WO2022033014A1 - 一种显示面板及显示装置 - Google Patents

一种显示面板及显示装置 Download PDF

Info

Publication number
WO2022033014A1
WO2022033014A1 PCT/CN2021/078852 CN2021078852W WO2022033014A1 WO 2022033014 A1 WO2022033014 A1 WO 2022033014A1 CN 2021078852 W CN2021078852 W CN 2021078852W WO 2022033014 A1 WO2022033014 A1 WO 2022033014A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light beam
display panel
viewing angle
vector
Prior art date
Application number
PCT/CN2021/078852
Other languages
English (en)
French (fr)
Inventor
卢增祥
Original Assignee
亿信科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 亿信科技发展有限公司 filed Critical 亿信科技发展有限公司
Publication of WO2022033014A1 publication Critical patent/WO2022033014A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes

Definitions

  • the embodiments of the present application relate to the field of display technology, for example, to a display panel and a display device.
  • the vector pixel is an optical device, which is widely used in display devices.
  • the display of the picture can be realized by controlling the luminous brightness and gray scale of the vector pixel.
  • Vector pixels can project narrow beams in multiple distinguishable directions. However, most of the spatial distribution angles of the emitted beams from vector pixels are currently less than 150°, which does not meet the needs of users to view the display at a large angle (close to 180°).
  • Embodiments of the present application provide a display panel and a display device, and the display panel can meet the needs of a user for viewing from a large angle.
  • an embodiment of the present application provides a display panel, comprising: at least one vector pixel unit; the vector pixel unit includes a vector pixel and a reflection component, and the reflection component is at least configured to reflect light beams emitted by the vector pixel;
  • the viewing angle formed by the light beam emitted by the vector pixel unit is the expanded viewing angle
  • the viewing angle formed by the light beam emitted by the vector pixel is the original viewing angle
  • the expanded viewing angle is greater than the original viewing angle
  • an embodiment of the present application further provides a display device, including the display panel provided in any one of the foregoing aspects.
  • Figure 1 is a schematic diagram of the light emission of a vector pixel
  • FIG. 2 is a schematic structural diagram of a vector pixel unit provided by an embodiment of the present application.
  • Fig. 3 is the working principle schematic diagram of the vector pixel unit shown in Fig. 2;
  • FIG. 4 is a schematic structural diagram of a vector pixel unit provided by another embodiment of the present application.
  • Fig. 5-Fig. 7 is the working principle schematic diagram of the vector pixel unit shown in Fig. 4;
  • FIG. 8 is a schematic structural diagram of a vector pixel unit and a schematic diagram of its working principle provided by another embodiment of the present application;
  • FIG. 9 is a schematic diagram of a structure of a display panel and a multi-layer display effect thereof provided by another embodiment of the present application.
  • the display panel described in the embodiments of the present application especially refers to a vector pixel display panel.
  • the vector pixel display panel usually includes at least one vector pixel, and a picture can be displayed by controlling the luminous brightness and grayscale of the vector pixel.
  • FIG. 1 is a schematic diagram of the light emission of a vector pixel.
  • the vector pixel 100 is an optical device that satisfies a preset condition.
  • the preset conditions may be: first, the vector sub-pixel has a narrow beam, that is to say, relative to the larger display area, the vector pixel 100 can be approximately regarded as composed of light sources (vector sub-pixels) that emit light one by one.
  • the light source can emit a narrow beam into space; the beam emitted by the vector sub-pixel into space has the following characteristics: the beam emitted by the vector sub-pixel can be understood as a cone with the light source as the center (see Figure 1); if the light intensity drops to this beam 50% is the beam boundary, with the light source as the center, the minimum spatial spherical angle that can include all boundaries is less than 10°, usually only 1°; second, the vector pixel 100 can be directed in multiple distinguishable directions In other words, the direction of the outgoing light beam 80 of each vector sub-pixel is different (see FIG.
  • the vector pixel 100 can emit light beams in at least two directions at the same time, that is, the vector pixel 100 There may be at least two vector sub-pixels working at the same time, and the working condition of each vector sub-pixel can be controlled independently; fourth, the beam brightness of the vector pixel 100 can be adjusted, that is, each vector sub-pixel in a vector pixel 100 emits a light beam The brightness can be adjusted.
  • the vector pixel 100 is composed of at least two vector sub-pixels, and the light beam emitted by each vector sub-pixel has a certain directivity.
  • a display device that emits light from vector pixels usually includes an eye tracking module. First, the position of the user's eyes is determined according to the human eye tracking module, and then the vector sub-pixels to be illuminated are determined.
  • the vector pixels are composed of dense display devices and optical components.
  • the dense display device is composed of at least two light-emitting elements, each light-emitting element may be called a vector sub-pixel, and the light emitted by each vector sub-pixel can be modulated by an optical component to form a light beam pointing in a specific direction in space.
  • vector pixels can also be implemented in other ways, which are not limited in the embodiments of the present application, and any solution that uses the following solutions to expand the viewing angle of the vector pixels falls within the protection scope of the present application.
  • FIG. 2 is a schematic structural diagram of a vector pixel unit provided by an embodiment of the present application.
  • the vector pixel unit 10 includes a vector pixel 100 (as shown in FIG.
  • the first reflecting mirror 210 shown in 2) the reflecting component is at least set to reflect the light beam emitted by the vector pixel; the viewing angle formed by the light beam emitted by the vector pixel unit 10 is an extended viewing angle 30 (such as ⁇ A "OB"), The viewing angle formed by the light beam is the original viewing angle 40 (eg ⁇ A'OB'), and the expanded viewing angle 30 is greater than the original viewing angle 40 .
  • the extended viewing angle 30 such as ⁇ A "OB"
  • the viewing angle formed by the light beam is the original viewing angle 40 (eg ⁇ A'OB')
  • the expanded viewing angle 30 is greater than the original viewing angle 40 .
  • the structure of the vector pixel unit 10 shown in FIG. 2 is only the structure of the vector pixel unit 10 provided by one of the embodiments of the present application, which is only used to exemplarily show the components of the vector pixel unit 10, not restrictions on its structure.
  • the reflection component in addition to being able to reflect the light beams emitted by the vector pixels, the reflection component may also have other functions, for example, it may also transmit a part of the light beams emitted by the vector pixels.
  • the embodiment of the present application mainly utilizes the reflection function of the reflective component to change the direction of the light beam emitted by the vector pixel, in order to expand the viewing angle formed by the light beam emitted by the vector pixel, so that the display panel can meet the needs of the user for viewing from a large angle.
  • the vector pixel can emit light beams pointing in multiple directions in space. Therefore, the viewing angle formed by the light beam emitted by the vector pixel is the maximum spatial distribution angle of the light beam emitted by the vector pixel that can be seen by the human eye.
  • the original viewing angle represents the maximum spatial distribution angle of the light beam emitted by the vector pixel when no reflective component is set.
  • the extended viewing angle represents the maximum spatial distribution angle of the light beam emitted by the vector pixel unit (the vector pixel after the reflective component is set to change the direction of the light beam). It can be seen from FIG. 2 that after the beam outgoing direction is changed by the reflective component, the expanded viewing angle of the beam emitted by the vector pixel is larger than its original viewing angle.
  • a suitable vector sub-pixel can be selected to emit light.
  • the light beam emitted from the pixel can be directed to the human eye after passing through the optical component and the reflective component, so that the human eye can observe the lit vector sub-pixel, thereby meeting the user's need for viewing from a wide angle.
  • a vector pixel is configured with a reflective component to form a vector pixel unit, and the reflective component is used to change the direction of the light beam emitted by the vector pixel, so that the expanded viewing angle formed by the light beam emitted by the vector pixel unit is larger than that formed by the light beam emitted by the vector pixel.
  • the original viewing angle thereby expanding the maximum spatial distribution angle of the vector pixel outgoing light beam in the related art, enables the display panel to meet the needs of users for viewing from a large angle.
  • the structures of the three vector pixel units 10 will be described below, and the mechanism of extending the viewing angle of the light beam emitted by the vector pixel will be described in detail.
  • the reflection component includes a mirror component, that is, the reflection component only has a reflection function.
  • FIG. 4 is a schematic structural diagram of a vector pixel unit provided by another embodiment of the present application, and FIG. 2 and FIG. 4 respectively show two implementation manners when the reflection component is a mirror component.
  • FIG. 3 is a schematic diagram of the working principle of the vector pixel unit shown in FIG. 2
  • FIGS. 5-7 are schematic diagrams of the working principle of the vector pixel unit shown in FIG. 4 .
  • the structure of the first vector pixel unit and its working mechanism are first introduced with reference to FIG. 2 and FIG. 3 .
  • the vector pixel includes a dense display device 110 and an optical assembly 120; the dense display device 110 includes at least two light-emitting elements, the at least two light-emitting elements include a first light-emitting element 111 and a second light-emitting element 112, and the first light-emitting element 111
  • the emitted light beam is emitted by the optical component 120 to form a first original light beam (such as AA'), and the light beam emitted by the second light-emitting element 112 is emitted by the optical component 120 to form a second original light beam (such as BB'); the first original light beam and The second original light beam forms the original viewing angle 40 (eg ⁇ A'OB');
  • the light beam emitted by the first light emitting element 111 forms a first expanded beam (eg ACA")
  • the light beam emitted by the second light-emitting element 112 is emitted by the optical component 120 and the mirror component (such as the first mirror 210) to form a second expanded
  • the dense display device includes at least two light-emitting elements.
  • the first light-emitting element 111 and the second light-emitting element 112 represent the two light-emitting elements with the largest spatial orientation angle of the outgoing beam among all the light-emitting elements.
  • the angle can be understood as the included angle between the light beam and the vertical line of the light-emitting surface of the light-emitting element (ie, the normal line of the light-emitting surface of the light-emitting element).
  • the viewing angle formed by the first original light beam (AA') emitted by the first light-emitting element 111 and the second original light beam (BB') emitted by the second light-emitting element 112 is the maximum spatial distribution angle of the light beam emitted by the vector pixel, That is, the original viewing angle 40 . Since the light beams emitted by other light-emitting elements in the dense display device are all within the original viewing angle 40 , the viewing angle expansion mechanism of vector pixels is described here by only taking the first light-emitting element 111 and the second light-emitting element 112 as examples.
  • the reflector assembly includes at least one first reflector 210; the at least one first reflector 210 is disposed between the dense display device 110 and the optical assembly 120, and the first reflector The surface intersects with the bottom surface of the dense display device 110; the light beam emitted by the first light-emitting element 111 is reflected by the first reflector 210, and then exits the optical component 120 to form a first extended beam (ACA"); the light beam emitted by the second light-emitting element 112 The light beam is reflected by the first reflecting mirror 210, and then exits through the optical component 120 to form a second expanded beam (BDB").
  • ACA first extended beam
  • BDB second expanded beam
  • the first reflecting mirror 210 is disposed between the dense display and the optical assembly 120, and the first reflecting mirror 210 is disposed to reflect the light emitted by the light-emitting element.
  • FIG. 3 only takes one reflector assembly including one first reflector as an example for illustration. It can be understood that since the light emitted by the light-emitting element (such as the light-emitting diode) is divergent, a part of the light beam emitted by the light-emitting element will directly exit through the optical component 120 to form the original light beam; The first reflecting mirror 210 is reflected by the first reflecting mirror 210 and then exits through the optical component 120 to form an expanded beam.
  • the light-emitting element such as the light-emitting diode
  • the light beam emitted by the first light-emitting element 111 is reflected by the first reflecting mirror 210 , and then exits the optical component 120 to form a first expanded beam (ACA”)
  • the light beam emitted by the second light-emitting element 112 is reflected by the first reflecting mirror 210 , and then exits through the optical component 120 to form a second expanded beam (BDB").
  • ACA first expanded beam
  • BDB second expanded beam
  • At least two light-emitting elements include a plurality of light-emitting elements, and the plurality of light-emitting elements form a light-emitting element array (not shown in FIG. 2 ); at least one first reflector 210 is arranged around the light-emitting element array, and at least one The reflecting surfaces of one first reflecting mirror 210 are all perpendicular to the bottom surface of the dense display device 110 .
  • the shape of the light-emitting element array can be any polygon, for example, a rectangle.
  • the reflector assembly may include a plurality of first reflectors 210, the multiple first reflectors 210 are arranged around the light-emitting element array, and the side length of each first reflector 210 is the same as that of the corresponding side in the light-emitting element array. Wait. Taking the light-emitting element array arranged in a rectangle as an example, by arranging the first reflector 210 around the light-emitting element array, the light emitted by the light-emitting element can be reflected by the four first reflectors 210 at the same time, and the reflected beam can be emitted by the optical component 120.
  • first light beams pointing in different directions are formed, thereby forming a three-dimensional light beam, which satisfies the needs of the user to view from any position at a large angle (the angle between the user and the normal line of the display panel).
  • Setting the reflecting surface of the first reflecting mirror 210 to be perpendicular to the bottom surface of the dense display device 110 can simplify the process and is more conducive to designing the direction of the final light beam emitted by each light-emitting element.
  • each light-emitting element will emit 5 beams (4 expanded beams and 1 original beam) from the optical component 120, however, due to the divergence of the beams emitted by the vector sub-pixels
  • the angle is only about 1° of the plane angle, so the probability that the outgoing light beam (non-target light beam) will cause visual disturbance at the position other than the user's viewing position is very small and can be ignored.
  • the mirror assembly includes a hollow frustum 220 .
  • the hollow frustum 220 includes a first opening 221 , a second opening 222 , and a frustum sidewall 223 connecting the first opening 221 and the second opening 222 .
  • the hollow frustum 220 is hollow.
  • the frustum 220 includes a first surface and a second surface arranged oppositely and a third surface and a fourth surface arranged oppositely.
  • the first surface and the first opening are on the same plane, the second surface and the second opening are on the same plane, and the third The surface is the inner surface of the side wall of the truncated cone, the fourth surface is the outer surface of the side wall of the truncated cone, the first surface, the second surface and the third surface are provided with light absorbing films, and the fourth surface is provided with a second mirror 2231;
  • the frustum 220 is disposed on the light-emitting surface of the vector pixel, and the second opening 222 is located on the side of the first opening 221 away from the light-emitting surface of the vector pixel.
  • the vertical projection of the second opening 222 on the light-emitting surface of the vector pixel covers the first opening
  • the second reflecting mirror reflects the light emitted after being modulated by the optical component 120
  • the first reflecting mirror 210 directly reflects the light emitted by the light-emitting element. , and then exit through the optical component 120 .
  • the light beam modulated by the optical component 120 points to a specific direction, which can be regarded as a near-parallel light beam, and the beams emitted by different light-emitting elements have different spatial pointing angles after being modulated by the optical component.
  • FIGS. 5 to 7 take the emergent beams with different spatial pointing angles as examples to illustrate the mechanism by which the spatial pointing angles of the beams are expanded.
  • FIGS. 5-7 only show schematic diagrams of the light paths of the light beams emitted by the light-emitting elements after they are emitted through the optical assembly 120 . As can be seen from FIGS.
  • the light beam emitted from the light-emitting surface of the optical component 120 is reflected by the second mirror 2231 of the frustum sidewall 223 , thereby changing the light-emitting direction and increasing its spatial pointing angle. It can be understood that if the spatial pointing angle of the beam emitted by any vector sub-pixel increases, the original viewing angle formed by the beam emitted by the vector pixel can be expanded, so that the display panel can meet the needs of users for viewing from a large angle.
  • FIGS. 5 and 6 show schematic diagrams of the optical path when the spatial pointing angle of the outgoing beam is smaller than the inclination angle of the frustum sidewall 223 .
  • the spatial pointing angle of is greater than the spatial pointing angle of the original beam 60 .
  • FIG. 7 shows a schematic diagram of the optical path when the spatial pointing angle of the outgoing beam is greater than the inclination angle of the frustum sidewall 223 , it can be seen that the expanded beam 70 exits almost in the horizontal direction, and the spatial directing angle of the expanded beam 70 is greater than the space of the original beam 60 Pointing angle. It can be seen from Figures 5 to 7 that this solution can increase the spatial pointing angle of any outgoing beam, thus expanding the viewing angle of the vector pixel.
  • the spatial pointing angles of the light beams emitted from the light-emitting surface of the optical component 120 are different, in this embodiment, light absorbing films are arranged on the first surface, the second surface and the third surface of the sidewall 223 of the truncated cone, so that the light entering the hollow truncated cone 220 The inner part of the beam can be absorbed by the light absorbing film (see Figure 7), thereby reducing the interference of non-target beams.
  • the shape of the first opening 221 and the second opening 222 may be rectangular, which may correspond to the shape of the display panel.
  • the light beam emitted from the light exit surface of the optical component 120 may be reflected by a plurality of second mirrors 2231 reflected to form multiple expanded beams.
  • the divergence angle of each light beam is very small, the light from other directions generated in order to generate a light beam with a large spatial pointing angle towards the human eye will cause visual disturbance. The probability is very small, which can be ignored. Excluding.
  • the first opening 221 and the second opening 222 are arranged in parallel, and the distance between the first opening 221 and the second opening 222 is the first preset distance; the fourth surface of the sidewall of the frustum and the light output of the vector pixel
  • the surfaces ie the light-emitting surfaces of the optical component 120 ) have a first preset angle (ie, the complementary angle of ⁇ E).
  • the height of the hollow truncated cone 220, the inclination angle of the side wall 223 of the truncated cone, and the side lengths of the first opening 221 and the second opening 222 it is possible to achieve balanced light output brightness in all directions.
  • Those skilled in the art can set the first A preset distance and a first preset angle are not limited in this embodiment of the present application.
  • the reflective component can be composed of a mirror component, which can be arranged between the dense display device and the optical component, or can be arranged on the light-emitting side of the optical component (vector pixel).
  • the reflective component includes a transflective component; the angle of view formed by the light beam emitted by the vector pixel after being reflected by the transflective component is the reflective angle of view 50 , the viewing angle formed by the beam emitted by the vector pixel after being transmitted by the transflective component is the original viewing angle 40; the reflected viewing angle 50 overlaps with the original viewing angle 40, and the expanded viewing angle 30 is the sum of the original viewing angle 40 and the reflected viewing angle 50.
  • the transflective component can transmit part of the incident light and reflect the other part of the light to change the direction of part of the beam, so long as the position of the transflector component is set reasonably so that the reflected beam and the transmitted beam overlap, that is, It can achieve the purpose of expanding the perspective of vector pixels.
  • FIG. 8 is a schematic structural diagram of a vector pixel unit and a schematic diagram of its working principle provided by another embodiment of the present application.
  • the transflective component includes a first transflective mirror 230; the first transflective mirror 230 is disposed on the light-emitting side of the vector pixel 100, and the first transflective mirror 230 covers the vector The light beam within the original viewing angle 40 emitted by the pixel 100, the reflective surface of the first half mirror 230 faces the light emitting surface of the vector pixel 100, and the reflective surface of the first half mirror 230 intersects the light emitting surface of the vector pixel 100 .
  • the first half mirror 230 in front of the light-emitting side of the vector pixel, a part of the light beam within the original viewing angle 40 emitted by the vector pixel can be directly transmitted through the first half mirror 230 to be emitted to the In space, the viewing angle formed by this part of the light is still the original viewing angle 40, and the other part of the light beam is reflected by the first half mirror 230 to change the propagation direction, the reflected light beam forms the reflected viewing angle 50, and the reflected viewing angle 50 is the same as the original viewing angle 40. There is overlap. In this way, the sum of the reflected viewing angle 50 and the original viewing angle 40 is the expanded viewing angle 30 , thereby realizing the purpose of expanding the viewing angle of the vector pixels and making the display panel meet the user's needs for viewing from a large angle.
  • FIG. 8 the virtual light source position of the outgoing light beam within the increased reflection viewing angle in this solution is located at the symmetrical virtual image position 100 ′ of the vector pixel 100 relative to the first half mirror 230 .
  • the virtual image of the transflector can be used as a light source pixel, which is equivalent to increasing the number of vector sub-pixels. Based on this principle, the number of display layers of the display panel can be increased by using the transflector and the reflector to achieve 3D visual effects.
  • FIG. 9 is a schematic diagram of a structure of a display panel and a multi-layer display effect thereof provided by another embodiment of the present application. Referring to FIG.
  • the display panel is a transparent display panel, and the display panel further includes a display overlay component.
  • the display stacking assembly includes a third mirror 02 and a second half mirror 03; the third mirror 02 is arranged on the non-display side of the display panel, and the reflective surface of the third mirror 02 faces the non-display surface of the display panel, The reflective surface of the third mirror 02 is parallel to the display surface of the display panel; the second half mirror 03 is arranged on the display side of the display panel, and the reflective surface of the second half mirror 03 faces the display surface of the display panel , there is a second preset distance and a second preset angle between the reflective surface of the second half mirror 03 and the display surface of the display panel.
  • the second half mirror 03 will pass through the second half mirror 03
  • the plane parallel to the bottom edge of the display panel and the display surface of the display panel is called the first plane
  • the second preset distance refers to the distance between the first plane and the display surface of the display panel.
  • the area where the vector pixel unit 10 is located constitutes the light-emitting area of the display panel, and at least one vector pixel unit 10 can be set in the light-emitting area to display the image to be displayed.
  • the light-emitting area can be referred to as a vector pixel
  • the display screen 01, the vector pixel display screen 01 is a transparent display screen, the light-emitting surface of the vector pixel display screen 01 represents the display surface of the display panel, and the non-light-emitting surface of the vector pixel display screen 01 represents the non-display surface of the display panel.
  • the third reflecting mirror 02 is arranged on the side of the non-light-emitting surface of the vector pixel display screen 01, the third reflecting mirror 02 is arranged in parallel with the vector pixel display screen 01, and is very close to the vector pixel display screen 01. can be ignored.
  • the second half mirror 03 is disposed on one side of the light-emitting surface of the vector pixel display screen 01 , and has a second predetermined distance and a second predetermined included angle from the light-emitting surface of the vector pixel display screen 01 .
  • the second preset distance is less than 10mm, and the second preset angle is less than 5°.
  • the eye tracking module determines the pupil position of the user, it can determine the vector sub-pixels that need to be illuminated in the vector pixels.
  • a plurality of vector sub-pixels of the vector pixel unit 10 at the position P1 are lit, wherein the light beam emitted by a certain vector sub-pixel can directly pass through the second transflector along the light 1
  • the mirror 03 reaches the user's eyes, and the light beam emitted by another vector sub-pixel is first reflected by the second half mirror 03 and then reaches the third mirror 02, and then reflected by the third mirror 02 and then reaches the user's eyes along the light 2 .
  • the virtual image B is the virtual image formed after the virtual image A is reflected by the third reflecting mirror 02.
  • the eyes can see that there is a layer of display effect at the position of the virtual image B. This is because the beam divergence angle emitted by the vector sub-pixels is very small, and the set of vector sub-pixels that form the virtual image B is not the same as the set of vector sub-pixels of the vector pixel display screen 01 directly viewed by the human eye.
  • the vector sub-pixels that emit light 1 are seen but the vector sub-pixels that emit light 2 are not seen, and at the virtual image B, only the virtual image of the vector sub-pixels that form light 2 can be seen but not seen
  • the vector sub-pixel virtual image of light 1 is emitted, thereby realizing the effect of increasing the display layer.
  • N vector pixel sub-pixels can be formed by lighting up N vector pixel sub-pixels. Display layers.
  • the illuminated vector sub-pixels are determined according to the human eye tracking module, after the illuminated vector sub-pixels are determined to be acted on by the second half mirror 03 and the third mirror 02, can enter the pupil of the user.
  • the human eye tracking module can determine the needs on the vector pixel display screen 01 according to the pupil position of the user.
  • Lighted vector sub-pixels usually the light emitted by the lighted vector sub-pixels will not affect the display of the previous layer after being reflected by the mirror.
  • the beam width of the sub-pixel of the N+1th layer will be larger than that of the sub-pixel of the Nth layer, and a display layer expansion conflict may occur at this time.
  • the processing module in the display device detects that the brightness of the two vector sub-pixels is the same, then the two vector The sub-pixels are all lit; if the brightness of the vector sub-pixels is inconsistent, the vector sub-pixels used to display the previous display layer are lit.
  • the extended display layer when it is found that the extended display layer will conflict, it is necessary to ensure that the brightness of the previous display layer is greater than that of the subsequent display layer, so as to avoid the conflict of the extended display layer and affect the user's visual effect.
  • the brightness of the environment where the display device is located can be adjusted appropriately. This is because when the environment where the user is located is relatively bright, the user can view the image of the user and the image of the environment where the user is located in the mirror. Therefore, it is necessary to limit the brightness of the user.
  • the number of extended display layers is related. When the brightness of the extended display layer is greater than the brightness of the environment where the user is located, the user can see the display layer.
  • the vector pixel can use any of the above methods to expand the viewing angle, and the vector pixel display screen 01 is formed by at least one vector pixel unit 10, and on this basis, a second transflector is added. Mirror 03 and third mirror 02 to increase the number of display layers.
  • the vector pixels in the vector pixel display screen 01 may not be processed to expand the viewing angle, that is, no reflective components are provided. This is not limited. Any solution to increase the effect of the display layer through the cooperation of the half mirror and the mirror is within the protection scope of the present application.
  • an embodiment of the present application further provides a display device, where the display device includes the display panel provided in any of the above-mentioned embodiments, and details are not described herein again.

Abstract

一种显示面板及显示装置,显示面板包括:至少一个矢量像素单元(10);矢量像素单元(10)包括矢量像素(100)和反射组件,反射组件至少设置为反射矢量像素(100)发出的光束;矢量像素单元(10)发出的光束所形成的视角为扩展视角(30),矢量像素(100)发出的光束所形成的视角为原始视角(40),扩展视角(30)大于原始视角(40)。

Description

一种显示面板及显示装置
本申请要求在2020年8月12日提交中国专利局、申请号为202010807398.5的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及显示技术领域,例如涉及一种显示面板及显示装置。
背景技术
矢量像素是一种光学器件,被广泛应用于显示装置中,通过控制矢量像素的发光亮度和灰阶可以实现画面的显示。
矢量像素可以向多个可被区分的方向上投射窄光束,但是,目前矢量像素出射光束的空间分布角度大都小于150°,不满足用户大角度(接近180°)观看显示屏的需要。
发明内容
本申请实施例提供一种显示面板及显示装置,该显示面板可满足用户大角度观看的需要。
第一方面,本申请实施例提供了一种显示面板,包括:至少一个矢量像素单元;矢量像素单元包括矢量像素和反射组件,反射组件至少设置为反射矢量像素发出的光束;
矢量像素单元发出的光束所形成的视角为扩展视角,矢量像素发出的光束所形成的视角为原始视角,扩展视角大于原始视角。
第二方面,本申请实施例还提供了一种显示装置,包括上述任一方面提供的显示面板。
附图说明
图1矢量像素的发光示意图;
图2是本申请一实施例提供的矢量像素单元的结构示意图;
图3是图2所示矢量像素单元的工作原理示意图;
图4是本申请又一实施例提供的矢量像素单元的结构示意图;
图5-图7是图4所示矢量像素单元的工作原理示意图;
图8是本申请又一实施例提供的矢量像素单元的结构示意图及其工作原理示意图;
图9是本申请又一实施例提供的显示面板的结构及其多层显示效果示意图。
具体实施方式
本申请实施例所述的显示面板尤指矢量像素显示面板,矢量像素显示面板通常包括至少一个的矢量像素,通过控制矢量像素的发光亮度和灰阶可以实现画面的显示。在介绍本申请实施例的技术方案之前,首先对矢量像素做如下介绍。
图1是矢量像素的发光示意图。参见图1,矢量像素100是一种满足预设条件的光学器件。该预设条件可以是:第一,矢量子像素窄光束,也就是说相对于较大的显示面积,可以将矢量像素100近似看成为由一个个发光的光源(矢量子像素)构成,每个光源可向空间发射窄光束;矢量子像素向空间发射的光束有如下特点:矢量子像素发出的光束可以理解为以光源为圆心的圆锥体(参见图1);如果以光强下降到此光束的百分之五十为该光束边界,以光源为圆心,能包括所有边界的最小空间球面角度小于10°,通常仅为1°;第二,矢量像素100可以向多个可被区分的方向上进行投影,换句话说,每个矢量子像素的出射光束80的方向不同(参见图1);第三,矢量像素100可以同时向至少两个方向上发射光束,也就是说,矢量像素100中可能存在至少两个矢量子像素同时工作,每个矢量子像素的工作情况可以被单独控制;第四,矢量像素100的光束 亮度可以调节,即一个矢量像素100中每个矢量子像素发射光束的亮度是可以调节的。矢量像素100由至少两个矢量子像素构成,每一个矢量子像素发出的光束具有一定指向性。由矢量像素发光的显示装置通常包括人眼追踪模块,首先根据人眼追踪模块确定用户眼睛的位置,然后确定需要被点亮的矢量子像素,该矢量子像素的光束直接朝向人眼所在位置。
示例性的,本申请的任一实施例中,矢量像素由密集显示器件和光学组件构成。其中,密集显示器件由至少两个发光元件构成,每个发光元件可称为一个矢量子像素,每个矢量子像素发出的光经光学组件调制后可以形成指向空间特定方向的光束。
需要说明的是,矢量像素还可以通过其他方式实现,本申请实施例对此不作限定,凡是采用下述方案扩展矢量像素的视角的方案均在本申请的保护范围之内。
本申请实施例通过增设反射组件扩展矢量像素的视角,在此将矢量像素和反射组件的组合称之为矢量像素单元。示例性的,显示面板包括至少一个矢量像素单元。图2是本申请一实施例提供的矢量像素单元的结构示意图,参见图2,矢量像素单元10包括矢量像素100(如图2所示密集显示器件110和光学组件120)和反射组件(如图2所示第一反射镜210),反射组件至少设置为反射矢量像素发出的光束;矢量像素单元10发出的光束所形成的视角为扩展视角30(如∠A”OB”),矢量像素发出的光束所形成的视角为原始视角40(如∠A’OB’),扩展视角30大于原始视角40。
需要说明的是,图2所示矢量像素单元10的结构仅为本申请其中一个实施例提供的矢量像素单元10的结构,在此仅用于示例性地展示矢量像素单元10的组成部件,并非对其结构的限定。
其中,反射组件除了能够反射矢量像素发出的光束以外,还可以具有其他功能,例如还可以透射矢量像素发出的一部分光束。本申请实施例主要利用反射组件的反射功能改变矢量像素发出的光束的方向,以求扩展矢量像素发出光 束所形成的视角,使显示面板能够满足用户大角度观看的需要。
矢量像素可以发出指向空间多个方向的光束,因此,矢量像素发出的光束所形成的视角即人眼所能看到的矢量像素发出的光束的最大空间分布角度。其中,原始视角表示未设置反射组件时矢量像素发出的光束的最大空间分布角度。扩展视角表示矢量像素单元(设置反射组件改变光束方向后的矢量像素)发出的光束的最大空间分布角度。从图2可以看出,经反射组件改变光束出射方向后,矢量像素发出光束的扩展视角大于其原始视角。后续将详细介绍反射组件的类型及其设置位置和作用机理,在此不再赘述。
如此设置,当显示装置根据人眼追踪模块确定人眼所在位置与显示面板出光面的法线夹角为大角度(例如近90°)时,即可选择合适的矢量子像素发光,该矢量子像素出射的光束经光学组件以及反射组件后可以指向人眼,使人眼观测到该被点亮的矢量子像素,从而满足了用户大角度观看的需要。
本申请实施例通过为矢量像素配置反射组件以组成矢量像素单元,利用反射组件改变矢量像素发出的光束的方向,使矢量像素单元发出的光束所形成的扩展视角大于矢量像素发出的光束所形成的原始视角,从而扩展了相关技术中的矢量像素出射光束的最大空间分布角度,使显示面板能够满足用户大角度观看的需要。
下面介绍3种矢量像素单元10的结构,并详细说明其扩展矢量像素发出的光束的视角的机理。
可选的,反射组件包括反射镜组件,即反射组件仅具备反射功能。示例性的,图4是本申请又一实施例提供的矢量像素单元的结构示意图,图2和图4分别示出了反射组件为反射镜组件时的两种实现方式。图3是图2所示矢量像素单元的工作原理示意图,图5-图7是图4所示矢量像素单元的工作原理示意图。在此,首先结合图2和图3介绍第一种矢量像素单元的结构及其工作机理。
参见图3,矢量像素包括密集显示器件110和光学组件120;密集显示器件110包括至少两个发光元件,至少两个发光元件包括第一发光元件111和第二发 光元件112,第一发光元件111发出的光束经光学组件120出射后形成第一原始光束(如AA’),第二发光元件112发出的光束经光学组件120出射后形成第二原始光束(如BB’);第一原始光束和第二原始光束形成原始视角40(如∠A’OB’);第一发光元件111发出的光束经光学组件120和反射镜组件(如第一反射镜210)出射后形成第一扩展光束(如ACA”),第二发光元件112发出的光束经光学组件120和反射镜组件(如第一反射镜210)出射后形成第二扩展光束(如BDB”);第一原始光束(如AA’)、第二原始光束(如BB’)、第一扩展光束(如ACA”)以及第二扩展光束(如BDB”)中的任意两条光束形成多个第一视角,多个第一视角中的最大值为扩展视角30(如∠B’OB”)。
密集显示器件中至少包括两个发光元件,在此,以第一发光元件111和第二发光元件112表示所有发光元件中出射光束的空间指向角最大的两个发光元件,其中,光束的空间指向角可以理解为该光束与发光元件的出光面的垂线(即发光元件的出光面的法线)之间的夹角。如此,由第一发光元件111出射的第一原始光束(AA’)和第二发光元件112出射的第二原始光束(BB’)所形成的视角即矢量像素发出的光束的最大空间分布角度,即原始视角40。由于密集显示器件中的其他发光元件发出的光束均位于原始视角40内,因此,在此仅以第一发光元件111和第二发光元件112为例,介绍矢量像素的视角扩展机理。
示例性的,图3所示结构中,反射镜组件包括至少一个第一反射镜210;至少一个第一反射镜210设置于密集显示器件110和光学组件120之间,第一反射镜210的反射面与密集显示器件110的底面相交;第一发光元件111发出的光束经第一反射镜210反射,再经光学组件120出射后形成第一扩展光束(ACA”);第二发光元件112发出的光束经第一反射镜210反射,再经过光学组件120出射后形成第二扩展光束(BDB”)。
本实施例中,第一反射镜210设置于密集显示器和光学组件120之间,第一反射镜210设置为反射发光元件发出的光。图3仅以一个反射镜组件包括一个第一反射镜为例进行示意。可以理解的,由于发光元件(例如发光二极管) 发出的光是发散的,因此,发光元件发出的一部分光束会直接经光学组件120出射,形成原始光束;发光元件发出的另一部分光束会先照射到第一反射镜210上,被第一反射镜210反射,然后再经光学组件120出射,形成扩展光束。例如,第一发光元件111发出的光束经第一反射镜210反射,再经光学组件120出射后形成第一扩展光束(ACA”),第二发光元件112发出的光束经第一反射镜210反射,再经过光学组件120出射后形成第二扩展光束(BDB”)。从图3可以看出,矢量像素单元10发出的光束所形成的扩展视角30(∠B’OB”)大于矢量像素发出的光束所形成的的原始视角40(∠A’OB’),矢量像素发出光束的最大空间分布角度得到扩展。
参见图2,可选的,至少两个发光元件包括多个发光元件,多个发光元件形成发光元件阵列(图2未示出);至少一个第一反射镜210围绕发光元件阵列设置,且至少一个第一反射镜210的反射面均与密集显示器件110的底面垂直。
示例性的,发光元件阵列的形状可以为任意多边形,例如,矩形。可选的,反射镜组件可以包括多个第一反射镜210,多个第一反射镜210围绕发光元件阵列设置,每个第一反射镜210的边长与发光元件阵列中对应边的边长相等。以矩形设置的发光元件阵列为例,通过将第一反射镜210围绕发光元件阵列设置,可以使发光元件发出的光同时被4面第一反射镜210反射,反射光束经光学组件120出射后可形成4个指向不同方向的第一光束,从而形成立体光束,满足用户从任一位置大角度(用户与显示面板法线之间的夹角)观看的需要。设置第一反射镜210的反射面与密集显示器件110的底面垂直,可使工艺更为简单,也更有利于设计每一个发光元件最终出射光束的方向。
需要说明的是,虽然增设第一反射镜210后,每个发光元件会从光学组件120处出射5束光束(4束扩展光束和1束原始光束),但是,由于矢量子像素出射光束的发散角仅为平面角1°左右,因此,非用户观看位置处的出射光束(非目标光束)会产生视觉干扰的几率很小,可忽略不计。
下面,结合图4-图7介绍第二种矢量像素单元的结构及其工作机理。参见 图4,可选的,反射镜组件包括中空锥台220,中空锥台220包括第一开口221、第二开口222以及连接第一开口221和第二开口222的锥台侧壁223,中空锥台220包括相对设置的第一表面和第二表面以及相对设置的第三表面和第四表面,第一表面与第一开口位于同一平面,第二表面与第二开口位于同一平面,第三表面为锥台侧壁的内表面,第四表面为锥台侧壁的外表面,第一表面、第二表面和第三表面设置有吸光膜,第四表面设置有第二反射镜2231;中空锥台220设置于矢量像素的出光面上,且第二开口222位于第一开口221背离矢量像素的出光面的一侧,第二开口222在矢量像素的出光面上的垂直投影覆盖第一开口221在矢量像素的出光面上的垂直投影;第一发光元件发出的光束经光学组件120出射,再经第二反射镜2231反射后形成第一扩展光束(未示出);第二发光元件发出的光束经光学组件出射,再经过第二反射镜2231反射后形成第二扩展光束(未示出)。
与上一实施例的区别在于,本实施例中第二反射镜对经过光学组件120调制后出射的光进行反射,而上一实施例中第一反射镜210直接对发光元件发出的光进行反射,然后再经过光学组件120出射。
如前所述,经光学组件120调制后的光束指向一特定方向,可视为近平行光束,且不同发光元件发出的光束经光学组件调制后的空间指向角不同。在此,图5-图7以具有不同空间指向角的出射光束为例,示出了该光束的空间指向角被扩展的机理。需要说明的是,图5-图7仅示出了发光元件发出的光束经光学组件120出射以后的光路示意图。从图5-图7可以看出,从光学组件120的出光面出射的光束被锥台侧壁223的第二反射镜2231反射,从而改变出光方向,使其空间指向角增大。可以理解的,若任一矢量子像素出射光束的空间指向角增大,那么,矢量像素出射的光束所形成的原始视角即可得到扩展,使显示面板满足用户大角度观看的需要。
图5和图6示出了出射光束的空间指向角小于锥台侧壁223倾斜角时的光路示意图,锥台侧壁223倾斜角为图5及图6中锥台侧壁223与光学组件120 的出光面的法线的夹角∠E,其中一部分原始光束60直接从中空锥台220的开口和外侧射出,另一部分原始光束60被第二反射镜2231反射后形成扩展光束70,扩展光束70的空间指向角大于原始光束60的空间指向角。图7示出了出射光束的空间指向角大于于锥台侧壁223倾斜角时的光路示意图,可以看到扩展光束70几乎沿水平方向出射,扩展光束70的空间指向角大于原始光束60的空间指向角。从图5-图7可以看出,本方案能够增加任意出射光束的空间指向角,因而可以扩展矢量像素的视角。
由于从光学组件120出光面出射的光束的空间指向角各不相同,本实施例通过在锥台侧壁223的第一表面、第二表面和第三表面设置吸光膜,使得进入中空锥台220内部的部分光束可以被吸光膜吸收(参见图7),从而减小了非目标光束的干扰。此外,示例性的,第一开口221和第二开口222的形状可以为矩型,可以与显示面板的形状对应,如此,从光学组件120出光面出射的光束可以被多个第二反射镜2231反射,从而形成多束扩展光束。参照上一实施例的描述,由于各光束的发散角都很小,因此,为了产生朝向人眼的大空间指向角的光束而产生的其他方向的光会产生视觉干扰的几率很小,可以忽略不计。
可选的,第一开口221和第二开口222平行设置,且第一开口221和第二开口222之间的间距为第一预设距离;锥台侧壁的第四表面与矢量像素的出光面(即光学组件120出光面)之间具有第一预设夹角(即∠E的余角)。
通过合理设置中空锥台220的高度、锥台侧壁223的倾斜角度以及第一开口221和第二开口222的边长,可以实现均衡各方向的出光亮度,本领域技术人员可自行设定第一预设距离和第一预设夹角,本申请实施例对此不作限定。
综上,反射组件可以由反射镜组件构成,可以设置于密集显示器件与光学组件之间,也可以设置于光学组件(矢量像素)的出光侧。除上述由反射镜组件构成反射组件的方案以外,可选的,反射组件包括半透半反组件;矢量像素发出的光束经半透半反组件反射后出射的光束所形成的视角为反射视角50,矢量像素发出的光束经半透半反组件透射后出射的光束所形成的视角为原始视角 40;反射视角50与原始视角40交叠,扩展视角30为原始视角40与反射视角50之和。
因为半透半反组件可以使一部分入射光透过,另一部分光被反射,以改变一部分光束的方向,所以,只要合理设置半透半反组件的位置,使反射光束和透射光束交叠,即可达到扩展矢量像素视角的目的。
示例性的,图8是本申请又一实施例提供的矢量像素单元的结构示意图及其工作原理示意图。参见图8,可选的,半透半反组件包括第一半透半反射镜230;第一半透半反射镜230设置于矢量像素100的出光侧,第一半透半反射镜230覆盖矢量像素100发出的原始视角40内的光束,且第一半透半反射镜230的反射面面向矢量像素100的出光面,第一半透半反射镜230的反射面与矢量像素100的出光面相交。
如图8所示,通过在矢量像素出光侧的前方设置第一半透半反射镜230,可以使矢量像素发出的原始视角40内的一部分光束直接透过第一半透半反射镜230出射到空间,该部分光所形成的视角仍为原始视角40,另一部分光束则经第一半透半反射镜230反射改变传播方向,该反射的光束形成反射视角50,且反射视角50与原始视角40之间存在交叠。如此,反射视角50与原始视角40之和即为扩展视角30,从而实现了扩展矢量像素视角的目的,使显示面板满足用户大角度观看的需要。
从图8可以看出,该方案中增加的反射视角内出射光束的虚拟光源位置位于矢量像素100相对于第一半透半反射镜230的对称的虚像位置100’处,如此,矢量像素在半透半反射镜的虚像可作为光源像素使用,这相当于增加了矢量子像素的数目,基于此原理,可以利用半透半反射镜以及反射镜增加显示面板的显示层数,实现3D视觉效果。示例性的,图9是本申请又一实施例提供的显示面板的结构及其多层显示效果示意图,参见图9,可选的,显示面板为透明显示面板,显示面板还包括显示叠加组件,显示叠加组件包括第三反射镜02和第二半透半反射镜03;第三反射镜02设置于显示面板的非显示侧,且第三反射镜 02的反射面面向显示面板的非显示面,第三反射镜02的反射面与显示面板的显示面平行;第二半透半反射镜03设置于显示面板的显示侧,且第二半透半反射镜03的反射面面向显示面板的显示面,第二半透半反射镜03的反射面与显示面板的显示面之间相距第二预设距离且具有第二预设夹角,需要说明的是,将经过第二半透半反射镜03的底边且与显示面板的显示面平行的平面称为第一平面,则第二预设距离指的是第一平面和显示面板的显示面之间的距离。
参见图9,矢量像素单元10所在区域构成显示面板的发光区域,该发光区域内可以设置至少一个矢量像素单元10,用来显示待显示的图像,相应的,该发光区域可称之为矢量像素显示屏01,矢量像素显示屏01为透明显示屏,以矢量像素显示屏01的出光面表示显示面板的显示面,以矢量像素显示屏01的非出光面表示显示面板的非显示面。
本实施例中,第三反射镜02设置于矢量像素显示屏01非出光面的一侧,第三反射镜02与矢量像素显示屏01平行设置,且与矢量像素显示屏01距离很近几乎可以忽略不计。第二半透半反射镜03设置于矢量像素显示屏01出光面的一侧,且与矢量像素显示屏01的出光面之间相距第二预设距离且具有第二预设夹角。可选的,第二预设距离小于10mm,第二预设夹角小于5°。
如上所述,当人眼追踪模块确定用户的瞳孔位置后,可以确定矢量像素中需要被点亮的矢量子像素。示例性的,参见图9,假设P1位置处的矢量像素单元10的多个矢量子像素被点亮,其中,某一个矢量子像素发出的光束可沿光线1直接透过第二半透半反射镜03到达用户的眼睛,另一个矢量子像素发出的光束首先被第二半透半反射镜03反射后到达第三反射镜02,再经第三反射镜02反射后沿光线2到达用户的眼睛。示例性的,图9中虚像A是矢量像素显示屏01经第二半透半反射镜03透射后所成的虚像,此时得到的虚像A不能被处于第二半透半反射镜03一侧的用户观看到。虚像B为虚像A经第三反射镜02反射后所成的虚像,当用户和显示屏处于比较暗的环境中时,眼睛就可以看到在虚像B的位置有一层显示效果。这是因为,矢量子像素发出的光束发散角很小, 而形成虚像B的矢量子像素集合与人眼直接观看到的矢量像素显示屏01的矢量子像素集合不相同,因此,用户只能在矢量像素显示屏01上看到发出光线1的矢量子像素而不会看到发出光线2的矢量子像素,而在虚像B处只能看到形成光线2的矢量子像素虚像而不会看到发出光线1的矢量子像素虚像,从而实现了增加显示层的效果。
同理虚像B依次经第二半透半反射镜03和第三反射镜02后会在虚像B后方再形成新的显示层,依此类推,点亮N个矢量像素子像素就可以形成N个显示层。
需要说明的是,由于被点亮的矢量子像素是根据人眼追踪模块来确定的,因此确定被点亮的矢量子像素经第二半透半反射镜03以及第三反射镜02作用后,均可以进入到用户的瞳孔。
需要说明的是,在通过增设的第二半透半反射镜03和第三反射镜02来增加显示层的方案中,人眼追踪模块可以根据用户的瞳孔位置,确定矢量像素显示屏01上需要被点亮的矢量子像素,通常被点亮的矢量子像素发射的光线在镜面发生反射后不会影响前一层的显示。但是,由于矢量像素子像素发光光束有一定的发散角,那么第N+1层的子像素光束宽度会大于第N层的子像素的光束宽度,此时可能会发生显示层扩展冲突。参见图9,在用户距离矢量像素显示屏01的距离较远时,可能出现经镜面反射后出射的光线2可能经过P1点且光线的传播方向几乎相同,此时的观看效果就会出现P1点和P2点相互遮挡影响。为了避免扩展显示层存在冲突的情形,现提出以下扩展冲突处理规则:示例性的,在显示的过程,若显示装置中的处理模块检测到两个矢量子像素亮度一致时,则将两个矢量子像素均点亮;若矢量子像素的亮度不一致时,则点亮用于显示前一显示层的矢量子像素。总的来说,当发现扩展显示层会发生冲突时,要保证前一显示层的亮度大于后面显示层的亮度,以避免扩展显示层冲突,影响用户视觉效果。
还需要说明的是,若要显示较多层数时,可以适当调节显示装置所处的环 境亮度。这是因为当用户所处的环境比较亮时,用户可以在反射镜中观看到用户自身的像以及用户所处环境的像,因此需要对用户所处的亮度情况进行限定,其限定程度可以与扩展显示层数有关,当扩展的显示层亮度大于用户所处的环境亮度时,用户即可看到该显示层。
还需要说明的是,本实施例中,矢量像素可以采用上述任一方法扩展视角,由至少一个矢量像素单元10形成矢量像素显示屏01,在此基础上,再通过增设第二半透半反射镜03和第三反射镜02,实现显示层数目的增加。在实际的产品中,若矢量像素发出的光束所形成的视角足以满足用户观看需要,矢量像素显示屏01中的矢量像素也可以不作扩展视角的处理,即不设置反射组件,本申请实施例对此不作限定。凡是通过半透半反射镜和反射镜配合实现增加显示层效果的方案,均在本申请的保护范围之内。
此外,本申请实施例还提供了一种显示装置,该显示装置包括上述任一实施例提供的显示面板,在此不再赘述。

Claims (10)

  1. 一种显示面板,包括:至少一个矢量像素单元(10);所述矢量像素单元(10)包括矢量像素(100)和反射组件,所述反射组件至少设置为反射所述矢量像素(100)发出的光束;
    所述矢量像素单元(10)发出的光束所形成的视角为扩展视角(30),所述矢量像素(100)发出的光束所形成的视角为原始视角(40),所述扩展视角(30)大于所述原始视角(40)。
  2. 根据权利要求1所述的显示面板,其中,所述反射组件包括反射镜组件;
    所述矢量像素(100)包括密集显示器件(110)和光学组件(120);所述密集显示器件(110)包括至少两个发光元件(111,112),所述至少两个发光元件(111,112)包括第一发光元件(111)和第二发光元件(112),所述第一发光元件(111)发出的光束经所述光学组件(120)出射后形成第一原始光束,所述第二发光元件(112)发出的光束经所述光学组件(120)出射后形成第二原始光束;所述第一原始光束和所述第二原始光束形成所述原始视角(40);
    所述第一发光元件(111)发出的光束经所述光学组件(120)和所述反射镜组件出射后形成第一扩展光束,所述第二发光元件(112)发出的光束经所述光学组件(120)和所述反射镜组件出射后形成第二扩展光束;所述第一原始光束、所述第二原始光束、所述第一扩展光束以及所述第二扩展光束中的任意两条光束形成多个第一视角,所述多个第一视角中的最大值为所述扩展视角(30)。
  3. 根据权利要求2所述的显示面板,其中,所述反射镜组件包括至少一个第一反射镜(210);
    所述至少一个第一反射镜(210)设置于所述密集显示器件(110)和所述光学组件(120)之间,所述第一反射镜(210)的反射面与所述密集显示器件(110)的底面相交;所述第一发光元件(111)发出的光束经所述第一反射镜(210)反射,再经所述光学组件(120)出射后形成所述第一扩展光束;所述第二发光元件(112)发出的光束经所述第一反射镜(210)反射,再经过所述光学组件(120)出射后形成所述第二扩展光束。
  4. 根据权利要求3所述的显示面板,其中,所述至少两个发光元件(111,112)形成发光元件阵列;
    所述至少一个第一反射镜(210)围绕所述发光元件阵列设置,且所述至少一个第一反射镜(210)的反射面均与所述密集显示器件(110)的底面垂直。
  5. 根据权利要求2所述的显示面板,其中,所述反射镜组件包括中空锥台(220),所述中空锥台(220)包括第一开口(221)、第二开口(222)以及连接所述第一开口(221)和所述第二开口(222)的锥台侧壁(223),所述中空锥台(220)包括相对设置的第一表面和第二表面以及相对设置的第三表面和第四表面,所述第一表面与所述第一开口(221)位于同一平面,所述第二表面与所述第二开口(222)位于同一平面,所述第三表面为所述锥台侧壁(223)的内表面,所述第四表面为所述锥台侧壁(223)的外表面,所述第一表面、第二表面和第三表面设置有吸光膜,所述第四表面设置有第二反射镜(2231);
    所述中空锥台(220)设置于所述矢量像素(100)的出光面上,且所述第二开口(222)位于所述第一开口(221)背离所述矢量像素的出光面的一侧,所述第二开口(222)在所述矢量像素的出光面上的垂直投影覆盖所述第一开口(221)在所述矢量像素的出光面上的垂直投影;
    所述第一发光元件(111)发出的光束经所述光学组件(120)出射,再经所述第二反射镜(2231)反射后形成所述第一扩展光束;所述第二发光元件(112)发出的光束经所述光学组件(120)出射,再经过所述第二反射镜(2231)反射后形成所述第二扩展光束。
  6. 根据权利要求5所述的显示面板,其中,所述第一开口(221)和所述第二开口(222)平行设置,且所述第一开口(221)和所述第二开口(222)之间的间距为第一预设距离;所述锥台侧壁(223)的第四表面与所述矢量像素(100)的出光面之间具有第一预设夹角。
  7. 根据权利要求1所述的显示面板,其中,所述反射组件包括半透半反组件;
    所述矢量像素(100)发出的光束经所述半透半反组件反射后出射的光束所形成的视角为反射视角(50),所述矢量像素(100)发出的光束经所述半透半反组件透射后出射的光束所形成的视角为所述原始视角(40);
    所述反射视角(50)与所述原始视角(40)交叠,所述扩展视角(30)为所述原始视角(40)与所述反射视角(50)之和。
  8. 根据权利要求7所述的显示面板,其中,所述半透半反组件包括第一半透半反射镜(230);
    所述第一半透半反射镜(230)设置于所述矢量像素(100)的出光侧,所述第一半透半反射镜(230)覆盖所述矢量像素(100)发出的所述原始视角(40)内的光束,且所述第一半透半反射镜的反射面面向所述矢量像素的出光面,所述第一半透半反射镜(230)的反射面与所述矢量像素(100)的出光面相交。
  9. 根据权利要求1-8任一项所述的显示面板,其中,所述显示面板为透明显示面板,所述显示面板还包括显示叠加组件,所述显示叠加组件包括第三反射镜(02)和第二半透半反射镜(03);
    所述第三反射镜(02)设置于所述显示面板的非显示侧,且所述第三反射镜(02)的反射面面向所述显示面板的非显示面,所述第三反射镜(02)的反射面与所述显示面板的显示面平行;
    所述第二半透半反射镜(03)设置于所述显示面板的显示侧,且所述第二半透半反射镜(03)的反射面面向所述显示面板的显示面,所述第二半透半反射镜(03)的反射面与所述显示面板的显示面之间相距第二预设距离且具有第二预设夹角。
  10. 一种显示装置,包括权利要求1-9任一项所述的显示面板。
PCT/CN2021/078852 2020-08-12 2021-03-03 一种显示面板及显示装置 WO2022033014A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010807398.5A CN111899646B (zh) 2020-08-12 2020-08-12 一种显示面板及显示装置
CN202010807398.5 2020-08-12

Publications (1)

Publication Number Publication Date
WO2022033014A1 true WO2022033014A1 (zh) 2022-02-17

Family

ID=73230000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078852 WO2022033014A1 (zh) 2020-08-12 2021-03-03 一种显示面板及显示装置

Country Status (2)

Country Link
CN (1) CN111899646B (zh)
WO (1) WO2022033014A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111899646B (zh) * 2020-08-12 2022-02-08 亿信科技发展有限公司 一种显示面板及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080049271A (ko) * 2006-11-30 2008-06-04 엘지디스플레이 주식회사 확대된 영상을 표시하는 멀티 뷰 영상표시장치의 구동방법
CN103473996A (zh) * 2013-08-20 2013-12-25 京东方科技集团股份有限公司 一种显示装置
CN105068659A (zh) * 2015-09-01 2015-11-18 陈科枫 一种增强现实系统
CN110111688A (zh) * 2019-05-24 2019-08-09 亿信科技发展有限公司 一种显示面板、显示方法及显示系统
CN111158162A (zh) * 2020-01-06 2020-05-15 亿信科技发展有限公司 一种超多视点三维显示装置以及系统
CN111899646A (zh) * 2020-08-12 2020-11-06 亿信科技发展有限公司 一种显示面板及显示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103941326B (zh) * 2014-04-11 2016-08-24 广东威创视讯科技股份有限公司 一种平板显示器的导光结构及带该导光结构的平板显示器
BR112017013418B1 (pt) * 2014-12-24 2021-03-02 Koninklijke Philips N.V tela autoestereoscópica, e, dispositivo portátil
CN105137605B (zh) * 2015-09-28 2018-04-20 清华大学 三维立体成像装置及其三维立体成像的方法
US10607417B2 (en) * 2016-06-08 2020-03-31 Sony Interactive Entertainment Inc. Image generating apparatus and image generating method
US10244230B2 (en) * 2017-03-01 2019-03-26 Avalon Holographics Inc. Directional pixel for multiple view display
CN108681155B (zh) * 2018-05-16 2021-03-05 京东方科技集团股份有限公司 一种显示装置、显示系统及其控制方法
DE102018215272A1 (de) * 2018-09-07 2020-03-12 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben einer Blickfeldanzeigevorrichtung für ein Kraftfahrzeug
CN110264905B (zh) * 2019-05-24 2020-08-14 亿信科技发展有限公司 一种光场显示系统
CN111487786A (zh) * 2020-04-26 2020-08-04 京东方科技集团股份有限公司 一种光学显示系统及控制方法、显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080049271A (ko) * 2006-11-30 2008-06-04 엘지디스플레이 주식회사 확대된 영상을 표시하는 멀티 뷰 영상표시장치의 구동방법
CN103473996A (zh) * 2013-08-20 2013-12-25 京东方科技集团股份有限公司 一种显示装置
CN105068659A (zh) * 2015-09-01 2015-11-18 陈科枫 一种增强现实系统
CN110111688A (zh) * 2019-05-24 2019-08-09 亿信科技发展有限公司 一种显示面板、显示方法及显示系统
CN111158162A (zh) * 2020-01-06 2020-05-15 亿信科技发展有限公司 一种超多视点三维显示装置以及系统
CN111899646A (zh) * 2020-08-12 2020-11-06 亿信科技发展有限公司 一种显示面板及显示装置

Also Published As

Publication number Publication date
CN111899646B (zh) 2022-02-08
CN111899646A (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
TWI595280B (zh) 光波導元件以及具有此光波導元件的頭戴式顯示裝置
US10473947B2 (en) Directional flat illuminators
CN108181717A (zh) 用于在空中成像的系统
US11303879B2 (en) Display device
WO2017183556A1 (ja) ヘッドアップディスプレイ装置
WO2022030538A1 (ja) 空間浮遊映像情報表示システムおよびそれに用いられる光源装置
TWI729622B (zh) 具有可移動會聚平面的多視像顯示器、系統和方法
CN110286496B (zh) 一种基于前置方向性光源的立体显示装置
JP2014081510A (ja) 表示装置
WO2018154849A1 (ja) 空中映像出力装置
WO2020237923A1 (zh) 一种显示面板、显示方法及显示系统
WO2022033014A1 (zh) 一种显示面板及显示装置
JPWO2016199540A1 (ja) 空中映像表示装置
JP2019032404A (ja) 空中映像表示装置
US11644673B2 (en) Near-eye optical system
CN110178071B (zh) 被配置为显示依赖于观看位置的图像的显示屏
JP2013171252A (ja) 情報提示装置
WO2022080117A1 (ja) 空間浮遊映像表示装置および光源装置
US11145228B1 (en) Immersive display structure
JP2015197551A (ja) 空間映像表示装置
US11092803B2 (en) Head-up display device with reflecting target diffuser sheet
US9762892B2 (en) Auto-multiscopic 3D display and camera system
US20120268814A1 (en) Refelctive front screen
WO2023185653A1 (zh) 一种抬头显示装置、抬头显示方法及车辆
US20210173214A1 (en) Projection apparatus and wearable display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21855070

Country of ref document: EP

Kind code of ref document: A1