡结晶及固液分离系统通过简单的结构设计,大大增强了卤水与环境的能量交换效率,充分利用了自然力以提高卤水结晶的速率,实现了规模化低成本高效环保盐硝的工业诉求。
另外,卤水分配系统包括卤水提升泵、卤水输送管道以及位于斜坡结晶系统顶部的布水管1,布水管1通过卤水输送管道与卤水缓冲池相连接,布水管1上设置有定向喷孔或狭缝,卤水缓冲池通过卤水输送管道将卤水输送至斜坡结晶装置顶部的布水管1,通过布水管1的均匀散布,卤水得以沿斜坡表面淌下,形成降膜,通过布水管1的设置,使卤水在斜坡顶部流出淌下的速率自由可控,提高了作业的可操作性。
其中,斜坡结晶系统包括支架21以及安装在支架21上的若干个斜板组件,斜板组件包括若干块阶梯设置的斜板2以及连接若干斜板2的底板22,底板22 上远离固液分离系统的一端设置有第一卡口结构23,第一卡口结构23与支架21的横梁相卡接;底板22上靠近固液分离系统的一端设置有第二卡口结构24;斜板组件中远离固液分离系统的斜板2上设置有与第二卡口结构24相匹配的上翻边结构25,多道水平横梁和架设的斜板2使斜坡结晶装置表面形成不同梯度的斜板组件,卤水可在不同高度的斜板组件中依次淌下,在斜板组件之间的间隙使空气在斜板2前后自由流通,在分散斜面受到的总风压的同时进一步提高了卤水在斜板组件淌下时与空气的接触面积,提高了蒸发和结晶的效率。
另外,固液分离系统包括设置在斜坡结晶系统斜板2底部的收集槽3以及设置在收集槽3底部的固液分离槽4,斜坡结晶系统底部设置的收集槽3可自动将整个斜坡下落的液体和结晶收集汇聚,并自动导入固液收集槽4中,实现了相关作业的自动化。
其中,收集槽3包括固液收集槽31、雨水收集槽32、斜置细网37以及用于检测母液电导率的测试装置38,固液收集槽31和雨水收集槽32之间设置有用于将母液导入至固液收集槽31或雨水收集槽32中的导流翻板装置,导流翻板装置与测试装置38电连接;固液收集槽31设置有固液收集槽出口39,雨水收集槽32设置有与外部排水系统相连通的雨水管道36,收集槽3中设置有雨水收集槽32以及固液收集槽31,固液收集槽31设置有固液收集槽出口39,雨水收集槽32设置有雨水管道36,可分别将结晶卤液和雨水分别导出,解决雨水对卤水的稀释问题。
另外,导流翻板装置包括安装在收集槽3上的翻板马达34、设于翻板马达34输出轴上的翻板机构35以及与翻板机构35固定相连的导流翻板33,导流翻板33设于斜置细网37下方并介于固液收集槽31和雨水收集槽32之间;翻板马达与测试装置38电连接,通过液体收集浅盘和其中的电导率测试传感器对进入固液收集槽31的卤水进行分析,然后控制导流翻板装置中的翻板机构35进行对应的动作,将卤液浓度过低的雨水导入雨水收集槽32,通过雨水管道36导出到外部渠道,将卤液浓度正常的固液混合物导入到固液收集槽31,并通过固液收集槽出口39导入固液分离槽4中,同时斜置细网37可保证不同条件下均将固体结晶导入固液收集槽4中进行收集。通过翻板机构35的导向功能,斜坡结晶及固液分离系统可对不同的天气或其他状况自动做出对应调整,实现整体机构的自动化作业,解放人力,为工业化的实际应用打下基础。
其中,测试装置38包括设于斜置细网37和导流翻板35之间的液体收集浅盘、设于液体收集浅盘中的电导率传感器以及与电导率传感器电连接的控制器,控制器与翻板马达34电连接,液体收集浅盘中的电导率传感器对穿过斜置细网37滤去固体结晶的液体进行电导率检测,根据检测结果通过控制器对翻板马达34进行控制,实现了对天气状况和系统工况的及时检测和对应操作。
另外,固液分离槽4中设置有溢流堰42,溢流堰42将固液分离槽4分隔为固体沉降池41以及母液缓冲池43,母液缓冲池43中设置有第一液位传感器45,母液泵以及与卤水缓冲池相连接的母液抽送管道44,固体沉降池41通过溢流堰42结构的设置将母液自动导入母液缓冲池43中,完成了母液和晶体的自动分离;另一方面母液泵通过第一液位传感器45控制启停,通过母液抽送管道44将母液缓冲池43中的母液自动转移走,实现了工艺流程的自动化作业。
其中,固体沉降池41中设置有固体提升装置5,固体提升装置5的一端位于固体沉降池41的底部,固体提升装置5的另一端与外部固体输送装置相连接,固体提升输送装置5通过驱动装置驱动其内部螺旋结构转动从而将固体物料从一端向另一端输送,通过固体提升输送装置5将固体沉降池41中底部的晶体提升输送至固体沉降池41外装车或通过其他输送机械转运到产品堆场,实现了工艺流程的高效率自动化作业。
另外,斜坡结晶系统斜坡顶部设置有用于探测气候条件的气温传感器,湿度传感器和光照度传感器;卤水缓冲池中设置有第二液位传感器,通过设置卤水缓冲池,可在不同来源的卤水池之间进行调控,保证斜坡降膜结晶作业的正常进行;斜坡结晶系统斜坡顶部的气温传感器,湿度传感器以及光照度传感器可对天气情况进行监控,从而对卤水泵送分布系统进行调控,对卤水泵的泵送速度进行适当调控,提高卤水结晶作业的结晶效果,应对不同的天气状况。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

  1. 一种斜坡结晶及固液分离系统,其特征在于:包括卤水缓冲池、斜坡结晶系统以及用于对斜坡结晶系统输出的母液以及晶体进行分离的固液分离系统,所述卤水缓冲池位于所述斜坡结晶系统下方并与所述斜坡结晶系统顶部的卤水分配系统通过管道连接,所述固液分离系统位于斜坡结晶系统底部。
  2. 根据权利要求1所述的一种斜坡结晶及固液分离系统,其特征在于:所述卤水分配系统包括卤水提升泵、卤水输送管道以及位于所述斜坡结晶系统顶部的布水管(1),所述布水管(1)通过卤水输送管道与所述卤水缓冲池相连接,所述布水管上设置有定向喷孔或狭缝。
  3. 根据权利要求1所述的一种斜坡结晶及固液分离系统,其特征在于:所述斜坡结晶系统包括支架(21)以及安装在所述支架(21)上的若干个斜板组件,所述斜板组件采用通风结构设计,包括若干块阶梯设置的斜板(2)以及连接若干斜板(2)的底板(22)。
  4. 根据权利要求1所述的一种斜坡结晶及固液分离系统,其特征在于:所述固液分离系统包括设置在所述斜坡结晶系统斜板(2)底部的收集槽(3)以及设置在收集槽(3)底部的固液分离槽(4)。
  5. 根据权利要求4所述的一种斜坡结晶及固液分离系统,其特征在于:所述收集槽(3)包括固液收集槽(31)、雨水收集槽(32)、斜置细网(37)以及用于检测母液电导率的测试装置(38),所述固液收集槽(31)和雨水收集槽(32)之间设置有用于将母液导入至固液收集槽(31)或雨水收集槽(32)中的导流翻板装置,所述导流翻板装置与所述测试装置电连接;所述固液收集槽(31)设置有固液收集槽出口(39),所述雨水收集槽(32)设置有与外部排水系统相连通的雨水管道(36)。
  6. 根据权利要求5所述的一种斜坡结晶及固液分离系统,其特征在于:所述导流翻板装置包括安装在收集槽(3)上的翻板马达(34)、设于所述翻板马达(34)输出轴上的翻板机构(35)以及与所述翻板机构(35)固定相连的导流翻板(33),所述导流翻板(33)设于所述斜置细网(37)下方并介于所述固液收集槽(31)和所述雨水收集槽(32)之间;所述翻板马达与测试装置(38)电连接。
  7. 根据权利要求6所述的一种斜坡结晶及固液分离系统,其特征在于:所述测试装置(38)包括设于斜置细网(37)和导流翻板(37)之间的液体收集浅盘、设于所述液体收集浅盘中的电导率传感器以及与所述电导率传感器电连接的控制器,所述控制器与所述翻板马达(34)电连接。
  8. 根据权利要求4所述的一种斜坡结晶及固液分离系统,其特征在于:所述固液分离槽(4)中设置有溢流堰(42),所述溢流堰(42)将所述固液分离槽(4)分隔为固体沉降池(41)以及母液缓冲池(43),所述母液缓冲池(43)中设置有第一液位传感器(45),母液泵以及母液抽送管道(44)。
  9. 根据权利要求8所述的一种斜坡结晶及固液分离系统,其特征在于:所述固体沉降池(41)中设置有固体提升装置(5),所述固体提升装置(5)的一端位于固体沉降池(41)的底部,所述固体提升装置(5)的另一端与外部固体输送装置相连接。
  10. 根据权利要求1所述的一种斜坡结晶及固液分离系统,其特征在于:所述斜坡结晶系统斜坡顶部设置有用于探测气候条件的气温传感器,湿度传感器和光照度传感器;所述卤水缓冲池中设置有第二液位传感器。
PCT/CN2021/111378 2020-08-12 2021-08-09 一种斜坡结晶及固液分离系统 WO2022033408A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010808059.9 2020-08-12
CN202010808059.9A CN112007423B (zh) 2020-08-12 2020-08-12 一种斜坡结晶及固液分离系统

Publications (1)

Publication Number Publication Date
WO2022033408A1 true WO2022033408A1 (zh) 2022-02-17

Family

ID=73505969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111378 WO2022033408A1 (zh) 2020-08-12 2021-08-09 一种斜坡结晶及固液分离系统

Country Status (2)

Country Link
CN (1) CN112007423B (zh)
WO (1) WO2022033408A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112007423B (zh) * 2020-08-12 2022-05-27 暨南大学 一种斜坡结晶及固液分离系统
CN114733225B (zh) * 2022-03-09 2023-11-03 福建省南仹生物科技有限公司 一种猪去氧胆酸提取用结晶罐
CN117125761B (zh) * 2023-09-06 2024-03-12 河北金科环保设备有限公司 一种用于脱硫废水的蒸发塔

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2099121U (zh) * 1991-02-01 1992-03-18 陈肇谟 制备海盐的装置
FR2838115A1 (fr) * 2002-04-08 2003-10-10 Lycee La Baugerie Installation de production de sel naturel
WO2011161483A1 (en) * 2010-06-24 2011-12-29 Ivan Simic Sea-water salt-plant with overflowing slabs
CN103949082A (zh) * 2014-04-25 2014-07-30 涂海军 一种双冷降温流动结晶装置
CN205127449U (zh) * 2015-11-14 2016-04-06 河北博锐达数控科技有限公司 浓缩蒸发结晶器
CN111943231A (zh) * 2020-08-12 2020-11-17 暨南大学 一种节能晒盐系统和应用其的晒盐方法
CN112007423A (zh) * 2020-08-12 2020-12-01 暨南大学 一种斜坡结晶及固液分离系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206063956U (zh) * 2016-08-17 2017-04-05 临沂润达水务有限公司 一种沉淀池砂水分离器
CN107441748A (zh) * 2017-09-22 2017-12-08 安丘瑞源机械制造有限公司 一种卤水自然降膜蒸发装置及利用其实现的卤水浓缩方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2099121U (zh) * 1991-02-01 1992-03-18 陈肇谟 制备海盐的装置
FR2838115A1 (fr) * 2002-04-08 2003-10-10 Lycee La Baugerie Installation de production de sel naturel
WO2011161483A1 (en) * 2010-06-24 2011-12-29 Ivan Simic Sea-water salt-plant with overflowing slabs
CN103949082A (zh) * 2014-04-25 2014-07-30 涂海军 一种双冷降温流动结晶装置
CN205127449U (zh) * 2015-11-14 2016-04-06 河北博锐达数控科技有限公司 浓缩蒸发结晶器
CN111943231A (zh) * 2020-08-12 2020-11-17 暨南大学 一种节能晒盐系统和应用其的晒盐方法
CN112007423A (zh) * 2020-08-12 2020-12-01 暨南大学 一种斜坡结晶及固液分离系统

Also Published As

Publication number Publication date
CN112007423A (zh) 2020-12-01
CN112007423B (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
WO2022033408A1 (zh) 一种斜坡结晶及固液分离系统
Richmond et al. Technological aspects of mass cultivation—a general outline
CN111943231A (zh) 一种节能晒盐系统和应用其的晒盐方法
US20040154982A1 (en) Anaerobic film biogas digester system
CN101519634B (zh) 用于微藻养殖的开放式生物反应器及其养殖方法
US20160115433A1 (en) Light energy supply for photobioreactor system
CN112978828B (zh) 一种冬季太阳能农用大棚加湿-增温型苦咸水淡化处理系统及处理方法
US20160221833A1 (en) Method and System for Preparing High Purity Lithium Carbonate
CN201766906U (zh) 导热管道水循环系统
CN202876589U (zh) 一种用于空间植物培养的气液分离装置
CN107232111A (zh) 基于温室大棚的循环海水养殖系统
CN100418896C (zh) 海冰控温融冻脱盐装置
CN206746029U (zh) 一种盐化工用真空结晶装置
CN205954808U (zh) 一种园林用新型灌溉蓄水装置
CN104294238A (zh) 一种平面旋转制备硫化物的装置及方法
CN101658735B (zh) 一种连续真空结晶装置及其应用
CN209696335U (zh) 一种新型高温钾钠分离器
CN205776127U (zh) 浮动式富集抽藻平台
CN203954746U (zh) 高效多层快速沉降器
CN110723857B (zh) 一种高盐水浓缩结晶处理系统及工艺
CN209310546U (zh) 一种流体系统能源综合利用装置
CN206624663U (zh) 一种应用于空冷塔内部的热空气蒸发废水系统
CN109824067B (zh) 自然蒸发结晶析锂、联合升温结晶析锂+溶解洗锂提取锂精矿
CN111943232B (zh) 一种盐硝分离系统及应用其的冻硝生产方法
RU2732606C1 (ru) Способ опреснения морской воды с попутным извлечением соли

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 28/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21855461

Country of ref document: EP

Kind code of ref document: A1