WO2020237923A1 - 一种显示面板、显示方法及显示系统 - Google Patents

一种显示面板、显示方法及显示系统 Download PDF

Info

Publication number
WO2020237923A1
WO2020237923A1 PCT/CN2019/106703 CN2019106703W WO2020237923A1 WO 2020237923 A1 WO2020237923 A1 WO 2020237923A1 CN 2019106703 W CN2019106703 W CN 2019106703W WO 2020237923 A1 WO2020237923 A1 WO 2020237923A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
vector
sub
light
coordinates
Prior art date
Application number
PCT/CN2019/106703
Other languages
English (en)
French (fr)
Inventor
卢增祥
Original Assignee
亿信科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 亿信科技发展有限公司 filed Critical 亿信科技发展有限公司
Publication of WO2020237923A1 publication Critical patent/WO2020237923A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0093Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for monitoring data relating to the user, e.g. head-tracking, eye-tracking
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the embodiments of the present invention relate to the field of image display technology, for example, to a display panel, a display method, and a display system.
  • This article provides a display panel, a display method, and a display system to expand the display area and increase the number of display layers, thereby improving the technical effect of user experience.
  • an embodiment of the present invention provides a display panel, the display panel including: a first light-emitting area and a reflector;
  • the first light-emitting area includes at least one vector pixel
  • Each of the vector pixels includes at least one vector sub-pixel, and each of the vector sub-pixels is configured to emit incident light at at least one angle;
  • the reflecting mirror is arranged at the first edge of the first light-emitting area, and the reflecting mirror is configured to cause incident light emitted by at least one of the vector sub-pixels to be reflected by the reflecting mirror and then emitted according to a preset path, A virtual image corresponding to the vector sub-pixel that emits incident light to the mirror is formed.
  • an embodiment of the present invention also provides a display method for the display panel described in any of the embodiments herein, and the method includes:
  • At least one of the vector sub-pixels is determined as a target vector sub-pixel in each of the vector pixels, and it is determined to be related to each of the target vector sub-pixels.
  • a control signal is sent to each target vector sub-pixel, so that each target vector sub-pixel emits light of a preset angle.
  • an embodiment of the present invention also provides a display system, which includes the display panel shown in any of the embodiments herein.
  • FIG. 1 is a schematic diagram of the structure of a display panel provided by Embodiment 1 of the present invention.
  • Embodiment 1 of the present invention is a schematic diagram of a vector pixel structure provided by Embodiment 1 of the present invention.
  • Embodiment 3 is a schematic diagram of a vector pixel structure provided by Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram of the structure of imaging of vector pixels through a plane mirror provided by Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram of a planar structure of the first light-emitting area provided by the first embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a display panel provided by the second embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a display panel provided by Embodiment 2 of the present invention.
  • FIG. 8 is a schematic flowchart of a display method according to Embodiment 3 of the present invention.
  • FIG. 9 is a schematic flowchart of a display method according to Embodiment 3 of the present invention.
  • FIG. 1 is a schematic structural diagram of a display panel provided by Embodiment 1 of the present invention.
  • a display panel includes: a first light-emitting area 101 and at least one reflector; wherein, the first light-emitting area 101 includes at least one vector pixel 102; at least one vector pixel 102 includes at least A vector sub-pixel, the vector sub-pixel emits at least one angle of incident light; at least one reflector is arranged at the first edge of the display area, and the incident light emitted by the vector sub-pixel is reflected by the at least one reflector and then exits according to a preset path , Forming a virtual image corresponding to the vector sub-pixel.
  • the "angle" in the incident light that the vector sub-pixel emits at least one angle refers to the pointing angle in the three-dimensional space of the axis of the cone area where the vector sub-pixel emits the incident light; the vector sub-pixel emits a preset angle Incident light can be understood as a vector sub-pixel emitting incident light in a preset direction.
  • the vector pixel 102 is an optical device that meets preset conditions.
  • the preset conditions can be: First, the vector sub-pixels are narrow light, that is to say, relative to a larger display area, the vector pixels 102 can be approximately regarded as composed of light-emitting light sources; the vector pixels 102 emit at least A beam of light has the following characteristics: see Figure 2, the light emitted by the vector pixel can be understood as a cone with the light source as the center; if the light intensity drops to 50% of the light as the boundary of the light, the light source is the center , The minimum spatial spherical angle that can include all boundaries is less than 10 degrees; second, the vector pixel 102 can be projected in at least 100 distinguishable directions; third, the vector pixel 102 can be projected to two or more In other words, there may be two or more sub-pixels working at the same time in the
  • the vector pixel 102 is composed of a dense display device and an optical module.
  • the basic light-emitting unit of the dense display device is called a vector sub-pixel.
  • the light emitted by each vector sub-pixel passes through the optical module of the vector pixel. After the module is modulated, it can form light that points to a specific direction in space. Since the light angle of the vector sub-pixel is usually very small, after the user's pupil position is determined by the eye tracking module provided in the display system, one or more vector sub-pixels that are lit can be determined.
  • the vector pixel 102 is composed of at least one vector sub-pixel, and the light emitted by each vector sub-pixel has a certain directivity.
  • the interface for video playback or image display in the display device may be referred to as a display interface, that is, the first light-emitting area 101 in this embodiment.
  • the size and shape of the first light-emitting area 101 can be set by the user according to actual needs.
  • the first light-emitting area 101 is arranged in an arc shape, a flat surface, or a curved surface.
  • the picture displayed by the first light-emitting area 101 may be implemented by vector pixels 102 laid on the first light-emitting area 101.
  • the vector pixel 102 has been briefly introduced above.
  • the vector pixel 102 is composed of at least one vector sub-pixel, and each vector sub-pixel can emit light from different angles, and a human eye tracking module can be set in the display device. , According to the user’s pupil position, the vector sub-pixel in the vector pixel can be determined to emit light.
  • At least one reflector may be provided at a preset position of the first light-emitting area 101.
  • a mirror is an optical component that uses the law of reflection. Mirrors can be divided into plane mirrors, spherical mirrors and aspheric mirrors according to their shapes; according to the degree of reflection, they can be divided into total reflection mirrors and half mirrors (also known as beam splitters). In this embodiment, a flat or total reflection mirror can be used.
  • the number of the at least one reflector can be one, two, or more, and the user can set the number of reflectors according to the display area that needs to be enlarged.
  • the arrangement of the reflector in the display panel may be: at least one edge of the first light-emitting area, the length of the reflector is equal to the edge of the display panel, the minimum width of the reflector can be satisfied, so that the reflector can receive the second A light beam emitted by vector pixels set at the edge of a light-emitting area.
  • the vector pixels laid on the display interface can be illuminated and seen by the user.
  • the light emitted by the first vector sub-pixel 1021 in the lighted vector pixel 102 can directly enter the user's eyes, that is, the user can observe the first vector sub-pixel 1021 in the vector pixel 102 Is lit.
  • the second vector sub-pixel 1022 of the appropriate vector pixel 102 is selected to be lit, that is, after the user’s pupil position determined by the eye tracking device, the corresponding processing device can determine the appropriate second vector sub-pixel 1022, The light of the second vector sub-pixel 1022 is reflected by the plane mirror 1024 and changes its propagation direction to enter the user's eyes, and the user can see that the second vector sub-pixel 1022 in the vector pixel 102 is lit. The light emitted by the third vector sub-pixel 1023 cannot be seen by the user.
  • the vector sub-pixel 102 and the virtual image corresponding to the vector image sub-pixel can be considered as two independent pixels. Since the light angle of the vector sub-pixel is small, the size of the plane mirror is limited, and the distance between the observer and the first light-emitting area 101 is limited, one sub-pixel of the vector pixel that can be determined by the human eye tracking device can be seen by the user.
  • the output light emitted by a sub-pixel in the vector pixel is mirror-reflected, and the reflected light can enter the user’s eyes, then the light directly emitted by the vector sub-pixel points to the direction of the mirror instead of the user, so that the user sees
  • the real display screen and the virtual image display screen after mirror imaging are independent of each other, and the display pixels of the two will not affect each other, thus achieving the technical effect of expanding the display area.
  • the mirror can be applied to the vector pixel display screen to achieve the technical effect of expanding the display area.
  • first light-emitting area 101 as a curved surface as an example to introduce the solution
  • vector pixels 102 are arranged on the curved screen, and two mirrors are respectively arranged at the curved edge of the curved light-emitting area.
  • the first edge can be understood as the curved edge of the curved light-emitting area.
  • the eye tracking module in the display system can obtain the user’s pupil position and send the user’s pupil position to the processing device in the display system.
  • the processing device can determine the vector pixel to be illuminated on the display screen according to the user’s pupil position.
  • Part of the vector sub-pixels can be reflected by the plane mirror set on the upper edge to form a virtual image corresponding to the part of the vector sub-pixels to obtain the first virtual image surface 1011.
  • some point vector sub-pixels can be reflected by the plane mirror set on the lower edge.
  • a virtual image corresponding to the vector sub-pixel is formed to obtain a second virtual image surface 1012.
  • the display area obtained at this time can be three times the area of the display screen.
  • the vector sub-pixels that may be lit may be the same or different. Which vector sub-pixel is illuminated is mainly determined by the processing device provided in the display device, which calculates the pupil position obtained by the person tracking module and the parameter information of the display device to determine which vector sub-pixel is illuminated.
  • the reflecting mirrors 103 can be arranged on the left and right sides of the flat display screen.
  • the eye tracking module provided in the display device can determine the position of the user's pupil, and according to the position of the user's pupil, determine that the vector sub-pixel corresponding to the position of the user's pupil is illuminated.
  • the appropriate sub-pixels can be selected to light up so that the light reflected by the plane mirror 103 can enter the user's pupils.
  • the user can see the vector pixels through the plane mirror while watching the vector pixel display.
  • the virtual image formed by the flat mirror can achieve the effect of expanding the field of view, that is, the display area at this time is three times the display area of the screen.
  • the display device equipped with the display panel provided in this embodiment also includes an eye tracking module and a processing device.
  • the eye tracking module is used to obtain the pupil position of the user
  • the processing device is used to determine the target vector sub-pixel to be emitted in the first light-emitting area according to the pupil position of the user.
  • the principle of setting at least one reflector at the edge of the first light-emitting area to expand the display area is: when the vector sub-pixel emits emitted light and there is an angle with the reflector, the emitted light can enter the pupil of the user after being reflected by the reflector, And a virtual image corresponding to the vector sub-pixel of the emitted light is formed in the reflecting mirror, thereby expanding the display area.
  • the eye tracking module provided in the display device can determine the vector sub-pixels used to compensate for the loss of light energy according to the located pupil position information, and then perform the light-emitting vector sub-pixels according to the content displayed on the display screen. Brightness compensation.
  • the technical solution of the embodiment of the present invention by arranging at least one reflector at the edge of the first light-emitting area, it is used to reflect the incident light emitted by the vector sub-pixel by the at least one reflector according to a preset
  • the path is emitted to form a virtual image corresponding to the vector sub-pixel, which solves the problem of increasing the viewing area of the display screen in the related technology, which usually increases the physical area of the display screen.
  • a large screen is displayed, it needs to be displayed on the display interface. Setting more vector pixels leads to technical problems of higher cost and waste of resources, which not only increases the area of the display interface, but also reduces the production cost and improves the user experience.
  • At least two light-emitting areas may be joined together.
  • the joining of two light-emitting areas is taken as an example.
  • FIG. 6 is a schematic structural diagram of a display panel provided by the second embodiment of the present invention.
  • the interface panel further includes: a second light-emitting area 201, at least one reflector 103 is arranged at the first light-emitting area 101 and the second edge of the second light-emitting area 201, used to The incident light emitted by at least one vector sub-pixel is reflected out to the user's pupil.
  • the first light-emitting area and the second light-emitting area mentioned in the embodiment of the present invention are all areas where vector pixels are installed. In this embodiment, it is only for different settings of the flat mirror, and the display panel The light-emitting area is divided.
  • At least two vector pixel display screens may also be combined, that is, two light-emitting areas are combined.
  • the combination method may be to encapsulate two vector pixel display screens, or a multi-faceted vector pixel display screen on the same horizontal plane, or may be packaged on different horizontal planes.
  • it is only an ideal state to encapsulate two vector pixel display screens on the same plane.
  • Most of them encapsulate two or more area vector pixel display screens on multiple planes.
  • the two vector pixel display screens are encapsulated on two planes. In other words, when the first light-emitting area 101 and the second light-emitting area 201 are spliced, they are packaged on different planes.
  • the second light-emitting area 201 is arranged on the second plane, the first light-emitting area 101 is arranged on the first plane, and the first plane and the second plane are parallel to each other.
  • the vertical height of the first plane may be higher than the second plane, or the vertical height of the second plane may be higher than the first plane. In this embodiment, the vertical height of the second plane may be higher than the vertical height of the first plane. It can also be understood that, based on the viewing position of the user, the first horizontal plane is close to the viewing angle, and the second horizontal plane is far away. Watch the test.
  • the setting method between the first light-emitting area 101 and the second light-emitting area 201 can be as shown in the figure.
  • the user When the user is watching from viewpoint A, the user can see a perfect display screen.
  • viewpoint B When viewing from viewpoint B, a gap between the second light-emitting area 201 and the first light-emitting area 101 may be seen, and the display effect is poor.
  • At least one reflector 103 can be arranged at the gap between the second light-emitting area 201 and the first light-emitting area 101.
  • FIG. 6 that is, in the first horizontal plane and the second plane
  • a plane mirror 103 is vertically arranged at the gap between the two.
  • the processing device in the display system can determine which vector sub-pixel in the second light-emitting area 201 is acted upon by the mirror 103 according to the position of the user’s pupil. It can enter the pupil of the user, thereby preventing the user from seeing the gap between the second light-emitting area 201 and the first light-emitting area 101.
  • the advantage of this setting is that the gap between the second light-emitting area 201 and the first light-emitting area 101 is effectively blocked, and a perfect display screen can be seen no matter where the user is.
  • the embodiment of the present invention also provides a display system.
  • the display system includes an eye tracking device, a processing device, and the display panel provided in the embodiment of the present invention.
  • an enlarged display can be realized.
  • the technical solution of the embodiment of the present invention solves the related technology by placing at least one reflector in the gap between at least two light-emitting areas to reflect incident light emitted by at least one vector sub-pixel to the pupil of the user.
  • the technical problem of the poor display interface effect observed is realized by the mirror set at the gap.
  • the display area has reached the completeness of the display interface, thereby improving the technical effect of user experience.
  • FIG. 8 is a schematic flowchart of a display method according to an embodiment of the present invention.
  • the method can be applied to a display screen provided with vector pixels.
  • the method can be implemented in software and/or hardware, and can be integrated in electronic equipment, optionally, a terminal, a PC, etc.
  • the method includes:
  • S801 Obtain the pupil position of the user based on the human eye tracking module, and determine the coordinates of the pupil position.
  • the eye tracking module can be integrated in a display device, which includes the display panels disclosed in the first embodiment and the second embodiment.
  • the eye tracking module can obtain the user's pupil position within a preset range in real time.
  • the pupil position coordinates can be understood as the determination of the pupil coordinate information according to the pre-established spatial coordinate system.
  • S802 Determine the coordinates of at least one vector sub-pixel to be emitted in each vector pixel as the target vector sub-pixel according to the coordinates of the pupil position, and the size and setting position of the at least one mirror.
  • the number of the at least one reflector may be one, two, or more, which can be determined by the user according to actual needs.
  • the location of at least one mirror and the size of the mirror are determined in advance.
  • the vector pixel includes a plurality of vector sub-pixels. Therefore, it is necessary to determine the vector sub-pixels that need to emit light among the vector pixels.
  • the luminous vector sub-pixels will be determined according to the coordinates of the user's pupil position.
  • the light-emitting vector sub-pixel is used as the target vector sub-pixel.
  • the driving software in the display device can respectively determine the coordinates in the target vector sub-pixels, and use the determined coordinates at this time as the target vector sub-pixel coordinates.
  • the target vector sub-pixel before determining the target vector sub-pixel, it further includes: determining at least one vector sub-pixel on the display panel with respect to the virtual image coordinates formed by the at least one mirror; wherein, the vector pixel includes at least two vector sub-pixels .
  • the virtual image formed by each vector pixel on the display panel with respect to the mirror can be determined, and the virtual image coordinates corresponding to each vector pixel can be obtained.
  • the vector pixel coordinates and the virtual image corresponding to the vector pixel it can be determined which vector sub-pixels emit light that can directly reach the user's pupil.
  • this calculation method it is possible to determine which vector sub-pixel on the display panel can enter the pupil of the user after being specularly reflected, thereby obtaining the target vector sub-pixel.
  • each vector sub-pixel in each vector pixel in the display panel can also be pre-calculated and stored. After obtaining the user's pupil position coordinates, according to the pre-stored light path, it is determined that the target vector sub-pixel is required.
  • determining the target vector sub-pixel may also be: determining the coordinates of the pupil position relative to the pupil virtual image coordinates formed by the at least one mirror according to the size and the position of the at least one mirror; according to the pupil virtual image coordinates, at least The size and position of a mirror, and the vector pixel coordinates on the display panel determine the target vector sub-pixel coordinates.
  • the user’s pupil position coordinates can be determined with respect to the pupil virtual image coordinates formed by the mirror. According to the pupil virtual image coordinates, it is possible to determine which vector sub-pixels emit The light beam can enter the virtual image of the pupil through the pupil, and the vector sub-pixel entering the virtual image of the user’s pupil is also used as the target vector sub-pixel. It should be noted that the image formed by the light emitted by the vector sub-pixel obtained at this time is recorded as a virtual image.
  • the vector pixel includes a plurality of vector sub-pixels, and each vector sub-pixel can emit a light beam in a predetermined direction.
  • the image that the user sees at this time is called the real image; there are also some light beams emitted by the vector sub-pixel that need to be emitted through a mirror to enter the user’s pupil.
  • the image that the user sees is called a virtual image.
  • the vector sub-pixel that enters the pupil of the user through the display screen is used as the first vector sub-pixel, and the image formed by the first vector sub-pixel is a real image; after being acted on by at least one mirror, it enters the user
  • the vector sub-pixel of the pupil is used as the second vector sub-pixel, and the image formed by the second vector sub-pixel is a virtual image; the coordinates of the first vector sub-pixel and the coordinates of the second vector sub-pixel are determined respectively; A vector of sub-pixel coordinates, and the second vector of sub-pixel coordinates are used as target vector sub-pixel coordinates.
  • S803 Send a control signal to the target vector sub-pixel, so that the target vector sub-pixel emits light of a preset angle.
  • the display device may send a control signal to the target vector sub-pixel, so that the target vector sub-pixel emits light of a preset angle.
  • the light-emitting vector sub-pixels are different. Therefore, even if the users at different locations see the same display screen, the light-emitting vector sub-pixels may be different.
  • the technical solution of the embodiment of the present invention by arranging at least one reflector at the edge of the first light-emitting area, it is used to reflect the incident light emitted by the vector sub-pixel by the at least one reflector according to a preset
  • the path is emitted to form a virtual image corresponding to the vector sub-pixels, which solves the need to set more vector pixels on the display interface when displaying on a large screen in the related technology, which leads to the technical problems of high cost and waste of resources.
  • This not only increases the area of the display interface, but also reduces production costs, and improves user experience.
  • FIG. 9 is a schematic flowchart of a display method provided in Embodiment 3 of the present invention. As shown in FIG. 9, the method includes:
  • Obtain the user’s pupil coordinates, vector pixel space coordinates, and the size and set position of the mirror calculate each coordinate according to optical principles, determine the vector sub-pixel A on the display panel that can directly reach the user’s pupil, and determine the display Part of the vector sub-pixels on the panel can reach the vector sub-pixel B of the user's pupil after passing through the mirror.
  • the image formed by the vector sub-pixel A is called a real image
  • the image formed by the vector sub-pixel B is called a virtual image.
  • the method to determine the vector sub-pixel B is: first determine the virtual image coordinates of the vector pixels on the display panel with respect to the mirror, and determine which vector pixels in the virtual image can reach the user’s pupils.
  • the law can determine which vector sub-pixels in the virtual image emit light that can enter the user's pupil, that is, determine the vector sub-pixel B'in the virtual image.
  • the incident light corresponding to the emitted light can be determined, and the coordinate B of the vector pixel on the display panel can be determined according to the incident light, and the vector sub-pixel determined at this time can be used as the target vector sub-pixel B.
  • the method for determining the vector sub-pixel B can also be: according to the coordinates of the user’s pupil and the way the size of the mirror has been set, determine the pupil coordinates with respect to the virtual image formed by the mirror, and determine which vector sub-pixels in the vector pixels
  • the emitted light beam can enter the virtual image of the user's pupil, and the vector sub-pixel that can enter the virtual image of the user's pupil is used as the target vector sub-pixel B.
  • the vector sub-pixel A and the vector sub-pixel B on the display panel are lighted, so that the target user can watch the picture displayed on the display panel.
  • vector sub-pixel A and the vector sub-pixel B are vector pixels set on the display panel, but the determination method is different.
  • Vector pixel A is a vector sub-pixel set on the display panel that can directly enter the user's pupil when it emits light according to the preset;
  • vector sub-pixel B is emitted according to a preset light path and can enter the user's pupil after mirror reflection Vector sub-pixels.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种显示面板、显示方法及显示系统,显示面板包括:第一发光区域(101)以及反射镜;第一发光区域(101)包括至少一个矢量像素(102);每个矢量像素(102)包括至少一个矢量子像素,每个矢量子像素配置为发出至少一个角度的入射光线;反射镜设置在第一发光区域(101)的边缘处,反射镜配置为使至少一个矢量子像素发射的入射光线经反射镜反射后按照预设的路径射出,形成与矢量子像素相对应的虚像。

Description

一种显示面板、显示方法及显示系统
本公开要求在2019年05月24日提交中国专利局、申请号为201910438627.8的中国专利申请的优先权,以上申请的全部内容通过引用结合在本公开中。
技术领域
本发明实施例涉及图像显示技术领域,例如涉及一种显示面板、显示方法及显示系统。
背景技术
目前在许多展馆以及建筑大厅都设置有显示屏,当需要的显示面积较大时,通常会在显示屏之外的位置处安装至少一个镜子,以通过镜面反射将显示屏幕行的内容镜像显示在镜子中,起到显示屏画面在镜子中复制显示的效果,没有实现扩大显示面积的效果。目前,为了提高显示屏的显示面积,通常会增大显示屏的面积,在增大显示屏面积的过程中,存在成本较高的技术问题。
发明内容
本文提供一种显示面板、显示方法及显示系统,以实现扩大显示面积、增加显示层数,从而提高用户体验的技术效果。
第一方面,本发明实施例提供了一种显示面板,该显示面板包括:第一发光区域以及反射镜;
所述第一发光区域包括至少一个矢量像素;
每个所述矢量像素包括至少一个矢量子像素,每个所述矢量子像素配置为发出至少一个角度的入射光线;
所述反射镜设置在所述第一发光区域的第一边缘处,所述反射镜配置为使 至少一个所述矢量子像素发射的入射光线经所述反射镜反射后按照预设的路径射出,形成与向所述反射镜发射入射光线的所述矢量子像素相对应的虚像。
第二方面,本发明实施例还提供一种显示方法,用于本文中任一实施例所述的显示面板,该方法包括:
获取用户的瞳孔位置,并确定所述瞳孔位置的坐标;
根据所述瞳孔位置的坐标,以及所述反射镜的尺寸和设置位置,在每个所述矢量像素中确定至少一个所述矢量子像素作为目标矢量子像素,确定与每个所述目标矢量子像素相对应的目标矢量子像素坐标;
向每个所述目标矢量子像素发送控制信号,以使每个所述目标矢量子像素发出预设角度的光线。
第三方面,本发明实施例还提供了一种显示系统,该显示系统包括本文中任一实施例所示的显示面板。
附图说明
下面对描述实施例中所需要用到的附图做一简单介绍。显然,所介绍的附图只是本文所要描述的一部分实施例的附图,而不是全部的附图,对于本领域普通技术人员,在不付出创造性劳动的前提下,还可以根据这些附图得到其他的附图。
图1为本发明实施例一所提供的一种显示面板结构示意图;
图2为本发明实施例一所提供的一种矢量像素结构示意图;
图3为本发明实施例一所提供的一种矢量像素结构示意图;
图4为本发明实施例一所提供的矢量像素经平面镜成像的结构示意图;
图5为本发明实施例一所提供的第一发光区域为平面型的结构示意图;
图6为本发明实施例二所提供的一种显示面板结构示意图;
图7为本发明实施例二所提供的一种显示面板结构示意图;
图8为本发明实施例三所提供的一种显示方法流程示意图;
图9为本发明实施例三所提供的一种显示方法流程示意图。
具体实施方式
下面结合附图和实施例对本文作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本文,而非对本文的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本文相关的部分而非全部结构。
实施例一
图1为本发明实施例一所提供的一种显示面板的结构示意图。如图1、图2以及图3所示,一种显示面板包括:第一发光区域101以及至少一个反射镜;其中,第一发光区域101包括至少一个矢量像素102;至少一个矢量像素102包括至少一个矢量子像素,矢量子像素发出至少一个角度的入射光线;至少一个反射镜设置在显示区域的第一边缘处,矢量子像素发射的入射光线经至少一个反射镜反射后按照预设的路径射出,形成与矢量子像素相对应的虚像。
需要说明的是,矢量子像素发出至少一个角度的入射光线中的“角度”是指,矢量子像素发射入射光线的圆锥区域的轴线在三维空间内的指向角度;矢量子像素发出预设角度的入射光线,可以被理解为,矢量子像素发出预设方向的入射光线。
继续参见图1、图2以及图3,在介绍本发明实施例技术方案之前,先介绍一下矢量像素102。矢量像素102是满足预设条件的光学器件。预设条件可以是:第一,矢量子像素窄光线,也就是说相对于较大的显示面积,可以将矢量像素 102近似看成为由一个个发光的光源构成;矢量像素102向空间发射的至少一束光线有如下特点:参见图2,矢量像素发出的光线可以理解为以光源为圆心的圆锥体;如果以光强下降到此光线的百分之五十为该光线边界,以光源为圆心,能包括所有边界的最小空间球面角度小于10度;第二,矢量像素102可以向至少100个可被区分的方向上进行投影;第三,矢量像素102可以同时向两个或两个以上的方向上发射光线,也就是说,矢量像素102中可能存在两个或者两个以上的子像素同时工作;第四,矢量像素102的光线亮度可以调节,即一个矢量像素102中每个矢量子像素发射光线的亮度是可以调节的。
在一些实施例中,可参见图3,矢量像素102是由密集显示器件和光学模块组成,密集显示器件的基础发光单元称为矢量子像素,每个矢量子像素发出的光线经矢量像素的光学模块调制后可以形成指向空间特定方向的光线。由于矢量子像素的光线角通常很小,当利用显示系统中设置的人眼追踪模块确定用户的瞳孔位置后,就可以确定被点亮的一个或者多个矢量子像素。在一些实施例中,矢量像素102由至少一个矢量子像素构成,每一个矢量子像素发射出的光线具有一定指向性。
需要说明的是,可以将显示装置中视频播放或者图像展示的界面称为显示界面,也就是本实施例中的第一发光区域101。第一发光区域101的大小以及形状,用户可以根据实际需求进行设置。可选的,第一发光区域101为呈弧形、平面、或者是曲面等设置。第一发光区域101显示的画面可以通过铺设在第一发光区域101的矢量像素102来实现。上文已简单介绍了矢量像素102,可以确定的是,矢量像素102由至少一个矢量子像素构成,每一个矢量子像素可以向不同的角度发出光线,并且在显示装置中可以设置人眼追踪模块,根据用户的瞳孔位置可以确定哪一个矢量像素中的矢量子像素发光。
为了扩大显示界面的显示面积,可以在第一发光区域101的预设位置处设置至少一个反射镜。反射镜是一种利用反射定律工作的光学元器件。反射镜按形状可分为平面反射镜、球面反射镜和非球面反射镜三种;按反射程度,可分成全反反射镜和半透半反反射镜(又名分束镜)。本实施例中,可以采用平面、全反射镜。所述至少一个反射镜的数量可以是一个、两个、或者多个,用户可以根据需要扩大的显示面积来设置反射镜的数量。
反射镜在显示面板中的设置方式可以是:在第一发光区域的至少一个边缘处设置,反射镜的长度与显示面板的边缘相等,反射镜的最小宽度可以满足,使反射镜可以接收到第一发光区域边缘处设置的矢量像素出射的光束。
先介绍一下矢量像素中每个矢量子像素经平面镜反射成像的原理,也就是第一发光区域中矢量像素工作的原理。当用户直接观看显示屏幕上,铺设在显示界面上的矢量像素可以被点亮并且被用户看到。参见图4,示例性的,被点亮的矢量像素102中第一个矢量子像素1021发出的光线可以直接进入用户的眼睛,即用户可以观察到此矢量像素102中第一个矢量子像素1021被点亮。相应的,选择合适的矢量像素102中第二个矢量子像素1022被点亮,即根据人眼追踪装置确定的用户瞳孔位置后,相应的处理装置可以确定合适的第二个矢量子像素1022,第二个矢量子像素1022的光线经平面镜1024反射后改变传播方向进入用户的眼睛,用户就可以看到矢量像素102中第二个矢量子像素1022被点亮。第三个矢量子像素1023发射的光线无法被用户看到。由于可以单独控制矢量像素102中矢量子像素亮暗状态,因此可以认为矢量子像素102和与矢量像子像素相对应的虚像为两个独立的像素。由于矢量子像素的光线角很小,平面镜大小有限,并且观察者距第一发光区域101的距离有限,所以根据人眼追踪设备可以确定的矢量像素中一个子像素可以被用户看到。若经计算矢量像素中一个 子像素发射的出射光线经镜面反射后,反射光线可以射入用户的眼睛,则该矢量子像素直接出射的光线是指向镜面而不是用户的方向,这样用户看到的真实显示屏和经镜面成像后的虚像显示屏是相互独立的,两者的显示像素不会相互影响,从而实现了扩展显示面积的技术效果。
在上述技术方案的基础上,可以将反射镜应用到矢量像素显示屏中,来实现扩大显示面积的技术效果。
以第一发光区域101为曲面为例来介绍该方案,结合图1至图4,曲面屏上设置有矢量像素102,两个反射镜分别设置在曲面型发光区域的曲线边缘处,相应的,第一边缘可以理解为曲线发光区域的曲线边缘。显示系统中的人眼追踪模块可以获取用户的瞳孔位置,并将用户的瞳孔位置发送至显示系统中的处理装置,处理装置可以根据用户的瞳孔位置确定矢量像素显示屏上待发光的矢量子像素,部分矢量子像素可以经上边缘设置的平面镜反射后形成与部分矢量子像素相对应的虚像,得到第一虚像面1011,相应的,还有部分点矢量子像素可以经下边缘设置的平面镜反射后形成与矢量子像素相对应的虚像,得到第二虚像面1012,此时得到的显示面积可以是显示屏面积的三倍。
还需要说明的是,即使要显示画面为同一副图像,当用户所处的位置不同时,可能被点亮的矢量子像素可能相同也可能不同。是哪一个矢量子像素被点亮主要由设置在显示装置中的处理装置,对人员追踪模块获取到的瞳孔位置以及显示装置的参数信息进行计算,确定被点亮的矢量子像素是哪些。
参见图5,若第一发光区域101为平面型,可以将反射镜103设置在平面型显示屏的左右两侧。用户所处的位置不同,显示装置中设置的人眼追踪模块可以确定用户的瞳孔位置,并根据用户的瞳孔位置确定与用户的瞳孔位置相对应的矢量子像素被点亮。也就是说,可以根据用户所处的位置,选择合适的子像 素点亮使其经平面镜103反射的光线可以进入用户的瞳孔,用户观看矢量像素显示屏的同时也可以透过平面镜看到矢量像素经平面镜所成的虚像,这样就可以达到扩大视野的效果,即此时的显示面积为显示屏显示面积的三倍。
需要说明的是,安装本实施例提供的显示面板的显示装置中还包括人眼追踪模块、以及处理装置。其中,人眼追踪模块用于获取用户的瞳孔位置,处理装置用于根据用户的瞳孔位置确定第一发光区域中待发光的目标矢量子像素。
至少一个反射镜设置在第一发光区域边缘处扩大显示面积的原理是:当矢量子像素发出发射光线且与反射镜之间存在夹角时,发射光线可以经反射镜反射后进入用户的瞳孔,并在反射镜面中形成与发射光线的矢量子像素相对应的虚像,从而扩大了显示面积。
在上述技术方案的基础上,还需要说明的是,由于经反射镜反射后进入用户瞳孔的光线可能存在光能的损失,所以需要对经反射镜反射后用户观看到的矢量子像素进行亮度补偿。此时,显示装置中设置的人眼追踪模块可以根据定位到的瞳孔位置信息,还可以确定用于补偿光能损失的矢量子像素,进而根据显示屏幕上显示的内容对发光的矢量子像素进行亮度的补偿。
本发明实施例的技术方案,通过将至少一个反射镜设置在所述第一发光区域的边缘处,用于将所述矢量子像素发射的入射光线经所述至少一个反射镜反射后按照预设的路径射出,形成与所述矢量子像素相对应的虚像,解决了相关技术中为提高显示屏幕的观看面积,通常会增大显示屏幕的物理面积,当大屏显示时,需要在显示界面上设置较多矢量像素,导致存在成本较高,资源浪费的技术问题,既增大了显示界面面积,又降低了生产成本,并且提高用户体验。
实施例二
在上述技术方案的基础上,为了扩大显示面积还可以将至少两个发光区域进行拼接,在本实施例中以两个发光区域拼接为例。
图6为本发明实施例二所提供的一种显示面板结构示意图。参见图6、图3和图4,该界面面板上还包括:第二发光区域201、至少一个反射镜103设置在第一发光区域101以及第二发光区域201的第二边缘处,用于将至少一个矢量子像素发出的入射光线进行反射出射到用户的瞳孔。需要说明的是,本发明实施例中所提及的第一发光区域、第二发光区域、均是安装有矢量像素的区域,在本实施例中仅是针对平面镜的不同设置方式,将显示面板的发光区域进行划分。
为了扩大矢量像素显示屏的面积,除了采用实施例一所提及到的技术方案,还可以是将至少两个矢量像素显示屏进行组合,也就是将两个发光区域进行组合。
在具体实现中,组合方式可以是将两个矢量像素显示屏,或者多面矢量像素显示屏封装在同一水平面上,还可以是封装在不同的水平面上。在实际应用的过程中,将两个矢量像素显示屏封装在同一个平面上仅是理想的状态,大部分是将两个或者多个面矢量像素显示屏封装在多个平面上。可选的,将两个矢量像素显示屏封装在两个平面上。也就是说,第一发光区域101和第二发光区域201拼接时,封装在不同平面上。继续参见图7,可选的,第二发光区域201设置在第二平面上,第一发光区域101设置在第一平面上,第一平面与第二平面之间互相平行。在一些实施例中,第一平面与第二平面之间存在一定的高度差,可以是第一平面的垂直高度高于第二平面,也可以是第二平面的垂直高度高于第一平面。在本实施例中,可以是第二平面的垂直高度高于第一平面的垂直高度,还可以理解为,以用户所处的观看位置为准,第一水平面近离观看测, 第二水平面远离观看测。在拼接的过程中,只要第一发光区域与第二发光区域不在同一水平面上,不管第一发光区域101与第二发光区域201之间采用怎么样的设置放置,第一发光区域101与第二发光区域201均存在缝隙的问题。
当用户在观看显示界面的过程中,可能出现由于用户与矢量像素显示屏法线方向之间的角度较大,导致看到矢量像素第二发光区域201与第一发光区域101之间的缝隙,从而使显示界面不完整,导致存在用户体验较差的问题。示例性的,参见图7,第一发光区域101与第二发光区域201之间的设置方式可以如图所示,当用户在A视点观看时,用户可以看到完美的显示屏,当用户在B视点观看时,可能会看到第二发光区域201和第一发光区域101之间的缝隙,显示效果较差。在上述技术方案的基础上,可以在第二发光区域201和第一发光区域101之间的缝隙处,设置至少一个反射镜103,继续参见图6,也就是说在第一水平面与第二平面的间隙处垂直设置一个平面镜103。当显示系统中的人眼追踪模块,检测到用户的瞳孔位置后,显示系统中的处理装置可以根据用户的瞳孔位置确定第二发光区域201中,哪一个矢量子像素经反射镜103作用后,可以进入用户的瞳孔,从而避免用户看到第二发光区域201与第一发光区域101之间的缝隙。也就是说,第二发光区域201上矢量子像素发射的光线出射到反射镜103,可以经反射镜103作用后进入用户的瞳孔,并由于光线的可逆性,可以形成与发光矢量子像素相对应的虚像,这样设置的好处在于有效的遮挡了第二发光区域201和第一发光区域101的缝隙,并且实现了不论用户在处于哪一个位置均可以看到完美的显示屏幕。
本发明实施例还提供了一种显示系统,显示系统中包括人眼追踪装置、处理装置以及本发明实施例所提供的显示面板,当采用本实施例所提供的显示面板是,可以实现扩大显示面显示面积,广场裸眼3D显示以及提高用户体验的技 术效果。
本发明实施例的技术方案,通过将至少一个反射镜放置在至少两个发光区域的缝隙处,用于将至少一个矢量子像素的发出的入射光进行反射出射到用户的瞳孔,解决了相关技术中为了扩大显示面将至少两个发光区域进行拼接时,若用户所处的位置比较计算时,观看到的显示界面效果不佳的技术问题,实现了通过设置在缝隙处的反射镜既扩大了显示面积,又达到了显示界面的完整性,从而提高了用户体验的技术效果。
实施例三
图8为本发明实施例所述的一种显示方法流程示意图。该方法可以应用在设置有矢量像素的显示屏上,该方法可以通过软件和/或硬件的方式实现,可以集成在电子设备中,可选的,终端,PC端等。
如图8所述,所述方法包括:
S801、基于人眼追踪模块获取用户的瞳孔位置,并确定瞳孔位置的坐标。
需要说明的是,人眼追踪模块可以集成在显示装置中,该显示装置包括实施例一以及实施例二所公开的显示面板。人眼追踪模块可以实时获取预设范围内,用户的瞳孔位置。瞳孔位置坐标可以理解为,根据预先建立空间坐标系,确定瞳孔的坐标信息。
S802、根据瞳孔位置的坐标,以及至少一个反射镜的尺寸以及设置位置,确定每个矢量像素中至少一个待发光的矢量子像素坐标,作为目标矢量子像素。
需要说明的是,所述至少一个反射镜的数量可以是一个、两个、或者多个,用户可以根据实际需求确定。预先确定至少一个反射镜设置的位置,以及反射镜的尺寸。矢量像素中包括多个矢量子像素。因此需要确定矢量像素中需要发 光的矢量子像素。将根据用户的瞳孔位置坐标,确定发光的矢量子像素。将发光的矢量子像素作为目标矢量子像素。显示装置中的驱动软件可分别确定可以目标矢量子像素中的坐标,将此时确定的坐标作为目标矢量子像素坐标。
在具体实现中,根据瞳孔的坐标,以及至少一个反射镜的尺寸以及设置的位置,可以计算得到每个矢量像素中哪些矢量子像素发射的光束,可以直接经显示屏到达用户的瞳孔。当然,还可以计算得到哪些矢量子像素发射的光束可以经反射镜作用后进入用户的瞳孔。
在一些实施例中,在确定目标矢量子像素之前,还包括:确定显示面板上至少一个矢量子像素,关于至少一个反射镜所成的虚像坐标;其中,矢量像素中包括至少两个矢量子像素。
在具体实现中,在显示面板的预设位置安装反射镜后,可以确定显示面板上的每个矢量像素关于反射镜所成的虚像,并可以得到与每个矢量像素相对应的虚像坐标。根据矢量像素坐标,以及与矢量像素相对应的虚像可以确定,哪些矢量子像素发射的光线可以直接到达用户的瞳孔。根据该计算方法,可以确定显示面板上,哪一个矢量子像素经镜面反射后,可以进入用户瞳孔,从而得到目标矢量子像素。
还需要说明的是,还可以预先计算显示面板中,每个矢量像素中每个矢量子像素的光线路径,并进行存储。当获取到用户的瞳孔位置坐标后,根据预先存储的光线路径,确定需要目标矢量子像素。
在一些实施例中,确定目标矢量子像素还可以是:根据至少一个反射镜的尺寸以及设置的位置,确定瞳孔位置的坐标关于至少一个反射镜所成的瞳孔虚像坐标;根据瞳孔虚像坐标、至少一个反射镜的尺寸以及设置的位置,以及显 示面板上的矢量像素坐标,确定目标矢量子像素坐标。
在具体实现中,在确定反射镜的尺寸以及设置的位置后,可以确定用户的瞳孔位置坐标关于该反射镜所成的瞳孔虚像坐标,根据瞳孔虚像坐标可以确定矢量像素中,哪些矢量子像素发射的光束,可以经瞳孔进入瞳孔的虚像,将进入用户瞳孔虚像的矢量子像素也作为目标矢量子像素。需要说明的是,此时得到的矢量子像素发射的光线所成的像记为虚像。
在本实施例中,矢量像素中包括多个矢量子像素,每个矢量子像素可以发射预先方向的光束。当矢量子像素发射的光束,可以直接进入用户的瞳孔时,将此时用户看到的像称为实像;还有部分矢量子像素发射的光束,需要经过镜面发射后才能进入用户的瞳孔,将此种情况下用户看到的像称为虚像。
在一些实施例中,将经显示屏进入用户瞳孔的矢量子像素,作为第一矢量子像素,所述第一矢量子像素所成的像为实像;将经至少一个反射镜作用后,进入用户瞳孔的矢量子像素,作为第二矢量子像素,所述第二矢量子像素所成的像为虚像;分别确定第一矢量子像素的坐标,以及第二矢量子像素的坐标;将所述第一矢量子像素坐标,以及所述第二矢量子像素的坐标作为目标矢量子像素坐标。
S803、向目标矢量子像素发送控制信号,以使目标矢量子像素发出预设角度的光线。
在具体实现中,显示装置可以向目标矢量子像素发送控制信号,以使目标矢量子像素发出预设角度的光线。
在本实施例中,当用户所处的位置不同时,发光的矢量子像素也不相同,因此不同位置处的用户,即使看到的是同一显示画面,可能发光的矢量子像素不同。
本发明实施例的技术方案,通过将至少一个反射镜设置在所述第一发光区域的边缘处,用于将所述矢量子像素发射的入射光线经所述至少一个反射镜反射后按照预设的路径射出,形成与所述矢量子像素相对应的虚像,解决了相关技术中当大屏显示时,需要在显示界面上设置较多矢量像素,导致存在成本较高,资源浪费的技术问题,既增大了显示界面面积,又降低了生产成本,并且提高用户体验。
作为上述实施例的一可选实施例,图9为本发明实施例三所提供的一种显示方法流程示意图,如图9所示,所述方法包括:
分别获取用户的瞳孔坐标、矢量像素空间坐标、以及反射镜的尺寸以及设置的位置,依据光学原理对每个坐标进行计算,确定显示面板上可以直接到达用户瞳孔的矢量子像素A,以及确定显示面板上部分矢量子像素经反射镜后,可以到达用户瞳孔的矢量子像素B。将矢量子像素A所形成像称为实像,将矢量子像素B所成的像称为虚像。
可选的,确定矢量子像素B的方法是:先确定显示面板上矢量像素关于镜面的虚像坐标,确定虚像中哪些矢量像素的出射光线可以到达用户瞳孔,根据光学的定律,比如:光的反射定律,可以确定虚像中哪些矢量子像素发射的光线可以进入用户的瞳孔,即确定虚像中的矢量子像素B’。根据B’的出射光线以及反射定律,可以确定与出射光线相对应的入射光线,根据入射光线可以确定该矢量像素在显示面板上的坐标B,将此时确定的矢量子像素作为目标矢量子像素B。
可选的,确定矢量子像素B的方法,还可以是:根据用户瞳孔的坐标,以及反射镜的尺寸已经设置方式,确定瞳孔坐标关于反射镜所成的虚像,确定矢量像素中哪些矢量子像素发射的光束可进入用户的瞳孔虚像,将发出的光线可 以进入用户瞳孔虚像的矢量子像素作为目标矢量子像素B。
在本实施例中,点亮显示面板上的矢量子像素A以及矢量子像素B,就可以使目标用户观看到显示面板上显示的画面。
需要说明的是,矢量子像素A和矢量子像素B均是显示面板上设置的矢量像素,只是确定的方式不同。矢量像素A是显示面板上设置的矢量子像素按照预设出射光线出射时,可以直接进入用户的瞳孔;矢量子像素B是按照预设光线路径出射,经镜面反射后,可以进入用户瞳孔的目标矢量子像素。

Claims (10)

  1. 一种显示面板,包括:第一发光区域(101)以及反射镜(103);
    所述第一发光区域(101)包括至少一个矢量像素(102);
    每个所述矢量像素(102)包括至少两个矢量子像素,每个所述矢量子像素配置为发出预设角度的入射光线;
    所述反射镜(103)设置在所述第一发光区域(101)的第一边缘处,所述反射镜(103)配置为使至少一个所述矢量子像素发射的入射光线经所述反射镜(103)反射后按照预设路径射出,形成与向所述反射镜(103)发射入射光线的所述矢量子像素相对应的虚像。
  2. 根据权利要求1所述的显示面板,其中,所述第一发光区域(101)呈曲面或平面设置。
  3. 根据权利要求2所述的显示面板,其中,所述第一发光区域(101)呈曲面设置,所述反射镜(103)设置在所述第一发光区域(101)的曲线边缘处。
  4. 根据权利要求1所述的显示面板,其中,所述反射镜(103)与所述第一发光区域(101)之间所成的角度在预设角度范围之内。
  5. 一种显示方法,用于如权利要求1-4任一项所述的显示面板,包括:
    获取用户的瞳孔位置,并确定所述瞳孔位置的坐标;
    根据所述瞳孔位置的坐标,以及所述反射镜的尺寸和设置位置,在每个所述矢量像素中确定至少一个所述矢量子像素作为目标矢量子像素,确定与每个所述目标矢量子像素相对应的目标矢量子像素坐标;
    向每个所述目标矢量子像素发送控制信号,以使每个所述目标矢量子像素发出预设角度的光线。
  6. 根据权利要求5所述的方法,其中,在根据所述瞳孔位置的坐标,以及所述反射镜的尺寸和设置位置,在每个所述矢量像素中确定至少一个所述矢量 子像素作为目标矢量子像素,确定与每个所述目标矢量子像素相对应的目标矢量子像素坐标之前,所述方法还包括:确定所述显示面板上至少一个所述矢量像素,关于所述反射镜所成的虚像坐标。
  7. 根据权利要求6所述的方法,其中,所述根据所述瞳孔位置的坐标,以及所述反射镜的尺寸和设置位置,在每个所述矢量像素中确定至少一个所述矢量子像素作为目标矢量子像素,确定与每个所述目标矢量子像素相对应的目标矢量子像素坐标,包括:
    根据所述瞳孔位置的坐标、所述反射镜的尺寸和设置位置、所述虚像坐标,以及所述显示面板上所述矢量像素的坐标,确定所述目标矢量子像素坐标。
  8. 根据权利要求5所述的显示方法,其中,所述获取用户的瞳孔位置,并确定所述瞳孔位置的坐标之后,所述方法还包括:
    根据所述反射镜的尺寸以及设置位置,确定所述瞳孔位置的坐标关于所述反射镜所成的瞳孔虚像坐标;
    根据所述瞳孔虚像坐标、所述反射镜的尺寸以及设置位置,以及所述显示面板上的每个所述矢量像素坐标,确定所述目标矢量子像素坐标。
  9. 根据权利要求7或8所述的方法,其中,所述确定所述目标矢量子像素坐标,包括:
    分别确定第一矢量子像素的坐标,以及第二矢量子像素的坐标,所述第一矢量子像素为发射的光线直接进入用户瞳孔的所述矢量子像素,所述第二矢量子像素为发射的光线经所述发射镜反射后进入用户瞳孔的所述矢量子像素;
    将所述第一矢量子像素坐标,以及所述第二矢量子像素的坐标作为目标矢量子像素坐标。
  10. 一种显示系统,包括如权利要求1-4中任一所述的显示面板。
PCT/CN2019/106703 2019-05-24 2019-09-19 一种显示面板、显示方法及显示系统 WO2020237923A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910438627.8 2019-05-24
CN201910438627.8A CN110111688B (zh) 2019-05-24 2019-05-24 一种显示面板、显示方法及显示系统

Publications (1)

Publication Number Publication Date
WO2020237923A1 true WO2020237923A1 (zh) 2020-12-03

Family

ID=67492000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106703 WO2020237923A1 (zh) 2019-05-24 2019-09-19 一种显示面板、显示方法及显示系统

Country Status (2)

Country Link
CN (1) CN110111688B (zh)
WO (1) WO2020237923A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110111688B (zh) * 2019-05-24 2022-04-08 亿信科技发展有限公司 一种显示面板、显示方法及显示系统
CN111403430B (zh) * 2020-04-02 2023-05-26 亿信科技发展有限公司 一种微米发光二极管器件及其制作方法、显示面板
CN111899646B (zh) * 2020-08-12 2022-02-08 亿信科技发展有限公司 一种显示面板及显示装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2370522Y (zh) * 1999-02-11 2000-03-22 许永明 收录机、音响显示窗口的反射镜装置
GB2405489A (en) * 2003-08-30 2005-03-02 Sharp Kk Display and reflector
CN101025510A (zh) * 2006-02-22 2007-08-29 夏普株式会社 显示装置、输入装置、印刷装置和电器设备
CN102736233A (zh) * 2011-03-31 2012-10-17 梁雁飞 透明成像的方法和装置
CN104797972A (zh) * 2012-11-27 2015-07-22 日东电工株式会社 显示装置
CN108399903A (zh) * 2018-03-27 2018-08-14 京东方科技集团股份有限公司 一种成像位置的调节方法及装置、平视显示系统
CN208189107U (zh) * 2018-03-26 2018-12-04 体验科技股份有限公司 一种虚实影像结合显示的剧场
CN109389911A (zh) * 2017-08-03 2019-02-26 广东烨嘉光电科技股份有限公司 一种光场显示屏的设计方法
CN110111688A (zh) * 2019-05-24 2019-08-09 亿信科技发展有限公司 一种显示面板、显示方法及显示系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101742231B (zh) * 2008-11-25 2012-04-25 北京视博数字电视科技有限公司 设备管理方法、系统及其服务器
JP2010250275A (ja) * 2009-03-23 2010-11-04 Olympus Corp 視覚表示装置
CN103135233B (zh) * 2011-12-01 2015-10-14 财团法人车辆研究测试中心 抬头显示装置
CN104076592B (zh) * 2013-03-26 2018-06-05 上海科斗电子科技有限公司 指向光源裸眼3d投影系统及其3d成像屏幕
CN103473996A (zh) * 2013-08-20 2013-12-25 京东方科技集团股份有限公司 一种显示装置
EP3120187B1 (en) * 2014-03-21 2021-10-20 RealD Spark, LLC Directional backlight
TWI509288B (zh) * 2014-07-14 2015-11-21 Shinyoptics Corp 反射式顯示器
JP6421613B2 (ja) * 2015-01-22 2018-11-14 株式会社デンソー ヘッドアップディスプレイ装置
CN105068659A (zh) * 2015-09-01 2015-11-18 陈科枫 一种增强现实系统
US9581827B1 (en) * 2015-09-03 2017-02-28 3M Innovative Properties Company Optical system
CN113433699B (zh) * 2015-10-27 2023-07-04 麦克赛尔株式会社 平视显示装置
CN205983393U (zh) * 2016-07-01 2017-02-22 成都理想境界科技有限公司 一种近眼显示系统、虚拟现实设备和增强现实设备
US20180068449A1 (en) * 2016-09-07 2018-03-08 Valve Corporation Sensor fusion systems and methods for eye-tracking applications
US10394034B2 (en) * 2017-08-15 2019-08-27 Microsoft Technology Licensing, Llc Eye-tracking with MEMS scanning and optical relay
CN108089332B (zh) * 2017-12-15 2021-04-20 歌尔光学科技有限公司 Vr头戴显示设备及显示方法
CN108107588A (zh) * 2017-12-31 2018-06-01 深圳市虚拟现实科技有限公司 反射式虚拟现实头显

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2370522Y (zh) * 1999-02-11 2000-03-22 许永明 收录机、音响显示窗口的反射镜装置
GB2405489A (en) * 2003-08-30 2005-03-02 Sharp Kk Display and reflector
CN101025510A (zh) * 2006-02-22 2007-08-29 夏普株式会社 显示装置、输入装置、印刷装置和电器设备
CN102736233A (zh) * 2011-03-31 2012-10-17 梁雁飞 透明成像的方法和装置
CN104797972A (zh) * 2012-11-27 2015-07-22 日东电工株式会社 显示装置
CN109389911A (zh) * 2017-08-03 2019-02-26 广东烨嘉光电科技股份有限公司 一种光场显示屏的设计方法
CN208189107U (zh) * 2018-03-26 2018-12-04 体验科技股份有限公司 一种虚实影像结合显示的剧场
CN108399903A (zh) * 2018-03-27 2018-08-14 京东方科技集团股份有限公司 一种成像位置的调节方法及装置、平视显示系统
CN110111688A (zh) * 2019-05-24 2019-08-09 亿信科技发展有限公司 一种显示面板、显示方法及显示系统

Also Published As

Publication number Publication date
CN110111688A (zh) 2019-08-09
CN110111688B (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
CN104854864B (zh) 具有横向操作模式和纵向操作模式的时间多路复用显示器
US9864264B2 (en) Systems and methods for displaying an image or video on a retro-reflective screen
JP6458950B2 (ja) 指向性ディスプレイ装置
US6473115B1 (en) Multiple viewer system for displaying a plurality of images
AU2018220129B2 (en) Spatial image display device
WO2020237923A1 (zh) 一种显示面板、显示方法及显示系统
WO2015043098A1 (zh) 一种多视角裸眼立体显示系统及其显示方法
CN104380157A (zh) 定向照明波导布置方式
WO2020080111A1 (ja) 画像表示装置
KR20070038974A (ko) 3차원 영상 생성 방법 및 장치
KR20190117019A (ko) 멀티-뷰 컨텐츠를 전달하기 위한 디스플레이 시스템 및 방법
CN105008983A (zh) 用于定向显示器的超透镜组件
KR20170027735A (ko) 역반사 디스플레이 시스템을 최적화하기 위한 방법
TW201303451A (zh) 個人影像展示
US20140071255A1 (en) Light source control device and video display device
WO2021139204A1 (zh) 三维显示装置以及系统
CN110286496A (zh) 一种基于前置方向性光源的立体显示装置
JP6121097B2 (ja) 情報提示装置
JP2010054917A (ja) 裸眼立体表示装置
WO2022033014A1 (zh) 一种显示面板及显示装置
CN108476315A (zh) 用于基于逆反射的显示系统的系统布局优化的方法
CN110703560A (zh) 一种直接投影式一屏多眼独立显示技术
KR20180078136A (ko) 영상 시스템
WO2019095147A1 (zh) 一种空中显示系统及空中显示方法
WO2023068021A1 (ja) 空中浮遊映像表示システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930782

Country of ref document: EP

Kind code of ref document: A1